

OOPSLA’96 Tutorial August 12, 1996 4:12 pm 1

A Theory of Objects

Mart�n Abadi & Luca Cardelli

Digital Equipment Corporation
Systems Research Center

OOPSLAÕ96 Tutorial

OOPSLA’96 Tutorial August 12, 1996 4:12 pm 2

Outline

¥ Topic of this tutorial: a foundation for object-oriented
languages based on object calculi.

¥ Part 1: Object-oriented features.

¥ Part 2: Object calculi.

¥ Part 3: Interpretation of object-oriented languages.

Class-Based Languages August 12, 1996 4:44 pm 3

Object-Oriented Features

Class-Based Languages August 12, 1996 4:44 pm 4

C

LASS

-B

ASED

 L

ANGUAGES

¥ The mainstream.

¥ We review only common, kernel properties.

Class-Based Languages August 12, 1996 4:44 pm 5

Classes and Objects

¥ Classes are descriptions of objects.

¥ Example: storage cells.

¥ Classes generate objects.

¥ Objects can refer to themselves.

class

cell

 is
var

contents

:

Integer

 := 0;

method

get

():

Integer

 is
return

self

.

contents

;

end

;

method

set

(

n

:

Integer

)

 is
self

.

contents

 :=

n

;

end

;

end

;

Class-Based Languages August 12, 1996 4:44 pm 6

Naive Storage Model

¥ Object = reference to a record of attributes.

 Naive storage model

contents
get
set

0
(code for get)
(code for set)

object

reference attribute record







Class-Based Languages August 12, 1996 4:44 pm 7

Object Operations

¥ Object creation.

~

InstanceTypeOf(c)

 indicates the type of an object of class

c

.

¥ Field selection.

¥ Field update.

¥ Method invocation.

var

myCell

:

InstanceTypeOf

(

cell

) :=

new

cell

;

procedure

double

(

aCell

:

InstanceTypeOf

(

cell

))

 is

aCell

.

set

(2 *

aCell

.

get

());

end

;

Class-Based Languages August 12, 1996 4:44 pm 8

The Method-Suites Storage Model

¥ A more refined storage model for class-based languages.

 Method suites

contents 0
get
set

(code for get)
(code for set)

method suite

contents 1

Þeld suite

Class-Based Languages August 12, 1996 4:44 pm 9

Embedding vs. Delegation

¥ In the naive storage model, methods are

embedded

 in
objects.

¥ In the methods-suites storage model, methods are

delegated

 to the method suites.

contents
get
set

0
(code for get)
(code for set)

attribute record

contents 0
get
set

(code for get)
(code for set)

method suite

contents 1

Þeld suite

Class-Based Languages August 12, 1996 4:44 pm 10

¥ Naive and method-suites models are semantically
equivalent for class-based languages.

¥ They are not equivalent (as we shall see) in object-based
languages, where the difference between embedding
and delegation is critical.

Class-Based Languages August 12, 1996 4:44 pm 11

Method Lookup

¥ Method lookup is the process of finding the code to run
on a method invocation

o

.

m

(É). The details depend on
the language and the storage model.

¥ In class-based languages, method lookup gives the

illusion that methods are embedded in objects (cf. o.x,
o.m(...)), hiding storage model details.

¥ Self is always the receiver: the object that appears to
contain the method.

¥ Features that would distinguish embedding from
delegation implementations (e.g., method update) are
usually avoided.

Class-Based Languages August 12, 1996 4:44 pm 12

Subclasses and Inheritance

¥ A subclass is a differential description of a class.

¥ The subclass relation is the partial order induced by the
subclass declarations.

¥ Example: restorable cells.
subclass reCell of cell is

var backup: Integer := 0;
override set(n: Integer) is

self.backup := self.contents;
super.set(n);

end;
method restore() is

self.contents := self.backup;
end;

end;

Class-Based Languages August 12, 1996 4:44 pm 13

Subclasses and Self

¥ Because of subclasses, the meaning of self becomes
dynamic.

¥ Because of subclasses, the concept of super becomes
useful.

self.m(...)

super.m(...)

Class-Based Languages August 12, 1996 4:44 pm 14

Subclasses and Naive Storage

¥ In the naive implementation, the existence of subclasses
does not cause any change in the storage model.

contents
get
set

0
(code for get)
(code for set)

attribute record

contents
get
set

0
(code for get)
(code for set)

attribute record

backup
restore

0
(code for restore)

aCell

aReCell

Class-Based Languages August 12, 1996 4:44 pm 15

Subclasses and Method Suites

¥ Because of subclasses, the method-suites model has to be
reconsidered. In dynamically-typed class-based
languages, method suites are chained:

 Hierarchical method suites

contents 0 get
set

(code for get)
(code for set)

contents 0 set
restore

(new code for set)
(code for restore)

aCell

backup 0

aReCell

Class-Based Languages August 12, 1996 4:44 pm 16

¥ In statically-typed class-based languages, however, the
method-suites model can be maintained in its original
form.

 Collapsed method suites

contents 0
get
set

(code for get)
(code for set)

contents 0 set
restore

(new code for set)
(code for restore)

aCell

backup 0

aReCell get (code for get)

Class-Based Languages August 12, 1996 4:44 pm 17

Embedding/Delegation View of Class Hierarchies

¥ Hierarchical method suites: delegation (of objects to
suites) combined with delegation (of sub-suites to super-
suites).

¥ Collapsed method suites: delegation (of objects to suites)
combined with embedding (of super-suites in sub-suites).

Class-Based Languages August 12, 1996 4:44 pm 18

Class-Based Summary

¥ In analyzing the meaning and implementation of class-
based languages we end up inventing and analyzing
sub-structures of objects and classes.

¥ These substructures are independently interesting: they
have their own semantics, and can be combined in
useful ways.

¥ What if these substructures were directly available to
programmers?

Object-Based Languages August 12, 1996 4:56 pm 19

OBJECT-BASED LANGUAGES

¥ Slow to emerge.

¥ Simple and flexible.

¥ Usually untyped.

¥ Just objects and dynamic dispatch.

¥ When typed, just object types and subtyping.

¥ Direct object-to-object inheritance.

Object-Based Languages August 12, 1996 4:56 pm 20

An Object, All by Itself

¥ Classes are replaced by object constructors.

¥ Object types are immediately useful.
ObjectType Cell is

var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object cell: Cell is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

Object-Based Languages August 12, 1996 4:56 pm 21

An Object Generator

¥ Procedures as object generators.

¥ Quite similar to classes!

procedure newCell(m: Integer): Cell is
object cell: Cell is

var contents: Integer := m;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;
return cell;

end;

var cellInstance: Cell := newCell(0);

Object-Based Languages August 12, 1996 4:56 pm 22

Decomposing Class-Based Features

¥ General idea: decompose class-based notions and
orthogonally recombine them.

¥ We have seen how to decompose simple classes into
objects and procedures.

¥ We will now investigate how to decompose inheritance.

~ Object generation by parameterization.

~ Vs. object generation by cloning and mutation.

Object-Based Languages August 12, 1996 4:56 pm 23

Prototypes and Clones

¥ Classes describe objects.

¥ Prototypes describe objects and are objects.

¥ Regular objects are clones of prototypes.

¥ clone is a bit like new, but operates on objects instead of
classes.

var cellClone: Cell := clone cellInstance;

Object-Based Languages August 12, 1996 4:56 pm 24

Mutation of Clones

¥ Clones are customized by mutation (e.g., update).

¥ Field update.

¥ Method update.

¥ Self-mutation possible.

cellClone.contents := 3;

cellClone.get :=
method (): Integer is

if self.contents < 0 then return 0 else return self.contents end;
end;

Object-Based Languages August 12, 1996 4:56 pm 25

Object-Based Inheritance

¥ Object generation can be obtained by procedures, but
with no real notion of inheritance.

¥ Object inheritance can be achieved by cloning (reuse)
and update (override), but with no shape change.

¥ How can one inherit with a change of shape?

¥ An option is object extension. But:

~ Not easy to typecheck.

~ Not easy to implement efficiently.

~ Provided rarely or restrictively.

Object-Based Languages August 12, 1996 4:56 pm 26

Donors and Hosts

¥ General object-based inheritance: building new objects
by ÒreusingÓ attributes of existing objects.

¥ Two orthogonal aspects:

~ obtaining the attributes of a donor object, and

~ incorporating those attributes into a new host object.

¥ Four categories of object-based inheritance:

~ The attributes of a donor may be obtained implicitly or
explicitly.

~ Orthogonally, those attributes may be either embedded into a
host, or delegated to a donor.

Object-Based Languages August 12, 1996 4:56 pm 27

Embedding

¥ Host objects contain copies of the attributes of donor
objects.

 Embedding

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

get (new code for get)

contents 0

backup 0
contents 0

Object-Based Languages August 12, 1996 4:56 pm 28

Embedding-Based Languages

¥ Embedding provides the simplest explanation of the
standard semantics of self as the receiver.

¥ Embedding was described by Borning as part of one of
the first proposals for prototype-based languages.

¥ Recently, it has been adopted by languages like Kevo
and Obliq. We call these languages embedding-based
(concatenation-based, in Kevo terminology).

Object-Based Languages August 12, 1996 4:56 pm 29

Delegation

¥ Host objects contain links to the attributes of donor
objects.

¥ Prototype-based languages that permit the sharing of
attributes across objects are called delegation-based.

¥ Operationally, delegation is the redirection of field
access and method invocation from an object or
prototype to another, in such a way that an object can be
seen as an extension of another.

¥ A crucial aspect of delegation inheritance is the
interaction of donor links with the binding of self.

Object-Based Languages August 12, 1996 4:56 pm 30

Delegation Inheritance

¥ Note: similar to hierarchical method suites.

 (Single-parent) Delegation

get
set

(code for get)
(code for set)

set
restore

(new code for set)
(code for restore)

aCell

aReCell

contents 0

contents
backup

0
0

parent link

Object-Based Languages August 12, 1996 4:56 pm 31

Traits: from Prototypes back to Classes?

¥ Prototypes were initially intended to replace classes.

¥ Several prototype-based languages, however, seem to be
moving towards a more traditional approach based on
class-like structures.

¥ Prototypes-based languages like Omega, Self, and Cecil
have evolved usage-based distinctions between objects.

Object-Based Languages August 12, 1996 4:56 pm 32

Different Kinds of Objects

¥ Trait objects.

¥ Prototype objects.

¥ Normal objects.

 Traits

contents 0

prototype

get
set

(code for get)
(code for set)

trait

contents 0

object

aCell

clone(aCell)

Object-Based Languages August 12, 1996 4:56 pm 33

Embedding-Style Traits

 Traits

prototype

get
set

(code for get)
(code for set)

traits

object

aCell = s + t

cell = clone(aCell)

t

get
set

(code for get)
(code for set)

contents 0

get
set

(code for get)
(code for set)

contents 0

contents 0s

Object-Based Languages August 12, 1996 4:56 pm 34

Traits are not Prototypes

¥ This separation of roles violates the original spirit of
prototype-based languages: traits objects cannot
function on their own. They typically lack instance
variables.

¥ With the separation between traits and other objects, we
seem to have come full circle back to class-based
languages and to the separation between classes and
instances.

¥ Trait-based techniques looks exactly like
implementation techniques for classes.

Object-Based Languages August 12, 1996 4:56 pm 35

Contributions of the Object-Based
Approach

¥ The achievement of object-based languages is to make
clear that classes are just one of the possible ways of
generating objects with common properties.

¥ Objects are more primitive than classes, and they should
be understood and explained before classes.

¥ Different class-like constructions can be used for
different purposes; hopefully, more flexibly than in strict
class-based languages.

Object-Based Languages August 12, 1996 4:56 pm 36

Going Further

¥ Language analysis:

~ Class-based langs. → Object-based langs. → Object calculi

¥ Language synthesis:

~ Object calculi → Object-based langs. → Class-based langs.

Object-Based Languages August 12, 1996 4:56 pm 37

Our Approach to Modeling

¥ We have identified embedding and delegation as
underlying many object-oriented features.

¥ In our object calculi, we choose embedding over
delegation as the principal object-oriented paradigm.

¥ The resulting calculi can model classes well, although
they are not class-based (since classes are not built-in).

¥ They can model delegation-style traits just as well, but
not ÒtrueÓ delegation. (Object calculi for delegation exist
but are more complex.)

Object Calculi September 27, 1996 11:25 am 38

Object Calculi

Object Calculi September 27, 1996 11:25 am 39

Understanding Objects

¥ Many characteristics of object-oriented languages are different
presentations of a few general ideas.

¥ The situation is analogous in procedural programming.

The λ-calculus has provided a basic, flexible model, and a better
understanding of actual languages.

Object Calculi September 27, 1996 11:25 am 40

From Functions to Objects

¥ We develop a calculus of objects, analogous to the λ-calculus but
independent.

~ It is entirely based on objects, not on functions.

~ We go in this direction because object types are not easily, or at
all, definable in most standard formalisms.

¥ The calculus of objects is intended as a paradigm and a foundation
for object-oriented languages.

Object Calculi September 27, 1996 11:25 am 41

¥ We have, in fact, a family of object calculi:

~ functional and imperative;

~ untyped, first-order, and higher-order.

Untyped and Þrst-order object calculi

Calculus: ς Ob1 Ob1<: nn Ob1µ Ob1<:µ nn impς nn

objects ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

object types ¢ ¢ ¢ ¢ ¢ ¢ ¢

subtyping ¢ ¢ ¢ ¢ ¢

variance ¢

recursive types ¢ ¢ ¢

dynamic types ¢

side-effects ¢ ¢

Object Calculi September 27, 1996 11:25 am 42

Higher-order object calculi

There are several other calculi (e.g., CastagnaÕs, Fisher&MitchellÕs).

Calculus: Ob Obµ Ob<: Ob<:µ ςOb S SÓ nn Obω<:µ

objects ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

object types ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

subtyping ¢ ¢ ¢ ¢ ¢ ¢ ¢

variance • • ¢ ¢ ¢ ¢

recursive types ¢ ¢ ¢

dynamic types
side-effects ¢

quantified types ¢ ¢ ¢ ¢ ¢ ¢ ¢

Self types • ¢ ¢ ¢ ¢ •

structural rules ¢ ¢ ¢ ¢

type operators ¢

Object Calculi September 27, 1996 11:25 am 43

Object Calculi

¥ As in λ-calculi, we have:

~ operational semantics,

~ denotational semantics,

~ type systems,

~ type inference algorithms (due to J. Palsberg),

~ equational theories,

~ a theory of bisimilarity (due to A. Gordon and G. Rees),

~ examples,

~ (small) language translations,

~ guidance for language design.

Object Calculi September 27, 1996 11:25 am 44

The Role of ÒFunctionalÓ Object Calculi

¥ Functional object calculi are object calculi without side-effects
(with or without syntax for functions).

¥ We have developed both functional and imperative object calculi.

¥ Functional object calculi have simpler operational semantics.

¥ ÒFunctional object calculusÓ sounds odd: objects are supposed to
encapsulate state!

¥ However, many of the techniques developed in the context of
functional calculi carry over to imperative calculi.

¥ Sometimes the same code works functionally and imperatively.
Often, imperative versions require just a little more care.

¥ All transparencies make sense functionally, except those that say
ÒimperativeÓ explicitly.

Object Calculi September 27, 1996 11:25 am 45

An Untyped Object Calculus: Syntax

An object is a collection of methods. (Their order does not matter.)

Each method has:

~ a bound variable for self (which denotes the object itself),

~ a body that produces a result.

The only operations on objects are:

~ method invocation,

~ method update.

Syntax of the ς-calculus
a,b ::= terms

x variable
[li=ς(xi)bi iÏ1..n] object (li distinct)
a.l method invocation
a.lfiüς(x)b method update

Object Calculi September 27, 1996 11:25 am 46

First Examples

An object o with two methods, l and m:

o @
[l = ς(x) [],
 m = ς(x) x.l]

¥ l returns an empty object.

¥ m invokes l through self.

A storage cell with two methods, contents and set:

cell @
[contents = ς(x) 0,
 set = ς(x) λ(n) x.contents fiü ς(y) n]

¥ contents returns 0.

¥ set updates contents through self.

Object Calculi September 27, 1996 11:25 am 47

An Untyped Object Calculus: Reduction

¥ The notation b Òñ c means that b reduces to c.

¥ The substitution of a term c for the free occurrences of a variable x
in a term b is written bYx←cZ, or bYcZ when x is clear from context.

Let o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o.lj Òñ bjYxj←oZ (jÏ1..n)
o.ljfiüς(y)b Òñ [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}] (jÏ1..n)

We are dealing with a calculus of objects, not of functions.

The semantics is deterministic (Church-Rosser).
It is not imperative or concurrent.

Object Calculi September 27, 1996 11:25 am 48

Some Example Reductions

Let o @ [l=ς(x)x.l] divergent method
then o.l Òñ x.lYx←oZ 7 o.l Òñ ...

Let oÕ @ [l = ς(x)x] self-returning method
then oÕ.l Òñ xYx←oÕZ 7 oÕ

Let oÓ @ [l = ς(y) (y.lfiüς(x)x)] self-modifying method
then oÓ.l Òñ (oÓ.lfiüς(x)x) Òñ oÕ

Object Calculi September 27, 1996 11:25 am 49

An Imperative Untyped Object Calculus

¥ An object is still a collection of methods.

¥ Method update works by side-effect (Òin-placeÓ).

¥ Some new operations make sense:

~ let (for controlling execution order),

~ object cloning.

Syntax of the impς-calculus
a,b ::= programs

... (as before)
let x = a in b let
clone(a) cloning

¥ The semantics is given in terms of stacks and stores.

Object Calculi September 27, 1996 11:25 am 50

Expressiveness

¥ Our calculus is based entirely on methods;
fields can be seen as methods that do not use their self parameter:

[..., l=b, ...] @ [..., l=ς(y)b, ...] for an unused y
 o.l:=b @ o.lfiüς(y)b for an unused y

¥ In addition, we can represent:

~ basic data types,

~ functions,

~ classes and subclasses.

¥ Method update is the most exotic construct, but:

~ it leads to simpler rules, and

~ it corresponds to features of several languages.

Object Calculi September 27, 1996 11:25 am 51

Some Examples

These examples are:

¥ easy to write in the untyped calculus,

¥ patently object-oriented (in a variety of styles),

¥ sometimes hard to type.

Object Calculi September 27, 1996 11:25 am 52

A Cell

Let cell @
[contents = 0,
 set = ς(x) λ(n) x.contents := n]

Then cell.set(3)
Òñ (λ(n)[contents = 0, set = ς(x) λ(n) x.contents := n]

.contents:=n)(3)
Òñ [contents = 0, set = ς(x)λ(n) x.contents := n]

.contents:=3
Òñ [contents = 3, set = ς(x) λ(n) x.contents := n]

and cell.set(3).contents
Òñ ...
Òñ 3

Object Calculi September 27, 1996 11:25 am 53

A Cell with an Accessor

Let gcell @
[contents = 0,
 set = ς(x) λ(n) x.contents := n,
 get = ς(x) x.contents]

¥ The get method fetches contents.

¥ A user of the cell may not even know about contents.

Object Calculi September 27, 1996 11:25 am 54

A Cell with Undo

Let uncell @
[contents = 0,
 set = ς(x) λ(n) (x.undo := x).contents := n,
 undo = ς(x) x]

¥ The undo method returns the cell before the latest call to set.

¥ The set method updates the undo method, keeping it up to date.

Object Calculi September 27, 1996 11:25 am 55

The code above works only if update has a functional semantics.
An imperative version is:

uncell @
[contents = 0,
 set = ς(x) λ(n)

let y = clone(x) in
(x.undo := y).contents := n,

 undo = ς(x) x]

Object Calculi September 27, 1996 11:25 am 56

Object-Oriented Booleans

true and false are objects with methods if, then, and else.
Initially, then and else are set to diverge when invoked.

true @ [if = ς(x) x.then, then = ς(x) x.then, else = ς(x) x.else]
false @ [if = ς(x) x.else, then = ς(x) x.then, else = ς(x) x.else]

then and else are updated in the conditional expression:

cond(b,c,d) @ ((b.then:=c).else:=d).if

So:

cond(true, false, true) 7 ((true.then:=false).else:=true).if
 Òñ ([if = ς(x) x.then, then = false, else = ς(x) x.else].else:=true).if
 Òñ [if = ς(x) x.then, then = false, else = true].if
 Òñ [if = ς(x) x.then, then = false, else = true].then
 Òñ false

Object Calculi September 27, 1996 11:25 am 57

Object-Oriented Natural Numbers

¥ Each numeral has a case field that contains either λ(z)λ(s)z for zero,
or λ(z)λ(s)s(x) for non-zero, where x is the predecessor (self).

Informally: n.case(z)(s) = if n is zero then z else s(n-1)

¥ Each numeral has a succ method that can modify the case field to
the non-zero version.

zero is a prototype for the other numerals:

zero @
[case = λ(z) λ(s) z,
 succ = ς(x) x.case := λ(z) λ(s) s(x)]

So:

zero 7 [case = λ(z) λ(s) z, succ = ...]
one @ zero.succ 7 [case = λ(z) λ(s) s(zero), succ = ...]
pred @ λ(n) n.case(zero)(λ(p)p)

Object Calculi September 27, 1996 11:25 am 58

A Calculator

The calculator uses method update for storing pending operations.

calculator @
[arg = 0.0,
 acc = 0.0,
 enter = ς(s) λ(n) s.arg := n,
 add = ς(s) (s.acc := s.equals).equals fiü ς(sÕ) sÕ.acc+sÕ.arg,
 sub = ς(s) (s.acc := s.equals).equals fiü ς(sÕ) sÕ.acc-sÕ.arg,
 equals = ς(s) s.arg]

We obtain the following calculator-style behavior:

calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0

Object Calculi September 27, 1996 11:25 am 59

Functions as Objects

A function is an object with two slots:

~ one for the argument (initially undefined),

~ one for the function code.

Translation of the untyped λ-calculus
äxã @ x
äλ(x)bã @

[arg = ς(x) x.arg,
 val = ς(x) äbãYx←x.argZ]

äb(a)ã @ (äbã.arg := äaã).val

Self variables get statically nested. A keyword self would not suffice.

Object Calculi September 27, 1996 11:25 am 60

The translation validates the β rule:

ä(λ(x)b)(a)ã Òñ äbYx←aZã

For example:

ä(λ(x)x)(y)ã @ ([arg = ς(x) x.arg, val = ς(x) x.arg].arg := y).val
 Òñ [arg = ς(x) y, val = ς(x) x.arg].val
 Òñ [arg = ς(x) y, val = ς(x) x.arg].arg
 Òñ y
@ äyã

The translation has typed and imperative variants.

Object Calculi September 27, 1996 11:25 am 61

Procedures as Imperative Objects

Translation of an imperative λ-calculus
äxã @ x
äx := aã @

let y = äaã
in x.arg := y

äλ(x)bã @

[arg = ς(x) x.arg,
 val = ς(x) äbãYx←x.argZ]

äb(a)ã @

let f = clone(äbã)
in let y = äaã

in (f.arg := y).val

Cloning on application corresponds to allocating a new stack frame.

Object Calculi September 27, 1996 11:25 am 62

Classes

A class is an object with:

~ a new method, for generating new objects,

~ code for methods for the objects generated from the class.

For generating the object:

o @ [li = ς(xi) bi iÏ1..n]

we use the class:

c @

[new = ς(z) [li = ς(x) z.li(x) iÏ1..n],
 li = λ(xi) bi iÏ1..n]

The method new is a generator. The call c.new yields o.

Each field li is a pre-method.

Object Calculi September 27, 1996 11:25 am 63

A Class for Cells

cellClass @
[new = ς(z)

[contents = ς(x) z.contents(x), set = ς(x) z.set(x)],
 contents = λ(x) 0,
 set = λ(x) λ(n) x.contents := n]

Writing the new method is tedious but straightforward.

Writing the pre-methods is like writing the corresponding methods.

cellClass.new yields a standard cell:
 [contents = 0, set = ς(x) λ(n) x.contents := n]

Object Calculi September 27, 1996 11:25 am 64

Inheritance

Inheritance is the reuse of pre-methods.

Given a class c with pre-methods c.li iÏ1..n

we may define a new class cÕ:

cÕ @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

We may say that cÕ is a subclass of c.

Object Calculi September 27, 1996 11:25 am 65

Inheritance for Cells

cellClass @
[new = ς(z)

[contents = ς(x) z.contents(x), set = ς(x) z.set(x)],
 contents = λ(x) 0,
 set = λ(x) λ(n) x.contents := n]

uncellClass @
[new = ς(z) [...],
 contents = cellClass.contents,
 set = λ(x) cellClass.set(x.undo := x),
 undo = λ(x) x]

¥ The pre-method contents is inherited.

¥ The pre-method set is overridden, though using a call to super.

¥ The pre-method undo is added.

Object Calculi September 27, 1996 11:25 am 66

Object Types and Subtyping

An object type is a set of method names and of result types:

[li:Bi iÏ1..n]

An object has type [li:Bi iÏ1..n] if it has at least the methods liiÏ1..n, with
a self parameter of some type A <: [li:Bi iÏ1..n] and a result of type Bi,
e.g., [] and [l1 : [], l2 : []].

An object type with more methods is a subtype of one with fewer:

[li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

A longer object can be used instead of a shorter one by subsumption:

a:A ∧ A<:B ⇒ a:B

Object Calculi September 27, 1996 11:25 am 67

A First-Order Calculus

Environments:

E 7 xi:Ai iÏ1..n

Judgments:

E ∫ Q environment E is well-formed
E ∫ A A is a type in E
E ∫ A <: B A is a subtype of B in E
E ∫ a : A a has type A in E

Types:

A,B ::= Top the biggest type
[li:Bi iÏ1..n] object type

Terms: as for the untyped calculus (but with types for variables).

Object Calculi September 27, 1996 11:25 am 68

First-order type rules for the ς-calculus: rules for objects
(Type Object) (li distinct) (Sub Object) (li distinct)

E ∫ Bi ÓiÏ1..n E ∫ Bi ÓiÏ1..n+m

E ∫ [li:Bi iÏ1..n] E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Val Object) (where A 7 [li:Bi iÏ1..n])

E, xi:A ∫ bi : Bi ÓiÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Update) (where A 7 [li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

(Val Clone) (where A 7 [li:Bi iÏ1..n])

E ∫ a : A

E ∫ clone(a) : A

Object Calculi September 27, 1996 11:25 am 69

First-order type rules for the ς-calculus: standard rules
(Env ) (Env x) (Val x)

E ∫ A xÌdom(E) EÕ,x:A,EÓ ∫ Q

 ∫ Q E,x:A ∫ Q EÕ,x:A,EÓ ∫ x:A

(Sub Refl) (Sub Trans) (Val Subsumption)

E ∫ A E ∫ A <: B E ∫ B <: C E ∫ a : A E ∫ A <: B

E ∫ A <: A E ∫ A <: C E ∫ a : B

(Type Top) (Sub Top)

E ∫ Q E ∫ A

E ∫ Top E ∫ A <: Top

(Val Let)

E ∫ a : A E, x:A ∫ b : B

E ∫ let x=a in b : B

Object Calculi September 27, 1996 11:25 am 70

Some Results (for the Functional Calculus)

Each well-typed term has a minimum type:

Theorem (Minimum types)
If E ∫ a : A then there exists B such that E ∫ a : B and,
for any AÕ, if E ∫ a : AÕ then E ∫ B<:AÕ.

The type system is sound for the operational semantics:

Theorem (Subject reduction)
If  ∫ a : C
and a reduces to v
then  ∫ v : C.

Object Calculi September 27, 1996 11:25 am 71

Unsoundness of Covariance

Object types are invariant (not co/contravariant) in components.

U @ [] The unit object type.
L @ [l:U] An object type with just l.
L <: U

P @ [x:U, f:U]
Q @ [x:L, f:U]
Assume Q <: P by an (erroneous) covariant rule.

q : Q @ [x = [l=[]], f = ς(s:Q) s.x.l]
then q : P by subsumption with Q <: P
hence q.x:=[] : P that is [x = [], f = ς(s:Q) s.x.l] : P

But (q.x:=[]).f fails!

Object Calculi September 27, 1996 11:25 am 72

Typed Cells

¥ We assume an imperative semantics (in order to postpone the use
of recursive types).

¥ If set works by side-effect, its result type can be uninformative.
(We can write x.set(3) ; x.contents instead of x.set(3).contents.)

Assuming a type Nat and function types, we let:

Cell @ [contents : Nat, set : Nat → []]
GCell @ [contents : Nat, set : Nat → [], get : Nat]

We get:

GCell <: Cell
cell @ [contents = 0, set = ς(x:Cell) λ(n:Nat) x.contents := n]

has type Cell
gcell @ [..., get = ς(x:GCell) x.contents]

has types GCell and Cell

Object Calculi September 27, 1996 11:25 am 73

Classes, with Types

If A 7 [li:Bi iÏ1..n] is an object type,
then Class(A) is the type of the classes for objects of type A:

Class(A) @ [new:A, li:A→Bi iÏ1..n]

new:A is a generator for objects of type A.
li:A→Bi is a pre-method for objects of type A.

c : Class(A) @
[new = ς(z:Class(A)) [li = ς(x:A) z.li(x) iÏ1..n],

 li = λ(xi:A) bi{xi} iÏ1..n]
c.new : A

¥ Types are distinct from classes.

¥ More than one class may generate objects of a type.

Object Calculi September 27, 1996 11:25 am 74

Inheritance, with Types

Let A 7 [li:Bi iÏ1..n] and AÕ 7 [li:Bi iÏ1..n, lj:Bj jÏn+1..m], with AÕ <: A.

Note that Class(A) and Class(AÕ) are not related by subtyping.

Let c: Class(A), then for iÏ1..n

c.li: A→Bi <: AÕ→Bi.

Hence c.li is a good pre-method for a class of type Class(AÕ).

We may define a subclass cÕ of c:

cÕ : Class(AÕ) @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

where class cÕ inherits the methods li from class c.

So inheritance typechecks:

If AÕ<:A then a class for AÕ may inherit from a class for A.

Object Calculi September 27, 1996 11:25 am 75

Class Types for Cells

Class(Cell) @
[new : Cell,
 contents : Cell → Nat,
 set : Cell → Nat → []]

Class(GCell) @
[new : GCell,
 contents : GCell → Nat,
 set : GCell → Nat → [],
 get : GCell → Nat]

Class(Cell) and Class(GCell) are not related by subtyping,
but inheritance is possible.

Object Calculi September 27, 1996 11:25 am 76

Variance Annotations

In order to gain expressiveness within a first-order setting,
we extend the syntax of object types with variance annotations:

Each υi is a variance annotation; it is one of three symbols o, +, and Ð.

Intuitively,

¥ + means read-only: it prevents update, but
allows covariant component subtyping;

¥ Ð means write-only: it prevents invocation, but
allows contravariant component subtyping;

¥ o means read-write: it allows both invocation and update, but
requires exact matching in subtyping.

By convention, any omitted annotations are taken to be equal to o.

[liυi:Bi iÏ1..n]

Object Calculi September 27, 1996 11:25 am 77

Subtyping with Variance Annotations

[... lo:B ...] <: [... lo:BÕ ...] if B 7 BÕ invariant
(read-write)

[... l+:B ...] <: [... l+:BÕ ...] if B <: BÕ covariant
(read-only)

[... lÐ:B ...] <: [... lÐ:BÕ ...] if BÕ <: B contravariant
(write-only)

[... lo:B ...] <: [... l+:BÕ ...] if B <: BÕ invariant <: variant
[... lo:B ...] <: [... lÐ:BÕ ...] if BÕ <: B

Object Calculi September 27, 1996 11:25 am 78

Protection by Subtyping

¥ Variance annotations can provide protection against updates from
the outside.

¥ In addition, object components can be hidden by subsumption.

For example:

Let GCell @ [contents : Nat, set : Nat → [], get : Nat]
PGCell @ [set : Nat → [], get : Nat]
ProtectedGCell @ [set+ : Nat → [], get+ : Nat]
gcell : GCell

then GCell <: PGCell <: ProtectedGCell
so gcell : ProtectedGCell.

Given a ProtectedGCell, one cannot access its contents directly.

From the inside, set and get can still update and read contents.

Object Calculi September 27, 1996 11:25 am 79

Encoding Function Types

An invariant translation of function types:

äA→Bã @ [arg : äAã, val : äBã]

A covariant/contravariant translation, using annotations:

äA→Bã @ [argÐ : äAã, val+ : äBã]

A covariant/contravariant translation, using quantifiers:

äA→Bã @ Ó(X<:äAã) Ô(Y<:äBã) [arg : X, val : Y]

where Ó is for polymorphism and Ô is for data abstraction.

Object Calculi September 27, 1996 11:25 am 80

Recursive Types

Informally, we may want to define a recursive type as in:

Cell @ [contents : Nat, set : Nat → Cell]

Formally, we write instead:

Cell @ µ(X)[contents : Nat, set : Nat → X]

Intuitively, µ(X)A{X} is the solution for the equation X = A{X}.

Object Calculi September 27, 1996 11:25 am 81

Subtyping Recursive Types

The basic subtyping rule for recursive types is:

µ(X)A{X} <: µ(X)B{X}
if

either A{X} and B{X} are equal for all X
or A{X} <: BYYZ for all X and Y such that X <: Y

There are variants, for example:

µ(X)A{X} <: µ(X)B{X}
if

either A{X} and B{X} are equal for all X
or A{X} <: BYµ(X)B{X}Z for all X such that X <: µ(X)B{X}

But A{X} <: B{X} does not imply µ(X)A{X} <: µ(X)B{X}.

Object Calculi September 27, 1996 11:25 am 82

Cells (with Recursive Types)

Let Cell @ [contents : Nat, set : Nat → Cell]
cell : Cell @

[contents = 0,
 set = ς(x:Cell) λ(n:Nat) x.contents := n]

The type Cell is a recursive type.

Now we can typecheck cell.set(3).contents.

Because of the recursion, we do not get interesting subtypings.

Let GCell @ [contents : Nat, set : Nat → GCell, get : Nat]
then GCell is not a subtype of Cell.

Object Calculi September 27, 1996 11:25 am 83

The fact that GCell is not a subtype of Cell is unacceptable, but
necessary for soundness.

Consider the following correct but somewhat strange GCell:

gcellÕ : GCell @
[contents = ς(x:Cell) x.set(x.get).get,
 set = ς(x:Cell) λ(n:Nat) x.get := n,
 get = 0]

If GCell were a subtype of Cell then we would have:

gcellÕ : Cell
gcellÕÕ : Cell @ (gcellÕ.set := λ(n:Nat) cell)

where cell is a fixed element of Cell, without a get method.
Then we can write:

m : Nat @ gcellÕÕ.contents

But the computation of m yields a Òmessage not understoodÓ error.

Object Calculi September 27, 1996 11:25 am 84

Five Solutions (Overview)

¥ Avoid methods specialization, redefining GCell:

Cell @ [contents : Nat, set : Nat → Cell]
GCell @ [contents : Nat, set : Nat → Cell, get : Nat]

~ This is a frequent approach in common languages.

~ It requires dynamic type tests after calls to the set method.
E.g.,

typecase gcell.set(3)
when (x:GCell) x.get
else ...

Object Calculi September 27, 1996 11:25 am 85

¥ Add variance annotations:

Cell @ [contents : Nat, set+ : Nat → Cell]
GCell @ [contents : Nat, set+ : Nat → GCell, get : Nat]

~ This approach yields the desired subtypings.

~ But it forbids even sound updates of the set method.

~ It would require reconsidering the treatment of classes in order
to support inheritance of the set method.

Object Calculi September 27, 1996 11:25 am 86

¥ Go back to an imperative framework, where the typing problem
disappears because the result type of set is [].

Cell @ [contents : Nat, set : Nat → []]
GCell @ [contents : Nat, set : Nat → [], get : Nat]

~ This works sometimes.

~ But methods that allocate a new object of the type of self still call
for the use of recursive types:

UnCell @ [contents : Nat, set : Nat → [], undo : UnCell]

Object Calculi September 27, 1996 11:25 am 87

¥ Axiomatize some notion of Self types, and write:

Cell @ [contents : Nat, set : Nat → Self]
GCell @ [contents : Nat, set : Nat → Self, get : Nat]

~ But the rules for Self types are not trivial or obvious.

Object Calculi September 27, 1996 11:25 am 88

¥ Move up to higher-order calculi, and see what can be done there.

Cell @ Ô(Y<:Cell) [contents : Nat, set : Nat → Y]
GCell @ Ô(Y<:GCell) [contents : Nat, set : Nat → Y, get : Nat]

~ The existential quantifiers yield covariance, so GCell <: Cell.

~ Intuitively, the existentially quantified type is the type of self:
the Self type.

~ This technique is general, and suggests sound rules for primitive
Self types.

We obtain:

~ subtyping with methods that return self,

~ inheritance for methods that return self or that take arguments
of the type of self (Òbinary methodsÓ), but without subtyping.

Object Calculi September 27, 1996 11:25 am 89

Typed Reasoning

In addition to a type theory, we have a simple typed proof system.

There are some subtleties in reasoning about objects.

Consider:

A @ [x : Nat, f : Nat]
a : A @ [x = 1, f = 1]
b : A @ [x = 1, f = ς(s:A) s.x]

Informally, we may say that a.x = b.x : Nat and a.f = b.f : Nat.

So, do we have a = b?

It would follow that (a.x:=2).f = (b.x:=2).f

and then 1 = 2.

Hence:

a ≠ b : A

Object Calculi September 27, 1996 11:25 am 90

Still, as objects of [x : Nat], a and b are indistinguishable from [x = 1].

Hence:

a = b : [x : Nat]

Finally, we may ask:

a m b : [f : Nat]

This is sound; it can be proved via bisimilarity.

In summary, there is a notion of typed equality that may support
some interesting transformations (inlining of methods).

(Work in progress:
specification and verification for a typed object-oriented language.)

Object Calculi September 27, 1996 11:25 am 91

Conclusions

Object calculi are both simple and expressive.

¥ Functions vs. objects:

~ Functions can be translated into objects.
Therefore, pure object-based languages are at least as expressive
as procedural languages.
(Despite all the Smalltalk philosophy, to our knowledge nobody
had proved that one can build functions from objects.)

~ Conversely, using sophisticated type systems, it is possible to
translate objects into functions.
(But this translation is difficult and not practical.)

Object Calculi September 27, 1996 11:25 am 92

¥ Classes vs. objects:

~ Classes can be encoded in object calculi, easily and faithfully.
Therefore, object-based languages are just as expressive as class-
based ones.
(To our knowledge, nobody had shown that one can build type-
correct classes out of objects.)

~ Method update, a distinctly object-based construct, is tractable
and can be useful.

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 93

Interpretation of
Object-Oriented Languages

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 94

A FIRST-ORDER LANGUAGE

¥ LetÕs assess the contributions that object calculi bring to
the task of modeling programming language constructs.

¥ For this purpose, we study a simple object-oriented
language named OÐ1.

¥ We have studied more advanced languages that include
Self types and matching.

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 95

Features of OÐ1

¥ Both class-based and object-based constructs.

¥ First-order object types with subtyping and variance
annotations.

¥ Classes with single inheritance; method overridding and
specialization.

¥ Recursion.

¥ Typecase.

¥ Separation interfaces from implementations, and
inheritance from subtyping.

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 96

Syntax

Syntax of OÐ1 types

A,B ::=
X
Top
Object(X)[liυi:Bi

iÏ1..n]
Class(A)

types
type variable
the biggest type
object type (li distinct)
class type

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 97

Syntax of OÐ1 terms

a,b,c ::=
x
object(x:A) li=bi

iÏ1..n end

terms
variable
direct object construction

a.l field selection / method invocation
a.l := b
a.l := method(x:A) b end

update with a term
update with a method

new c
root

object construction from a class
root class

subclass of c:C with(x:A)
li=bi

iÏn+1..n+m
override li=bi

iÏOvr⊆ 1..n end

subclass
additional attributes
overridden attributes

c^l(a)
typecase a when (x:A)b1 else b2 end

class selection
typecase

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 98

¥ We could drop the object-based constructs (object
construction and method update). The result would be a
language expressive enough for traditional class-based
programming.

¥ Alternatively, we could drop the class-based construct
(root class, subclass, new, and class selection), obtaining
an object-based language.

¥ Classes, as well as objects, are first-class values. A
parametric class can be obtained as a function that
returns a class.

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 99

Abbreviations

Root @
Class(Object(X)[])

class with(x:A) li=bi
iÏ1..n end @

subclass of root:Root with(x:A) li=bi
iÏ1..n override end

subclass of c:C with (x:A) É super.l É end @
subclass of c:C with (x:A) É c^l(x) É end

object(x:A) É l copied from c É end @
object(x:A) É l=c^l(x) É end

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 100

Examples

¥ We assume basic types (Bool, Int) and function types
(A→B, contravariant in A and covariant in B).

¥ CPoint <: Point

¥ The type of mv in CPoint is Int→Point.
One can explore the effect of changing it to Int→X.

¥ The type of eq in CPoint is Point→Bool.
If we were to change it to X→Bool we would lose the
subtyping CPoint <: Point.

Point @ Object(X)[x: Int, eq+: X→Bool, mv+: Int→X]

CPoint @ Object(X)[x: Int, c: Color, eq+: Point→Bool, mv+: Int→Point]

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 101

Class(Point)

pointClass : Class(Point) @
class with (self: Point)

x = 0,
eq = fun(other: Point) self.x = other.x end,
mv = fun(dx: Int) self.x := self.x+dx end

end

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 102

Class(CPoint)

cPointClass : Class(CPoint) @
subclass of pointClass: Class(Point)
with (self: CPoint)

c = black
override

eq = fun(other: Point)
typecase other
when (otherÕ: CPoint) super.eq(otherÕ) and self.c = otherÕ.c
else false
end

 end
end

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 103

Comments

¥ The class cPointClass inherits x and mv from its
superclass pointClass.

¥ Although it could inherit eq as well, cPointClass
overrides this method as follows.

~ The definition of Point requires that eq work with any argument
other of type Point.

~ In the eq code for cPointClass, the typecase on other determines
whether other has a color.

~ If so, eq works as in pointClass and in addition tests the color of
other.

~ If not, eq returns false.

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 104

¥ We can use cPointClass to create color points of type
CPoint:

¥ Calls to mv lose the color information.

¥ In order to access the color of a point after it has been
moved, a typecase is necessary:

cPoint : CPoint @ new cPointClass

movedColor : Color @
typecase cPoint.mv(1)
when (cp: CPoint) cp.c
else black
end

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 105

Typing

¥ The rules of OÐ1 are based on the following judgments:

Judgments

¥ The rules for environments are standard:

Environments

E ∫ Q environment E is well-formed
E ∫ A A is a well-formed type in E
E ∫ A <: B A is a subtype of B in E
E ∫ υA <: υÕB A is a subtype of B in E, with variance annotations υ and υÕ
E ∫ a : A a has type A in E

(Env ) (Env X<:) (Env x)

E ∫ A XÌdom(E) E ∫ A xÌdom(E)

 ∫ Q E, X<:A ∫ Q E, x:A ∫ Q

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 106

Type Formation Rules

Types

(Type X) (Type Top)

EÕ, X<:A, EÓ ∫ Q E ∫ Q

EÕ, X<:A, EÓ ∫ X E ∫ Top

(Type Object) (li distinct, υiÏ{o,Ð,+}) (Type Class) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E, X<:Top ∫ Bi ÓiÏ1..n E ∫ A

E ∫ Object(X)[liυi:Bi
iÏ1..n] E ∫ Class(A)

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 107

Subtyping Rules

¥ Note that there is no rule for subtyping class types.

Subtyping

(Sub Refl) (Sub Trans) (Sub X) (Sub Top)

E ∫ A E ∫ A <: B E ∫ B <: C EÕ, X<:A, EÓ ∫ Q E ∫ A

E ∫ A <: A E ∫ A <: C EÕ, X<:A, EÓ ∫ X <: A E ∫ A <: Top

(Sub Object) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n+m], AÕ 7 Object(XÕ)[liυiÕ:BiÕ{XÕ} iÏ1..n])

E ∫ A E ∫ AÕ E, X<:AÕ ∫ υi Bi{X} <: υiÕ BiÕYAÕZ Ó iÏ1..n

E ∫ A <: AÕ

(Sub Invariant) (Sub Covariant) (Sub Contravariant)

E ∫ B E ∫ B <: BÕ υÏ{o,+} E ∫ BÕ <: B υÏ{o,Ð}

E ∫ o B <: o B E ∫ υ B <: + BÕ E ∫ υ B <: Ð BÕ

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 108

Term Typing Rules

Terms

(Val Subsumption) (Val x)

E ∫ a : A E ∫ A <: B EÕ, x:A, EÓ ∫ Q

E ∫ a : B EÕ, x:A, EÓ ∫ x : A

(Val Object) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E, x:A ∫ bi : BiYAZ ÓiÏ1..n

E ∫ object(x:A) li=bi
iÏ1..n end : A

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 109

(Val Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : A υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAZ

(Val Update) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : A E ∫ b : BjYAZ υjÏ{o,Ð} jÏ1..n

E ∫ a.lj := b : A

(Val Method Update) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : A E, x:A ∫ b : BjYAZ υjÏ{o,Ð} jÏ1..n

E ∫ a.lj := method(x:A)b end : A

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 110

(Val New)

E ∫ c : Class(A)

E ∫ new c : A

(Val Root)

E ∫ Q

E ∫ root : Class(Object(X)[])

(Val Subclass) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n+m], AÕ 7 Object(XÕ)[liυiÕ:BiÕ{XÕ} iÏ1..n],
 Ovr⊆ 1..n)

E ∫ cÕ : Class(AÕ) E ∫ A <: AÕ
E ∫ BiÕYAÕZ <: BiYAZ ÓiÏ1..nÐOvr

E, x:A ∫ bi : BiYAZ ÓiÏOvr∪ n+1..n+m

E ∫ subclass of cÕ:Class(AÕ) with(x:A) li=bi
iÏn+1..n+m override li=bi

iÏOvr end
: Class(A)

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 111

¥ These rules are hard to read and understand.

¥ But they are the ultimate truth about typing in OÐ1.

(Val Class Select) (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])

E ∫ a : A E ∫ c : Class(A) jÏ1..n

E ∫ c^lj(a) : BjYAZ

(Val Typecase)

E ∫ a : AÕ E, x:A ∫ b1 : D E ∫ b2 : D

E ∫ typecase a when (x:A)b1 else b2 end : D

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 112

Translation

¥ We give a translation into a functional calculus (with all
the features described earlier).

¥ A similar translation could be given into an appropriate
imperative calculus.

¥ At the level of types, the translation is simple.

~ We write äAã for the translation of A.

~ We map an object type Object(X)[liυi:Bi
iÏ1..n] to a recursive

object type µ(X)[liυi:äBiã iÏ1..n].

~ We map a class type Class(Object(X)[liυi:Bi{X} iÏ1..n]) to an
object type that contains components for pre-methods and a
new component.

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 113

Translation of Types

Translation of OÐ1 types

Translation of OÐ1 environments

äXã @ X

äTopã @ Top

äObject(X)[liυi:Bi
iÏ1..n]ã @ µ(X)[liυi:äBiã iÏ1..n]

äClass(A)ã @ [new+:äAã, li
+:äAã→äBiãYäAãZ iÏ1..n]

where A 7 Object(X)[liυi:Bi{X} iÏ1..n]

äã @ 

äE, X<:Aã @ äEã, X<:äAã

äE, x:Aã @ äEã, x:äAã

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 114

 Translation of Terms

¥ The translation is guided by the type structure.

¥ The translation maps a class to a collection of pre-
methods plus a new method.

~ For a class subclass of cÕ É end, the collection of pre-methods
consists of the pre-methods of cÕ that are not overridden, plus
all the pre-methods given explicitly.

~ The new method assembles the pre-methods into an object;
new c is interpreted as an invocation of the new method of äcã.

~ The construct c^l(a) is interpreted as the extraction and the
application of a pre-method.

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 115

(SimpliÞed) Translation of OÐ1 terms

äxã @ x

äobject(x:A) li=bi
iÏ1..n endã @ [li=ς(x:äAã)äbiã iÏ1..n]

äa.lã @ äaã.l

äa.l := bã @ äaã.l:=äbã

äa.l := method(x:A) b endã @ äaã.lfiüς(x:äAã)äbã

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 116

änew cã @ äcã.new

ärootã @ [new=[]]

äsubclass of cÕ:Class(AÕ) with(x:A) li=bi
iÏn+1..n+m override li=bi

iÏOvr endã @
[new=ς(z:äClass(A)ã)[li=ς(s:äAã)z.li(s) iÏ1..n+m],
 li=äcÕã.li

iÏ1..nÐOvr,
 li=λ(x:äAã)äbiã iÏOvr∪ n+1..n+m]

äc^l(a)ã @ äcã.l(äaã)

ätypecase a when (x:A)b1 else b2 endã @ typecase äaã | (x:äAã)äb1ã | äb2ã

Interpretation of Object-Oriented Languages August 12, 1996 4:52 pm 117

Usefulness of the Translation

¥ The translation validates the typing rules of OÐ1. That is,
if E ∫ J is valid in OÐ1, then äE ∫ Jã is valid in the object
calculus.

¥ The translation served as an important guide in finding
sound typing rules for OÐ1, and for ÒtweakingÓ them to
make them both simpler and more general.

¥ In particular, typing rules for subclasses are so
inherently complex that it is difficult to ÒguessÓ them
correctly without the aid of some interpretation.

¥ Thus, we have succeeded in using object calculi as a
platform for explaining a relatively rich object-oriented
language and for validating its type rules.

Conclusions August 12, 1996 4:56 pm 118

TRANSLATIONS

¥ In order to give insight into type rules for object-oriented
languages, translations must be judgment-preserving
(in particular, type and subtype preserving).

¥ Translating object-oriented languages directly to typed
λ-calculi is just too hard. Object calculi provide a good
stepping stone in this process, or an alternative
endpoint.

¥ Translating object calculi into λ-calculi means,
intuitively, Òprogramming in object-oriented style
within a procedural languageÓ. This is the hard part.

Conclusions August 12, 1996 4:56 pm 119

Untyped Translations

¥ Give insights into the nature of object-oriented
computation.

¥ Objects = records of functions.

o-o language

λ-calculusς-calculus

= easy translation

Conclusions August 12, 1996 4:56 pm 120

Type-Preserving Translations

¥ Give insights into the nature of object-oriented typing
and subsumption/coercion.

¥ Object types = recursive records-of-functions types.

[li:Bi
iÏ1..n] @ µ(X)Üli:X→Bi

iÏ1..ná

typed

λ-calculusς-calculus

= useful for semantic purposes,
 impractical for programming,
 loses the Òoo-flavorÓ

o-o language

typed typed

without <:

Conclusions August 12, 1996 4:56 pm 121

Subtype-Preserving Translations

¥ Give insights into the nature of subtyping for objects.

¥ Object types = recursive bounded existential types (!!).

[li:Bi
iÏ1..n] @ µ(Y)Ô(X<:Y)Ür:X, li

sel:X→Bi
iÏ1..n, li

upd:(X→Bi)→X iÏ1..ná

o-o language

λ-calculusς-calculus

= very difficult to obtain,
 impossible to use

typed

typed typed

with <:

 in actual programming

Conclusions August 12, 1996 4:56 pm 122

CONCLUSIONS

¥ Foundations

~ Subtype-preserving translations of object calculi into λ-calculi
are hard.

~ In contrast, subtype-preserving translations of λ-calculi into
object-calculi can be easily obtained.

~ In this sense, object calculi are a more convenient foundation
for object-oriented programming than λ-calculi.

Conclusions August 12, 1996 4:56 pm 123

¥ Language design

~ Object calculi are a good basis for designing rich object-oriented
type systems (including polymorphism, Self types, etc.).

~ Object-oriented languages can be shown sound by fairly direct
translations into object calculi.

Conclusions August 12, 1996 4:56 pm 124

¥ Other developments

~ Second-order object types for Self types.

~ Higher-order object types for matching.

¥ Potential future areas

~ Typed ς-calculi should be a good simple foundation for
studying object-oriented specification and verification.

~ They should also give us a formal platform for studying object-
oriented concurrent languages (as opposed to ÒordinaryÓ
concurrent languages).

Conclusions August 12, 1996 4:56 pm 125

References

¥ http://www.research.digital.com/SRC/
personal/Luca_Cardelli/TheoryOfObjects.html

¥ M.Abadi, L.Cardelli: A Theory of Objects.
Springer, 1996.

