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Outline

* Topic of this tutorial: a foundation for object-oriented
languages based on object calculi.

¢ Part 1: Object-oriented features.
e Part 2: Object calculi.

¢ Part 3: Interpretation of object-oriented languages.

Object-Oriented Features

CLASS-BASED LANGUAGES

¢ The mainstream.

¢ We review only common, kernel properties.




Classes and Objects

Naive Storage Model

¢ (Classes are descriptions of objects.

¢ Example: storage cells.

class cell is
var contents: Integer = 0;
method get(): Integer is
return self.contents;
end;
method set(n: Integer) is
self.contents .= n;
end;
end;

* (Classes generate objects.

 Objects can refer to themselves.
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* Object = reference to a record of attributes.

0 reference attribute record
>
O contents 0
object [ get (code for get)
% set (code for set)

Naive storage model
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Object Operations

* Object creation.

~ InstanceTypeOf(c) indicates the type of an object of class c.

var myCell: InstanceTypeOf(cell) := new cell;

Field selection.

Field update.

Method invocation.

procedure double(aCell: InstanceTypeOf(cell)) is
aCell.set(2 * aCell.get());
end;
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The Method-Suites Storage Model

¢ A more refined storage model for class-based languages.

field suite method suite
*—p ® ' get (code for get)
contents | 0 set (code for set)
*—p [
contents I 1

Method suites
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Embedding vs. Delegation

In the naive storage model, methods are embedded in
objects.

attribute record

contents 0
get (code for get)
set (code for set)

In the methods-suites storage model, methods are
delegated to the method suites.

field suite method suite
*—> L | cet (code for get)
contents I 0 set (code for set)
*—>» °
contents I 1
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Naive and method-suites models are semantically
equivalent for class-based languages.

They are not equivalent (as we shall see) in object-based
languages, where the difference between embedding
and delegation is critical.
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Method Lookup

Method lookup is the process of finding the code to run
on a method invocation o.m(...). The details depend on
the language and the storage model.

In class-based languages, method lookup gives the
illusion that methods are embedded in objects (cf. 0.x,
0.m(...)), hiding storage model details.

Self is always the receiver: the object that appears to
contain the method.

Features that would distinguish embedding from
delegation implementations (e.g., method update) are
usually avoided.

Subclasses and Inheritance
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A subclass is a differential description of a class.

The subclass relation is the partial order induced by the
subclass declarations.

Example: restorable cells.

subclass reCell of cell is
var backup: Integer = 0;
override set(n: Integer) is
self.backup := self.contents;
super.set(n);
end;
method restore() is
self.contents := self.backup;
end;
end;
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Subclasses and Self

* Because of subclasses, the meaning of self becomes

dynamic.

self.m(...)

* Because of subclasses, the concept of super becomes

useful.

super.m(...)
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Subclasses and Naive Storage

e In the naive implementation, the existence of subclasses
does not cause any change in the storage model.

attribute record

aCell @———p

contents 0
get (code for get)
set (code for set)

attribute record

aReCell @——p

contents 0
get (code for get)
set (code for set)
backup 0

restore | (code for restore)
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Subclasses and Method Suites

¢ Because of subclasses, the method-suites model has to be

reconsidered. In dynamically-typed class-based

languages, method suites are chained:

aCell &—»

aReCell @—»

*— > [
contents | 0 get (code for get)
set (code for set)
—] >» °
contents | 0 set (new code for set)
backup 0 restore | (code for restore)

Hierarchical method suites
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e In statically-typed class-based languages, however, the
method-suites model can be maintained in its original
form.

aCell @&—» *———1—p get (code for get)
contents | 0 set (code for set)
aReCell @—3 —— > oot (code for get)
contents | 0 set (new code for set)
backup | 0 restore | (code for restore)

Collapsed method suites
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Embedding/Delegation View of Class Hierarchies

 Hierarchical method suites: delegation (of objects to
suites) combined with delegation (of sub-suites to super-
suites).

e Collapsed method suites: delegation (of objects to suites)

combined with embedding (of super-suites in sub-suites).
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Class-Based Summary

e In analyzing the meaning and implementation of class-
based languages we end up inventing and analyzing
sub-structures of objects and classes.

e These substructures are independently interesting: they
have their own semantics, and can be combined in
useful ways.

e What if these substructures were directly available to
programmers?
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OBJECT-BASED LANGUAGES

An Object, All by Itself

Slow to emerge.

Simple and flexible.

Usually untyped.

Just objects and dynamic dispatch.

When typed, just object types and subtyping.

Direct object-to-object inheritance.
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* Classes are replaced by object constructors.

¢ Object types are immediately useful.

ObjectType Cell is
var contents: Integer;
method get(): Integer;
method set(n: Integer);
end;

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;
end;
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An Object Generator

* Procedures as object generators.

procedure newCell(m: Integer): Cell is
object cell: Cell is
var contents: Integer = m;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;
end;
return cell;
end;

var celllnstance: Cell := newCell(0);

e Quite similar to classes!
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Decomposing Class-Based Features

* General idea: decompose class-based notions and
orthogonally recombine them.

e We have seen how to decompose simple classes into
objects and procedures.

e We will now investigate how to decompose inheritance.

~ Object generation by parameterization.

~ Vs. object generation by cloning and mutation.
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Prototypes and Clones

Classes describe objects.

Prototypes describe objects and are objects.

Regular objects are clones of prototypes.

var cellClone: Cell := clone celllnstance;

clone is a bit like new, but operates on objects instead of
classes.
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Mutation of Clones

 Clones are customized by mutation (e.g., update).

e Field update.

cellClone.contents := 3;

e Method update.

cellClone.get :=
method (): Integer is
if self.contents < 0 then return 0 else return self.contents end;
end;

* Self-mutation possible.
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Object-Based Inheritance

* Object generation can be obtained by procedures, but
with no real notion of inheritance.

Object inheritance can be achieved by cloning (reuse)
and update (override), but with no shape change.

e How can one inherit with a change of shape?

An option is object extension. But:
~ Not easy to typecheck.
~ Not easy to implement efficiently.

~ Provided rarely or restrictively.
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Donors and Hosts

General object-based inheritance: building new objects
by “reusing” attributes of existing objects.

Two orthogonal aspects:

~ obtaining the attributes of a donor object, and

~ incorporating those attributes into a new host object.

Four categories of object-based inheritance:

~ The attributes of a donor may be obtained implicitly or
explicitly.

~ Orthogonally, those attributes may be either embedded into a
host, or delegated to a donor.
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Embedding

Embedding-Based Languages

e Host objects contain copies of the attributes of donor
objects.

aCell &= [ utents 0
get (code for get)
set (code for set)
aReCell =2 [ utents 0
backup 0
get | (new code for get)
set (new code for set)
restore | (code for restore)

Embedding
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e Embedding provides the simplest explanation of the
standard semantics of self as the receiver.

¢ Embedding was described by Borning as part of one of
the first proposals for prototype-based languages.

* Recently, it has been adopted by languages like Kevo
and Obliq. We call these languages embedding-based
(concatenation-based, in Kevo terminology).
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Delegation

» Host objects contain links to the attributes of donor
objects.

* Prototype-based languages that permit the sharing of
attributes across objects are called delegation-based.

e Operationally, delegation is the redirection of field
access and method invocation from an object or
prototype to another, in such a way that an object can be

seen as an extension of another.

e A crucial aspect of delegation inheritance is the
interaction of donor links with the binding of self.
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Delegation Inheritance

aCell &—3

aReCell @&—»

contents

0

get

(code for get)

set

(code for set)

contents

0

backup

0

set

(new code for set)

restore

(code for restore)

(Single-parent) Delegation

parent link

¢ Note: similar to hierarchical method suites.

Gbject-Based Languages
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Traits: from Prototypes back to Classes?

Different Kinds of Objects

* Prototypes were initially intended to replace classes.

e Several prototype-based languages, however, seem to be
moving towards a more traditional approach based on
class-like structures.

* Prototypes-based languages like Omega, Self, and Cecil
have evolved usage-based distinctions between objects.
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e Trait objects.

¢ Prototype objects.

¢ Normal objects.

aCell &—»

clone(aCell) @—»

prototype trait
® > get (code for get)
contents | 0 set (code for set)
object
contents | 0

Traits

Gbject-Based Languages

AugUSt 12, 1996 4:56 pm.




Embedding-Style Traits

traits

t &—3 [ oot (code for get)
set (code for set)
s &—P | contents | 0 |
prototype
aCell—s+t ® » contents 0
get (code for get)
set (code for set)
object
cell = clone(aCell) @——® | contents 0
get (code for get)
set (code for set)
Traits
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Traits are not Prototypes

e This separation of roles violates the original spirit of
prototype-based languages: traits objects cannot
function on their own. They typically lack instance
variables.

e With the separation between traits and other objects, we
seem to have come full circle back to class-based
languages and to the separation between classes and
instances.

e Trait-based techniques looks exactly like
implementation techniques for classes.
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Contributions of the Object-Based
Approach

e The achievement of object-based languages is to make
clear that classes are just one of the possible ways of
generating objects with common properties.

* Objects are more primitive than classes, and they should
be understood and explained before classes.

¢ Different class-like constructions can be used for
different purposes; hopefully, more flexibly than in strict
class-based languages.
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Going Further

* Language analysis:
~ Class-based langs. — Object-based langs. — Object calculi
e Language synthesis:

~ Object calculi - Object-based langs. — Class-based langs.
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Our Approach to Modeling

* We have identified embedding and delegation as
underlying many object-oriented features.

* In our object calculi, we choose embedding over
delegation as the principal object-oriented paradigm.

e The resulting calculi can model classes well, although
they are not class-based (since classes are not built-in).

e They can model delegation-style traits just as well, but
not “true” delegation. (Object calculi for delegation exist
but are more complex.)
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Object Calculi
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Understanding Objects

® Many characteristics of object-oriented languages are different
presentations of a few general ideas.

* The situation is analogous in procedural programming.

The A-calculus has provided a basic, flexible model, and a better
understanding of actual languages.
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From Functions to Objects

* We develop a calculus of objects, analogous to the A-calculus but
independent.

~ It is entirely based on objects, not on functions.

~ We go in this direction because object types are not easily, or at
all, definable in most standard formalisms.

* The calculus of objects is intended as a paradigm and a foundation
for object-oriented languages.

Ghbject Calcul September 27, 1996 11:25 am 70




* We have, in fact, a family of object calculi:
~ functional and imperative;

~ untyped, first-order, and higher-order.

Untyped and first-order object calculi

Calculus: G Ob; |Oby..| nn | Oby, Obiy| nn |impg| nn
objects . . . . . . . . .
object types . . o . o . .
subtyping . . . . o
variance .

recursive types . . .

dynamic types .

side-effects o o

Higher-order object calculi

Calculus: Ob | Ob, | Ob.. |Ob.,|COb | S Sy nn  |Obgpey
objects . . . o . o . o .
object types . . . . . . . . .
subtyping . . . . . . .
variance ° ° o . . .
recursive types . . .
dynamic types

side-effects o
quantified types| B . . . o .
Self types B . . . . °
structural rules B . o .
type operators .
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There are several other calculi (e.g., Castagna’s, Fisher&Mitchell’s).
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Object Calculi

® Asin A-calculi, we have:
~ operational semantics,
~ denotational semantics,
~ type systems,
~ type inference algorithms (due to J. Palsberg),
~ equational theories,
~ a theory of bisimilarity (due to A. Gordon and G. Rees),
~ examples,
~ (small) language translations,

~ guidance for language design.
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The Role of “Functional” Object Calculi

e Functional object calculi are object calculi without side-effects
(with or without syntax for functions).

* We have developed both functional and imperative object calculi.

 Functional object calculi have simpler operational semantics.

¢ “Functional object calculus” sounds odd: objects are supposed to
encapsulate state!

* However, many of the techniques developed in the context of
functional calculi carry over to imperative calculi.

* Sometimes the same code works functionally and imperatively.
Often, imperative versions require just a little more care.

e All transparencies make sense functionally, except those that say
“imperative” explicitly.
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An Untyped Object Calculus: Syntax

An object is a collection of methods. (Their order does not matter.)
Each method has:

~ a bound variable for self (which denotes the object itself),

~ a body that produces a result.
The only operations on objects are:

~ method invocation,

~ method update.

Syntax of the ¢-calculus

ab = terms
X variable
[1=c(x,)b; €1 object (I; distinct)
a.l method invocation
a.l=¢(x)b method update
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First Examples

An object 0 with two methods, I and m:
0o &
[1=c() ],
m = ¢(x) x.1]
¢ [ returns an empty object.

e m invokes ! through self.

A storage cell with two methods, contents and set:

cell &

[contents = ¢(x) O,
set = ¢(x) A(n) x.contents < ¢(y) n]

e contents returns 0.

e set updates contents through self.
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An Untyped Object Calculus: Reduction

¢ The notation b v~ ¢ means that b reduces to c.

¢ The substitution of a term c for the free occurrences of a variable x
in a term b is written b{x — c}}, or b{c} when x is clear from context.

Let 0 = [li=¢(x))b; ¥ (1; distinct)

0j > bifxj—o} (jel.n)
oligqyb > [l=¢W)b, li=c(x)b; <] (jel.n)

We are dealing with a calculus of objects, not of functions.

The semantics is deterministic (Church-Rosser).
It is not imperative or concurrent.
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Some Example Reductions

A

Let o 2 [I=¢(x)x.[] divergent method
then ol v xl{x—o}= ol v ..

Let o 2 [I=cx)x]
then o'l v x{x~o0’} = 0o’

self-returning method

Let 0" 2 [I=cy) (y.l=¢(x)x)] self-modifying method
then 0”.1 v (0”.l1=¢(x)x) ~= o’

Ghbject Calcul September 27, 1996 11:25 am 78




An Imperative Untyped Object Calculus

* An object is still a collection of methods.
* Method update works by side-effect (“in-place”).
* Some new operations make sense:

~ let (for controlling execution order),

~ object cloning.

Syntax of the impc-calculus

a,b = programs
(as before)
letx=ainb let
clone(a) cloning

* The semantics is given in terms of stacks and stores.
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Expressiveness

* Our calculus is based entirely on methods;
fields can be seen as methods that do not use their self parameter:

[...I=b,..] & [..,I=¢yb,..] for an unused y
ol:i=b 4

o0.l=¢(y)b for an unused y
¢ In addition, we can represent:

~ basic data types,

~ functions,

~ classes and subclasses.

* Method update is the most exotic construct, but:
~ it leads to simpler rules, and

~ it corresponds to features of several languages.
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Some Examples

These examples are:
* easy to write in the untyped calculus,
* patently object-oriented (in a variety of styles),

* sometimes hard to type.
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A Cell

Let cell &
[contents =0,
set = ¢(x) AN(n) x.contents :=n|

Then cell.set(3)
> (A(n)[contents = 0, set = ¢(x) A(n) x.contents := n]
.contents:=n)(3)
> [contents = 0, set = ¢(x)A\(n) x.contents = n]
.contents:=3
> [contents = 3, set = ¢(x) A(n) x.contents := n]
and cell.set(3).contents

> e

3
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A Cell with an Accessor

A

Let gcell £
[contents =0,
set = ¢(x) A(n) x.contents :=n,
get = ¢(x) x.contents]

e The get method fetches contents.

* A user of the cell may not even know about contents.
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A Cell with Undo

Let uncell 2

[contents =0,
set = ¢(x) A(n) (x.undo = x).contents :=n,
undo = ¢(x) x]

¢ The undo method returns the cell before the latest call to set.

* The set method updates the undo method, keeping it up to date.
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The code above works only if update has a functional semantics.
An imperative version is:

uncell &

[contents =0,
set = ¢(x) A(n)

let y = clone(x) in

(x.undo :=y).contents :=n,
undo = ¢(x) x]
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Object-Oriented Booleans

true and false are objects with methods if, then, and else.
Initially, then and else are set to diverge when invoked.

true

false

[if = q(x) x.then, then = ¢(x) x.then, else = ¢(x) x.else]
[if = ¢(x) x.else, then = ¢(x) x.then, else = ¢(x) x.else]

> >

then and else are updated in the conditional expression:
cond(b,c,d) & ((b.then:=c).else:=d).if
So:

cond(true, false, true) = ((true.then:=false).else:=true).if
> ([if = q(x) x.then, then = false, else = ¢(x) x.else].else:=true).if
v [if = (x) x.then, then = false, else = truel.if
v~ [if = ¢(x) x.then, then = false, else = true].then
v false
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Object-Oriented Natural Numbers

¢ Each numeral has a case field that contains either A(z)A(s)z for zero,
or A(z)A(s)s(x) for non-zero, where x is the predecessor (self).

Informally: n.case(z)(s) =if nis zero then z else s(n-1)

* Each numeral has a succ method that can modify the case field to
the non-zero version.

zero is a prototype for the other numerals:

zero &

[case = N(z) A(s) z,
succ = ¢(x) x.case := A(z) A(s) s(x) ]

So:
zero = [case = N(z) A(s) z, succ=...]
one 2 zerosucc = [case = A(z) A(s) s(zero), succ=...]
pred & N(n) n.case(zero)(A(p)p)
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A Calculator

The calculator uses method update for storing pending operations.

calculator 2

[arg = 0.0,

acc=0.0,

enter = ¢(s) A(n) s.arg :=n,

add = ¢(s) (s.acc := s.equals).equals = ¢(s’) s".acc+s’.arg,
sub = ¢(s) (s.acc = s.equals).equals < ¢(s’) s".acc-s’.arg,
equals = ¢(s) s.arg]

We obtain the following calculator-style behavior:

calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0
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Functions as Objects

A function is an object with two slots:
~ one for the argument (initially undefined),

~ one for the function code.

Translation of the untyped A-calculus
x) & x
Ax)b) 4
[arg = ¢(x) x.arg,
val = ¢(x) (b)fx —x.arg}]
(@) £ (().arg = (a)).val

Self variables get statically nested. A keyword self would not suffice.
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The translation validates the {3 rule:

(A@D) (@) ~> (bix ~a})

For example:

(AC))W)) 2 ([arg = ¢(x) x.arg, val = ¢(x) x.argl.arg :=y).val
> [arg = ¢(x) y, val = ¢(x) x.arg].val
> [arg = ¢(x) y, val = ¢(x) x.arg].arg
=y
2 W

The translation has typed and imperative variants.
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Procedures as Imperative Objects

Translation of an imperative A-calculus
x) & x
x:=a) &
let y = {a)
inx.arg =y
)by &
[arg = ¢(x) x.arg,
val = ¢(x) (b)fx —x.arg}]

(b(a)) £
let f = clone({b})
in let y = {a)

in (f.arg := y).val

Cloning on application corresponds to allocating a new stack frame.
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Classes

A class is an object with:
~ a new method, for generating new objects,
~ code for methods for the objects generated from the class.
For generating the object:
0 & [Li=cx) b
we use the class:

c &

[new = ¢(2) [li= q(x) z.li(x) 1],
li — )\(xi) bi iel.An]

The method new is a generator. The call c.new yields o.

Each field J; is a pre-method.
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A Class for Cells
cellClass &
[new = ¢(2)

[contents = ¢(x) z.contents(x), set = ¢(x) z.set(x)],
contents = A(x) 0,
set = A(x) A(n) x.contents := n]

Writing the new method is tedious but straightforward.

Writing the pre-methods is like writing the corresponding methods.

cellClass.new yields a standard cell:
[contents = 0, set = ¢(x) A(n) x.contents = n]
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Inheritance

Inheritance is the reuse of pre-methods.

Given a class ¢ with pre-methods c./; iel.n
we may define a new class ¢”:

¢ 2 [new=.., l=cl;"¢"", [=... /1]

We may say that ¢’ is a subclass of c.
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Inheritance for Cells

cellClass -
[new = ¢(z)
[contents = ¢(x) z.contents(x), set = ¢(x) z.set(x)],
contents = A(x) 0,
set = A(x) A(n) x.contents := n]

uncellClass 2

[new = ¢(2) [...],
contents = cellClass.contents,
set = A(x) cellClass.set(x.undo = x),
undo = A(x) x]
* The pre-method contents is inherited.

e The pre-method set is overridden, though using a call to super.

* The pre-method undo is added.
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Object Types and Subtyping

An object type is a set of method names and of result types:
[liZBi iel..n]

An object has type [1;:B; "] if it has at least the methods I/¢!-", with
a self parameter of some type A <: [I;:B; iel.n] and a result of type B;,

e.g. [land [l1:[], I: []].

An object type with more methods is a subtype of one with fewer:
[liZBi iel..n+m] < [liiBi iel..n]

A longer object can be used instead of a shorter one by subsumption:

aA 0O A<B 0O a:B
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A First-Order Calculus

First-order type rules for the Gcalculus: rules for objects

Environments:
E= xi:Ai iel.n

Judgments:
Eko environment E is well-formed
EFA AisatypeinE
EFA<B Ais asubtype of Bin E
Eta:A ahas type Ain E

Types:
AB ==Top the biggest type

[IzB;"€"]  object type

Terms: as for the untyped calculus (but with types for variables).
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(Type Object) (I; distinct) (Sub Object) (J; distinct)
EFB; Viel.n EFB; Viel.n+m

E+ [l,'ZB,' islurz] E+ [li:Bi isL.rH—m] < [li:Bi iel..n]

(Val Object) (where A = [l;:B;*€1"])
E, x,':A = b,' : B,‘ Viel.n

EF [l,‘=C(x,‘ZA)b,' iel..n] A

(Val Select) (Val Update) (where A = [IzB; 1"
Eba:[l:B;'*"" jel.n Eta:A ExArb:B; jel.n
EF a.l]‘ : B]' EF a.lj:c(x:A)b A
(Val Clone) (where A = [I;:B; i€1~-’1])

Etba:A

E & clone(a) : A
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First-order type rules for the Gcalculus: standard rules

(Envg) (Envx) (Val x)
EFA  x¢dom(E) E'x:AE"F o
gk o ExAkF o E' x:A,E"F x:A
(Sub Refl) (Sub Trans) (Val Subsumption)
EFA EFA<B EFRB<C Eta:A EFA<B

EFA< A EFA<C Etra:B
(Type Top) (Sub Top)

EtFo EFA
EFTop EFA<:Top
(Val Let)

Eta:A E xAFb:B

Ebletx=ainb:B
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Some Results (for the Functional Calculus)

Each well-typed term has a minimum type:

Theorem (Minimum types)
If E+ a: A then there exists B such that EF a4 : B and,
forany A’,if EFa: A then EF B<A'.

The type system is sound for the operational semantics:

Theorem (Subject reduction)
If gta:C
and areducestov
then glFuov:C.
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Unsoundness of Covariance

Object types are invariant (not co/ contravariant) in components.

us ] The unit object type.

L & [1U] An object type with just I.
L<U

P & [x:U, £U]

Q 2 [xL fU]

Assume Q<: P by an (erroneous) covariant rule.

7:Q & [x=[=[]] f==:Q)s.xl]
theng: P by subsumption with Q <: P
hence g.x:=[] : P thatis [x =[], f=¢(s:Q) s.x.I] : P

But (g.x:=[]).f fails!
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Typed Cells

* We assume an imperative semantics (in order to postpone the use
of recursive types).

¢ If set works by side-effect, its result type can be uninformative.
(We can write x.set(3) ; x.contents instead of x.set(3).contents.)

Assuming a type Nat and function types, we let:

Cell & [contents: Nat, set : Nat - []]
GCell & [contents: Nat, set : Nat — [], get : Nat]

We get:
GCell <: Cell

A

cell & [contents =0, set = ¢(x:Cell) N(n:Nat) x.contents = n|
has type Cell
A

geell & ..., get = ¢(x:GCell) x.contents]
has types GCell and Cell
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Classes, with Types

If A = [I;B; "] is an object type,
then Class(A) is the type of the classes for objects of type A:

Class(A) 2 [new:A, IzA - B; '€t

new:A is a generator for objects of type A.
li:A-B; isa pre-method for objects of type A.

c:Class(A) &
[new = ¢(z:Class(A)) [I; = ¢(x:A) z.1j(x) €11,
I = NxiA) bifxi} €11

cnew: A

* Types are distinct from classes.

* More than one class may generate objects of a type.
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Inheritance, with Types

Let A = [Iz:B; "] and A’ = [Iz:B; ™", I:B;/*"1-""], with A’ <: A.
Note that Class(A) and Class(A’) are not related by subtyping.

Let c: Class(A), then for iel..n

clp A-B;<: A’ > B,
Hence c.l;is a good pre-method for a class of type Class(A’).
We may define a subclass ¢’ of c:

¢’: Class(A") & [new=..., l=c.l; <", l=... jentl.m
where class ¢’ inherits the methods I; from class c.
So inheritance typechecks:

If A’<:A then a class for A’ may inherit from a class for A.
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Class Types for Cells

Class(Cell) 2
[new : Cell,
contents : Cell — Nat,
set : Cell — Nat - []]

Class(GCell) 4
[new : GCell,
contents : GCell — Nat,
set : GCell - Nat - [],
get : GCell - Nat]

Class(Cell) and Class(GCell) are not related by subtyping,
but inheritance is possible.
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Variance Annotations

In order to gain expressiveness within a first-order setting,
we extend the syntax of object types with variance annotations:

[liUi:Bi iel..n]

Each v; is a variance annotation; it is one of three symbols ?, *, and ~.
Intuitively,

* "means read-only: it prevents update, but
allows covariant component subtyping;

* ~means write-only: it prevents invocation, but
allows contravariant component subtyping;

* ° means read-write: it allows both invocation and update, but
requires exact matching in subtyping.

By convention, any omitted annotations are taken to be equal to °.
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Subtyping with Variance Annotations

[...I°%B..]<:[..IB"..] f B=B’ invariant
(read-write)

[..I":B..]<:[..I":B"..] f B<: B’ covariant
(read-only)

[..I:B..]<:[..:B’..] if B’<:B contravariant
(write-only)

[...IB..]<:[..I":B"..] if B<: B’ invariant <: variant
[...IB..]<:[..I:B"..] if B’<:B
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Protection by Subtyping

¢ Variance annotations can provide protection against updates from
the outside.

e In addition, object components can be hidden by subsumption.

For example:

Let  GCell & [contents: Nat, set: Nat — [], get: Nat]
PGCell & [set: Nat - [], get: Nat]
ProtectedGCell 2 [set": Nat - [], get™: Nat]
geell : GCell

then GCell <: PGCell <: ProtectedGCell

SO gcell : ProtectedGCell.

Given a ProtectedGCell, one cannot access its contents directly.

From the inside, set and get can still update and read contents.
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Encoding Function Types

An invariant translation of function types:

(A-B) & [arg:(A), val: (B)]

A covariant/ contravariant translation, using annotations:

(A-B) & [arg :(A), val": (B)]

A covariant/ contravariant translation, using quantifiers:
(A-B) & V(X<(A)) A(Y<(BY) [arg:X, val : Y]

where V is for polymorphism and 3 is for data abstraction.
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Recursive Types

Informally, we may want to define a recursive type as in:
Cell & [contents: Nat, set : Nat — Cell]
Formally, we write instead:

Cell & W(X)[contents: Nat, set : Nat - X]

Intuitively, u(X)A{X} is the solution for the equation X = A{X].
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Subtyping Recursive Types

The basic subtyping rule for recursive types is:
HX)A{X} < u(X)B{X]
if
either A{X} and B{X} are equal for all X
or A{X} <: B{Y} for all X and Y such that X <: Y

There are variants, for example:
HXOALX} < p(X)B{X}
if
either A{X} and B{X} are equal for all X
or A{X} <: B{u(X)B{X}} for all X such that X <: u(X)B{X}

But A{X} <: B{X} does not imply M(X)A{X} <: p(X)B{X}.
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Cells (with Recursive Types)

Let Cell £ [contents: Nat, set: Nat — Cell]
cell : Cell &
[contents =0,
set = C(x:Cell) N(n:Nat) x.contents := n|

The type Cell is a recursive type.

Now we can typecheck cell.set(3).contents.

Because of the recursion, we do not get interesting subtypings.

Let GCell & [contents: Nat, set: Nat - GCell, get : Nat]
then GCell is not a subtype of Cell.
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The fact that GCell is not a subtype of Cell is unacceptable, but
necessary for soundness.

Consider the following correct but somewhat strange GCell:

gcell”: GCell &
[contents = ¢(x:Cell) x.set(x.get).get,
set = (x:Cell) AN(n:Nat) x.get :==n,
get =0]

If GCell were a subtype of Cell then we would have:

geell” : Cell
gceell” : Cell & (gcell’.set := N(n:Nat) cell)

where cell is a fixed element of Cell, without a get method.
Then we can write:

m:Nat & gcell”.contents

But the computation of m yields a “message not understood” error.
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Five Solutions (Overview)

* Avoid methods specialization, redefining GCell:

Cell & [contents: Nat, set : Nat — Cell]
GCell & [contents: Nat, set : Nat — Cell, get : Nat]

~ This is a frequent approach in common languages.
~ It requires dynamic type tests after calls to the set method.
Eg,
typecase gcell.set(3)

when (x:GCell) x.get
else ...
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¢ Add variance annotations:

Cell 2 [contents: Nat, set': Nat — Cell]
GCell 2 [contents : Nat, set”: Nat - GCell, get : Nat]

~ This approach yields the desired subtypings.
~ But it forbids even sound updates of the set method.

~ It would require reconsidering the treatment of classes in order
to support inheritance of the set method.

‘Object Calcul
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* Go back to an imperative framework, where the typing problem
disappears because the result type of set is [].
Cell £ [contents: Nat, set : Nat — []]
GCell & [contents : Nat, set : Nat — [], get : Nat]

~ This works sometimes.
~ But methods that allocate a new object of the type of self still call
for the use of recursive types:

UnCell & [contents: Nat, set : Nat — [], undo : UnCell]
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Gbject Calcun

¢ Axiomatize some notion of Self types, and write:

Cell & [contents: Nat, set : Nat — Self]
GCell 2 [contents: Nat, set : Nat — Self, get : Nat]

~ But the rules for Self types are not trivial or obvious.
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* Move up to higher-order calculi, and see what can be done there.
Cell 4

£ 3A(Y<Cell) [contents : Nat, set : Nat — Y]
GCell 2

A(Y<:GCell) [contents : Nat, set : Nat — Y, get : Nat]

~ The existential quantifiers yield covariance, so GCell <: Cell.

~ Intuitively, the existentially quantified type is the type of self:
the Self type.

~ This technique is general, and suggests sound rules for primitive
Self types.
We obtain:

~ subtyping with methods that return self,

~ inheritance for methods that return self or that take arguments
of the type of self (“binary methods”), but without subtyping.
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Typed Reasoning

In addition to a type theory, we have a simple typed proof system.

There are some subtleties in reasoning about objects.

Consider:
A 2 [x:Nat, f: Nat]
a:A & [x=1,f=1]
b:A & [x=1,f=s:A)s.x]

Informally, we may say that a.x = b.x : Nat and a.f = b.f: Nat.
So, do we have a = b?

It would follow that (a.x:=2).f = (b.x:=2).f

Still, as objects of [x : Nat], a and b are indistinguishable from [x =1].
Hence:

a=>b:[x:Nat]
Finally, we may ask:

aZb:[f:Nat]

This is sound; it can be proved via bisimilarity.

In summary, there is a notion of typed equality that may support
some interesting transformations (inlining of methods).

and then1=2.
Hence: (Work in progress:

Qb A specification and verification for a typed object-oriented language.)
Conclusions ¢ Classes vs. objects:

Object calculi are both simple and expressive.

¢ Functions vs. objects:

~ Functions can be translated into objects.
Therefore, pure object-based languages are at least as expressive
as procedural languages.
(Despite all the Smalltalk philosophy, to our knowledge nobody
had proved that one can build functions from objects.)

~ Conversely, using sophisticated type systems, it is possible to
translate objects into functions.
(But this translation is difficult and not practical.)
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~ Classes can be encoded in object calculi, easily and faithfully.
Therefore, object-based languages are just as expressive as class-
based ones.
(To our knowledge, nobody had shown that one can build type-
correct classes out of objects.)

~ Method update, a distinctly object-based construct, is tractable
and can be useful.
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Interpretation of
Object-Oriented Languages

Tnterpretation of Object-Oriented Languages "August 12, 1996 4:52 pm 3

A FIRST-ORDER LANGUAGE

e Let’s assess the contributions that object calculi bring to
the task of modeling programming language constructs.

e For this purpose, we study a simple object-oriented
language named O-1.

e We have studied more advanced languages that include
Self types and matching.
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Features of O-1

* Both class-based and object-based constructs.

e First-order object types with subtyping and variance
annotations.

e Classes with single inheritance; method overridding and
specialization.

e Recursion.
¢ Typecase.

* Separation interfaces from implementations, and
inheritance from subtyping.

Syntax

Syntax of O-1 types
r

AB:= types
type variable
Top the biggest type
Object(X)[1u;:B; €11 object type (I; distinct)
Class(A) class type
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Syntax of O-1 terms
r

ab,c= terms
X variable
object(x:A) [=b; 1" end direct object construction
al field selection / method invocation
al:=b update with a term
a.l := method(x:A) b end update with a method
new ¢ object construction from a class
root root class
subclass of c:C with(x:A) subclass

1.=b- ien+l.n+m
i~Yi

override /,=b; €Ov01-7 ang

additional attributes
overridden attributes

e We could drop the object-based constructs (object
construction and method update). The result would be a
language expressive enough for traditional class-based
programming.

e Alternatively, we could drop the class-based construct
(root class, subclass, new, and class selection), obtaining
an object-based language.

* Classes, as well as objects, are first-class values. A

cnila) class selection parametric class can be obtained as a function that
typecase 2 when (x:A)b; else b, end typecase
: returns a class.
Abbreviations Examples
Root 2 * We assume basic types (Bool, Int) and function types
Class(Object(X)[]) (A - B, contravariant in A and covariant in B).

class with(x:A) [;=b; i€lnand &
subclass of root:Root with(x:A) I;=b; i€l gyerride end

subclass of c:C with (x:A) ... super. ... end 2

subclass of c:C with (x:A) ... cM(x) ... end

A

object(x:A) ... I copied fromc ... end 2
object(x:A) ... I=cM(x) ... end
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Point & Object(X)[x: Int, eq™: X - Bool, mv™: Int - X]
CPoint £ Object(X)[x: Int, c: Color, eq*: Point - Bool, mv™: Int - Point]

e CPoint <: Point

* The type of mv in CPoint is Int - Point.
One can explore the effect of changing it to Int - X.

e The type of eq in CPoint is Point — Bool.
If we were to change it to X - Bool we would lose the
subtyping CPoint <: Point.
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Class(Point)

pointClass : Class(Point) £
class with (self: Point)
x=0,
eq = fun(other: Point) self.x = other.x end,
mv = fun(dx: Int) self.x := self.x+dx end

Class(CPoint)

cPointClass : Class(CPoint) 2
subclass of pointClass: Class(Point)
with (self: CPoint)
¢ = black
override
eq = fun(other: Point)

end typecase other

when (other”: CPoint) super.eq(other’) and self.c = other’.c

else false

end

end
end
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Comments

e The class cPointClass inherits x and mv from its
superclass pointClass.

e Although it could inherit eq as well, cPointClass
overrides this method as follows.

~ The definition of Point requires that eg work with any argument

other of type Point.

~ In the eq code for cPointClass, the typecase on other determines

whether other has a color.

~ If so, eq works as in pointClass and in addition tests the color of

other.

~ If not, eq returns false.
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e We can use cPointClass to create color points of type
CPoint:

cPoint : CPoint 2 new cPointClass
e Calls to mv lose the color information.

* In order to access the color of a point after it has been
moved, a typecase is necessary:

movedColor : Color 2

typecase cPoint.mv(1)
when (cp: CPoint) cp.c
else black

end
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Typing

* The rules of O-1 are based on the following judgments:

Judgments

T
EFo environment E is well-formed
EFA A is a well-formed type in E
E-A<B Ais a subtype of Bin E

EFVA<:u'B  Ais asubtype of B in E, with variance annotations v and v’
Eta:A ahas type Ain E
L

¢ The rules for environments are standard:

Type Formation Rules

Types

T
(Type X) (Type Top)
E, X<A E"Fo EFo

E, X<A E"FX Et+Top

(Type Object) (J; distinct, v;e{%~,"})
E X<TophB; Viel.n
E F Object(X)[[;u;:B; 1"

L

(Type Class) (where A = Object(X)[/;u;:B{X} iel.ny
EFA

E I Class(A)

Environments
I
(Env g) (Env X<3) (Env x)
EFA Xg¢dom(E) EFA  x¢dom(E)
gk o E, X<AF o E x:AF o
L
Subtyping Rules Term Typing Rules
e Note that there is no rule for subtyping class types. Terms
I
Subtyping (Val Subsumption) (Val x)
T 1 EFa:A EFA<B E, x:A,E"F o
(Sub Refl) (Sub Trans) (Sub X) (Sub Top) Ela:B E xAE’Fx:A
EFA ErFA<B EFB<C E, X<A E"F o EFA
EFA<A EFA<C E,X<A E'FX<tA ErA<: Top (Val Object) (where A = Object(X)[,u;B;{X} €!-"])

(Sub Object) (where A = Object(X)[ju;:B;{X} €1+, A" = Object(X")[l;v;:B; (X} €1-"])

EFA ERA  EX<A'FuB{X}< v/ B/{A} Viel.n
EFA< A

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E+-B EFB<:B" el EFB'<:B ve{}
EF°B<:°B E+uB<*B EFUB<: "B’
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E, x:AFb;: B{A} Viel.n
E + object(x:A) I=b; 1" end : A
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(Val Select) (where A = Object(X)[/;v;:B;{X} iel.m))

Ela:A Uje{°,+} jel.n

(Val Update) (where A = Object(X)[/;u;:B;{X} €1-"])

EFa:A EFb:B{A} vel%}  jeln

El—a.lj::b:A

(Val Method Update) (where A = Object(X)[/;v;:B;{X} fel.n)
Eba:A E xAkFb:BfA)} U]-e{o,_} jel.n

Et+ a.lj := method(x:A)b end : A
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(Val New)
EFc: Class(A)

EFnewc:A

(Val Root)
EFo

E + root : Class(Object(X)[])

(Val Subclass) (where A = Object(X)[[;u;:B;{X} *€1-"*™], A’ = Object(X)[1v;:B; (X'} 1],
Ovr(1..n)
Elc¢':Class(A) EFA< A’
EFB/{A} <:B{A} Viel.n—-Ovr
E, x:AFb;: B{A}  VieOvrOn+l.n+m
E F subclass of ¢’:Class(A’) with(x:A) [;=b; "*1-"*" gyerride I;=b; ‘€O end
: Class(A)

Tnterpretation of Object-Oriented Languages "AugUst 12, 1996 4:52 pm 110

(Val Class Select) (where A = Object(X)[/,u;:B{X} iel.n))
Eta:A Etc:Class(A) jel.n

E+ CAlj(ﬂ) : B]{{A}}

(Val Typecase)
Eta:A” ExAvFb;:D EFb:D
E + typecase 2 when (x:A)b; else by end : D

e These rules are hard to read and understand.

* But they are the ultimate truth about typing in O-1.
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Translation

e We give a translation into a functional calculus (with all
the features described earlier).

¢ A similar translation could be given into an appropriate
imperative calculus.

* At the level of types, the translation is simple.
~ We write {A) for the translation of A.

~ We map an object type Object(X)[/;u;:B; i€1.1] 1 a recursive
object type W(X)[1;v;:(B;D iel.n),

~ We map a class type Class(Object(X)[L,u;:B;{X} 1) to an
object type that contains components for pre-methods and a
new component.
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Translation of Types

Translation of O-1 types

T

Xy & X
(Top) 2 Top
{Object(X)[1;u;:B; iﬂ"”]}) 2 pX)[v;:6BY i61..11]

(Class(A)) 2 [new*:(A), lf:((A» - (B {CAD) 1’&1.‘11]
where A = ObjeCt(X)[liUiZBi{X} iel..n]

Translation of O-1 environments

I
(o & ¢
(E, X<:A) 2 (E), X<:(A)
(E, x:A) & (E), x:(A)

L

Translation of Terms
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e The translation is guided by the type structure.

e The translation maps a class to a collection of pre-
methods plus a new method.

~ For a class subclass of ¢’ ... end, the collection of pre-methods
consists of the pre-methods of ¢’ that are not overridden, plus
all the pre-methods given explicitly.

~ The new method assembles the pre-methods into an object;
new c is interpreted as an invocation of the new method of {c).

~ The construct c”(a) is interpreted as the extraction and the
application of a pre-method.
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(Simplified) Translation of O-1 terms

[((x}) A x

(object(x:A) [;=b; €1" end) 2 [l,=c(x:(AD)b;) €]
Qa.l) & qa).l

@al:=b) & (a).l:=Cb)

@a.l := method(x:A) bend) £ (a).l=q(x:(AD)b)

(new c) & ({c).new

(root) 2 [new=[]]

(subclass of ¢":Class(A’) with(x:A) [;=b; ‘" 1" gyerride I,=b; €0 andy A
[new=c(z:(Class(A)))[1=G(s:¢AD)z.I(s) 1"+,
i=Gepd; -0,
I=A(r:GAD) ;) F€O0vrDn+Laem)

GerM(@)y & (ed.1(Cad)

(typecase 2 when (x:A)b; else by end) 2 typecase §a) | (x:QAD)Eb1) | (by)
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Usefulness of the Translation

e The translation validates the typing rules of O-1. That s,
if E+ J is valid in O-1, then (E - J) is valid in the object
calculus.

 The translation served as an important guide in finding
sound typing rules for O-1, and for “tweaking” them to
make them both simpler and more general.

¢ In particular, typing rules for subclasses are so
inherently complex that it is difficult to “guess” them
correctly without the aid of some interpretation.

e Thus, we have succeeded in using object calculi as a
platform for explaining a relatively rich object-oriented
language and for validating its type rules.
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TRANSLATIONS

e Inorder to give insight into type rules for object-oriented
languages, translations must be judgment-preserving
(in particular, type and subtype preserving).

¢ Translating object-oriented languages directly to typed
A-calculi is just too hard. Object calculi provide a good
stepping stone in this process, or an alternative
endpoint.

¢ Translating object calculi into A-calculi means,
intuitively, “programming in object-oriented style
within a procedural language”. This is the hard part.
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Untyped Translations

* Give insights into the nature of object-oriented
computation.

* Objects = records of functions.

o0-o language >

= easy translation

_— >
¢-calculus A-calculus
-~

Type-Preserving Translations

Conclusions August 12, 1996 4:56 pm 19

e Give insights into the nature of object-oriented typing
and subsumption/ coercion.

¢ Object types = recursive records-of-functions types.

[li:Bii€1“’7] N u(X)(li:XaBiiel"”)

typed >

o-o language
= useful for semantic purposes,

impractical for programming,
loses the “oo-flavor”
ty ed ——— y ed

C—caﬁulus A—Fa culus
<«  without<
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Subtype-Preserving Translations

* Give insights into the nature of subtyping for objects.

* Object types = recursive bounded existential types (!!).

[1:B; iel..n] A pYIX<Y)rX, lz‘SEIZX—v B; 1'61“11’ ll]Apd:(X_> B)-X iel.ﬂ)

typed
0-0 lggguage ==
. = very difficult to obtain,
LN impossible to use
L S in actual programming
) 3
)

A

typed LR N o )\tyecll
-calculus
¢-calculus with <:

CONCLUSIONS
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¢ Foundations

~ Subtype-preserving translations of object calculi into A-calculi
are hard.

~ In contrast, subtype-preserving translations of A-calculi into
object-calculi can be easily obtained.

~ In this sense, object calculi are a more convenient foundation
for object-oriented programming than A-calculi.
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¢ Language design
~ Object calculi are a good basis for designing rich object-oriented
type systems (including polymorphism, Self types, etc.).

~ Object-oriented languages can be shown sound by fairly direct
translations into object calculi.
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e Other developments

~ Second-order object types for Self types.
~ Higher-order object types for matching.

e Potential future areas

~ Typed ¢-calculi should be a good simple foundation for
studying object-oriented specification and verification.

~ They should also give us a formal platform for studying object-
oriented concurrent languages (as opposed to “ordinary”
concurrent languages).
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