

Talk November 26, 1996 2:38 pm 1 of 12

Mobile Ambients

Luca Cardelli

with Andrew Gordon, Cambridge Computer Lab

Talk November 26, 1996 2:38 pm 2 of 12

Introduction

Context

~ Programming the Web.

~ Lots of existing and forthcoming technology for mobile computation.

History

~ Obliq, Telescript, (pre-RMI) Java: three different models of mobility.

Recent experiences

~ Gone to several web meetings.

~ Written a few position papers.

~ Suddenly, ideas started precipitating.

Plan

~ Devise and study mobility abstractions. (And use them within Java.)

Talk November 26, 1996 2:38 pm 3 of 12

Ambients

¥ An ambient is:

~ A confined place where computation happens.

~ Also, something that can be nested within other ambients.

~ Also, something that can move as a whole.

¥ An ambient has:

~ A name. (Used to control access.)

~ A collection of local agents (threads).

~ A collection of sub-ambients.

¥ A name is:

~ Something that can be created, passed around, and used to name new ambients.

~ Something from which entry and exit capabilities can be extracted.

Talk November 26, 1996 2:38 pm 4 of 12

¥ Typical shape of an ambient:

¥ Main operations on ambients:

~ Enter. (Requires an entry capability.)

~ Exit. (Requires an exit capability.)

~ Be. (Change name.)

¥ Discussed today:

Not computation, not communication. Just mobility.

n

P1 Pq

...

...

m1 mn

n [
 P1 | ... | Pp |
 m1[...] | ... | mn[...]
]

name
agents
sub-ambients

... ...

Talk November 26, 1996 2:38 pm 5 of 12

Ambient Dynamics

n

go in m. P
Q

R

n

P
Q

mm

⇒

n

Q

m

go out m. P ⇒
n

P
Q

m

RR

R

n

Q
be m. P ⇒

m

Q
P

Talk November 26, 1996 2:38 pm 6 of 12

Example

let train(stationX stationY XYatX XYatY tripTime) =

 new moving. // assumes the train originates inside stationX

 moving[rec T.

 be XYatX. wait 2.0.

 be moving. go out stationX. wait tripTime. go in stationY.

 be XYatY. wait 2.0.

 be moving. go out stationY. wait tripTime. go in stationX.

 T];

new stationA stationB stationC ABatA ABatB BCatB BCatC .

 stationA[train(stationA stationB ABatA ABatB 10.0)] |

 stationB[train(stationB stationC BCatB BCatC 20.0)] |

 stationC[train(stationC stationB BCatC BCatB 30.0)] |

stationA stationB stationC

trainAB

trainBC

trainBC
joe

nancy

Talk November 26, 1996 2:38 pm 7 of 12

new joe.

 joe[

 go in stationA.

 go in ABatA. go out ABatB.

 go in BCatB. go out BCatC.

 go out stationC] |

new nancy.

 nancy[

 go in stationC.

 go in BCatC. go out BCatB.

 go in ABatB. go out ABatA.

 go out stationA]

Talk November 26, 1996 2:38 pm 8 of 12

Execution trace

moving: Be ABatA
moving: Be BCatC
moving: Be BCatB
nancy: Moved in stationC
nancy: Moved in BCatC
joe: Moved in stationA
joe: Moved in ABatA
ABatA: Be moving
BCatC: Be moving
moving: Moved out stationC
BCatB: Be moving
moving: Moved out stationB
moving: Moved out stationA
moving: Moved in stationB
moving: Be ABatB
joe: Moved out ABatB
ABatB: Be moving
moving: Moved out stationB
moving: Moved in stationC
moving: Be BCatC
BCatC: Be moving
moving: Moved out stationC
moving: Moved in stationA
moving: Be ABatA
ABatA: Be moving
moving: Moved out stationA
moving: Moved in stationB

Talk November 26, 1996 2:38 pm 9 of 12

moving: Be BCatB
nancy: Moved out BCatB
joe: Moved in BCatB
BCatB: Be moving
moving: Moved out stationB
moving: Moved in stationB
moving: Be ABatB
nancy: Moved in ABatB
ABatB: Be moving
moving: Moved out stationB
moving: Moved in stationB
moving: Be BCatB
BCatB: Be moving
moving: Moved out stationB
moving: Moved in stationA
moving: Be ABatA
nancy: Moved out ABatA
nancy: Moved out stationA
ABatA: Be moving
moving: Moved out stationA
moving: Moved in stationB
moving: Be ABatB
moving: Moved in stationC
moving: Be BCatC
joe: Moved out BCatC
joe: Moved out stationC
moving: Moved in stationC
...

Talk November 26, 1996 2:38 pm 10 of 12

Basic Ambient Expressions

P ::= an activity
n[P] an ambient named n with contents P
new n. P create a new name for an ambient (then do P)
go C. P move the enclosing ambient (then do P)
be n. P rename the enclosing ambient (then do P)
P | P two activities in parallel
Ð inactivity

C ::= a capability
in n entry capability for name n
out n exit capability for name n
C

1

 & C

2

path

Talk November 26, 1996 2:38 pm 11 of 12

Java Interface

package Ambit;

public interface AnAmbient {
// Structure

 public Name getName();
 // The current name of this ambient.

 public Env getInitEnv();
 // Get initEnv, the environment at the time this ambient was created (never changes).

 public Ambient newOwnAmbient(Name name, Env env) throws AmbitException;
 // Creates an empty ambient with the given name. It becomes a child of the current ambient.
 // The env parameter becomes initEnv for the new ambient.

 public void startAgent(CodeProc code, Env env) throws AmbitException;
 // Start a new agent in this ambient. The agent runs code with initial environment env.
 // For a "fresh" agent, env should be set to initEnv.
 // For a "continuing" agent (e.g. one forked off by a par), env could be longer than initEnv.

// Movement

 public void moveOut(OutCap parentCap) throws AmbitException;
 // Move this ambient outside the parent (it becomes a sibling of the parent).
 // Requires an output capability to exit the parent.
 // Blocks until a parent's parent exists, and until a parent matches the capability.

 public void moveIn(InCap receiverCap) throws AmbitException;
 // Move this ambient inside a sibling ambient (it becomes a child of the sibling).
 // Requires an input capability to enter the sibling.
 // Blocks until a parent exists, and until a sibling matches the capability.

 public void become(Name newName) throws AmbitException;
 // Rename this ambient.
 // Blocks until a parent exists (to avoid races with other operations).

 public void implode() throws AmbitException;
 // The current ambient goes puff. (It is removed from its parent.)
 // Blocks until a parent exists.

Talk November 26, 1996 2:38 pm 12 of 12

// Communication

 public void give(Result result) throws AmbitException;
 // Offers to output a value into the current ambient's ether.
 // Blocks until it can match an input.

 public Result take() throws AmbitException;
 // Offers to input a value from the current ambient's ether.
 // Blocks until it can match an output.

 public void say(Result result) throws AmbitException;
 // Offers to output a value into the parent ambient's ether.
 // Blocks until a parent exists in which it can match an input.

 public Result ask() throws AmbitException;
 // Offers to input a value from the parent ambient's ether.
 // Blocks until a parent exists in which it can match an output.

// Utility

 public void scream(String screamMsg);
 // Scream a message from this ambient to a global console.

 public String toString();
 // Display the current state of the ambient.
 // If the ambient is changing, it may display an inconsistent configuration.

}

