A Theory of Objects

Martín Abadi \& Luca Cardelli

Digital Equipment Corporation Systems Research Center

OOPSLA'96 Tutorial

Outline

- Topic of this tutorial: a foundation for object-oriented languages based on object calculi.
- Part 1: Object-oriented features.
- Part 2: Object calculi.
- Part 3: Interpretation of object-oriented languages.

Class-Based Languages

- The mainstream.
- We review only common, kernel properties.
\qquad

Classes and Objects

- Classes are descriptions of objects.
- Example: storage cells.

```
class cell is
    var contents: Integer := 0;
    method get(): Integer is
        return self.contents
    end;
    method set(n: Integer) is
        self.contents:= n;
    end
end;
```

- Classes generate objects.
- Objects can refer to themselves.
- Object $=$ reference to a record of attributes.

Naive storage model

The Method-Suites Storage Model

procedure double(aCell: InstanceTypeOf(cell)) is a Cell.set(2 * aCell.get()) end;

- A more refined storage model for class-based languages.

\qquad
- In the naive storage model, methods are embedded in objects.

- In the methods-suites storage model, methods are delegated to the method suites.

Method Lookup

- Method lookup is the process of finding the code to run on a method invocation o.m(...). The details depend on the language and the storage model.
- In class-based languages, method lookup gives the illusion that methods are embedded in objects (cf. o.x, o.m(...)), hiding storage model details.
- Self is always the receiver: the object that appears to contain the method.
- Features that would distinguish embedding from delegation implementations (e.g., method update) are usually avoided.
- Naive and method-suites models are semantically equivalent for class-based languages.
- They are not equivalent (as we shall see) in object-based languages, where the difference between embedding and delegation is critical.

Subclasses and Inheritance

- A subclass is a differential description of a class.
- The subclass relation is the partial order induced by the subclass declarations.
- Example: restorable cells.

```
subclass reCell of cell is
    var backup: Integer := 0;
    override set(n: Integer) is
        self.backup:= self.contents;
        super.set(n);
    end;
    method restore() is
        self.contents := self.backup;
    end;
end;
```


Subclasses and Self

- Because of subclasses, the meaning of self becomes dynamic.
self. $m(. .$.
- Because of subclasses, the concept of super becomes useful.
super. $m(\ldots)$

Subclasses and Naive Storage

- In the naive implementation, the existence of subclasses does not cause any change in the storage model.

- In statically-typed class-based languages, however, the

Hierarchical method suites

Subclasses and Method Suites

- Because of subclasses, the method-suites model has to be reconsidered. In dynamically-typed class-based languages, method suites are chained:

method-suites model can be maintained in its original form.

Collapsed method suites

\qquad

Embedding/Delegation View of Class Hierarchies

- Hierarchical method suites: delegation (of objects to suites) combined with delegation (of sub-suites to supersuites).
- Collapsed method suites: delegation (of objects to suites) combined with embedding (of super-suites in sub-suites).

Class-Based Summary

- In analyzing the meaning and implementation of classbased languages we end up inventing and analyzing sub-structures of objects and classes.
- These substructures are independently interesting: they have their own semantics, and can be combined in useful ways.
- What if these substructures were directly available to programmers?

ObJECT-BASED LANGUAGES

- Slow to emerge.
- Simple and flexible.
- Usually untyped.
- Just objects and dynamic dispatch.
- When typed, just object types and subtyping.
- Direct object-to-object inheritance.

An Object, All by Itself

- Classes are replaced by object constructors.
- Object types are immediately useful.

ObjectType Cell is
var contents: Integer;
method get(): Integer;
method $\operatorname{set}(n$: Integer $)$;
end;
object cell: Cell is
var contents: Integer $:=0$;
method $\operatorname{get}()$: Integer is return self.contents end;
method set(n : Integer) is self.contents $:=n$ end;
end;
\qquad
\qquad

An Object Generator

- Procedures as object generators.

```
procedure newCell(m: Integer): Cell is
    object cell: Cell is
            var contents: Integer := m;
            method get(): Integer is return self.contents end;
            method set(n: Integer) is self.contents := n end;
    end;
    return cell;
end;
var cellInstance: Cell := newCell(0);
```

- Quite similar to classes!

Prototypes and Clones

- Classes describe objects.
- Prototypes describe objects and are objects.
- Regular objects are clones of prototypes.
var cellClone: Cell := clone cellinstance;
- clone is a bit like new, but operates on objects instead of classes.

Decomposing Class-Based Features

- General idea: decompose class-based notions and orthogonally recombine them.
- We have seen how to decompose simple classes into objects and procedures.
- We will now investigate how to decompose inheritance.
~ Object generation by parameterization.
~ Vs. object generation by cloning and mutation.

Mutation of Clones

- Clones are customized by mutation (e.g., update).
- Field update.
cellClone.contents $:=3$;
- Method update.
cellClone.get $:=$
method (): Integer is
if self.contents <0 then return 0 else return self.contents end; end;
- Self-mutation possible.

Object-Based Inheritance

- Object generation can be obtained by procedures, but with no real notion of inheritance.
- Object inheritance can be achieved by cloning (reuse) and update (override), but with no shape change.
- How can one inherit with a change of shape?
- An option is object extension. But:
~ Not easy to typecheck.
~ Not easy to implement efficiently.
~ Provided rarely or restrictively.

Embedding

- Host objects contain copies of the attributes of donor objects.

| aCell \longrightarrowcontents 0
 get (code for get)
 set (code for set) |
| ---: | :--- |
| contents 0
 backup 0
 get (new code for get)
 set (new code for set)
 restore (code for restore) |

Embedding

Donors and Hosts

- General object-based inheritance: building new objects by "reusing" attributes of existing objects.
- Two orthogonal aspects:
~ obtaining the attributes of a donor object, and
~ incorporating those attributes into a new host object.
- Four categories of object-based inheritance:
~ The attributes of a donor may be obtained implicitly or explicitly.
~ Orthogonally, those attributes may be either embedded into a host, or delegated to a donor.

Embedding-Based Languages

- Embedding provides the simplest explanation of the standard semantics of self as the receiver.
- Embedding was described by Borning as part of one of the first proposals for prototype-based languages.
- Recently, it has been adopted by languages like Kevo and Obliq. We call these languages embedding-based (concatenation-based, in Kevo terminology).

Delegation

- Host objects contain links to the attributes of donor objects.
- Prototype-based languages that permit the sharing of attributes across objects are called delegation-based.
- Operationally, delegation is the redirection of field access and method invocation from an object or prototype to another, in such a way that an object can be seen as an extension of another.
- A crucial aspect of delegation inheritance is the interaction of donor links with the binding of self.

Traits: from Prototypes back to Classes?

- Prototypes were initially intended to replace classes.
- Several prototype-based languages, however, seem to be moving towards a more traditional approach based on class-like structures.
- Prototypes-based languages like Omega, Self, and Cecil have evolved usage-based distinctions between objects.

- Note: similar to hierarchical method suites.

Different Kinds of Objects

- Trait objects.
- Prototype objects.
- Normal objects.

\qquad

Embedding-Style Traits

$$
\begin{aligned}
& \begin{array}{l}
\text { traits } \\
a \text { get } \\
\text { (code for get) } \\
\hline \text { set } \\
\text { (code for set) } \\
\hline
\end{array} \\
& \text { cell }=\text { clone }(a \text { Cell }) \longrightarrow \\
& \text { Traits }
\end{aligned}
$$

Contributions of the Object-Based Approach

- The achievement of object-based languages is to make clear that classes are just one of the possible ways of generating objects with common properties.
- Objects are more primitive than classes, and they should be understood and explained before classes.
- Different class-like constructions can be used for different purposes; hopefully, more flexibly than in strict class-based languages.

Traits are not Prototypes

- This separation of roles violates the original spirit of prototype-based languages: traits objects cannot function on their own. They typically lack instance variables.
- With the separation between traits and other objects, we seem to have come full circle back to class-based languages and to the separation between classes and instances.
- Trait-based techniques looks exactly like implementation techniques for classes.

Going Further

- Language analysis:
\sim Class-based langs. \rightarrow Object-based langs. \rightarrow Object calculi
- Language synthesis:
\sim Object calculi \rightarrow Object-based langs. \rightarrow Class-based langs.
\qquad
\qquad

Our Approach to Modeling

- We have identified embedding and delegation as underlying many object-oriented features.
- In our object calculi, we choose embedding over delegation as the principal object-oriented paradigm.
- The resulting calculi can model classes well, although they are not class-based (since classes are not built-in).
- They can model delegation-style traits just as well, but not "true" delegation. (Object calculi for delegation exist but are more complex.)

Object Calculi

From Functions to Objects

- We develop a calculus of objects, analogous to the λ-calculus but independent.
\sim It is entirely based on objects, not on functions.
\sim We go in this direction because object types are not easily, or at all, definable in most standard formalisms.
- The calculus of objects is intended as a paradigm and a foundation for object-oriented languages.
- We have, in fact, a family of object calculi:
~ functional and imperative;
~ untyped, first-order, and higher-order.

Calculus:	ς	Ob_{1}	$\mathbf{O b}_{1<}$	$n n$	$\mathrm{Ob}_{1 \mu}$	$\mathrm{Ob}_{1<\mu}$	$n n$	imps	$n n$
objects	-	-	-	-	-	-	-	-	-
object types		-	-	-	-	-	-		-
subtyping			-	-		-	-		-
variance				-					
recursive types					-	-	-		
dynamic types							-		
side-effects								-	-

Higher-order object calculi

Calculus:	$\mathbf{O b}$	$\mathbf{O b}_{\mu}$	$\mathbf{O b}_{<:}$	$\mathbf{O b}_{<: \mu}$	$\varsigma \mathbf{O b}$	\mathbf{S}	\mathbf{S}_{\forall}	$n n$	$\mathbf{O b}_{\omega<; \mu}$
objects	\bullet								
object types	\bullet								
subtyping			\bullet						
variance			\bullet	\bullet		\bullet	\bullet	\bullet	\bullet
recursive types		\bullet		\bullet					\bullet
dynamic types									
side-effects								\bullet	
quantified types	\bullet	\bullet	\bullet	\bullet			\bullet	\bullet	\bullet
Self types				\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
structural rules						\bullet	\bullet	\bullet	\bullet
type operators									\bullet

There are several other calculi (e.g., Castagna's, Fisher\&Mitchell's).

The Role of "Functional" Object Calculi

- Functional object calculi are object calculi without side-effects (with or without syntax for functions).
- We have developed both functional and imperative object calculi.
- Functional object calculi have simpler operational semantics.
- "Functional object calculus" sounds odd: objects are supposed to encapsulate state!
- However, many of the techniques developed in the context of functional calculi carry over to imperative calculi.
- Sometimes the same code works functionally and imperatively. Often, imperative versions require just a little more care.
- All transparencies make sense functionally, except those that say "imperative" explicitly.

An Untyped Object Calculus: Syntax

An object is a collection of methods. (Their order does not matter.)
Each method has:
~ a bound variable for self (which denotes the object itself),
~ a body that produces a result.
The only operations on objects are:
~ method invocation,
\sim method update.

Syntax of the ς-calculus

$a, b::=$	terms
x	
$\left[l_{i=\varsigma}\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right]$	variable
$a . l$	object $\left(l_{i}\right.$ distinct $)$
$a . l \leqslant \varsigma(x) b$	method invocation

First Examples

An object o with two methods, l and m :
$0 \triangleq$

$$
\begin{aligned}
& {[l=\varsigma(x)[]} \\
& m=\varsigma(x) x . l]
\end{aligned}
$$

- l returns an empty object.
- m invokes l through self.

A storage cell with two methods, contents and set:

$$
\begin{aligned}
& \text { cell } \triangleq \\
& \quad[\text { contents }=\varsigma(x) 0 \\
& \quad \text { set }=\varsigma(x) \lambda(n) x . c o n t e n t s \leqslant \zeta(y) n]
\end{aligned}
$$

- contents returns 0 .
- set updates contents through self.

Some Example Reductions

```
Let o\triangleq[l=\varsigma(x)x.l] divergent method
then o.l }\rightsquigarrowx.l{x\leftarrowo}\equivo.l\rightsquigarrow ..
Let }\mp@subsup{o}{}{\prime}\triangleq[l=\zeta(x)x]\quad\mathrm{ self-returning method
then oo'.l}\rightsquigarrowx{x\leftarrow\mp@subsup{o}{}{\prime}}\equiv\mp@subsup{o}{}{\prime
Let }\mp@subsup{o}{}{\prime\prime}\triangleq[l=\varsigma(y)(y.l\leqslant\varsigma(x)x)]\quad\mathrm{ self-modifying method
then }\mp@subsup{o}{}{\prime\prime}.l\rightsquigarrow(\mp@subsup{o}{}{\prime\prime}.l<\varsigma(x)x)\rightsquigarrow\mp@subsup{o}{}{\prime
```

The semantics is deterministic (Church-Rosser).
It is not imperative or concurrent.

An Untyped Object Calculus: Reduction

- The notation $b \rightsquigarrow c$ means that b reduces to c.
- The substitution of a term c for the free occurrences of a variable x in a term b is written $b\{x \leftarrow c\}$, or $b\{c\}\}$ when x is clear from context.

$$
\begin{array}{lll}
\text { Let } o \equiv\left[l_{i=\zeta}=\varsigma\left(x_{i}\right) b_{i}^{i \in 1 . . n}\right] \quad\left(l_{i} \text { distinct }\right) \\
\\
\begin{array}{llll}
\text { o. } l_{j} & \rightsquigarrow & b_{j}\left\{x_{j} \leftarrow o\right\} & \\
\text { o. } l_{j} \leqslant \zeta(y) b & \rightsquigarrow & {\left[l_{j}=\varsigma(y) b, l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in(1 . . n)-\langle j\}}\right]} & (j \in 1 . . n) \\
(j \in 1 . . n)
\end{array}
\end{array}
$$

We are dealing with a calculus of objects, not of functions.

An Imperative Untyped Object Calculus

- An object is still a collection of methods.
- Method update works by side-effect ("in-place").
- Some new operations make sense:
~ let (for controlling execution order),
~ object cloning.

Syntax of the imp ς-calculus

$a, b::=$	programs
\ldots	(as before)
let $x=a$ in b	let
clone (a)	cloning

- The semantics is given in terms of stacks and stores.

Some Examples

These examples are:

- easy to write in the untyped calculus,
- patently object-oriented (in a variety of styles),
- sometimes hard to type.

Expressiveness

- Our calculus is based entirely on methods; fields can be seen as methods that do not use their self parameter:

$$
\begin{aligned}
{[\ldots, l=b, \ldots] } & \triangleq[\ldots, l=\varsigma(y) b, \ldots] & & \text { for an unused } y \\
o . l:=b & \triangleq o . l \leqslant \varsigma(y) b & & \text { for an unused } y
\end{aligned}
$$

- In addition, we can represent:
~ basic data types,
~ functions
~ classes and subclasses.
- Method update is the most exotic construct, but:
~ it leads to simpler rules, and
\sim it corresponds to features of several languages.

A Cell

Let cell \triangleq
[contents $=0$,
set $=\varsigma(x) \lambda(n) x$.contents $:=n]$

Then cell.set(3)
$\rightsquigarrow(\lambda(n)[$ contents $=0$, set $=\varsigma(x) \lambda(n) x$.contents $:=n]$.contents: $=n)(3)$
$\rightsquigarrow[$ contents $=0$, set $=\varsigma(x) \lambda(n) x$.contents $:=n]$.contents:=3
$\rightsquigarrow[$ contents $=3$, set $=\varsigma(x) \lambda(n) x$.contents $:=n]$
and cell.set(3).contents
\rightsquigarrow...
$\rightsquigarrow 3$

A Cell with an Accessor

Let

```
gcell \triangleq
    [contents = 0,
    set = \varsigma(x)\lambda(n) x.contents := n,
    get }=\varsigma(x)x.contents
```

- The get method fetches contents.
- A user of the cell may not even know about contents.

The code above works only if update has a functional semantics.

An imperative version is:

```
uncell \triangleq
```

uncell \triangleq
[contents = 0,
[contents = 0,
set = \varsigma(x) \lambda(n)
set = \varsigma(x) \lambda(n)
let }y=\operatorname{clone}(x)\mathrm{ in
let }y=\operatorname{clone}(x)\mathrm{ in
(x.undo :=y).contents := n,
(x.undo :=y).contents := n,
undo = \varsigma(x) x]

```
    undo = \varsigma(x) x]
```


A Cell with Undo

```
Let uncell 』
    [contents \(=0\),
    set \(=\varsigma(x) \lambda(n)(x\). undo \(:=x)\).contents \(:=n\),
    undo \(=\varsigma(x) x]\)
```

- The undo method returns the cell before the latest call to set.
- The set method updates the undo method, keeping it up to date.

Object-Oriented Booleans

true and false are objects with methods if, then, and else.
Initially, then and else are set to diverge when invoked.
true $\triangleq[i f=\varsigma(x) x$.then, then $=\varsigma(x) x$.then, else $=\varsigma(x) x$.else $]$
false $\triangleq[i f=\varsigma(x) x$.else, then $=\varsigma(x) x$.then, else $=\varsigma(x) x$.else $]$
then and else are updated in the conditional expression:

```
cond (b,c,d) \triangleq ((b.then:=c).else:=d).if
```

So:
cond(true, false, true $) \equiv(($ true.then $:=f a l s e) . e l s e:=t r u e) . i f ~$
$\rightsquigarrow([i f=\varsigma(x) x$.then, then $=$ false, else $=\varsigma(x) x$.else $]$.else $:=$ true $)$.if
$\rightsquigarrow[i f=\varsigma(x)$ x.then, then $=$ false, else $=$ true $]$. if
$\rightsquigarrow[$ if $=\varsigma(x)$ x.then, then $=$ false, else $=$ true $]$.then
\rightsquigarrow false

Object-Oriented Natural Numbers

- Each numeral has a case field that contains either $\lambda(z) \lambda(s) z$ for zero, or $\lambda(z) \lambda(s) s(x)$ for non-zero, where x is the predecessor (self).
Informally: n.case $(z)(s)=$ if n is zero then z else $s(n-1)$
- Each numeral has a succ method that can modify the case field to the non-zero version.
zero is a prototype for the other numerals:

```
zero \triangleq
    [case = \lambda(z)\lambda(s)z,
    succ =\varsigma(x)x.case :=\lambda(z)\lambda(s)s(x)]
```

So:

```
zero }\quad\equiv[\mathrm{ case = }\lambda(z)\lambda(s)z,succ=...
```



```
pred \triangleq }\(n)n.case(zero)(\lambda(p)p
```

\sim one for the argument (initially undefined),
\sim one for the function code.

Translation of the untyped λ-calculus

```
\(\langle x\rangle \triangleq x\)
\(\varangle \lambda(x) b \rrbracket \triangleq\)
    \([\arg =\varsigma(x) x . \arg\),
    val \(=\varsigma(x) \varangle b \rrbracket\{x \leftarrow x . a r g\}]\)
\(\varangle b(a)\rangle \triangleq(\varangle b\rangle \cdot a r g:=\langle a \rrbracket) \cdot v a l\)
```


A Calculator

The calculator uses method update for storing pending operations.

```
```

```
calculator \triangleq
```

```
```

calculator \triangleq

```
```

```
calculator \triangleq
    [arg = 0.0,
    [arg = 0.0,
    [arg = 0.0,
    acc = 0.0,
    acc = 0.0,
    acc = 0.0,
    enter = \varsigma(s)\lambda(n) s.arg := n,
    enter = \varsigma(s)\lambda(n) s.arg := n,
    enter = \varsigma(s)\lambda(n) s.arg := n,
    add = \varsigma(s) (s.acc:= s.equals).equals }\leqslant\varsigma(\mp@subsup{s}{}{\prime})\mp@subsup{s}{}{\prime}.acc+\mp@subsup{s}{}{\prime}.arg
    add = \varsigma(s) (s.acc:= s.equals).equals }\leqslant\varsigma(\mp@subsup{s}{}{\prime})\mp@subsup{s}{}{\prime}.acc+\mp@subsup{s}{}{\prime}.arg
    add = \varsigma(s) (s.acc:= s.equals).equals }\leqslant\varsigma(\mp@subsup{s}{}{\prime})\mp@subsup{s}{}{\prime}.acc+\mp@subsup{s}{}{\prime}.arg
    sub =\varsigma(s) (s.acc:= s.equals).equals }\leqslant\varsigma(\mp@subsup{s}{}{\prime})\mp@subsup{s}{}{\prime}.acc-\mp@subsup{s}{}{\prime}.arg
    sub =\varsigma(s) (s.acc:= s.equals).equals }\leqslant\varsigma(\mp@subsup{s}{}{\prime})\mp@subsup{s}{}{\prime}.acc-\mp@subsup{s}{}{\prime}.arg
    sub =\varsigma(s) (s.acc:= s.equals).equals }\leqslant\varsigma(\mp@subsup{s}{}{\prime})\mp@subsup{s}{}{\prime}.acc-\mp@subsup{s}{}{\prime}.arg
    equals = \varsigma(s) s.arg]
```

 equals = \varsigma(s) s.arg]
    ```
    equals = \varsigma(s) s.arg]
```

```
[arg=0.0,
```

```
```

[arg=0.0,

```
```

```
[arg=0.0,
```

```

We obtain the following calculator-style behavior:
```

calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0
calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .add .add .equals=15.0

```

The translation validates the \(\beta\) rule:
\[
\varangle(\lambda(x) b)(a) \rrbracket \backsim \varangle b\{x \leftarrow a\}\rangle
\]

For example:
\(\varangle(\lambda(x) x)(y)\rangle \triangleq([\arg =\varsigma(x) x \cdot a r g, v a l=\varsigma(x) x \cdot a r g] \cdot \arg :=y) \cdot v a l\)
\(\rightsquigarrow[\arg =\varsigma(x) y\), val \(=\varsigma(x) x . a r g] . v a l\)
\(\rightsquigarrow[\arg =\varsigma(x) y, v a l=\varsigma(x) x \cdot \arg ] \cdot \arg\)
\(\rightsquigarrow y\)
\(\triangleq \quad \boxtimes y \rrbracket\)

The translation has typed and imperative variants.
    .
\(\qquad\)
- \(\lambda(x) x)\)

列

Self variables get statically nested. A keyword self would not suffice.

\section*{Procedures as Imperative Objects}

\section*{Translation of an imperative \(\lambda\)－calculus}
```

$\boxtimes x\rangle \triangleq x$
«x:=a》』
let $y=\llbracket a \rrbracket$
in x.arg := y
$\Delta \lambda(x) b \rrbracket \triangleq$
$[\arg =\varsigma(x) x . \arg$,
val $=\varsigma(x) \varangle b\rangle\{x \leftarrow x . a r g\}]$
《b(a) 》』
let $f=$ clone($(b\rangle\rangle)$
in let $y=\llbracket a \rrbracket$
in (f.arg :=y).val

```

Cloning on application corresponds to allocating a new stack frame．

\section*{A Class for Cells}
```

cellClass \triangleq
[new = \varsigma(z)
[contents = \varsigma (x) z.contents (x), set =\varsigma }(x)z.\operatorname{set}(x)]
contents = \lambda(x) 0,
set = \lambda(x) \lambda(n) x.contents:= n]

```

Writing the new method is tedious but straightforward．
Writing the pre－methods is like writing the corresponding methods．
cellClass．new yields a standard cell：
\[
[\text { contents }=0, \text { set }=\varsigma(x) \lambda(n) \text { x.contents }:=n]
\]

\section*{Classes}

A class is an object with：
～a new method，for generating new objects，
\(\sim\) code for methods for the objects generated from the class
For generating the object：
\(0 \triangleq\left[l_{i}=\varsigma\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]\)
we use the class：
\(c \triangleq\)
\(\left[\right.\) new \(=\varsigma(z)\left[l_{i}=\varsigma(x) z \cdot l_{i}(x)^{i \epsilon 1 . n}\right]\),
\(\left.l_{i}=\lambda\left(x_{i}\right) b_{i}{ }^{i \in 1 . . n}\right]\)

The method new is a generator．The call c．new yields \(o\) ．
Each field \(l_{i}\) is a pre－method．

\section*{Inheritance}

Inheritance is the reuse of pre－methods．
Given a class \(c\) with pre－methods \(c . l_{i}{ }^{i \epsilon 1 . . n}\) we may define a new class \(c^{\prime}\) ：
\[
c^{\prime} \triangleq\left[n e w=\ldots, l_{i=c}=c l_{i} \in 1 . . n, l_{j}=\ldots . .\right.
\]

We may say that \(c^{\prime}\) is a subclass of \(c\) ．

\section*{Inheritance for Cells}
```

cellClass \triangleq
$[$ new $=\varsigma(z)$
$[$ contents $=\varsigma(x) z \cdot \operatorname{contents}(x)$, set $=\varsigma(x) z \cdot \operatorname{set}(x)]$,
contents $=\lambda(x) 0$,
set $=\lambda(x) \lambda(n) x$.contents $:=n]$
uncellClass 』
$[$ new $=\varsigma(z)[\ldots]$,
contents $=$ cellClass.contents,
set $=\lambda(x)$ cellClass.set $(x$.undo $:=x)$,
undo $=\lambda(x) x]$

```
- The pre-method contents is inherited.
- The pre-method set is overridden, though using a call to super.
- The pre-method undo is added.

\section*{A First-Order Calculus}

Environments:
\[
E \equiv x_{i}: A_{i}{ }^{i \epsilon 1 . . n}
\]

Judgments:
\begin{tabular}{ll}
\(E \vdash \diamond\) & environment \(E\) is well-formed \\
\(E \vdash A\) & \(A\) is a type in \(E\) \\
\(E \vdash A<: B\) & \(A\) is a subtype of \(B\) in \(E\) \\
\(E \vdash a: A\) & \(a\) has type \(A\) in \(E\)
\end{tabular}

Types:
\[
\begin{array}{rll}
A, B: & :=\text { Top } & \text { the biggest type } \\
{\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]} & \text { object type }
\end{array}
\]

Terms: as for the untyped calculus (but with types for variables).

\section*{Object Types and Subtyping}

An object type is a set of method names and of result types:
\[
\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]
\]

An object has type \(\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) if it has at least the methods \(l_{i}^{i \in 1 . . n}\), with a self parameter of some type \(A<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) and a result of type \(B_{i}\), e.g., [] and [ \(\left.l_{1}:[], l_{2}:[]\right]\).

An object type with more methods is a subtype of one with fewer:
\[
\left[l_{i}: B_{i}^{i \in 1 . . n+m}\right]<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]
\]

A longer object can be used instead of a shorter one by subsumption:
\[
a: A \wedge \quad A<: B \quad \Rightarrow \quad a: B
\]

\section*{First-order type rules for the \(\varsigma\)-calculus: rules for objects}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{(Type Object) ( \(l_{i}\) distinct) (Sub Object) \(\quad\left(l_{i}\right.\) distinct)} \\
\hline \(E \vdash B_{i} \quad \forall i \in 1 . . n\) & \(E \vdash B_{i} \quad \forall i \in 1 . . n+m\) \\
\hline \(E \vdash\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) & \(\overline{E \vdash\left[l_{i}: B_{i}{ }^{i \in 1 . . n+m}\right]<:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]}\) \\
\hline \multicolumn{2}{|l|}{(Val Object) (where \(A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) )} \\
\hline \multicolumn{2}{|l|}{\(E, x_{i}: A \vdash b_{i}: B_{i} \quad \forall i \in 1 . . n\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
\overline{E \vdash\left[l_{i}=\zeta\left(x_{i}: A\right) b_{i}{ }^{i \in 1 . . n}\right]: A}
\] \\
(Val Select) \\
(Val Update) (where \(\left.A \equiv\left[l_{i}: B_{i}^{i \epsilon 1 . . n}\right]\right)\)
\end{tabular}}} \\
\hline & \\
\hline \(\underline{E \vdash a:\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \quad j \in 1 . . n}\) & \(E \vdash a: A \quad E, x: A \vdash b: B_{j} \quad j \in 1 . . n\) \\
\hline \(E \vdash a . l_{j}: B_{j}\) & \(E \vdash a . l_{j} \leqslant \zeta(x: A) b: A\) \\
\hline \multicolumn{2}{|l|}{(Val Clone) (where \(\left.A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\right)\)} \\
\hline \multicolumn{2}{|l|}{\(E \vdash a: A\)} \\
\hline Eト clone(a) : A & \\
\hline
\end{tabular}

First-order type rules for the \(\varsigma\)-calculus: standard rules


\section*{Some Results (for the Functional Calculus)}

Each well-typed term has a minimum type:

\section*{Theorem (Minimum types)}

If \(E \vdash a: A\) then there exists \(B\) such that \(E \vdash a: B\) and,
for any \(A^{\prime}\), if \(E \vdash a: A^{\prime}\) then \(E \vdash B<: A^{\prime}\).

The type system is sound for the operational semantics:

\section*{Theorem (Subject reduction)}

If \(\varnothing \vdash a: C\)
and \(a\) reduces to \(v\)
then \(\varnothing \vdash v: C\).

\section*{Unsoundness of Covariance}

Object types are invariant (not co/ contravariant) in components.
\(U \triangleq \quad[]\)
The unit object type.
\(L \triangleq[l: U]\)
An object type with just \(l\).
\(L<: U\)
\(P \triangleq[x: U, f: U]\)
\(Q \triangleq[x: L, f: U]\)
Assume \(Q<: P \quad\) by an (erroneous) covariant rule.
\(q: Q \triangleq[x=[l=[]], f=\varsigma(s: Q)\) s.x.l \(]\)
then \(q: P \quad\) by subsumption with \(Q<: P\)
hence \(q . x:=[]: P \quad\) that is \([x=[], f=\varsigma(s: Q)\) s.x.l] \(: P\)
But (q.x:=[]).f
fails!

\section*{Typed Cells}
- We assume an imperative semantics (in order to postpone the use of recursive types).
- If set works by side-effect, its result type can be uninformative. (We can write \(x . \operatorname{set}(3) ; x\).contents instead of \(x . \operatorname{set}(3) . c o n t e n t s\).

Assuming a type Nat and function types, we let:
\[
\begin{aligned}
& \text { Cell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow[]] \\
& \text { GCell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow[], \text { get }: \text { Nat }]
\end{aligned}
\]

We get:
GCell \(<\) : Cell
cell \(\triangleq[\) contents \(=0\), set \(=\varsigma(x:\) Cell \() \lambda(n: N a t) x\).contents \(:=n]\)
has type Cell
gcell \(\triangleq[\ldots, g e t=\varsigma(x: G C e l l) x . c o n t e n t s]\)
has types GCell and Cell

\section*{Classes, with Types}

If \(A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) is an object type,
then \(\operatorname{Class}(A)\) is the type of the classes for objects of type \(A\) :
```

Class}(A)\triangleq[new:A,\mp@subsup{l}{i}{}:A->\mp@subsup{B}{i}{}\mp@subsup{}{}{i\in1..n}
new:A is a generator for objects of type }A\mathrm{ .
l}:A->\mp@subsup{B}{i}{}\quad\mathrm{ is a pre-method for objects of type }A\mathrm{ .

```
c: \(\operatorname{Class}(A) \triangleq\)
    \(\left[\right.\) new \(=\varsigma(z: \operatorname{Class}(A))\left[l_{i}=\varsigma(x: A) z . l_{i}(x)^{i \in 1 . . n}\right]\),
    \(\left.l_{i}=\lambda\left(x_{i}: A\right) b_{i}\left\{x_{i}\right\}^{i \in 1 . . n}\right]\)
c.new: \(A\)
- Types are distinct from classes.
- More than one class may generate objects of a type.

\section*{Class Types for Cells}
```

Class(Cell) \triangleq
[new : Cell,
contents:Cell }->\mathrm{ Nat,
set : Cell }->\mathrm{ Nat }->[]
Class(GCell) \triangleq
[new: GCell,
contents: GCell }->\mathrm{ Nat,
set: GCell }->\mathrm{ Nat }->\mathrm{ [],
get: GCell }->\mathrm{ Nat]

```

Class(Cell) and Class(GCell) are not related by subtyping, but inheritance is possible.

\section*{Inheritance, with Types}

Let \(A \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) and \(A^{\prime} \equiv\left[l_{i}: B_{i}{ }^{i \in 1 . . n}, l_{j}: B_{j}{ }^{j \in n+1 . . m}\right]\), with \(A^{\prime}<: A\).
Note that \(\operatorname{Class}(A)\) and \(\operatorname{Class}\left(A^{\prime}\right)\) are not related by subtyping.

Let \(c: \operatorname{Class}(A)\), then for \(i \in 1 . . n\)
\[
\text { c. } l_{i}: A \rightarrow B_{i}<: A^{\prime} \rightarrow B_{i} .
\]

Hence \(c . l_{i}\) is a good pre-method for a class of type \(\operatorname{Class}\left(A^{\prime}\right)\).
We may define a subclass \(c^{\prime}\) of \(c\) :
\[
c^{\prime}: \operatorname{Class}\left(A^{\prime}\right) \triangleq\left[n e w=\ldots, l_{i}=c . l_{i}{ }^{i \in 1 . . n}, l_{j}=\ldots{ }^{j \in n+1 . . m}\right]
\]
where class \(c^{\prime}\) inherits the methods \(l_{i}\) from class \(c\).
So inheritance typechecks:
If \(A^{\prime}<: A\) then a class for \(A^{\prime}\) may inherit from a class for \(A\).

\section*{Variance Annotations}

In order to gain expressiveness within a first-order setting, we extend the syntax of object types with variance annotations:
\[
\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right]
\]

Each \(v_{i}\) is a variance annotation; it is one of three symbols \({ }^{0},{ }^{+}\), and \({ }^{-}\). Intuitively,
- + means read-only: it prevents update, but allows covariant component subtyping;
- - means write-only: it prevents invocation, but allows contravariant component subtyping;
- \({ }^{0}\) means read-write: it allows both invocation and update, but requires exact matching in subtyping.

By convention, any omitted annotations are taken to be equal to \({ }^{\circ}\).

\section*{Subtyping with Variance Annotations}
\begin{tabular}{ll}
{\(\left[\ldots l^{0}: B \ldots\right]<:\left[\ldots l^{o}: B^{\prime} \ldots\right]\) if \(B \equiv B^{\prime}\)} & \begin{tabular}{l} 
invariant \\
(read-write)
\end{tabular} \\
{\(\left[\ldots l^{+}: B \ldots\right]<:\left[\ldots l^{+}: B^{\prime} \ldots\right]\) if \(B<: B^{\prime}\)} & \begin{tabular}{l} 
covariant \\
(read-only)
\end{tabular} \\
{\(\left[\ldots l^{-}: B \ldots\right]<:\left[\ldots l^{\left.l^{:}: B^{\prime} \ldots\right] \text { if } B^{\prime}<: B}\right.\)} & \begin{tabular}{l} 
contravariant \\
(write-only)
\end{tabular} \\
{\(\left[\ldots l^{0}: B \ldots\right]<:\left[\ldots l^{+}: B^{\prime} \ldots\right]\) if \(B<: B^{\prime}\)} & invariant \(<\) : variant \\
{\(\left[\ldots l^{o}: B \ldots\right]<:\left[\ldots l^{\left.l^{\prime}: B^{\prime} \ldots\right] \text { if } B^{\prime}<: B}\right.\)} &
\end{tabular}

\section*{Protection by Subtyping}
- Variance annotations can provide protection against updates from the outside.
- In addition, object components can be hidden by subsumption.

For example:
```

Let GCell \triangleq [contents: Nat, set : Nat \rightarrow [], get: Nat]
PGCell $\triangleq[$ set : Nat $\rightarrow[]$, get: Nat $]$
ProtectedGCell $\triangleq\left[\mathrm{set}^{+}:\right.$Nat $\rightarrow[]$, get $^{+}:$Nat $]$
gcell: GCell
then GCell <: PGCell <: ProtectedGCell
so gcell : ProtectedGCell.

```

Given a ProtectedGCell, one cannot access its contents directly.
From the inside, set and get can still update and read contents.

\section*{Encoding Function Types}

An invariant translation of function types:
\[
\boxtimes A \rightarrow B \rrbracket \triangleq[\arg : \varangle A \rrbracket, \text { val }: \varangle B \rrbracket]
\]

A covariant/ contravariant translation, using annotations:
\[
\varangle A \rightarrow B \rrbracket \triangleq\left[\mathrm{arg}^{-}: \varangle A \rrbracket, \mathrm{val}^{+}: \varangle B \rrbracket\right]
\]

A covariant/ contravariant translation, using quantifiers:
\[
\boxtimes A \rightarrow B \rrbracket \triangleq \forall(X<: \varangle A \rrbracket) \exists(Y<: \boxtimes B \rrbracket)[\text { arg }: X, \text { val }: Y]
\]
where \(\forall\) is for polymorphism and \(\exists\) is for data abstraction.

\section*{Recursive Types}

Informally, we may want to define a recursive type as in:
Cell \(\triangleq[\) contents \(:\) Nat, set \(:\) Nat \(\rightarrow\) Cell \(]\)
Formally, we write instead:
Cell \(\triangleq \mu(X)[\) contents : Nat, set \(:\) Nat \(\rightarrow X]\)

Intuitively, \(\mu(X) A\{X\}\) is the solution for the equation \(X=A\{X\}\).

\section*{Subtyping Recursive Types}

The basic subtyping rule for recursive types is:
```

\mu(X)A{X}<: }\mu(X)B{X
if

```
either \(A\{X\}\) and \(B\{X\}\) are equal for all \(X\)
or \(A\{X\}<: B\{Y\}\) for all \(X\) and \(Y\) such that \(X<: Y\)

There are variants, for example:
\[
\begin{aligned}
& \mu(X) A\{X\}<: \mu(X) B\{X\} \\
& \quad \text { if } \\
& \text { either } A\{X\} \text { and } B\{X\} \text { are equal for all } X \\
& \text { or } A\{X\}<: B\{\mu(X) B\{X\}\} \text { for all } X \text { such that } X<: \mu(X) B\{X\}
\end{aligned}
\]

But \(A\{X\}<: B\{X\}\) does not imply \(\mu(X) A\{X\}<: \mu(X) B\{X\}\).

\section*{Cells (with Recursive Types)}

Let Cell \(\triangleq[\) contents : Nat, set : Nat \(\rightarrow\) Cell \(]\) cell:Cell 』
[ contents \(=0\),
\[
\text { set }=\varsigma(x: \text { Cell }) \lambda(n: \text { Nat }) x . \text { contents }:=n]
\]

The type Cell is a recursive type.
Now we can typecheck cell.set(3).contents.

Because of the recursion, we do not get interesting subtypings.
Let GCell \(\triangleq[\) contents : Nat, set : Nat \(\rightarrow\) GCell, get : Nat]
then GCell is not a subtype of Cell.

\section*{Five Solutions (Overview)}
- Avoid methods specialization, redefining GCell:
\[
\begin{aligned}
& \text { Cell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow \text { Cell }] \\
& \text { GCell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow \text { Cell, get }: \text { Nat }]
\end{aligned}
\]
\(\sim\) This is a frequent approach in common languages.
\(\sim\) It requires dynamic type tests after calls to the set method.
E.g.,
typecase gcell.set(3)
when ( \(x\) :GCell) x.get
else ...
- Add variance annotations:

Cell \(\triangleq\left[\right.\) contents : Nat, set \({ }^{+}: \mathrm{Nat} \rightarrow\) Cell]
GCell \(\triangleq\left[\right.\) contents : Nat, set \({ }^{+}:\)Nat \(\rightarrow\) GCell, get : Nat]
~ This approach yields the desired subtypings.
~ But it forbids even sound updates of the set method.
\(\sim\) It would require reconsidering the treatment of classes in order to support inheritance of the set method.
- Go back to an imperative framework, where the typing problem disappears because the result type of set is [].
\[
\begin{aligned}
& \text { Cell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow[]] \\
& \text { GCell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow[], \text { get }: \text { Nat }]
\end{aligned}
\]
\(\sim\) This works sometimes.
\(\sim\) But methods that allocate a new object of the type of self still call for the use of recursive types:

UnCell \(\triangleq\) [contents : Nat, set : Nat \(\rightarrow\) [], undo: UnCell]
- Axiomatize some notion of Self types, and write:
\[
\begin{aligned}
& \text { Cell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow \text { Self }] \\
& \text { GCell } \triangleq[\text { contents }: \text { Nat, set }: \text { Nat } \rightarrow \text { Self, get }: \text { Nat }]
\end{aligned}
\]
\(\sim\) But the rules for Self types are not trivial or obvious.
- Move up to higher-order calculi, and see what can be done there.

Cell \(\triangleq \exists(Y<:\) Cell \()\) [contents \(:\) Nat, set \(: N a t \rightarrow Y]\)
GCell \(\triangleq \exists(Y<: G C e l l)[\) contents \(:\) Nat, set \(:\) Nat \(\rightarrow Y\), get : Nat]
~ The existential quantifiers yield covariance, so GCell \(<\) : Cell.
\(\sim\) Intuitively, the existentially quantified type is the type of self: the Self type.
\(\sim\) This technique is general, and suggests sound rules for primitive Self types.

\section*{We obtain:}
~ subtyping with methods that return self,
~ inheritance for methods that return self or that take arguments of the type of self ("binary methods"), but without subtyping.

\section*{Typed Reasoning}

In addition to a type theory, we have a simple typed proof system.
There are some subtleties in reasoning about objects.
Consider:
\[
\begin{array}{ll}
A & \triangleq[x: N a t, f: N a t] \\
a: A & \triangleq[x=1, f=1] \\
b: A & \triangleq[x=1, f=\varsigma(s: A) s . x]
\end{array}
\]

Informally, we may say that \(a \cdot x=b \cdot x:\) Nat and \(a . f=b . f:\) Nat.
So, do we have \(a=b\) ?
It would follow that \((a \cdot x:=2) \cdot f=(b \cdot x:=2) \cdot f\)
and then \(1=2\).
Hence:
\[
a \neq b: A
\]

Still, as objects of \([x: N a t], a\) and \(b\) are indistinguishable from \([x=1]\).
Hence:
\[
a=b:[x: N a t]
\]

Finally, we may ask:
\[
a \stackrel{?}{=} b:[f: N a t]
\]

This is sound; it can be proved via bisimilarity.

In summary, there is a notion of typed equality that may support some interesting transformations (inlining of methods).
(Work in progress:
specification and verification for a typed object-oriented language.)
\(\qquad\)
- Classes vs. objects:
~ Classes can be encoded in object calculi, easily and faithfully. Therefore, object-based languages are just as expressive as classbased ones.
(To our knowledge, nobody had shown that one can build typecorrect classes out of objects.)
~ Method update, a distinctly object-based construct, is tractable and can be useful.

\section*{Interpretation of Object-Oriented Languages}

\section*{Features of O-1}
- Both class-based and object-based constructs.
- First-order object types with subtyping and variance annotations.
- Classes with single inheritance; method overridding and specialization.
- Recursion.
- Typecase.
- Separation interfaces from implementations, and inheritance from subtyping.

\section*{A First-Order Language}
- Let's assess the contributions that object calculi bring to the task of modeling programming language constructs.
- For this purpose, we study a simple object-oriented language named \(\mathrm{O}-1\).
- We have studied more advanced languages that include Self types and matching.

\section*{Syntax}
\begin{tabular}{|ll|}
\hline Syntax of O-1 types & \\
\hline\(A, B::=\) & types \\
\(X\) & type variable \\
Top & the biggest type \\
Object \((X)\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right]\) & object type \(\left(l_{i}\right.\) distinct \()\) \\
\(\quad\) Class \((A)\) & class type \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\begin{tabular}{|c|c|}
\hline Syntax of O-1 terms & \\
\hline \(a, b, c::=\) & terms \\
\hline \(x\) & variable \\
\hline \(\operatorname{object}(x: A) l_{i}=b_{i}{ }^{i \in 1 . . n}\) end & direct object construction \\
\hline a.l & field selection / method invocation \\
\hline \(a . l:=b\) & update with a term \\
\hline \(a . l:=\operatorname{method}(x: A) b\) end & update with a method \\
\hline new \(c\) & object construction from a class \\
\hline root & root class \\
\hline subclass of \(c: C\) with \((x: A)\) & subclass \\
\hline \(l_{i}=b_{i}{ }^{i \in n+1 . . n+m}\) & additional attributes \\
\hline override \(l_{i}=b_{i}{ }^{i \in O v r \subseteq 1 . . n}\) end & overridden attributes \\
\hline \(c^{\wedge} l(a)\) & class selection \\
\hline typecase \(a\) when ( \(x: A) b_{1}\) else \(b_{2}\) end & typecase \\
\hline
\end{tabular} \(\square\)
- We could drop the object-based constructs (object construction and method update). The result would be a language expressive enough for traditional class-based programming.
- Alternatively, we could drop the class-based construct (root class, subclass, new, and class selection), obtaining an object-based language.
- Classes, as well as objects, are first-class values. A parametric class can be obtained as a function that returns a class.

\section*{Abbreviations}
```

Root \triangleq
Class(Object(X)[])
class with(x:A) }\mp@subsup{l}{i}{}=\mp@subsup{b}{i}{i\in1..n}\mathrm{ end }
subclass of root:Root with(x:A) l= 邡 i\in1..n override end
subclass of c:C with (}x:A)···\mathrm{ super.l ... end }
subclass of c:C with (x:A) ···.c^l(x) ... end
object(x:A) ...l copied from c ... end \triangleq
object}(x:A)···l=\mp@subsup{c}{}{\wedge}l(x)···\mathrm{ end

```

\section*{Examples}
- We assume basic types (Bool, Int) and function types \((A \rightarrow B\), contravariant in \(A\) and covariant in \(B)\).

> Point \(\triangleq \operatorname{Object}(X)\left[x:\right.\) Int, \(e q^{+}: X \rightarrow\) Bool, \(m v^{+}:\)Int \(\left.\rightarrow X\right]\)
> CPoint \(\triangleq \operatorname{Object}(X)\left[x:\right.\) Int, \(c:\) Color, \(e q^{+}:\)Point \(\rightarrow\) Bool, \(m v^{+}:\)Int \(\rightarrow\) Point \(]\)
- CPoint \(<\) : Point
- The type of \(m v\) in CPoint is Int \(\rightarrow\) Point.

One can explore the effect of changing it to Int \(\rightarrow X\).
- The type of eq in CPoint is Point \(\rightarrow\) Bool.

If we were to change it to \(X \rightarrow B\) Bool we would lose the subtyping CPoint \(<\) : Point.

\section*{Class(Point)}
```

pointClass: Class(Point)\triangleq
class with (self: Point)
x=0,
eq = fun(other: Point) self. }x=\mathrm{ other. }x\mathrm{ end,
mv= fun(dx: Int) self.x:= self.x+dx end
end

```

\section*{Class(CPoint)}
cPointClass: Class(CPoint) \(\triangleq\)
subclass of pointClass: Class(Point)
with (self: CPoint)
\(c=\) black
override
\(e q=\mathbf{f u n}(\) other: Point \()\)
typecase other
when (other': CPoint) super.eq(other') and self.c \(=\) other'.c
else false
end
end
end

\section*{Comments}
- The class \(c\) PointClass inherits \(x\) and \(m v\) from its superclass pointClass.
- Although it could inherit eq as well, cPointClass overrides this method as follows.
\(\sim\) The definition of Point requires that eq work with any argument other of type Point.
\(\sim\) In the eq code for cPointClass, the typecase on other determines whether other has a color.
\(\sim\) If so, eq works as in pointClass and in addition tests the color of other.
~ If not, eq returns false.
- We can use \(c\) PointClass to create color points of type CPoint:
cPoint: CPoint \(\triangleq\) new cPointClass
- Calls to mv lose the color information.
- In order to access the color of a point after it has been moved, a typecase is necessary:
movedColor: Color \(\triangleq\)
typecase \(c\) Point.mv(1)
when (cp: CPoint) cp.c
else black
end

\section*{Typing}
- The rules of \(\mathrm{O}-1\) are based on the following judgments:

\section*{Judgments}
\begin{tabular}{ll}
\(E \vdash \diamond\) & environment \(E\) is well-formed \\
\(E \vdash A\) & \(A\) is a well-formed type in \(E\) \\
\(E \vdash A<: B\) & \(A\) is a subtype of \(B\) in \(E\) \\
\(E \vdash v A<: v^{\prime} B\) & \(A\) is a subtype of \(B\) in \(E\), with variance annotations \(v\) and \(v^{\prime}\) \\
\(E \vdash a: A\) & \(a\) has type \(A\) in \(E\)
\end{tabular}
- The rules for environments are standard:

\section*{Environments}
\begin{tabular}{lll}
\((\) Env \(\varnothing)\) & \((\operatorname{Env} X<:)\) \\
\(\overline{\varnothing \vdash}\) & \(\frac{E \vdash A \quad X \notin \operatorname{dom}(E)}{E, X<: A \vdash \diamond}\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\((\operatorname{Env} x)\) \\
\(\overline{E \vdash A \quad x \notin \operatorname{dom}(E)}\) \\
\(E, x: A \vdash \diamond\)
\end{tabular}


\section*{Subtyping Rules}
- Note that there is no rule for subtyping class types.

\section*{Subtyping}
\begin{tabular}{cccc}
\begin{tabular}{c} 
(Sub Refl) \\
\(E \vdash A\)
\end{tabular} & \begin{tabular}{c} 
(Sub Trans) \\
\(E \vdash A<: A\) \\
\(E \vdash A<: B\)
\end{tabular} & \(E \vdash B<: C\) \\
\(E \vdash A<: C\) & \begin{tabular}{c}
\(E^{\prime}, X<: A, E^{\prime \prime} \vdash \diamond\) \\
\(E^{\prime}, X<: A, E^{\prime \prime} \vdash X<: A\)
\end{tabular} & \begin{tabular}{c} 
(Sub Top) \\
\(E \vdash A<:\) Top
\end{tabular}
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{(Sub Object) (where \(A \equiv \mathbf{O b j e c t}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}{ }^{i \in 1 . . n+m}\right], A^{\prime} \equiv \mathbf{O b j e c t}\left(X^{\prime}\right)\left[l_{i} \mathrm{v}_{i}^{\prime}: B_{i}{ }^{\prime}\left\{X^{\prime}\right\}^{i \in 1 . . n}\right]\) )} \\
\hline \(E \vdash A \quad E \vdash A\) & \(E, X<: A^{\prime} \vdash v_{i} B_{i}\{X\}\) & \(\mathrm{i}_{\mathrm{i}}{ }^{\prime} B_{i}^{\prime}\left\{A^{\prime}\right\} \quad \forall i \in 1 . . n\) \\
\hline \multicolumn{3}{|c|}{\(E \vdash A<: A^{\prime}\)} \\
\hline (Sub Invariant) & (Sub Covariant) & (Sub Contravariant) \\
\hline \(E \vdash B\) & \(E \vdash B<: B^{\prime} \quad v \in\left\{{ }^{\text {o }}{ }^{+}\right\}\) & \(E \vdash B^{\prime}<: B \quad v \in\left\{{ }^{0},^{-}\right\}\) \\
\hline \(\overline{E \vdash \vdash^{\circ} B<{ }^{\circ}{ }^{\circ} B}\) & \(E \vdash\) v \(B<{ }^{+}{ }^{+}{ }^{\prime}\) & \(E \vdash v B<{ }^{-} B^{\prime}\) \\
\hline
\end{tabular}

\section*{Type Formation Rules}

\section*{Types}
\begin{tabular}{lc} 
(Type \(X\) ) & (Type Top) \\
\(\frac{E^{\prime}, X<: A, E^{\prime \prime} \vdash \diamond}{E^{\prime}, X<: A, E^{\prime \prime} \vdash X}\) & \(\frac{E \vdash \diamond}{E \vdash \text { Top }}\)
\end{tabular}
(Type Object) ( \(l_{i}\) distinct, \(\left.\mathrm{v}_{i} \in\left\{{ }^{\mathrm{O}},-{ }^{-}+\right\}\right) \quad\) (Type Class) (where \(A \equiv \operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}{ }^{i \in 1 . . n}\right]\) ) \(\frac{E, X<: \operatorname{Top} \vdash B_{i} \quad \forall i \in 1 . . n}{E \vdash \operatorname{Object}(X)\left[l_{i} v_{i}: B_{i}{ }^{i \in 1 . . n}\right]} \quad \frac{E \vdash A}{E \vdash \operatorname{Class}(A)}\)

\section*{Term Typing Rules}

\section*{Terms}
\begin{tabular}{ll} 
(Val Subsumption) & (Val \(x)\) \\
\(\frac{E \vdash a: A \quad E \vdash A<: B}{E \vdash a: B}\) & \(\frac{E^{\prime}, x: A, E^{\prime \prime} \vdash \diamond}{E^{\prime}, x: A, E^{\prime \prime} \vdash x: A}\)
\end{tabular}
(Val Object) (where \(\left.A \equiv \operatorname{Object}(X)\left[l_{i} v_{i}: B_{i}\{X\}{ }^{i \in 1 . . n}\right]\right)\)
\[
E, x: A \vdash b_{i}: B_{i}\{A\} \quad \forall i \in 1 . . n
\]
\[
\overline{E \vdash \operatorname{object}(x: A) l_{i}=b_{i}}{ }^{i \in 1 . . n} \text { end : } A
\]
```

(Val Select) (where $\left.A \equiv \operatorname{Object}(X)\left[l_{i} v_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right)$
$E \vdash a: A \quad v_{j} \in\left\{{ }^{0}{ }^{+}{ }^{+}\right\} \quad j \in 1 . . n$
$E \vdash a . l_{j}: B_{j}\{A\}$
(Val Update) (where $\left.A \equiv \mathbf{O b j e c t}(X)\left[l_{i} v_{i}: B_{i}\{X\}^{i \in 1 . n}\right]\right)$
$\frac{E \vdash a: A \quad E \vdash b: B_{j}\{A\} \quad v_{j} \in\left\{{ }^{\mathrm{O},-\}} \quad j \in 1 . . n\right.}{E \vdash a . l_{j}:=b: A}$

```
(Val Method Update) (where \(\left.A \equiv \operatorname{Object}(X)\left[l_{i} v_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\right)\)
\(E \vdash a: A \quad E, x: A \vdash b: B_{j}\{A\} \quad v_{j} \in\left\{{ }^{0},{ }^{-},\right\} \quad j \in 1 . . n\)
    \(E \vdash a . l_{j}:=\operatorname{method}(x: A) b\) end \(: A\)
(Val New)
\(E \vdash c: \operatorname{Class}(A)\)
\(\overline{E \vdash \text { new } c: A}\)
(Val Root)
\[
E \vdash \diamond
\]
\(\overline{E \vdash \operatorname{root}: \operatorname{Class}(\operatorname{Object}(X)[])}\)
(Val Subclass) (where \(A \equiv \operatorname{Object}(X)\left[l_{i} v_{i}: B_{i}\{X\}^{i \in 1 . . n+m}\right], A^{\prime} \equiv \boldsymbol{O b j e c t}\left(X^{\prime}\right)\left[l_{i} v_{i}^{\prime}: B_{i}{ }^{\prime}\left\{X^{\prime}\right\}^{i \in 1 . . n}\right]\), Ovrœ1..n)
\[
E \vdash c^{\prime}: \operatorname{Class}\left(A^{\prime}\right) \quad E \vdash A<: A^{\prime}
\]
\[
E \vdash B_{i}^{\prime}\left\{\left\{A^{\prime}\right\}<: B_{i}\{A\} \quad \forall i \in 1 . . n-O v r\right.
\]
\[
E, x: A \vdash b_{i}: B_{i}\{A\} \quad \forall i \in O v r \cup n+1 . . n+m
\]
\(E \vdash \operatorname{subclass}\) of \(c^{\prime}: \operatorname{Class}\left(A^{\prime}\right) \boldsymbol{\operatorname { w i t h }}(x: A) l_{i}=b_{i}{ }^{i \in n+1 . . n+m}\) override \(l_{i}=b_{i}{ }^{i \in O v r}\) end
: Class( \(A\) )

\section*{Translation}
- We give a translation into a functional calculus (with all the features described earlier).
- A similar translation could be given into an appropriate imperative calculus.
- At the level of types, the translation is simple.
\(\sim\) We write \(\varangle A \searrow\) for the translation of \(A\).
\(\sim\) We map an object type \(\operatorname{Object}(X)\left[l_{i} v_{i}: B_{i}{ }^{i \epsilon 1 . . n}\right]\) to a recursive object type \(\left.\mu(X)\left[l_{i} v_{i}: \triangle B_{i}\right\rangle^{i \in 1 . . n}\right]\).
~ We map a class type \(\operatorname{Class}\left(\operatorname{Object}(X)\left[l_{i} \mathrm{v}_{i}: B_{i}\{X\}{ }^{i \in 1 . . n}\right]\right)\) to an object type that contains components for pre-methods and a new component.
- But they are the ultimate truth about typing in O-1.

\section*{Translation of Types}

\section*{Translation of Terms}

\section*{Translation of O－1 types}
```

《X》』 \triangle
«Top》』 Top
$\left\langle\right.$ Object $\left.\left.(X)\left[l_{i} v_{i}: B_{i} \in 1 . n\right]\right\rangle \triangleq \mu(X)\left[l_{i} v_{i}: \boxtimes B_{i}\right\rangle^{i \in 1 . . n}\right]$

```

```

 where \(A \equiv \operatorname{Object}(X)\left[l_{i} v_{i}: B_{i}\{X\}^{i \in 1 . . n}\right]\)
    ```

Translation of \(\mathbf{O}-1\) environments
\(\| \phi \rrbracket \triangleq \phi\)
\(\| E, X<: A \rrbracket \triangleq \varangle E \rrbracket, X<: \boxtimes A\rangle\)
\(\| E, x: A\rangle \triangleq \varangle E \rrbracket, x: \varangle A\rangle\)
\(《 E, X<: A \rrbracket \triangleq \varangle E \rrbracket, X<: \varangle A \rrbracket\)
\(\varangle E, x: A \rrbracket \triangleq \varangle E \rrbracket, x: \boxtimes A \rrbracket\)
－The translation is guided by the type structure．
－The translation maps a class to a collection of pre－ methods plus a new method．
\(\sim\) For a class subclass of \(c^{\prime} \ldots\) end，the collection of pre－methods consists of the pre－methods of \(c^{\prime}\) that are not overridden，plus all the pre－methods given explicitly．
～The new method assembles the pre－methods into an object；
new \(c\) is interpreted as an invocation of the new method of \(\langle c\rangle\) ．
\(\sim\) The construct \(c^{\wedge} l(a)\) is interpreted as the extraction and the application of a pre－method．
```

```
|new c\\triangleq|c|.new
```

```
|new c\\triangleq|c|.new
|root》\triangleq [new=[]]
|root》\triangleq [new=[]]
|subclass of c':Class(A') with(x:A) l}\mp@subsup{l}{i}{\prime=\mp@subsup{b}{i}{\prime}}\mp@subsup{}{}{i\inn+1..n+m}\mathrm{ override }\mp@subsup{l}{i}{\prime}=\mp@subsup{b}{i}{}\mp@subsup{}{}{i\inOvr}\mathrm{ end》』
|subclass of c':Class(A') with(x:A) l}\mp@subsup{l}{i}{\prime=\mp@subsup{b}{i}{\prime}}\mp@subsup{}{}{i\inn+1..n+m}\mathrm{ override }\mp@subsup{l}{i}{\prime}=\mp@subsup{b}{i}{}\mp@subsup{}{}{i\inOvr}\mathrm{ end》』
    [new=\zeta(z:\Class(A)\)[li=\zeta(s:\AD)z.li(s) }\mp@subsup{}{}{i\in1..n+m}]
    [new=\zeta(z:\Class(A)\)[li=\zeta(s:\AD)z.li(s) }\mp@subsup{}{}{i\in1..n+m}]
    l}=|\mp@code{c}\\.\mp@subsup{l}{i}{i\in1..n-Ovr,
    l}=|\mp@code{c}\\.\mp@subsup{l}{i}{i\in1..n-Ovr,
    l
    l
|c^l(a)|\triangleq|cc|l(|a|)
|c^l(a)|\triangleq|cc|l(|a|)
|typecase a when (x:A)\mp@subsup{b}{1}{}\mathrm{ else }\mp@subsup{b}{2}{}\mathrm{ end》气 typecase 『a| | (x:\A\)\b}\mp@subsup{b}{1}{}|||\mp@subsup{b}{2}{}\rrbracket
```

|typecase a when (x:A)\mp@subsup{b}{1}{}\mathrm{ else }\mp@subsup{b}{2}{}\mathrm{ end》气 typecase 『a| | (x:\A\)\b}\mp@subsup{b}{1}{}|||\mp@subsup{b}{2}{}\rrbracket

```
typecase \(a\)
```


Usefulness of the Translation

- The translation validates the typing rules of $\mathrm{O}-1$. That is, if $\mathrm{E} \vdash \mathrm{J}$ is valid in $\mathrm{O}-1$, then $\varangle \mathrm{E} \vdash \mathrm{J} \rrbracket$ is valid in the object calculus.
- The translation served as an important guide in finding sound typing rules for $\mathrm{O}-1$, and for "tweaking" them to make them both simpler and more general.
- In particular, typing rules for subclasses are so inherently complex that it is difficult to "guess" them correctly without the aid of some interpretation.
- Thus, we have succeeded in using object calculi as a platform for explaining a relatively rich object-oriented language and for validating its type rules.

Translations

- In order to give insight into type rules for object-oriented languages, translations must be judgment-preserving (in particular, type and subtype preserving).
- Translating object-oriented languages directly to typed λ-calculi is just too hard. Object calculi provide a good stepping stone in this process, or an alternative endpoint.
- Translating object calculi into λ-calculi means, intuitively, "programming in object-oriented style within a procedural language". This is the hard part.

Type-Preserving Translations

- Give insights into the nature of object-oriented typing and subsumption / coercion.
- Object types = recursive records-of-functions types.

$$
\left[l_{i}: B_{i}^{i \in 1 . . n}\right] \triangleq \mu(X)\left\langle l_{i}: X \rightarrow B_{i}{ }^{i \in 1 . . n}\right\rangle
$$

= useful for semantic purposes, impractical for programming loses the "oo-flavor"

Subtype-Preserving Translations

- Give insights into the nature of subtyping for objects.
- Object types = recursive bounded existential types (!!).
$\left[l_{i}: B_{i}{ }^{i \in 1 . . n}\right] \triangleq \mu(Y) \exists(X<: Y)\left\langle r: X, l_{i}^{\text {sel }}: X \rightarrow B_{i}{ }^{i \in 1 . . n}, l_{i}^{\text {upd }}:\left(X \rightarrow B_{i}\right) \rightarrow X^{i \in 1 . . n}\right\rangle$

= very difficult to obtain impossible to use
in actual programming

CONCLUSIONS

- Foundations
~ Subtype-preserving translations of object calculi into λ-calculi are hard.
\sim In contrast, subtype-preserving translations of λ-calculi into object-calculi can be easily obtained.
~ In this sense, object calculi are a more convenient foundation for object-oriented programming than λ-calculi.
- Language design
~ Object calculi are a good basis for designing rich object-oriented type systems (including polymorphism, Self types, etc.).
~ Object-oriented languages can be shown sound by fairly direct translations into object calculi.
- Other developments
~ Second-order object types for Self types.
~ Higher-order object types for matching.
- Potential future areas
~ Typed ς-calculi should be a good simple foundation for studying object-oriented specification and verification.
~ They should also give us a formal platform for studying objectoriented concurrent languages (as opposed to "ordinary" concurrent languages).

References

- http:/ / www.research.digital.com/SRC/ personal/Luca_Cardelli/TheoryOfObjects.html
- M.Abadi, L.Cardelli: A Theory of Objects.

Springer, 1996.

