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Outline
• Topic: a foundation for object-oriented languages based on 

object calculi.

~ Interesting object-oriented features.

~ Modeling of those features.

• Plan:

1) Class-Based Languages

2) Object-Based Languages

3) Subtyping -- Advanced Features

4) A Language with Subtyping

5) Matching -- Advanced Features

6) A Language with Matching
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LECTURE 1

• Intro.

• Class-Based Languages.
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Easy Language Features

The early days
• Integers and floats (occasionally, also booleans and voids).

• Monomorphic arrays (Fortran).

• Monomorphic trees (Lisp).

The days of structured programming
• Product types (records in Pascal, structs in C). 

• Union types (variant records in Pascal, unions in C). 

• Function/procedure types (often with various restrictions).

• Recursive types (typically via pointers). 

End of the easy part
• Languages with rich user-definable types (Pascal, Algol68). 
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Hard Language Features

Four major innovations
• Objects and Subtyping (Simula 67). 

• Abstract types (CLU). 

• Polymorphism (ML).

• Modules (Modula 2). 

Despite much progress, nobody really knows yet how to combine all these ingredients into co-
herent language designs.
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Confusion

These four innovations are partially overlapping and certainly interact in interesting ways. It is 
not clear which ones should be taken as more prominent. E.g.:

• Object-oriented languages have tried to incorporate type abstraction, polymorphism, and 
modularization all at once. As a result, o-o languages are (generally) a mess. Much effort has 
been dedicated to separating these notions back again.

• Claims have been made (at least initially) that objects can be subsumed by either higher-order 
functions and polymorphism (ML camp), by data abstraction (CLU camp), or by modular-
ization (ADA camp). But later, subtyping features were adopted: ML => ML2000, CLU 
=>Theta, ADA => ADA’95.

• One hard fact is that full-blown polymorphism can subsume data abstraction. But this kind 
of polymorphism is more general than, e.g., ML’s, and it is not yet clear how to handle it in 
practice.

• Modules can be used to obtain some form of polymorphism and data abstraction (ADA ge-
nerics, C++ templates) (Modula 2 opaque types), but not in full generality.



Object-oriented Languages September 13, 1996 6:08 am 7

O-O Programming
• Goals

~ Data (state) abstraction.

~ Polymorphism.

~ Code reuse.

• Mechanisms

~ Objects with self (packages of data and code).

~ Subtyping and subsumption.

~ Classes and inheritance.
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Objects
• Objects and object types

• Objects are packages of data (instance variables) and code (methods).

• Object types describe the shape of objects.

ObjectType CellType is
var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object myCell: CellType is
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

where a : A means that the program a has type A. So, myCell : CellType.
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Classes
• Classes are ways of describing and generating collections of objects of some type.

class cell for CellType is 
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

var myCell: CellType := new cell;

procedure double(aCell: CellType) is 
aCell.set(2 * aCell.get());

end;
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Subclasses
• Subclasses are ways of describing classes incrementally, reusing code.

ObjectType ReCellType is 
var contents: Integer;
var backup: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;

subclass reCell of cell for ReCellType is (Inherited:
var backup: Integer := 0;    var contents
override set(n: Integer) is    method get)

self.backup := self.contents; 
super.set(n);

end;
method restore() is self.contents := self.backup end;

end;
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Subtyping and subsumption
• Subtyping relation, A <: B

An object type is a subtype of any object type with fewer components.

(e.g.: ReCellType   <:   CellType)

• Subsumption rule

if   a : A      and      A <: B      then      a : B

(e.g.: myReCell : CellType)

• Subclass rule

c   can be a subclass of    d     only if      cType  <: dType

(e.g.: reCell can indeed be declared as a subclass of cell)
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CLASS-BASED LANGUAGES

• The mainstream. 

• We review only common, kernel properties. 
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Classes and Objects
• Classes are descriptions of objects. No clear distinction 

between classes and object types.

• Example: storage cells.
class cell is 

var contents: Integer := 0;
method get(): Integer is 

return self.contents; 
end;
method set(n: Integer) is 

self.contents := n; 
end;

end;

• Classes generate objects.

• Objects can refer to themselves.
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Naive Storage Model

• Object = reference to a record of attributes.

 

  Naive storage model

contents
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set
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Object Operations

• Object creation.

~ InstanceTypeOf(c) indicates the type of an object of class c.
var myCell: InstanceTypeOf(cell) := new cell;

• Field selection.

• Field update.

• Method invocation.
procedure double(aCell: InstanceTypeOf(cell)) is 

aCell.set(2 * aCell.get());
end;
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The Method-Suites Storage Model

• A more refined storage model for class-based languages.

  Method suites
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Embedding vs. Delegation

• In the naive storage model, methods are embedded in objects.

contents
get
set

0
(code for get)
(code for set)

attribute record

• In the methods-suites storage model, methods are delegated to 
the method suites.

contents 0
get
set
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method suite
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field suite
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• Naive and method-suites models are semantically equivalent 
for class-based languages.

• They are not equivalent (as we shall see) in object-based 
languages, where the difference between embedding and 
delegation is critical.
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Method Lookup
• Method lookup is the process of finding the code to run on a 

method invocation o.m(…). The details depend on the 
language and the storage model.

• In class-based languages, method lookup gives the illusion 
that methods are embedded in objects (cf. o.x, o.m(...)), hiding 
storage model details.

• Self is always the receiver: the object that appears to contain 
the method.

• Features that would distinguish embedding from delegation 
implementations (e.g., method update) are usually avoided. 
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Subclasses and Inheritance
• A subclass is a differential description of a class.

• The subclass relation is the partial order induced by the 
subclass declarations.

• Example: restorable cells.
subclass reCell of cell is 

var backup: Integer := 0;
override set(n: Integer) is 

self.backup := self.contents; 
super.set(n);

end;
method restore() is 

self.contents := self.backup; 
end;

end;
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Subclasses and Self

• Because of subclasses, the meaning of self becomes dynamic.
self.m(...)

• Because of subclasses, the concept of super becomes useful.
super.m(...)
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Subclasses and Naive Storage

• In the naive implementation, the existence of subclasses does 
not cause any change in the storage model.
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Subclasses and Method Suites

• Because of subclasses, the method-suites model has to be 
reconsidered. In dynamically-typed class-based languages, 
method suites are chained:

  Hierarchical method suites
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• In statically-typed class-based languages, however, the 
method-suites model can be maintained in its original form.

  Collapsed method suites

contents 0
get
set

(code for get)
(code for set)

contents 0 set
restore

(new code for set)
(code for restore)

aCell

backup 0

aReCell get (code for get)



Class-Based Languages September 1, 1996 2:21 pm 25

Embedding/Delegation View of Class Hierarchies

• Hierarchical method suites: delegation (of objects to suites) 
combined with delegation (of sub-suites to super-suites).

• Collapsed method suites: delegation (of objects to suites) 
combined with embedding (of super-suites in sub-suites).
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Class-Based Summary
• In analyzing the meaning and implementation of class-based 

languages we end up inventing and analyzing sub-structures of 
objects and classes.

• These substructures are independently interesting: they have 
their own semantics, and can be combined in useful ways.

• What if these substructures were directly available to 
programmers?
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LECTURE 2

• Object-Based Languages. 

• O-O Summary.
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OBJECT-BASED LANGUAGES

• Slow to emerge.

• Simple and flexible.

• Usually untyped.

• Just objects and dynamic dispatch.

• When typed, just object types and subtyping. 

• Direct object-to-object inheritance.
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An Object, All by Itself

• Classes are replaced by object constructors. 

• Object types are immediately useful. 
ObjectType Cell is 

var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

object cell: Cell is 
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;
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An Object Generator

• Procedures as object generators. 
procedure newCell(m: Integer): Cell is 

object cell: Cell is 
var contents: Integer := m;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;
return cell;

end;

var cellInstance: Cell := newCell(0);

• Quite similar to classes!
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Decomposing Class-Based Features

• General idea: decompose class-based notions and 
orthogonally recombine them.

• We have seen how to decompose simple classes into objects 
and procedures.

• We will now investigate how to decompose inheritance. 

~ Object generation by parameterization.

~ Vs. object generation by cloning and mutation.
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Prototypes and Clones

• Classes describe objects. 

• Prototypes describe objects and are objects.

• Regular objects are clones of prototypes.
var cellClone: Cell := clone cellInstance;

• clone is a bit like new, but operates on objects instead of 
classes.
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Mutation of Clones

• Clones are customized by mutation (e.g., update).

• Field update.
cellClone.contents := 3;

• Method update.
cellClone.get := 

method (): Integer is 
if self.contents < 0 then return 0 else return self.contents end;

end;

• Self-mutation possible.
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Self-Mutation

• Restorable cells with no backup field.
ObjectType ReCell is 

var contents: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;
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• The set method updates the restore method!
object reCell: ReCell is 

var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is 

let x = self.get();
self.restore := method () is self.contents := x end;
self.contents := n;

end;
method restore() is self.contents := 0 end;

end;
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Forms of Mutation

• Method update is an example of a mutation operation. It is 
simple and statically typable.

• Forms of mutation include:

~ Direct method update (Beta, NewtonScript, Obliq, Kevo, Garnet).

~ Dynamically removing and adding attributes (Self, Act1).

~ Swapping groups of methods (Self, Ellie).
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Object-Based Inheritance
• Object generation can be obtained by procedures, but with no 

real notion of inheritance. 

• Object inheritance can be achieved by cloning (reuse) and 
update (override), but with no shape change. 

• How can one inherit with a change of shape?

• An option is object extension. But:

~ Not easy to typecheck.

~ Not easy to implement efficiently.

~ Provided rarely or restrictively.
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Donors and Hosts

• General object-based inheritance: building new objects by 
“reusing” attributes of existing objects.

• Two orthogonal aspects:

~ obtaining the attributes of a donor object, and 

~ incorporating those attributes into a new host object. 

• Four categories of object-based inheritance:

~ The attributes of a donor may be obtained implicitly or explicitly.

~ Orthogonally, those attributes may be either embedded into a host, or 
delegated to a donor. 
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Implicit vs. Explicit Inheritance

• A difference in declaration.

• Implicit inheritance: one or more objects are designated as 
the donors (explicitly!), and their attributes are implicitly 
inherited. 

• Explicit inheritance, individual attributes of one or more 
donors are explicitly designated and inherited. 

• Super and override make sense for implicit inheritance, not 
for explicit inheritance.



Object-Based Languages September 13, 1996 6:10 am 40

• Intermediate possibility: explicitly designate a named 
collection of attributes that, however, does not form a whole 
object. E.g. mixin inheritance. 

• (We can see implicit and explicit inheritance, as the extreme 
points of a spectrum.)
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Embedding vs. Delegation Inheritance

• A difference in execution.

• Embedding inheritance: the attributes inherited from a donor 
become part of the host (in principle, at least). 

• Delegation inheritance: the inherited attributes remain part of 
the donor, and are accessed via an indirection from the host. 

• Either way, self is the receiver. 

• In embedding, host objects are independent of their donors. In 
delegation, complex webs of dependencies may be created.
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Embedding
• Host objects contain copies of the attributes of donor objects.

  Embedding
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Embedding-Based Languages

• Embedding provides the simplest explanation of the standard 
semantics of self as the receiver. 

• Embedding was described by Borning as part of one of the first 
proposals for prototype-based languages.

• Recently, it has been adopted by languages like Kevo and 
Obliq. We call these languages embedding-based 
(concatenation-based, in Kevo terminology).
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Delegation
• Host objects contain links to the attributes of donor objects.

• Prototype-based languages that permit the sharing of attributes 
across objects are called delegation-based. 

• Operationally, delegation is the redirection of field access and 
method invocation from an object or prototype to another, in 
such a way that an object can be seen as an extension of 
another.

• A crucial aspect of delegation inheritance is the interaction of 
donor links with the binding of self. 
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Delegation Inheritance

  (Single-parent) Delegation

get
set

(code for get)
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• Note: similar to hierarchical method suites.
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Dynamic Inheritance
• Inheritance is called static when inherited attributes are fixed 

for all time.

• It is dynamic when the collection of inherited attributes can be 
updated dynamically (replaced, increased, decreased).
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Mode Switching

• Although dynamic inheritance is in general a dangerous 
feature, it enables rather elegant and disciplined programming 
techniques. 

• In particular, mode-switching is the special case of dynamic 
inheritance where a collection of (inherited) attributes is 
swapped with a similar collection of attributes. (This is even 
typable.)
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Delegation-Style Mode Switching

  Reparenting
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Embedding-Style Mode Switching

  Method Update
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Traits: from Prototypes back to Classes?
• Prototypes were initially intended to replace classes. 

• Several prototype-based languages, however, seem to be 
moving towards a more traditional approach based on class-
like structures. 

• Prototypes-based languages like Omega, Self, and Cecil have 
evolved usage-based distinctions between objects.
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Different Kinds of Objects

• Trait objects.

• Prototype objects.

• Normal objects.

  Traits
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Embedding-Style Traits

  Traits
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Traits are not Prototypes

• This separation of roles violates the original spirit of 
prototype-based languages: traits objects cannot function on 
their own. They typically lack instance variables.

• With the separation between traits and other objects, we seem 
to have come full circle back to class-based languages and to 
the separation between classes and instances. 

• Trait-based techniques looks exactly like implementation 
techniques for classes. 
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Contributions of the Object-Based  
Approach
• The achievement of object-based languages is to make clear 

that classes are just one of the possible ways of generating 
objects with common properties. 

• Objects are more primitive than classes, and they should be 
understood and explained before classes.

• Different class-like constructions can be used for different 
purposes; hopefully, more flexibly than in strict class-based 
languages.
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SUMMARY

• Class-based: various implementation techniques based on 
embedding and/or delegation. Self is the receiver.

• Object-based: various language mechanisms based on 
embedding and/or delegation. Self is the receiver.

• Object-based can emulate class-based. (By traits, or by 
otherwise reproducing the implementations techniques of 
class-based languages.)
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One Step Further
• Language analysis:

~ Class-based langs. → Object-based langs. → Object calculi

• Language synthesis:

~ Object calculi → Object-based langs. → Class-based langs. 
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Our Approach to Modeling
• We have identified embedding and delegation as underlying 

many object-oriented features. 

• In our object calculi, we choose embedding over delegation as 
the principal object-oriented paradigm. 

• The resulting calculi can model classes well, although they are 
not class-based (since classes are not built-in). 

• They can model delegation-style traits just as well, but not 
“true” delegation. (Object calculi for delegation exist but are 
more complex.)
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Foundations
• Objects can emulate classes (by traits) and procedures (by 

“stack frame objects”).

• Everything can indeed be an object.
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A Taxonomy

Object-Oriented

Class-Based Object-Based

Closures Prototypes

Embedding Delegation

Implicit . . . Explicit Implicit . . . Explicit
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LECTURE 3

• Various advanced subtyping issues.

- Subsumption andDynamic Dispatch. 
- Type Information Lost and Found. 
- Covariance, Contravariance, Invariance. 
- Method Specialization. 
- Self Type Specialization. 
- Type Parameters. 
- Extra: Inheritance, Subclasses, Subtypes and Object Types. 
- Extra: Distinguishing Subtyping from Subclassing.

• Subclassing without Subtying and Object Protocols. (Skip if 
Lecture 5 is given.)
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Reminder: Classes
• Classes are descriptions of objects. No clear distinction 

between classes and object types.

• Example: storage cells.
class cell is 

var contents: Integer := 0;
method get(): Integer is 

return self.contents; 
end;
method set(n: Integer) is 

self.contents := n; 
end;

end;



Subtyping Issues July 16, 1997 10:26 pm 64

Reminder: Subclasses
• A subclass is a differential description of a class.

• Example: restorable cells.
subclass reCell of cell is 

var backup: Integer := 0;
override set(n: Integer) is 

self.backup := self.contents; 
super.set(n);

end;
method restore() is 

self.contents := self.backup; 
end;

end;



Subtyping Issues July 16, 1997 10:26 pm 65

Subsumption and Dynamic Dispatch
• It may seem that subclasses are just a convenient mechanism to avoid rewriting definitions 

that already appear in superclasses. Much more comes into play with the associated notion of 
subsumption. Consider the definitions:

var myCell: InstanceTypeOf(cell) := new cell;
var myReCell: InstanceTypeOf(reCell) := new reCell;
procedure f(x: InstanceTypeOf(cell)) is … end;

• Consider also the following code fragments, in the scope of those definitions:

myCell := myReCell;

f(myReCell);

• Here, an instance of class reCell is assigned to a variable holding instances of class cell. Sim-
ilarly, an instance of class reCell is passed to a procedure f that expects instances of class cell. 
Both code fragments would be illegal in a language like Pascal, since the types InstanceTy-
peOf(cell) and InstanceTypeOf(reCell) do not match. 
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Polymorphism

• In object-oriented languages these code fragments are made legal by the following rule, 
which embodies what is often called (subtype) polymorphism:

If c’ is a subclass of c, and o’ is an instance of c’, then o’ is an instance of c.

or, from the point of view of the typechecker:

(1)  If c’ is a subclass of c, and o’: InstanceTypeOf(c’), then o’: InstanceTypeOf(c).

• We analyze statement (1) further, by introducing a reflexive and transitive subtype relation 
(<:) between InstanceTypeOf types. This subtype relation is intended, intuitively, as set in-
clusion between sets of values. For now we do not define the subtype relation precisely, but 
we assume that it satisfies two properties:

(2)  If a : A, and A <: B, then a : B.
(3)  InstanceTypeOf(c’) <: InstanceTypeOf(c) if and only if c’ is a subclass of c.

Together, (2) and (3) yield (1). 
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• Property (2), called subsumption, is the characteristic property of subtype relations. By sub-
sumption, a value of type A can be viewed as a value of a supertype B. We say that the value 
is subsumed from type A to type B.

• Property (3), which we may call subclassing-is-subtyping, is the characteristic property of 
subclassing in classical class-based languages. Since inheritance is connected with subclass-
ing, we may read (3) as an inheritance-is-subtyping property. More recent class-based lan-
guages adopt a different, inheritance-is-not-subtyping approach, as we shall see later.
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Static Dispatch vs. Dynamic Dispatch

• With the introduction of subsumption, we have to reexamine the meaning of method invoca-
tion. For example, given the code:

procedure g(x: InstanceTypeOf(cell)) is 
x.set(3); 

end;
g(myReCell);

we should determine what is the meaning of x.set(3) during the invocation of g. The declared 
type of x is InstanceTypeOf(cell), while its value is myReCell, which is an instance of reCell. 
Since the method set is overridden in reCell, there are two possibilities:

Static dispatch: x.set(3)  executes the code of set from class cell
Dynamic dispatch: x.set(3)  executes the code of set from class reCell

• Static dispatch is based on the compile-time type information available for x. Dynamic dis-
patch is based on the run-time value of x; we may say that InstanceTypeOf(reCell) is the true 
type of x during the execution of g(myReCell), and that the true type determines the choice of 
method.
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• Dynamic dispatch is found in all object-oriented languages, to the point that it can be regard-
ed as one of their defining properties. 

• Dynamic dispatch is an important component of object abstraction: each object knows how 
to behave autonomously, so the context does not need to examine the object and decide which 
operation to apply.

• An interesting consequence of dynamic dispatch is that subsumption should have no run-time 
effect on objects. 

• For example, if an application of subsumption from InstanceTypeOf(reCell) to InstanceTy-
peOf(cell) were to “coerce” a reCell to a cell by cutting off its additional attributes (backup
and restore), then a dynamically dispatched invocation of set would fail. The fact that sub-
sumption has no run-time effect is both good for efficiency and semantically necessary.
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Type Information, Lost and Found
• Although subsumption has no run-time effect, it has the consequence of reducing static 

knowledge about the true type of an object. 

• Imagine a root class with no attributes, such that all classes are subclasses of the root class. 
Then any object can be considered, by subsumption, as a member of the root class and can 
be regarded as a useless object with no attributes. 

• Less drastically, when subsuming an object from InstanceTypeOf(reCell) to InstanceTy-
peOf(cell), the ability to access the field backup (as well as the method restore) is lost. This 
fact, however, does not make the field backup redundant because it is still used, through self, 
by the body of the overriding method set. 

• So, attributes forgotten by subsumption can still be used thanks to dynamic dispatch.
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• In a purist view of object-oriented methodology, dynamic dispatch is the only mechanism for 
taking advantage of attributes that have been forgotten by subsumption. 

• This position is often taken on abstraction grounds: no knowledge should be obtainable about 
objects except by invoking their methods. In the purist approach, subsumption provides a 
simple and effective mechanism for hiding private attributes. If we create a reCell and, by 
subsumption, give it to a client as a cell, we can be sure that the client cannot directly affect 
the backup field.

• Most languages, however, provide some way of inspecting the type of an object and, conse-
quently, of regaining access to its forgotten attributes. 

• For example, a procedure with parameter x of type InstanceTypeOf(cell) could contain the 
following code. The typecase statement binds x to c or to rc depending on the true (run-time) 
type of x:

typecase x
when rc: InstanceTypeOf(reCell) do … rc.restore() … ;
when c: InstanceTypeOf(cell) do … c.set(3) … ;

end;

Previously inaccessible attributes can now be used in the rc branch.
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• The typecase mechanism is useful, but it is considered impure for several methodological 
reasons (and also for theoretical ones). 

~ It violates the object abstraction, revealing information that may be regarded as private. 

~ It renders programs more fragile by introducing a form of dynamic failure when none of 
the branches apply. 

~ It makes code less extensible: when adding another subclass of cell one may have to revisit 
and extend the typecase statements in existing code. In the purist framework, the addition 
of a new subclass does not require recoding of existing classes. This is a good property, in 
particular because the source code of commercial libraries may not be available.
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• Although typecase may be ultimately an unavoidable feature, its methodological drawbacks 
require that it be used prudently. 

• The desire to reduce the uses of typecase has shaped much of the type structure of object-
oriented languages. 

~ In particular, typecase on self is necessary for emulating objects in conventional languag-
es by records of procedures; in contrast, the standard typing of methods in object-oriented 
languages avoids this need for typecase. 

~ More sophisticated typings of methods are aimed at avoiding typecase also on method re-
sults (using Self types) and on method arguments (using matching).
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A Simple Formalization of Typecase
• The typecase construct evaluates a term to a result, and discriminates on the type of the result.

typecase a | (x:A)d1 | d2

If a yields a result of type A, then (typecase a|(x:A)d1|d2) returns d1 with x replaced by this 
result. If a yields a result that does not have type A, then (typecase a|(x:A)d1|d2) returns d2.

(Val Typecase)
E ∫ a : A’      E, x:A ∫ d1 : D      E ∫ d2 : D

E ∫ typecase a|(x:A)d1|d2 : D

Typing rule for typecase
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• In programming languages that include typecase, the type of a value is represented using a 
tag attached to the value; typecase relies on this tag to perform run-time type discrimination.

• We adopt an operational semantics without such tags; in our semantics, typecase performs 
run-time type discrimination by constructing a typing derivation. 

• Our rules do not immediately suggest an efficient implementation, but have the advantage of 
being simple and general, applying equally well to calculi with and without subtyping.



(Red Typecase Match)
∫ a Òñ v’       ∫ v’ : A      ∫ d1Yv’Z Òñ v

∫ typecase a|(x:A)d1{x}|d2 Òñ v

(Red Typecase Else)
∫ a Òñ v’       º v’ : A      ∫ d2 Òñ v

∫ typecase a|(x:A)d1|d2 Òñ v
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Operational semantics for typecase

• These rules are unusual in that the result of a reduction depends on whether a typing is deriv-
able. If  ∫ v’ : A is derivable, then the first rule is applicable. Otherwise (when  º v’ : A), 
the second rule is applicable; thus the second rule has a negative assumption.
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Covariance, Contravariance, and Invariance
• The type A×B is the type of pairs with left component of type A and right component of type 

B. The operations fst(c) and snd(c) extract the left and right components, respectively, of an 
element c of type A×B.

• We say that × is a covariant operator (in both arguments), because A×B varies in the same 
sense as A or B:

A×B <: A’×B’  provided that  A<:A’ and B<:B’

We can justify this property as follows:

A pair Üa,bá with left component a of type A and right component b of type B, has type A×B. If 
A<:A’ and B<:B’, then by subsumption we have a:A’ and b:B’, so that Üa,bá has also type A’×B’. 
Therefore, any pair of type A×B has also type A’×B’ whenever A<:A’ and B<:B’. In other 
words, the inclusion A×B <: A’×B’ between product types is valid whenever A<:A’ and B<:B’.

Argument for the covariance of A×B
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• The type A→B is the type of functions with argument type A and result type B. 

• We say that → is a contravariant operator in its left argument, because A→B varies in the 
opposite sense as A; the right argument is instead covariant:

A→B <: A’→B’  provided that  A’<:A and B<:B’

If B<:B’, then a function f of type A→B produces results of type B’ by subsumption. If A’<:A, 
then f accepts also arguments of type A’, since these have type A by subsumption. Therefore, 
every function of type A→B has also type A’→B’ whenever A’<:A and B<:B’. In other words, 
the inclusion A→B <: A’→B’ between function types is valid whenever A’<:A and B<:B’. 

Argument for the co/contravariance of A→B

• In the case of functions of multiple arguments, for example of type (A1×A2)→B, we have con-
travariance in both A1 and A2. This is because product, which is covariant in both of its argu-
ments, is found in a contravariant context.
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• Consider pairs whose components can be updated; we indicate their type by AgB. Given 
p:AgB, a:A, and b:B, we have operations getLft(p):A and getRht(p):B that extract compo-
nents, and operations setLft(p,a) and setRht(p,b) that destructively update components. 

• The operator g does not enjoy any covariance or contravariance properties:

AgB <: A’gB’  provided that  A=A’ and B=B’

We say that g is an invariant operator (in both of its arguments).

If A<:A’ and B<:B’, can we covariantly allow AgB <: A’gB’? If we adopt this inclusion, then 
from p:AgB we obtain p:A’gB’, and we can perform setLft(p,a’), for any a’:A’. After that, 
getLft(p) might return an element of type A’ that is not an element of type A. Hence, the inclu-
sion AgB <: A’gB’ is not sound. 

Conversely, if A”<:A and B”<:B, can we contravariantly allow AgB <: A”gB”? From p:AgB
we now obtain p:A”gB”, and we can incorrectly deduce that getLft(p):A”. Hence, the inclu-
sion AgB <: A”gB” is not sound either.

Argument for the invariance of AgB
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• Much controversy in the object-oriented community revolves around the question of whether 
the types of arguments of methods should vary covariantly or contravariantly from classes to 
subclasses. 

• The properties of ×, →, and g follow inevitably from our assumptions. The variance proper-
ties of method types follow inevitably by a similar analysis. We cannot take method argument 
types to vary covariantly, unless somehow we change the meaning of covariance, subtyping, 
or subsumption. 

• According to our definitions, covariance of method argument types is statically unsound: if 
left unchecked, it may result in unpredictable behavior. 

• Eiffel still favors covariance of method arguments. Unsound behavior was supposed to be 
caught by global flow analysis in Eiffel, but was never implemented. 

• Covariance can be soundly adopted for multiple dispatch, but using a different set of type op-
erators.
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Method Specialization
• So far we have taken the simplest approach to overriding, requiring that an overriding method 

has exactly the same type as the overridden method. 

• This condition can be relaxed to allow method specialization, that is, to allow an overriding 
method to adopt different argument and result types, specialized for the subclass. 

• We still do not allow overriding and specialization of field types: fields are updatable, like 
the components of the type AgB, and therefore their types must be invariant.
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• Suppose we use different argument and result types, A’ and B’, when overriding m:

class c is 
method m(x: A): B is … end; 
method m1(x1: A1): B1 is … end; 

end;

subclass c’ of c is 
override m(x: A’): B’ is … end;

end;

• In determining the admissible A’ and B’, we are constrained by the possibility of subsumption 
between InstanceTypeOf(c’) and InstanceTypeOf(c). 

• When o’ of type InstanceTypeOf(c’) is subsumed into InstanceTypeOf(c), and o’.m(a) is in-
voked, it is acceptable for the argument to have static type A and for the result to have static 
type B. Therefore, it is sufficient to require that B’<:B (covariantly) and that A<:A’ (contra-
variantly). 

• This is called method specialization on override: the result type B is specialized to B’, while 
the parameter type A is generalized to A’, with the net effect that A→B is specialized to 
A’→B’.
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• There is another form of method specialization that happens implicitly by inheritance. The 
occurrences of self in the methods of c can be considered of type InstanceTypeOf(c), in the 
sense that all objects bound to self have type InstanceTypeOf(c) or a subtype of InstanceTy-
peOf(c). 

• When the methods of c are inherited by c’, the same occurrences of self can similarly be con-
sidered of type InstanceTypeOf(c’). Thus, the type of self is silently specialized on inherit-
ance (covariantly!).
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• Another way to look at specialization is to consider methods as functions whose first param-
eter is self; we call such functions pre-methods. 

• In the case of the method m1 of c, this pre-method pm1 would have type (InstanceTy-
peOf(c)×A1)→B1. This type is a subtype of (InstanceTypeOf(c’)×A1)→B1, so pm1 has this 
type too by subsumption. Then pm1 has the type of a legal pre-method for c’, and it can be 
inherited by c’. 

• More generally, an inheritable pre-method of type (InstanceTypeOf(c)×A1)→B1 has by sub-
sumption the type (InstanceTypeOf(c’)×A1’)→B1’ for any A1’<:A1 and B1<:B1’. That is, the 
parameters, including self, may be specialized, and the results may be generalized. 

• Note that the argument and result inclusions we have derived for inheritance are opposite to 
the ones for overriding: for inheritance, parameter types may be specialized, and result types 
may be generalized; for overriding, parameter types may be generalized, and result types may 
be specialized. In any case, the sound rules for method specialization, both for inheritance 
and for overriding, are a direct consequence of the constraints on subtyping and subsumption.
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Self Type Specialization
• Method specialization adds flexibility to subclass definitions by allowing the result type of a 

method to vary. Another opportunity for flexibility arises when the result type of a method 
is, recursively, its class type. We consider a language construct devised for specializing such 
methods.

• Class definitions are often recursive, in the sense that the definition of a class c may contain 
occurrences of InstanceTypeOf(c). For example, we could have a class c containing a method 
m with result type InstanceTypeOf(c):

class c is 
var x: Integer := 0;
method m(): InstanceTypeOf(c) is … self … end;

end;

subclass c’ of c is 
var y: Integer := 0;

end;
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• On inheritance, recursive types are, by default, preserved exactly, just like other types. For 
instance, for o’ of class c’, we have that o’.m() has type InstanceTypeOf(c) and not, for ex-
ample, InstanceTypeOf(c’). In general, adopting InstanceTypeOf(c’) as the result type for the 
inherited method m in c’ is unsound, because m may construct and return an instance of c that 
is not an instance of c’.

• Suppose, though, that m returns self, perhaps after modifying the field x. Then it would be 
sound to give the inherited method the result type InstanceTypeOf(c’), since self is always 
bound to the receiver of invocations. With this more precise typing, we would avoid subse-
quent uses of typecase: limiting the result type to InstanceTypeOf(c) constitutes an unwar-
ranted loss of information.
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• This argument leads to the notion of Self types. The keyword Self represents the type of self. 
Instead of assigning the result type InstanceTypeOf(c) to m, we now write:

class c is 
var x: Integer := 0;
method m(): Self is … self … end;

end;

• The typing of the code of m relies on the assumptions that Self is a subtype of InstanceTy-
peOf(c), and that self has type Self. Field updates to self preserve its Self type. For soundness, 
the result of m must be shown to have type Self, and not just type InstanceTypeOf(c). 

• When c’ is declared as a subclass of c, the result type of m is still taken to be Self. However, 
Self is then regarded as a subtype of InstanceTypeOf(c’). Thus Self, as the result type of a 
method, is automatically specialized on subclassing. 
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• There are no drawbacks to extending classical class-based languages with Self in covariant 
positions, for example as the result type of methods. This extension increases expressive 
power and prevents loss of type information at no cost other than properly keeping track of 
the type of self. 

• We can even allow Self as the type of fields; this is sound as long as those fields are updated 
only with self or updated versions of self.

• A natural next step is to allow Self in contravariant (argument) positions. This is what Eiffel 
set out to do. Unfortunately, contravariant uses of Self are unsound for subsumption, as can 
be demonstrated by simple counterexamples. As we have seen, types in argument positions 
of inherited methods may be generalized, not specialized. 

• The proper handling of Self in contravariant positions is a major new development in class-
based languages, and goes well beyond their classical features.
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Type Parameters
• Type parameterization is a general technique for reusing the same piece of code at different 

types. It is becoming common in modern object-oriented languages, partially independently 
of object-oriented features.

• In conjunction with subtyping, type parameterization can be used to remedy some typing dif-
ficulties due to contravariance, for example in method specialization. 

• Consider the following object types, where Vegetables <: Food (but not vice versa):

ObjectType Person is 
…
method eat( food: Food);

end;

ObjectType Vegetarian is 
…
method eat( food: Vegetables);

end;
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• The intention is that a vegetarian is a person, so we would expect Vegetarian <: Person. 

• However, this inclusion cannot hold because of the contravariance on the argument of the eat
method. If we erroneously assume Vegetarian <: Person, then a vegetarian can be subsumed 
into Person, and can be made to eat meat.

• We can obtain some legal subsumptions between vegetarians and persons by converting the 
corresponding object types into type operators parameterized on the type of food:

ObjectOperator PersonEating[F <: Food] is 
…
method eat( food: F);

end;

ObjectOperator VegetarianEating[F <: Vegetables] is 
…
method eat( food: F);

end;
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• The mechanism used here is called bounded type parameterization. The variable F is a type 
parameter, which can be instantiated with a type. A bound like F <: Vegetables limits the pos-
sible instantiations of F to subtypes of Vegetables. 

• So, VegetarianEating[Vegetables] is a type; in contrast, VegetarianEating[Food] is not well-
formed. The type VegetarianEating[Vegetables] is an instance of VegetarianEating, and is 
equal to the type Vegetarian.

• We have that:
for all F <: Vegetables,  VegetarianEating[F] <: PersonEating[F]

because, for any F<:Vegetables, the two instances are included by the usual rules for subtyp-
ing. 

• In particular, we obtain:

Vegetarian = VegetarianEating[Vegetables] <: PersonEating[Vegetables]. 

This inclusion can be useful for subsumption: it asserts, correctly, that a vegetarian is a person 
that eats only vegetables.
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• Related to bounded type parameters are bounded abstract types (also called partially abstract 
types). Bounded abstract types offer a different solution to the problem of making Vegetarian
subtype of Person. 

• We redefine our object types by adding the F parameter, subtype of Food, as one of the at-
tributes:

ObjectType Person is 
type F <: Food;
…
var lunch: F;
method eat( food: F);

end;

ObjectType Vegetarian is 
type F <: Vegetables;
…
var lunch: F;
method eat( food: F);

end;



Subtyping Issues July 16, 1997 10:26 pm 93

• The meaning of the type component F<:Food in Person is that, given a person, we know that 
it can eat some Food, but we do not know exactly of what kind. The lunch attribute provides 
some food that a person can eat.

• We can build an object of type Person by choosing a specific subtype of Food, for example 
F=Dessert, picking a dessert for the lunch field, and implementing a method with parameter 
of type Dessert. We have that the resulting object is a Person, by forgetting the specific F that 
we chose for its implementation.

• Now the inclusion Vegetarian <: Person holds. A vegetarian subsumed into Person can be 
safely fed the lunch it carries with it, because originally the vegetarian was constructed with 
F<:Vegetables. 

• A limitation of this approach is that a person can be fed only the food it carries with it as a 
component of type F, and not some food obtained independently. 
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Inheritance, Subclassing, Subtyping
• One of the main characteristics of classical class-based languages is the strict correlation be-

tween inheritance, subclassing, and subtyping. A great economy of concepts and syntax is 
achieved by identifying these three relations. 

• The identification also confers much flexibility in the use of subsumption: an object of a sub-
class, some of whose methods may have been inherited, can always be used in place of an 
object of a superclass by virtue of subtyping. 

• There are situations, however, in which inheritance, subclassing, and subtyping conflict. Op-
portunities for code reuse, both by inheritance and by parameterization, turn out to be limited 
by the coincidence of these relations. 

• Therefore, considerable attention has been devoted to separating them. The separation of sub-
classing from subtyping is becoming commonplace; other separations are more tentative.
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Object Types
• In the original formulation of classes (in Simula, for example), the type description of objects 

is intermixed with the implementation of methods. 

• This conflicts with the now widely recognized advantages of keeping specifications separate 
from implementations, particularly to enable separate code development within large teams 
of programmers. 

• A relatively recent variation on the classical model addresses this problem. Separation be-
tween object specification and object implementation can be achieved by introducing types 
for objects that are independent of specific classes. This approach is supported by languages 
that provide both classes and interfaces.

• In class-based languages, the type of an object is related to its class, as in InstanceTy-
peOf(cell). It is peculiar that the type InstanceTypeOf(cell) should depend explicitly on an en-
tity, the class cell, that describes some specific method code. None of the code from class cell
is necessarily found in members of InstanceTypeOf(cell).

• Object types, instead, list attributes and their types, but not their implementations. They are 
suitable to appear in interfaces, and to be implemented separately and in more than one way.
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• Recall the classes cell and reCell:

class cell is 
var contents: Integer := 0;
method get(): Integer is return self.contents end;
method set(n: Integer) is self.contents := n end;

end;

subclass reCell of cell is 
var backup: Integer := 0;
override set(n: Integer) is 

self.backup := self.contents; 
super.set(n);

end;
method restore() is self.contents := self.backup end;

end;
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• We introduce two object types Cell and ReCell that correspond to these classes. We write 
them as separate types (but we could introduce syntax to avoid repeating common compo-
nents).

ObjectType Cell is 
var contents: Integer;
method get(): Integer;
method set(n: Integer);

end;

ObjectType ReCell is 
var contents: Integer;
var backup: Integer;
method get(): Integer;
method set(n: Integer);
method restore();

end;
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• We may still use ObjectTypeOf(cell) as a meta-notation for the object type Cell. This type can 
be mechanically extracted from class cell. Therefore, we may write either o: ObjectTy-
peOf(cell) or o: Cell. 

• The main property we expect of ObjectTypeOf is that:

new c : ObjectTypeOf(c)  for any class c

• Different classes cell and cell1 may happen to produce the same object type Cell, equal to 
both ObjectTypeOf(cell) and ObjectTypeOf(cell1). Therefore, objects having type Cell are re-
quired only to satisfy a certain protocol, independently of attribute implementation. 
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Distinguishing Subclassing from  
Subtyping
• In class-based languages, the subtype relation is based on the subclass relation.

• When object types are independent of classes, we must provide an independent definition. 
There are several choices at this point: whether subtyping is determined by type structure or 
by type names in declarations, and in the former case what parts of the structure of types mat-
ter. 

• Structural subtyping (subtyping determined by type structure) has desirable properties, such 
as supporting type matching in distributed and persistent systems. A disadvantage is the pos-
sibility of accidental matching of unrelated types. However, one can avoid such accidents by 
imposing distinctions on top of structural subtyping. In contrast, subtyping based on type 
names is hard to define precisely, and does not support structural subtyping.
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• Here is a particularly simple form of structural subtyping. We assume, for two object types 
O and O’, that:

O’ <: O if O’ has the same components as O and possibly more

where a component of an object type is the name of a field or a method and its associated 
type. So, for example, ReCell <: Cell.

• This definition implies that object types are invariant in their component types, although we 
could extend it to allow method specialization. 

• When object types are defined recursively we need to be more careful about the definition of 
subtyping.
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• With this definition of subtyping, object types naturally support multiple subtyping, because 
components are assumed unordered. For example, consider the object type:

ObjectType ReInteger is 
var contents: Integer;
var backup: Integer;
method restore();

end;

• Then we have both ReCell <: Cell and ReCell <: ReInteger.
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• As a consequence of the new definition of subtyping we have:

(4)  If c’ is a subclass of c then ObjectTypeOf(c’) <: ObjectTypeOf(c).

• This holds simply because a subclass can only add new attributes to a class, and because we 
require that overriding methods preserve the existing method types.

• Property (4) is a reformulation for ObjectTypeOf of property (3), the subclassing-is-subtyp-
ing property. While property (3) is a double implication, the converse of (4) does not hold: 
there may be unrelated c and c’ such that ObjectTypeOf(c)=O and ObjectTypeOf(c’)=O’, with 
O’<:O.

• Therefore, we have partially decoupled subclassing from subtyping, by relaxing the double 
implication (3) to the single implication (4). Subclassing still implies subtyping, so all the 
previous uses of subsumption are still allowed. But, since subsumption is based on subtyping 
and not subclassing, we now have even more freedom in subsumption. 

•  In conclusion, the notion of subclassing-is-subtyping can be weakened to subclassing-im-
plies-subtyping without loss of expressiveness, and with a gain in separation between inter-
faces and implementations. 
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Subclassing without Subtyping
• We have seen how the partial decoupling of subtyping from subclassing increases the oppor-

tunities for subsumption. 

• Another approach has emerged that increases the potential for inheritance by further separat-
ing subtyping from subclassing. This approach abandons completely the notion that subclass-
ing implies subtyping (property (4)), and is known under the name inheritance-is-not-
subtyping. 

• It is largely motivated by the desire to handle contravariant (argument) occurrences of Self
so as to allow inheritance of methods with arguments of type Self; these methods arise natu-
rally in realistic examples. 

• The price paid for this added flexibility in inheritance is decreased flexibility in subsumption. 
When Self is used liberally in contravariant positions, subclasses do not necessarily induce 
subtypes. 
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• Consider two types Max and MinMax for integers enriched with min and max methods. Each 
of these types is defined recursively:

ObjectType Max is 
var n: Integer;
method max(other: Max): Max;

end;

ObjectType MinMax is 
var n: Integer;
method max(other: MinMax): MinMax;
method min(other: MinMax): MinMax;

end;
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• Consider also two classes:

class maxClass is 
var n: Integer := 0;
method max(other: Self): Self is 

if self.n>other.n then return self else return other end;
end;

end;

subclass minMaxClass of maxClass is 
method min(other: Self): Self is 

if self.n<other.n then return self else return other end;
end;

end;

• The methods min and max are called binary because they operate on two objects: self and oth-
er; the type of other is given by a contravariant occurrence of Self. Notice that the method 
max, which has an argument of type Self, is inherited from maxClass to minMaxClass.
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• Intuitively the type Max corresponds to the class maxClass, and MinMax to minMaxClass. 
To make this correspondence more precise, we must define the meaning of ObjectTypeOf for 
classes containing occurrences of Self, so as to obtain ObjectType-Of(maxClass) = Max and 
ObjectTypeOf(minMaxClass) = MinMax. 

• For these equations to hold, we map the use of Self in a class to the use of recursion in an 
object type. We also implicitly specialize Self for inherited methods; for example, we map 
the use of Self in the inherited method max to MinMax. In short, we obtain that any instance 
of maxClass has type Max, and any instance of minMaxClass has type MinMax.
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• Although minMaxClass is a subclass of maxClass, MinMax cannot be a subtype of Max. Con-
sider the class:

subclass minMaxClass’ of minMaxClass is 
override max(other: Self): Self is 

if other.min(self)=other then return self else return other end;
end;

end;

• For any instance mm’ of minMaxClass’ we have mm’:MinMax. If MinMax were a subtype of 
Max, then we would have also mm’:Max, and mm’.max(m) would be allowed for any m of 
type Max. Since m may not have a min attribute, the overridden max method of mm’ may 
break. Therefore:

MinMax <: Max    does not hold

• Thus, subclasses with contravariant occurrences of Self do not always induce subtypes. 
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Object Protocols
• Even when subclasses do not induce subtypes, we can find a relation between the type in-

duced by a class and the type induced by one of its subclasses. It just so happens that, unlike 
subtyping, this relation does not enjoy the subsumption property. We now examine this new 
relation between object types.

• We cannot usefully quantify over the subtypes of Max because of the failure of subtyping. A 
parametric definition like:

ObjectOperator P[M <: Max] is … end;

• is not very useful; we could instantiate P by writing P[Max], but P[MinMax] would not be 
well-formed.
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• Still, any object that supports the MinMax protocol, in an intuitive sense, supports also the 
Max protocol. There seems to be an opportunity for some kind of subprotocol relation that 
may allow useful parameterization. In order to find this subprotocol relation, we introduce 
two type operators, MaxProtocol and MinMaxProtocol:

ObjectOperator MaxProtocol[X] is 
var n:Integer; 
method max(other: X): X;

end;

ObjectOperator MinMaxProtocol[X] is 
var n:Integer; 
method max(other: X): X;
method min(other: X): X;

end;
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• Generalizing from this example, we can always pass uniformly from a recursive type T to an 
operator T-Protocol by abstracting over the recursive occurrences of T. The operator T-Pro-
tocol is a function on types; taking the fixpoint of T-Protocol yields back T. 

• We find two formal relationships between Max and MinMax. First, MinMax is a post-fixpoint 
of MaxProtocol, that is:

MinMax <: MaxProtocol[MinMax]

• Second, let ': denote the higher-order subtype relation between type operators:

P ': P’      iff      P[T] <: P’[T]   for all types T   

• Then, the protocols of Max and MinMax satisfy:

MinMaxProtocol ': MaxProtocol
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• Either of these two relationships can be taken as our hypothesized notion of subprotocol:

S subprotocol T   if   S <: T-Protocol[S]
or

S subprotocol T   if   S-Protocol ': T-Protocol

• The second relationship expresses a bit more directly the fact that there exists a subprotocol 
relation, and that this is in fact a relation between operators, not between types. 

• Whenever we have some property common to several types, we may think of parameterizing 
over these types. So we may adopt one of the following forms of parameterization:

ObjectOperator P1[X <: MaxProtocol[X]] is … end;
ObjectOperator P2[P ': MaxProtocol] is … end;

• Then we can instantiate P1 to P1[MinMax], and P2 to P2[MinMaxProtocol]. 
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• These two forms of parameterization seem to be equally expressive in practice. The first one 
is called F-bounded parameterization. The second form is higher-order bounded parameter-
ization, defined via pointwise subtyping of type operators.

• Instead of working with type operators, a programming language supporting subprotocols 
may conveniently define a matching relation (denoted by <#) directly over types. The prop-
erties of the matching relation are designed to correspond to the definition of subprotocol. 
Depending on the choice of subprotocol relation, we have:

S <# T   if   S <: T-Protocol[S] (F-bounded interpretation)
or

S <# T   if   S-Protocol ': T-Protocol (higher-order interpretation)

• With either definition we have MinMax <# Max.
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• Matching does not enjoy a subsumption property (that is, S <# T and s : S do not imply that s
: T); however, matching is useful for parameterizing over all the types that match a given one:

ObjectOperator P3[X <# Max] is … end;

• The instantiation P3[MinMax] is legal.

• In summary, even in the presence of contravariant occurrences of Self, and in absence of sub-
typing, there can be inheritance of binary methods like max. Unfortunately, subsumption is 
lost in this context, and quantification over subtypes is no longer very useful. These disad-
vantages are partially compensated by the existence of a subprotocol relation, and by the abil-
ity to parameterize with respect to this relation.
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LECTURE 4

• A Language with Subtyping.
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THE LANGUAGE O–1



Talk July 17, 1997 9:27 pm 114

Synthesis of a Language
• O–1 is a language built out of constructs from object calculi.

~ The main purpose of O–1 is to help us assess the contributions of 
object calculi. 

~ In addition, O–1 embodies a few intriguing language-design ideas.

~ We have studied more advanced languages that include Self types and 
parametric polymorphism. 
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Some Features of O–1
• Both class-based and object-based constructs.

• First-order object types with subtyping and variance 
annotations.

• Classes with single inheritance.

• Method overridding and specialization. 

• Recursion.

• Typecase. (To compensate for, e.g., lack of Self types.)

• Separation of interfaces from implementations.

• Separation of inheritance from subtyping. 
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Some Non-Features of O–1
• No public/private/protected/abstract, etc.,

• No cloning,

• No basic types, such as integers,

• No arrays and other data structures,

• No procedures,

• No concurrency.



Talk July 17, 1997 9:27 pm 117

Syntax of Types

A,B ::=
X
Top
Object(X)[liυi:Bi iÏ1..n] 
Class(A)

types
type variable
the biggest type
object type (li distinct)
class type

Syntax of O–1 types

• Roughly, we may think Object = µ.  
But the fold/unfold coercions do not appear in the syntax of O–
1.

• Usually, + variance is for methods, and o variance is for fields.
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Syntax of Programs

a,b,c ::=
x
object(x:A) li=bi iÏ1..n end

terms
variable
direct object construction

a.l field selection / method invocation
a.l := b
a.l := method(x:A) b end

update with a term
update with a method

new c
root

object construction from a class
root class

subclass of c:C with(x:A)
li=bi iÏn+1..n+m 
override li=bi iÏOvr⊆1..n end

subclass
additional attributes
overridden attributes

c^l(a)
typecase a when (x:A)b1 else b2 end

class selection
typecase

Syntax of O–1 terms
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• Superclass attributes are inherited “automatically”.  
(No copying premethods by hand as in the encodings of 
classes.)

• Inheritance “by hand” still possible by class selection c^l(a).

• Classes are first-class values.

• Parametric classes can be written as functions that return 
classes.
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• We could drop the object-based constructs (object 
construction and method update). The result would be a 
language expressive enough for traditional class-based 
programming. 

• Alternatively, we could drop the class-based construct (root 
class, subclass, new, and class selection), obtaining an object-
based language.

• Classes, as well as objects, are first-class values. A parametric 
class can be obtained as a function that returns a class.
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Abbreviations

Root   @ 
Class(Object(X)[])

class with(x:A) li=bi iÏ1..n end   @ 
subclass of root:Root with(x:A) li=bi iÏ1..n override end

subclass of c:C with (x:A) … super.l … end   @ 
subclass of c:C with (x:A) … c^l(x) … end

object(x:A) … l copied from c … end   @ 
object(x:A) … l=c^l(x) … end

N.B.: conversely, subclass could be defined from class and c^l.
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Examples
• We assume basic types (Bool, Int) and function types (A→B, 

contravariant in A and covariant in B). 
Point   @   Object(X)[x: Int, eq+: X→Bool, mv+: Int→X]

CPoint    @    Object(X)[x: Int, c: Color, eq+: Point→Bool, mv+: Int→Point]

• CPoint <: Point

• The type of mv in CPoint is Int→Point. 
One can explore the effect of changing it to Int→X. 

• The type of eq in CPoint is Point→Bool. 
If we were to change it to X→Bool we would lose the 
subtyping CPoint <: Point.
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Class(Point)

pointClass : Class(Point)   @ 
class with (self: Point)

x = 0,
eq = fun(other: Point) self.x = other.x end,
mv = fun(dx: Int) self.x := self.x+dx end

end
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Class(CPoint)

cPointClass : Class(CPoint)   @ 
subclass of pointClass: Class(Point)
with (self: CPoint)

c = black 
override 

eq = fun(other: Point)
typecase other 
when (other’: CPoint) super.eq(other’) and self.c = other’.c
else false
end

 end
end
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Comments

• The class cPointClass inherits x and mv from its superclass 
pointClass. 

• Although it could inherit eq as well, cPointClass overrides this 
method as follows. 

~ The definition of Point requires that eq work with any argument other 
of type Point. 

~ In the eq code for cPointClass, the typecase on other determines 
whether other has a color. 

~ If so, eq works as in pointClass and in addition tests the color of other. 

~ If not, eq returns false. 
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• We can use cPointClass to create color points of type CPoint:
cPoint : CPoint   @   new cPointClass

• Calls to mv lose the color information. 

• In order to access the color of a point after it has been moved, 
a typecase is necessary:

movedColor : Color   @
typecase cPoint.mv(1)
when (cp: CPoint) cp.c
else black
end
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Typing 

• The rules of O–1 are based on the following judgments:

E ∫ Q environment E is well-formed
E ∫ A A is a well-formed type in E
E ∫ A <: B A is a subtype of B in E
E ∫ υA <: υ’B A is a subtype of B in E, with variance annotations υ and υ’
E ∫ a : A a has type A in E

Judgments

• The rules for environments are standard:

(Env ) (Env X<:) (Env x)
E ∫ A      XÌdom(E) E ∫ A      xÌdom(E)

 ∫ Q E, X<:A ∫ Q E, x:A ∫ Q

Environments
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Type Formation Rules

Types

(Type X) (Type Top)
E’, X<:A, E” ∫ Q E ∫ Q

E’, X<:A, E” ∫ X E ∫ Top

(Type Object)  (li distinct, υiÏ{o,–,+}) (Type Class)  (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E, X<:Top ∫ Bi      ÓiÏ1..n E ∫ A

E ∫ Object(X)[liυi:Bi iÏ1..n] E ∫ Class(A)
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Subtyping Rules

• Note that there is no rule for subtyping class types.

(Sub Refl) (Sub Trans) (Sub X) (Sub Top)
E ∫ A E ∫ A <: B      E ∫ B <: C E’, X<:A, E” ∫ Q E ∫ A

E ∫ A <: A E ∫ A <: C E’, X<:A, E” ∫ X <: A E ∫ A <: Top

(Sub Object)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n+m],  A’ 7 Object(X’)[liυi’:Bi’{X’} iÏ1..n])
E ∫ A      E ∫ A’      E, X<:A’ ∫ υi Bi{X} <: υi’ Bi’YA’Z      Ó iÏ1..n

E ∫ A <: A’

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E ∫ B E ∫ B <: 

B’      υÏ{o,+}
E ∫ B’ <: B      υÏ{o,–

}

E ∫ o B <: o B E ∫ υ B <: + B’ E ∫ υ B <: – B’

Subtyping
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Term Typing Rules

(Val Subsumption) (Val x)
E ∫ a : A      E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x : A

(Val Object)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E, x:A ∫ bi : BiYAZ      ÓiÏ1..n

E ∫ object(x:A) li=bi iÏ1..n end : A

Terms



(Val Select)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : 

A      υjÏ{o,+}      jÏ1..n

E ∫ a.lj : BjYAZ

(Val Update)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A      E ∫ b : BjYAZ      υjÏ{o,–

}      jÏ1..n

E ∫ a.lj := b : A

(Val Method Update)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A      E, x:A ∫ b : BjYAZ      υjÏ{o,–}      jÏ1..n

E ∫ a.lj := method(x:A)b end : A
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(Val New)
E ∫ c : Class(A)

E ∫ new c : A

(Val Root)
E ∫ Q

E ∫ root : Class(Object(X)[])

(Val Class Select)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A      E ∫ c : Class(A)      jÏ1..n

E ∫ c^lj(a) : BjYAZ

(Val Typecase)
E ∫ a : A’      E, x:A ∫ b1 : D      E ∫ b2 : D

E ∫ typecase a when (x:A)b1 else b2 end : D
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(Val Subclass)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n+m],  A’ 7 Object(X’)[liυi’:Bi’{X’} iÏ1..n],
                              Ovr⊆1..n)

E ∫ c’ : Class(A’)      E ∫ A <: A’
E ∫ Bi’YA’Z <: BiYAZ      ÓiÏ1..n–Ovr

E, x:A ∫ bi : BiYAZ      ÓiÏOvr∪n+1..n+m

E ∫ subclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr end : 
Class(A)
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• Legend

A subclass object type; A’ superclass object type; Ovr indices of overriden methods.

E ∫ A <: A’   The “class rule”:  
   “type generated by subclass <: type generated by superclass” 
   Allows “method specialiazation” li+:Bi <: li+:Bi’ for iÏOvr

E ∫ Bi’YA’Z <: BiYAZ   Toghether with A <: A’ requires type invariance for an inherited meth-
od. If this condition does not hold, the method must be overridden.

E, x:A ∫ bi : BiYAZ   Checking the bodies of overridden and additional method.
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Translation
• We give a translation into a functional calculus (with all the 

features described earlier). 

• A similar translation could be given into an appropriate 
imperative calculus.

• At the level of types, the translation is simple. 

~ We write äAã for the translation of A. 

~ We map an object type Object(X)[liυi:Bi iÏ1..n] to a recursive object 
type µ(X)[liυi:äBiã iÏ1..n]. 

~ We map a class type Class(Object(X)[liυi:Bi{X} iÏ1..n]) to an object 
type that contains components for pre-methods and a new component.
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Translation of Types

äXã   @   X

äTopã   @   Top

äObject(X)[liυi:Bi iÏ1..n]ã   @   µ(X)[liυi:äBiã iÏ1..n] 

äClass(A)ã   @   [new+:äAã, li
+:äAã→äBiãYäAãZ iÏ1..n]

where A 7 Object(X)[liυi:Bi{X} iÏ1..n]

Translation of O–1 types

äã   @   

äE, X<:Aã   @   äEã, X<:äAã

äE, x:Aã   @   äEã, x:äAã 

Translation of O–1 environments
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 Translation of Terms

• The translation is guided by the type structure. 

• The translation maps a class to a collection of pre-methods 
plus a new method. 

~ For a class subclass of c’ … end, the collection of pre-methods 
consists of the pre-methods of c’ that are not overridden, plus all the 
pre-methods given explicitly. 

~ The new method assembles the pre-methods into an object;  new c is 
interpreted as an invocation of the new method of äcã. 

~ The construct c^l(a) is interpreted as the extraction and the 
application of a pre-method.
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(Simplified) Translation of O–1 terms

äxã   @   x

äobject(x:A) li=bi iÏ1..n endã   @   [li=ς(x:äAã)äbiã iÏ1..n]

äa.lã   @   äaã.l

äa.l := bã   @   äaã.l:=äbã

äa.l := method(x:A) b endã   @   äaã.lfiüς(x:äAã)äbã



änew cã   @   äcã.new

ärootã   @   [new=[]]

äsubclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr endã   @
[new=ς(z:äClass(A)ã)[li=ς(s:äAã)z.li(s) iÏ1..n+m],
 li=äc’ã.li iÏ1..n–Ovr,
 li=λ(x:äAã)äbiã iÏOvr∪n+1..n+m]

äc^l(a)ã   @   äcã.l(äaã)

ätypecase a when (x:A)b1 else b2 endã   @   typecase äaã | (x:äAã)äb1ã | äb2ã
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Soundness

• If E ∫ J is valid in O–1, then äE ∫ Jã is valid in the object 
calculus.

• The object subtyping rule relies on the following rule for 
recursive types:

(Sub Rec’)
E ∫ µ(X)A{X}      E ∫ µ(Y)B{Y}      E, X<:µ(Y)B{Y} ∫ A{X} <: BYµ(Y)B{Y}Z

E ∫ µ(X)A{X} <: µ(Y)B{Y}

• The most interesting case is for subclass. We need to check:

äsubclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr endã  
: äClass(A)ã
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That is:

[new=ς(z:äClass(A)ã)[li=ς(s:äAã)z.li(s) iÏ1..n+m],
 li=äc’ã.li iÏ1..n–Ovr,
 li=λ(x:äAã)äbiã iÏOvr∪n+1..n+m]

: [new+:äAã, li
+:äAã→äBiãYäAãZ iÏ1..n]

~ new checks by computation.

~ iÏOvr∪n+1..n+m checks by one the (Val Subclass) hypotheses.

~ iÏ1..n–Ovr (inherited methods) checks as follows: 
äc’ã : äClass(A’)ã by hypothesis. Hence: 
äc’ã.li : äA’ã→äBi’ãYäA’ãZ. Moreover: 
äA’ã→äBi’ãYäA’ãZ <: äAã→äBiãYäAãZ directly from hypotheses. So: 
äc’ã.li : äAã→äBiãYäAãZ by subsumption.
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Usefulness of the Translation

• The translation validates the typing rules of O–1. That is, if E 
∫ J is valid in O–1, then äE ∫ Jã is valid in the object calculus.

• The translation served as an important guide in finding sound 
typing rules for O–1, and for “tweaking” them to make them 
both simpler and more general.

• In particular, typing rules for subclasses are so inherently 
complex that it is difficult to “guess” them correctly without 
the aid of some interpretation.

• Thus, we have succeeded in using object calculi as a platform 
for explaining a relatively rich object-oriented language and 
for validating its type rules.
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LECTURE 5

• Matching Issues.
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MATCHING

• The subtyping relation between object types is the foundation of subclassing and inheritance 
. . . when it holds.

• Subtyping fails to hold between certain types that arise naturally in object-oriented program-
ming. Typically, recursively defined object types with binary methods.

• F-bounded subtyping was invented to solve this kind of problem.

• A new programming construction, called “matching” has been proposed to solve the same 
problem, inspired by F-bounded subtyping.

• Matching achieves “covariant subtyping” for Self types. Contravariant subtyping still ap-
plies, otherwise.

• We argue that matching is a good idea, but that it should not be based on F-bounded subtyp-
ing. We show that a new interpretation of matching, based on higher-order subtyping, has 
better properties.
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When Subtyping Works
• A simple treatment of objects, classes, and inheritance is possible for covariant Self types 

(only).
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Object Types
• Consider two types Inc and IncDec containing an integer field and some methods:

Inc  @   µ(X)[n:Int, inc+:X]
IncDec  @   µ(Y)[n:Int, inc+:Y, dec+:Y]

• A typical object of type Inc is:

p : Inc   @
[n = 0,
 inc = ς(self: Inc) self.n := self.n +1]
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Subtyping
• Subtyping (<:) is a reflexive and transitive relation on types, with subsumption:

 if   a : A   and   A <: B   then   a : B

• For object types, we have the subtyping rule:

[vi:Bi iÏI, mj
+:Cj jÏJ]   <:   [vi:Bi iÏI’, mj

+:Cj’ jÏJ’]
if Cj <: Cj’ for all jÏJ’, with I’⊆I and J’⊆J

• For recursive types we have the subtyping rule:

µ(X)A{X} <: µ(Y)B{Y}
if X <: Y implies A{X} <: B{Y}

• Combining them, we obtain a derived rule for recursive object types: 

µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]   <:   µ(Y)[vi:Bi iÏI’, mj

+:Cj’{Y} jÏJ’] 
if X <: Y implies Cj{X} <: Cj’{Y} for all jÏJ’, with I’⊆I and J’⊆J

• By applying this derived rule to our example, we obtain:

IncDec <: Inc
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Pre-Methods
• The subtyping relation (e.g. IncDec <: Inc) plays an important role in inheritance. 

• Inheritance is obtained by reusing polymorphic code fragments.

pre-inc : Ó(X<:Inc)X→X   @
λ(X<:Inc) λ(self:X) self.n := self.n+1                       (using a “structural” rule)

• We call a code fragment such as pre-inc a pre-method. 

• N.B. it is not enough to have pre-inc : Inc→Inc if we want to inherit this pre-method in In-
cDec classes. Here polymorphism is essential.

• N.B. the body of pre-inc is typed by means of a structural rule for update, which is essential 
in many examples involving bounded quantification.

• We can specialize pre-inc to implement the method inc of type Inc or IncDec:

pre-inc(Inc) : Inc→Inc
pre-inc(IncDec) : IncDec→IncDec

• Thus, we have reused pre-inc at different types, without retypechecking its code.
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Classes
• Pre-method reuse can be systematized by collecting pre-methods into classes. 

• A class for an object type A can be described as a collection of pre-methods and initial field 
values, plus a way of generating new objects of type A. 

• In a class for an object type A, the pre-methods are parameterized over all subtypes of A, so 
that they can be reused (inherited) by any class for any subtype of A. 
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• Let A be a type of the form µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]. As part of a class for A, a pre-meth-

od for mj would have the type Ó(X<:A)X→Cj{X}. For example:

IncClass   @
[new+: Inc,
 n: Int,
 inc: Ó(X<:Inc)X→X]

N.B.:   inc: Inc→Inc 
would not allow inheritance

IncDecClass   @
[new+: IncDec,
 n: Int,
 inc: Ó(X<:IncDec)X→X,
 dec: Ó(X<:IncDec)X→X]

• A typical class of type IncClass reads:

incClass : IncClass   @
[new = ς(classSelf: IncClass) 

[n = classSelf.n, inc = ς(self:Inc) classSelf.inc(Inc)(self)]
 n = 0,
 inc = pre-inc]

The code for new is uniform: it assembles all the pre-methods into a new object. 
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Inheritance
• Inheritance is obtained by extracting a pre-method from a class and reusing it for constructing 

another class. 

For example, the pre-method pre-inc of type Ó(X<:Inc)X→X in a class for Inc could be re-
used as a pre-method of type Ó(X<:IncDec)X→X in a class for IncDec:

incDecClass : IncDecClass   @
[new = ς(classSelf: IncDecClass)[...],
 n = 0,
 inc = incClass.inc,
 dec = ...]

• This example of inheritance requires the subtyping:

Ó(X<:Inc)X→X   <:   Ó(X<:IncDec)X→X

which follows from the subtyping rules for quantified types and function types: 

Ó(X<:A)B <: Ó(X<:A’)B’ if A’<:A and if X<:A implies B<:B’
A→B <: A’→B’ if A’ <: A and B <: B’
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Inheritance from Subtyping
• In summary, inheritance from a class for Inc to a class for IncDec is enabled by the subtyping 

IncDec <: Inc. 

• Unfortunately, inheritance is possible and desirable even in situations where such subtypings 
do not exist. These situations arise with binary methods.
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Binary Methods
• Consider a recursive object type Max, with a field n and a binary method max. 

Max   @   µ(X)[n:Int, max+:X→X]

Consider also a type MinMax with an additional binary method min:

MinMax   @   µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

• Problem: 

MinMax E: Max 

according to the rules we have adopted, since :
Y <: X   öûú   Y→Y <: X→X     for max+

Moreover, it would be unsound to assume MinMax <: Max.

• Hence, the development of classes and inheritance developed for Inc and IncDec falters in 
presence of binary methods.
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Looking for a New Relation
• If subtyping doesn’t work, maybe some other relation between types will.

• A possible replacement for subtyping: matching. 



Matching Issues January 7, 1997 5:29 pm 149

Matching
• Recently, Bruce et al. proposed axiomatizing a relation between recursive object types, called 

matching. 

• We write A <# B to mean that A matches B; that is, that A is an “extended version” of B. We 
expect to have, for example:

IncDec <# Inc
MinMax <# Max

• In particular, we may write X <# A, where X is a variable. We may then quantify over all 
types that match a given one, as follows:

Ó(X<#A)B{X}

We call Ó(X<#A)B match-bounded quantification, and say that occurrences of X in B are 
match-bound. 

• For recursive object types we have:

µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]   <#   µ(X)[vi:Bi iÏI’, mj

+:Cj{X} jÏJ’]
   if   I’⊆I   and   J’⊆J
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• Using match-bounded quantification, we can rewrite the polymorphic function pre-inc in 
terms of matching rather than subtyping:

pre-inc : Ó(X<#Inc)X→X   @
λ(X<#Inc) λ(self:X) self.n := self.n+1

pre-inc(IncDec) : IncDec→IncDec

• Similarly, we can write a polymorphic version of the function pre-max:

pre-max : Ó(X<#Max)X→X→X   @
λ(X<#Max) λ(self:X) λ(other:X)

if self.n>other.n then self else other

pre-max(MinMax) : MinMax→MinMax→MinMax     (didn’t hold with <:)

• Thus, the use of match-bounded quantification enables us to express the polymorphism of 
both pre-max and pre-inc: contravariant and covariant occurrences of Self are treated uni-
formly.
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Matching and Subsumption
• A subsumption-like property does not hold for matching; A <# B is not quite as good as A <: 

B. (Fortunately, subsumption was not needed in the examples above.)

a : A   and   A <# B   need not imply   a : B

• Thus, matching cannot completely replace subtyping. For example, forget that IncDec <: Inc 
and try to get by with IncDec <# Inc. We could not typecheck:

inc : Inc→Inc   @
λ(x:Inc) x.n := x.n+1

λ(x:IncDec) inc(x)

We can circumvent this difficulty by turning inc into a polymorphic function of type 
Ó(X<#Inc)X→X, but this solution requires foresight, and is cumbersome:

pre-inc : Ó(X<#Inc)X→X   @
λ(X<#Inc) λ(x:X) x.n := x.n+1

λ(x:IncDec) pre-inc(IncDec)(x)
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Matching and Classes
• We can now revise our treatment of classes, adapting it for matching.

MaxClass   @
[new+: Max,
 n: Int,
 max: Ó(X<#Max)X→X→X]

MinMaxClass   @
[new+: MinMax,
 n: Int,
 max: Ó(X<#MinMax)X→X→X,
 min: Ó(X<#MinMax)X→X→X]

• A typical class of type MaxClass reads:

maxClass : MaxClass   @
[new = ς(classSelf: MaxClass) 

[n = classSelf.n,  max = ς(self:Max) classSelf.max(Max)(self)],
 n = 0,
 max = pre-max]
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Matching and Inheritance
• A typical (sub)class of type MinMaxClass reads:

minMaxClass : MinMaxClass   @
[new = ς(classSelf: MinMaxClass)[...],
 n = 0,
 max = maxClass.max,
 min = ...]

• The implementation of max is taken from maxClass, that is, it is inherited. The inheritance 
typechecks assuming that 

Ó(X<#Max)X→X→X   <:   Ó(X<#MinMax)X→X→X

• Thus, we are still using some subtyping and subsumption as a basis for inheritance.
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Advantages of Matching

Matching is attractive
• The fact that MinMax matches Max is reasonably intuitive.

• Matching handles contravariant Self and inheritance of binary methods.

• Matching is meant to be directly axiomatized as a relation between types.The typing rules of 
a programming language that includes matching can be explained directly. 

• Matching is simple from the programmer’s point of view, in comparison with more elaborate 
type-theoretic mechanisms that could be used in its place.

However...
• The notion of matching is ad hoc (e.g., is defined only for object types).

• We still have to figure out the exact typing rules and properties matching. 

• The rules for matching vary in subtle but fundamental ways in different languages.

• What principles will allow us to derive the “right” rules for matching?
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Matching as  
Higher-Order Subtyping
• A formalization of matching as higher-order subtyping.

• Inheritance of binary methods.
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Higher-Order Subtyping
• Subtyping can be extended to operators, in a pointwise manner:

F ': G if, for all X,   F(X) <: G(X)

• The property:

AOp ': BOp (AOp is a suboperator of BOp)

is seen as a statement that A extends B. 

MinMaxOp   7   λ(X) [n:Int, max+:X→X, min+: X→X]
':    λ(X) [n:Int, max+:X→X, min+: X→X]   7   MaxOp
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• We obtain:

MaxOp ': MaxOp

MinMaxOp (ÓX. [n:Int, max+:X→X, min+: X→X]
': MaxOp   <: [n:Int, max+:X→X])

We can parameterize over all type operators X with the property that X ': MaxOp. 

Ó(X':MaxOp)B{X}
We need to be careful about how X is used in B{X}, because X is now a type operator. 
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The idea is to take the fixpoint of X wherever necessary.
pre-max : Ó(X':MaxOp)X*→X*→X*   @

λ(X':MaxOp) λ(self:X*) λ(other:X*) 
if self.n>other.n then self else other

pre-max(MinMaxOp) : MinMax→MinMax→MinMax

This typechecks, e.g.:
X   =   X(X*)
X ': MaxOp   ⇒   X(X*) <: MaxOp(X*)
self : X*   ⇒   self : X(X*)   ⇒   self : MaxOp(X*)   ⇒   self.n : Int

(In this derivation we have used the unfolding property X*=X(X*), but we can do without it 
by introducing explicit fold/unfold terms.)
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The Higher-Order Interpretation
• The central idea of the interpretation is:

A <# B 1 AOp ': BOp

Ó(X<#A)B{X} 1 Ó(X':AOp)B{X*} (not quite)

We must be more careful about the B{X*} part, because X may occur both in type and oper-
ator contexts. 

• We handle this problem by two translations for the two kinds of contexts:

A <# B 1 OperÜAá ': OperÜBá
Ó(X<#A)B 1 Ó(X':OperÜAá)TypeÜBá
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• The two translations, TypeÜAá and OperÜAá, can be summarized as follows. 

For object types of the source language, we set:

OperÜXá   1 (assuming that X is match-bound)
X

OperÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á   1 

λ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

TypeÜXá   1 (when X is match-bound)
X*

TypeÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á   1 

µ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

For other types, we set:

TypeÜXá 1 X (when X is not match-bound)
TypeÜA→Bá 1 TypeÜAá→TypeÜBá
TypeÜÓ(X<#A)Bá 1 Ó(X':OperÜAá)TypeÜBá
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• For instance:

TypeÜÓ(X<#Max) Ó(Y<#X) X→Yá   1
Ó(X':MaxOp) Ó(Y':X) X*→Y*

This translation is well-defined on type variables, so there are no problems with cascading 
quantifiers.
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• A note about unfolding of recursive types:

~ The higher-order interpretation does not use the unfolding property of recursive types for 
the target language; instead, it uses explicit fold and unfold primitives. 

~ On the other hand, the higher-order interpretation is incompatible with the unfolding prop-
erty of recursive types in the source language, because OperÜµ(X)A{X}á and Op-
erÜA{µ(X)A{X}}á are in general different type operators. 

~ Technically, the unfolding property of recursive types is not an essential feature and it is 
the origin of complications; we are fortunate to be able to drop it throughout.
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Reflexivity and Transitivity
• Reflexivity is now satisfied by all object types, including variables; for every object type A, 

we have:

A <# A 1 OperÜAá ': OperÜAá

This follows from the reflexivity of ':.

• Similarly, transitivity is satisfied by all triples A,B, and C of object types, including variables:

A <# B   and   B <# C   imply   A <# C   1   
OperÜAá ': OperÜBá   and   OperÜBá ': OperÜCá   

imply   OperÜAá ': OperÜCá

This follows from the transitivity of ':.
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Matching Self
• With the higher-order interpretation, the relation:

A 7 µ(Self)[vi:Bi iÏI, mj
+:Cj{Self} jÏJ] 

<# µ(Self)[vi:Bi iÏI, mj
+:Cj’{Self} jÏJ’] 7 A’

holds when the type operators corresponding to A and A’ are in the subtyping relation, that 
is, when:

[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{Self}á jÏJ] 

<: [vi:TypeÜBiá iÏI, mj
+:TypeÜCj’{Self}á jÏJ’] for an arbitrary Self

For this, it suffices that, for every j in J’:

 TypeÜCj{Self}á   <:   TypeÜCj’{Self}á 

Since Self is µ-bound, all the occurrences of Self are translated as Self*. Then, an occurrence 
of Self* on the left can be matched only by a corresponding occurrence of Self* on the right, 
since Self is arbitrary. In short,:

Self matches only itself. 

This property makes it easy for programmers to glance at two object types and tell whether 
they match.



Matching Issues January 7, 1997 5:29 pm 165

Inheritance and Classes via Higher-Order Sub-
typing
• Applying our higher-order translation to MaxClass, we obtain:

MaxClass   @
[new+: Max,
 n: Int,
 max: Ó(X':MaxOp)X*→X*→X*]

The corresponding translation at the term level produces:

maxClass : MaxClass   @
[new = ς(classSelf: MaxClass) 

fold(
[n = classSelf.n, 
 max = ς(self:MaxOp(Max)) 

classSelf.max(MaxOp)(fold(self))]),
 n = 0,
 max = pre-max]
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It is possible to check that pre-max is well typed. 

The instantiations pre-max(MaxOp) and pre-max(MinMaxOp) are both legal. Since pre-max 
has type Ó(X':MaxOp)X*→X*→X*, this pre-method can be used as a component of a class 
of type MaxClass. 

Moreover, a higher-order version of the rule for quantifier subtyping yields:

Ó(X':MaxOp)X*→X*→X*   <:   Ó(X':MinMaxOp)X*→X*→X*

so pre-max has type Ó(X':MinMaxOp)X*→X*→X* by subsumption, and hence pre-max 
can be reused as a component of a class of type MinMaxClass.

pre-max : Ó(X':MaxOp)X*→X*→X*   @
λ(X':MaxOp) λ(self:X*) λ(other:X*) 

if unfold(self).n>unfold(other).n then self else other
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• Note. We expect following typings:

if X<#Inc and x:X then x.n : Int
if X<#Inc and x:X and b:Int then x.n:=b : X

The higher-order interpretation induces the following term translations:

if X':IncOp and x:X* then unfold(x).n : Int
if X':IncOp and x:X* and b:Int then fold(unfold(x).n:=b) : X*

For the first typing, we have unfold(x):X(X*). Moreover, from X':IncOp we obtain X(X*) 
<: IncOp(X*) = [n:Int, inc:X*]. Therefore, unfold(x):[n:Int, inc:X*], and unfold(x).n:Int.

For the second typing, we have again unfold(x):X(X*) with X(X*) <: [n:Int, inc:X*]. We 
then use a typing rule for field update in the target language. This rule says that if a:A, c:C, 
and A <: [v:C,...] then (a.v:=c) : A. In our case, we have unfold(x):X(X*), b:Int, and X(X*) 
<: [n:Int, inc:X*]. We obtain (unfold(x).n:=b) : X(X*). Finally, by folding, we obtain fold(un-
fold(x).n:=b) : X*. 
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Applications
• A language based on matching should be given a set of type rules based on the source type 

system.

• The rules can be proven sound by a judgment-preserving translation into an object-calculus 
with higher-order subtyping. 
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LECTURE 6

• A Language with Matching (28 slides).

• Translations Summary (4 slides).

• Conclusions (4 slides).
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A LANGUAGE WITH MATCHING

• Many features of O–3 are familiar: for example, object types, class types, and single inherit-
ance. 

• The main new feature is a matching relation, written <#. The matching relation is defined 
only between object types, and between variables bounded by object types.

• An object type A 7 Object(X)[…] matches another object type B 7 Object(X)[…] (written 
A <# B) when all the object components of B are literally present in A, including any occur-
rence of the common variable X. 

Object(X)[l:X→X, m:X] <# Object(X)[l:X→X] Yes
Object(X)[l:X→X, m:X] <: Object(X)[l:X→X] No

• Matching is the basis for inheritance in O–3. That is, if A <# B, then a method of a class for 
B may be inherited as a method of a class for A. 

• In particular, binary methods can be inherited. For example, a method l of a class for Ob-
ject(X)[l:X→X] can be inherited as a method of a class for Object(X)[l:X→X, m:X].
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• Matching does not support subsumption: when a has type A and A <# B, it is not sound in 
general to infer that a has type B. 

• With the loss of subsumption, it is often necessary to parameterize over all types that match 
a given type. For example, a function with type (Object(X)[l:X→X])→C may have to be re-
written, for flexibility, with type All(Y<#Object(X) -[l:X→X])Y→C, enabling the application 
to an object of type Object(X)[l:X→X, m:X].

• No subtype relation appears in the syntax of O–3, although subtyping is still used in its type 
rules. 

• We will have that if A and B are object types and A <: B, then A <# B. Moreover, if all occur-
rences of Self in B are covariant and A <# B, then A <: B.
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The Language O–3
Syntax of O–3

A,B ::=
X
Top
Object(X)[liυi:Bi{X} iÏ1..n] 
Class(A)
All(X<#A)B

types
type variable
maximum type
object type
class type
match-quantified type
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a,b,c ::=
x
object(x:X=A) li=bi{X,x} iÏ1..n end
a.l
a.l := method(x:X<#A) b end
new c
root
subclass of c:C with(x:X<#A) 

li=bi{X,x} iÏn+1..n+m 
override li=bi{X,x} iÏOvr⊆1..n end

c^l(A,a)
fun(X<#A) b end
b(A)

terms
variable
direct object construction
field/method selection
update
object construction from a class
root class
subclass

additional attributes
overridden attributes

class selection
match-polymorphic abstraction
match-polymorphic instantiation
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Convenient abbreviations

Root   @ 
Class(Object(X)[])

class with(x:X<#A) li=bi{X,x} iÏ1..n end   @ 
subclass of root:Root with(x:X<#A) li=bi{X,x} iÏ1..n override end

subclass of c:C with(x:X<#A) ... super.l ... end   @ 
subclass of c:C with(x:X<#A) ... c^l(X,x) ... end

object(x:X=A) ... l copied from c ... end   @ 
object(x:X=A) ... l=c^l(X,x) ... end

a.l := b   @ where X,xÌFV(b) and a:A, 
a.l := method(x:X<#A) b end with A clear from context
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Example: Points

Point   @   Object(X)[x: Int, eq+: X→Bool, mv+: Int→X]

CPoint    @    Object(X)[x: Int, c: Color, eq+: X→Bool, mv+: Int→X]

• These definitions freely use covariant and contravariant occurrences of Self types. The liberal 
treatment of Self types in O–3 yields CPoint <# Point. 

• In O–1, the same definitions of Point and CPoint are valid, but they are less satisfactory be-
cause CPoint <: Point fails; therefore the O–1 definitions adopt a different type for eq. 

• In O–2, contravariant occurrences of Self types are illegal; therefore the O–2 definitions have 
a different type for eq, too.
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• We define two classes pointClass and cPointClass that correspond to the types Point and 
CPoint, respectively:

pointClass : Class(Point)   @ 
class with (self: X<#Point) 

x = 0,
eq = fun(other: X) self.x = other.x end,
mv = fun(dx: Int) self.x := self.x+dx end

end

cPointClass : Class(CPoint)   @ 
subclass of pointClass: Class(Point) 
with (self: X<#CPoint) 

c = black
override

eq = fun(other: X) super.eq(other) and self.c = other.c end,
mv = fun(dx: Int) super.mv(dx).c := red end

end
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• The subclass cPointClass could have inherited both mv and eq. However, we chose to over-
ride both of these methods in order to adapt them to deal with colors. 

• In contrast with the corresponding programs in O–1 and O–2, no uses of typecase are required 
in this code. The use of typecase is not needed for accessing the color of a point after moving 
it. (Typecase is needed in O–1 but not in O–2.) Specifically, the overriding code for mv does 
not need a typecase on the result of super.mv(dx) in the definition of cPointClass. 

• Other code that moves color points does not need a typecase either:

cPoint : CPoint   @   new cPointClass

movedColor : Color   @   cPoint.mv(1).c

• Moreover, O–3 allows us to specialize the binary method eq as we have done in the definition 
of cPointClass (unlike O–2). This specialization does not require dynamic typing: we can 
write super.eq(other) without first doing a typecase on other. 

• Thus the treatment of points in O–3 circumvents the previous needs for dynamic typing. The 
price for this is the loss of the subtyping CPoint <: Point, and hence the loss of subsumption 
between CPoint and Point.
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Example: Binary Trees

Bin   @
Object(X)[isLeaf: Bool, lft: X, rht: X, consLft: X→X, consRht: X→X]

binClass : Class(Bin)   @
class with(self: X<#Bin)

isLeaf = true,
lft = self.lft,
rht = self.rht,
consLft = fun(lft: X) ((self.isLeaf := false).lft := lft). rht := self end,
consRht = fun(rht: X) ((self.isLeaf := false).lft := self ). rht := rht end

end

leaf : Bin   @
new binClass

• The definition of the object type Bin is the same one we could have given in O–1, but it would 
be illegal in O–2 because of the contravariant occurrences of X. 

• The method bodies rely on some new facts about typing; in particular, if self has type X and 
X<#Bin, then self.lft and self.isLeaf:=false have type X.
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• Let us consider now a type NatBin of binary trees with natural number components.
NatBin   @   

Object(X)[n: Nat, isLeaf: Bool, lft: X, rht: X, consLft: X→X, consRht: X→X]

• We have NatBin <# Bin, although NatBin </: Bin.

• If b has type Bin and nb has type NatBin, then b.consLft(b) and nb.consLft(nb) are allowed, 
but b.consLft(nb) and nb.consLft(b) are not. 

• The methods consLft and consRht can be used as binary operations on any pair of objects 
whose common type matches Bin. O–3 allows inheritance of consLft and consRht. A class for 
NatBin may inherit consLft and consRht from binClass.

• Because NatBin is not a subtype of Bin, generic operations must be explicitly parameterized 
over all types that match Bin. For example, we may write:

selfCons : All(X<#Bin)X→X   @   
fun(X<#Bin) fun(x: X) x.consLft(x) end end

selfCons(NatBin)(nb) : NatBin for nb : NatBin

• Explicit parameterization must be used systematically in order to guarantee future flexibility 
in usage, especially for object types that contain binary methods.
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Example: Cells
• In this version, the proper methods are indicated with variance annotations +; the contents and 

backup attributes are fields.

Cell   @ 
Object(X)[contents: Nat, get+: Nat, set+: Nat→X]

cellClass : Class(Cell)   @
class with(self: X<#Cell)

contents = 0,
get = self.contents,
set = fun(n: Nat) self.contents := n end

end



ReCell   @   
Object(X)[contents: Nat, get+: Nat, set+: Nat→X, backup: Nat, restore+: X]

reCellClass : Class(ReCell)   @
subclass of cellClass:Class(Cell)
with(self: X<#ReCell)

backup = 0,
restore = self.contents := self.backup

override 
set = fun(n: Nat) cellClass^set(X, self.backup := self.contents)(n) end

end
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• We can also write a version of ReCell that uses method update instead of a backup field:

ReCell’   @   
Object(X)[contents: Nat, get+: Nat, set+: Nat→X, restore: X]

reCellClass’ : Class(ReCell’)   @
subclass of cellClass:Class(Cell)
with(self: X<#ReCell’)

restore = self.contents := 0
override 

set = fun(n: Nat)
let m = self.contents 
in cellClass^set(X, 

self.restore := method(y: X) y.contents := m end)
(n)

end
end

end
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• We obtain ReCell <: Cell and ReCell’ <: Cell, because of the covariance of X and the positive 
variance annotations on the method types of Cell where X occurs. 

• On the other hand, we have also ReCell <# Cell and ReCell’ <# Cell, and this does not depend 
on the variance annotations.

• A generic doubling function for all types that match Cell can be written as follows:

double : All(X<#Cell) X→X   @
fun(X<#Cell) fun(x: X) x.set(2*x.get) end end
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Rules for O–3

E ∫ Q
E ∫ A
E ∫ A :: Obj

environment E is well formed
A is a well formed type in E
A is a well formed object type in E

E ∫ A <: B
E ∫ A <# B
E ∫ a : A

A is a subtype of B in E
A matches B in E
a has type A in E

Judgments

(Env ) (Env X<:) (Env X<#) (Env x)
E ∫ A      XÌdom(E) E ∫ A :: Obj      XÌdom(E) E ∫ A      xÌdom(E)

 ∫ Q E, X<:A ∫ Q E, X<#A ∫ Q E, x:A ∫ Q

Environments



(Type Obj) (Type X) (Type Top)
E ∫ A :: Obj E’, X<:A, E” ∫ Q E ∫ Q

E ∫ A E’, X<:A, E” ∫ X E ∫ Top

(Type Class) (where A 7 Object(X)[liυi:Bi iÏ1..n]) (Type All<#)
E, X<#A ∫ Bi      ÓiÏ1..n E, X<#A ∫ B

E ∫ Class(A) E ∫ All(X<#A)B
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Types

(Obj X) (Obj Object)    (li distinct, υiÏ{o,–,+})
E’, X<#A, E” ∫ Q E, X<:Top ∫ Bi      ÓiÏ1..n

E’, X<#A, E” ∫ X :: Obj E ∫ Object(X)[liυi:Bi iÏ1..n] :: Obj

Object Types

• The judgments for types and object types are connected by the (Type Obj) rule.



(Sub Refl) (Sub Trans) (Sub X) (Sub Top)
E ∫ A E ∫ A<:B      E ∫ B<:C E’, X<:A, E” ∫ Q E ∫ A

E ∫ A<:A E ∫ A<:C E’, X<:A, E” ∫ X<:A E ∫ A<:Top

(Sub Object)
E ∫ Object(X)[liυi:Bi iÏ1..n+m]      E ∫Object(Y)[liυi’:Bi’ iÏ1..n]

E, Y<:Top, X<:Y ∫ υiBi <: υi’ Bi’      Ó iÏ1..n      E, X<:Top ∫ Bi      Ó iÏn+1..m

E ∫ Object(X)[liυi:Bi iÏ1..n+m] <: Object(Y)[liυi’:Bi’ iÏ1..n]

(Sub All<#)
E ∫ A’ <# A       E, X<#A’ ∫ B <: B’

E ∫ All(X<#A)B <: All(X<#A’)B’
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Subtyping



(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E ∫ B E ∫ B <: 

B’      υÏ{o,+}
E ∫ B’ <: B      υÏ{o,–

}

E ∫ o B <: o B E ∫ υ B <: + B’ E ∫ υ B <: – B’
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(Match Refl) (Match Trans) (Match X)
E ∫ A :: Obj E ∫ A<#B      E ∫ B<#C E’, X<#A, E” ∫ Q

E ∫ A<#A E ∫ A<#C E’, X<#A, E” ∫ X<#A

(Match Object)    (li distinct)
E, X<:Top ∫ υiBi <: υi’ Bi’      Ó iÏ1..n      E, X<:Top ∫ Bi      Ó iÏn+1..m

E ∫ Object(X)[liυi:Bi iÏ1..n+m] <# Object(X)[liυi’:Bi’ iÏ1..n]
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Matching



(Val Subsumption) (Val x)
E ∫ a : A      E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x : A

(Val Object)    (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E, x:A ∫ biYAZ : BiYAZ      ÓiÏ1..n

E ∫ object(x:X=A) li=bi{X} iÏ1..n end : A

(Val Select)    (where A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A’      E ∫ A’ <# A      υjÏ{o,+}      jÏ1..n

E ∫ a.lj : BjYA’Z

(Val Method Update)    (where A 7 Object(X)[liυi:Bi iÏ1..n])
E ∫ a : A’      E ∫ A’ <# A      E, X<#A’, x:X ∫ b : Bj      υjÏ{o,–}      jÏ1..n

E ∫ a.lj := method(x:X<#A’)b end : A’
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Terms



(Val New)
E ∫ c : Class(A)

E ∫ new c : A

(Val Root)
E ∫ Q

E ∫ root : Class(Object(X)[])

(Val Subclass)   (where A 7 Object(X)[liυi:Bi iÏ1..n+m], A’ 7 Object(X’)[liυi’:Bi’ iÏ1..n], Ovr⊆1..n)
E ∫ Class(A)      E ∫ c’ : Class(A’)      E ∫ A<#A’

E, X<#A ∫ Bi’ <: Bi      ÓiÏ1..n–Ovr
E, X<#A, x:X ∫ bi : Bi      ÓiÏOvr∪n+1..n+m

E ∫ subclass of c’:Class(A’) with(x:X<#A) li=bi iÏn+1..n+m override li=bi iÏOvr end
: Class(A)

(Val Class Select)    (where  A 7 Object(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A’      E ∫ A’ <# A      E ∫ c : Class(A)      jÏ1..n

E ∫ c^lj(A’,a) : BjYA’Z

A Language with Matching September 13, 1996 6:53 am 190



(Val Fun<#) (Val Appl<#)
E, X<#A ∫ b : B E ∫ b : All(X<#A)B{X}      E ∫ A’ <# A

E ∫ fun(X<#A) b end : All(X<#A)B E ∫ b(A’) : BYA’Z

A Language with Matching September 13, 1996 6:53 am 191



A Language with Matching September 13, 1996 6:53 am 192

Translation of O–3 (Sketch)
Syntax of Obω<:µ

K,L ::=
Ty
K⇒L

kinds
types
operators from K to L

A,B ::=
X
Top
[liυi:Bi iÏ1..n]
Ó(X<:A::K)B
µ(X)A
λ(X::K)B
B(A)

constructors
constructor variable
the biggest constructor at kind Ty
object type (li distinct, υiÏ{o,–,+})
bounded universal type
recursive type
operator
operator application
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a,b ::=
x
[l=ς(xi:Ai)bi iÏ1..n]
a.l
a.lfiüς(x:A)b
λ(X<:A::K)b
b(A)
fold(A,a)
unfold(a)

terms
variable
object formation (li distinct)
method invocation
method update
constructor abstraction
constructor application
recursive fold
recursive unfold
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• The symbol 5 means “informally translates to”, with 5Ty for translations that yield types, and 
5Op for translations that yield operators. 

• We represent the translation of a term a by a, the type translation of a type A by A, and its 
operator translation by A. 

• We say that a variable X is subtype-bound when it is introduced as X<:A for some A; we say 
that X is match-bound when it is introduced as X<#A for some A. 

X   5Op   X (where X is match-bound in the environment)

Object(X)[liυi:Bi iÏ1..n]   5Op   λ(X)[liυi:Bi iÏ1..n] 

Translation summary

X   5Ty   X (when X is subtype-bound in the environment)

X   5Ty   X* (when X is match-bound in the environment)

Top   5Ty   Top

Object(X)[liυi:Bi iÏ1..n]   5Ty   (λ(X)[liυi:Bi iÏ1..n])*
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Class(A)   5Ty   [new+:A, li+:Ó(X':A)X*→Bi iÏ1..n]
where A 7 Object(X)[liυi:Bi iÏ1..n]

All(X<#A)B   5Ty   Ó(X':A)B

x   5   x

object(x:A) li=bi{x} iÏ1..n end   5   fold(A,[li=ς(x:A(A))biYfold(A,x)Z iÏ1..n])

a.lj   5   unfold(a).lj

a.lj := method(x:A’)b{x} end   5  
fold(A’,unfold(a).ljfiüς(x:A’(A’))bY fold(A’,x)Z)

new c   5   c.new

root   5   [new=ς(z:[new+:µ(X)[]])fold(µ(X)[],[])]

subclass of c’:C’ with(x:X<#A) li=bi iÏn+1..n+m override li=bi iÏOvr end   5
[new=ς(z:C)fold(A,[li=ς(s:A(A))z.li(A)( fold(A,s)) iÏ1..n+m])
 li=ς(z:C) c’.li iÏ1..n–Ovr,
 li=ς(z:C)λ(X':A)λ(x:X*)bi iÏOvr∪n+1..n+m]
where C 7 Class(A)

c^lj(A’,a)   5   c.lj(A’)(a)
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fun(X<#A)b end   5   λ(X':A)b

b(A’)   5   b(A’)
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Summary
• There are situations in programming where one would like to parameterize over all “exten-

sions” of a recursive object type, rather than over all its subtypes.

• Both F-bounded subtyping and higher-order subtyping can be used in explaining the match-
ing relation. 

We have presented two interpretations of matching:

A <# B 1 A <: BOp(A) (F-bounded interpretation)

A <# B 1 AOp ': BOp (higher-order interpretation)

• Both interpretations can be soundly adopted, but they require different assumptions and yield 
different rules. The higher-order interpretation validates reflexivity and transitivity.

Technically, the higher-order interpretation need not assume the equality of recursive types 
up to unfolding (which seems to be necessary for the F-bounded interpretation). This leads to 
a simpler underlying theory, especially at higher order.
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• Thus, we believe that the higher-order interpretation is preferable; it should be a guiding prin-
ciple for programming languages that attempt to capture the notion of type extension.

• Matching achieves “covariant subtyping” for Self types and inheritance of binary methods at 
the cost not validating subsumption.

• Subtyping is still useful when subsumption is needed. Moreover, matching is best understood 
as higher-order subtyping. Therefore, subtyping is still needed as a fundamental concept, 
even though the syntax of a programming language may rely only on matching.
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TRANSLATIONS

• In order to give insight into type rules for object-oriented 
languages, translations must be judgment-preserving (in 
particular, type and subtype preserving).

• Translating object-oriented languages directly to typed λ-
calculi is just too hard. Object calculi provide a good stepping 
stone in this process, or an alternative endpoint.

• Translating object calculi into λ-calculi means, intuitively, 
“programming in object-oriented style within a procedural 
language”. This is the hard part.
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Untyped Translations
• Give insights into the nature of object-oriented computation.

• Objects = records of functions.

o-o language

λ-calculusς-calculus

= easy translation
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Type-Preserving Translations
• Give insights into the nature of object-oriented typing and 

subsumption/coercion.

• Object types = recursive records-of-functions types. 

[li:Bi 
iÏ1..n]    @   µ(X)Üli:X→Bi 

iÏ1..ná

typed

λ-calculusς-calculus

= useful for semantic purposes,
impractical for programming,
loses the “oo-flavor”

o-o language

typed typed

without <:
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Subtype-Preserving Translations
• Give insights into the nature of subtyping for objects.

• Object types = recursive bounded existential types (!!).

o-o language

λ-calculusς-calculus

= very difficult to obtain,
impossible to use

typed

typed typed

with <:

 in actual programming 

[li:Bi 
iÏ1..n]   @   µ(Y)Ô(X<:Y)Ür:X, li

sel:X→Bi 
iÏ1..n, li

upd:(X→Bi)→X iÏ1..ná
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CONCLUSIONS

• Foundations

~ Subtype-preserving translations of object calculi into λ-calculi are 
hard.

~ In contrast, subtype-preserving translations of λ-calculi into object-
calculi can be easily obtained.

~ In this sense, object calculi are a more convenient foundation for 
object-oriented programming than λ-calculi.
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• Language design

~ Object calculi are a good basis for designing rich object-oriented type 
systems (including polymorphism, Self types, etc.).

~ Object-oriented languages can be shown sound by fairly direct transla-
tions into object calculi. 
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• Potential future areas

~ Typed ς-calculi should be a good simple foundation for studying 
object-oriented specification and verification. 

~ They should also give us a formal platform for studying object-
oriented concurrent languages (as opposed to “ordinary” concurrent 
languages).
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Outline
• The type rules necessary for “sufficiently polymorphic” update operations on records and ob-

jects are based on unusual operational assumptions.

• These update rules are sound operationally, but not denotationally (in standard models). They 
arise naturally in type systems for programming, and are not easily avoidable.

• Thus, we have a situation where operational semantics is clearly more advantageous than de-
notational semantics.

• However (to please the semanticists) I will show how these operationally-based type systems 
can be translated into type systems that are denotationally sound.
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The polymorphic update problem
L.Cardelli, P.Wegner

“The need for bounded quantification arises very frequently in object-oriented programming. 
Suppose we have the following types and functions:

type Point = [x: Int, y: Int]
value moveX0 = λ(p: Point, dx: Int) p.x := p.x + dx; p
value moveX = λ(P <: Point) λ(p: P, dx: Int) p.x := p.x + dx; p

It is typical in (type-free) object-oriented programming to reuse functions like moveX on ob-
jects whose type was not known when moveX was defined. If we now define:

type Tile = [x: Int, y: Int, hor: Int, ver: Int]

we may want to use moveX to move tiles, not just points.”

Tile <: Point

moveX0([x=0, y=0, hor=1, ver=1], 1).hor fails

moveX(Tile)([x=0, y=0, hor=1, ver=1], 1).hor succeeds
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• In that paper, bounded quantification was justified as a way of handling polymorphic update, 
and was used in the context of imperative update.

• The examples were inspired by object-oriented applications. Object-oriented languages com-
bine subtyping and polymorphism with state encapsulation, and hence with imperative up-
date. Some form of polymorphic update is inevitable.

• Simplifying the situation a bit, let’s consider the equivalent example in a functional setting. 
We might hope to achieve the following typing:

bump   @   λ(P <: Point) λ(p: P) p.x := p.x + 1

bump   :   Ó(P <: Point) P→P

But ...
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There is no bump there!

Neither semantically
J.Mitchell

In standard models, the type Ó(P<:Point)P→P contains only the identity function.

Consider {p} for any pÏPoint. If f : Ó(P<:Point)P→P, then f({p}) : {p}→{p}, therefore f
must map every point to itself, and must be the identity.

Nor parametrically
M.Abadi, L.Cardelli, G.Plotkin

By parametricity (for bounded quantifiers), we can show that if f : Ó(P<:Point)P→P, then 
Ó(P<:Point) Ó(x:P) f(P)(x) =P x. Thus f is an identity.

Nor by standard typing rules
As shown next ...
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The simple rule for update

(Val Simple Update)
E ∫ a : [li:Bi iÏ1..n]      E ∫ b : 

Bj      jÏ1..n

E ∫ a.lj:=b : [li:Bi iÏ1..n]

• According to this rule, bump does not typecheck as desired:

bump   @   λ(P <: Point) λ(p: P) p.x := p.x + 1

We must go from p:P to p:Point by subsumption before we can apply the rule. Therefore we 
obtain only:

bump : Ó(P <: Point) P→Point
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The “structural” rule for update

(Val Structural Update)
E ∫ a : A      E ∫ A <: [li:Bi iÏ1..n]      E ∫ b : Bj      jÏ1..n

E ∫ a.lj:=b : A

• According to this rule, bump typechecks as desired, using the special case where A is a type 
variable.

bump   @   λ(P <: Point) λ(p: P) p.x := p.x + 1

bump : Ó(P <: Point) P→P

• Therefore, (Val Structural Update) is not sound in most semantic models, because it popu-
lates the type Ó(P<:Point)P→P with a non-identity function.

• However, (Val Structural Update) is in practice highly desirable, so the interesting question 
is under which conditions it is sound.
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Can’t allow too many subtypes
• Suppose we had:

BoundedPoint   @   {x: 0..9, y: 0..9}
BoundedPoint <: Point

then:

bump(BoundedPoint)({x=9, y=9}) : BoundedPoint

unsound!

• To recover from this problem, the subtyping rule for records/objects must forbid certain sub-
typings: 

(Sub Object)
E ∫ Bi      ÓiÏ1..m

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

• Therefore, for soundness, the rule for structural updates makes implicit assumptions about 
the subtype relationships that may exist.
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Relevant rules for structural update

(Sub Object) (Val Subsumption)
E ∫ Bi      ÓiÏ1..m E ∫ a : A      E ∫ A <: B

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n] E ∫ a : B

(Val Object) (Val Structural Update)
E ∫ bi : Bi      ÓiÏ1..n E ∫ a : A      E ∫ A <: [li:Bi iÏ1..n]      E ∫ b : Bj      jÏ1..n

E ∫ [li=bi iÏ1..n] : [li:Bi iÏ1..n] E ∫ a.lj:=b : A

(Red Update)
∫ a Òñ [li=vi iÏ1..n]      ∫ b Òñ v      jÏ1..n

∫ a.lj:=b Òñ [lj=v, li=vi iÏ1..n–{j}]
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The structural subtyping lemmas
Lemma  (Structural subtyping)

If E ∫ [li:Bi iÏI]<:C then either C 7 Top, or C 7 [li:Bi iÏJ] with J⊆I.
If E ∫ C<:[li:Bi iÏJ] then either C 7 [li:Bi iÏI] with J⊆I,
   or C 7 X1 and E contains a chain X1 <: ... <: Xp <: [li:Bi iÏI] with J⊆I.

Proof   

By induction on the derivations of E ∫ [li:Bi iÏI]<:C and E ∫ C<:[li:Bi iÏI].
M
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Soundness by subject reduction
Theorem  (Subject reduction)

If    ∫ a : A   and   ∫ a Òñ v   then    ∫ v : A.

Proof   By induction on the derivation of ∫ a Òñ v.

Case (Red Update)  
∫ c Òñ [li=zi iÏ1..n]      ∫ b Òñ w      jÏ1..n

∫ c.lj:=b Òñ [lj=w, li=zi iÏ1..n–{j}]

By hypothesis  ∫ c.lj:=b : A. This must have come from (1) an application of (Val Struc-
tural Update) with assumptions  ∫ c : C, and  ∫ C <: D where D 7 [lj:Bj, ...], and  ∫ b : 
Bj, and with conclusion  ∫ c.lj:=b : C, followed by (2) a number of subsumption steps im-
plying  ∫ C <: A by transitivity.
By induction hypothesis, since  ∫ c : C and ∫ c Òñ z 7 [li=zi iÏ1..n], we have  ∫ z : C.
By induction hypothesis, since  ∫ b : Bj and ∫ b Òñ w, we have  ∫ w : Bj.
Now,  ∫ z : C must have come from (1) an application of (Val Object) with assumptions 
 ∫ zi : Bi’ and C’ 7 [li’:Bi’ iÏ1..n], and with conclusion  ∫ z : C’, followed by (2) a number 
of subsumption steps implying  ∫ C’ <: C by transitivity. By transitivity,  ∫ C’ <: D. 
Hence by the Structural Subtyping Lemma, we must have Bj 7 Bj’. Thus  ∫ w : Bj’. Then, 
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by (Val Object), we obtain  ∫ [lj=w, li=zi iÏ1..n–{j}] : C’. Since  ∫ C’<:A by transitivity, we 
have  ∫ [lj=w, li=zi iÏ1..n–{j}] : A by subsumption.
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Other structural rules
• Rules based on structural assumptions (structural rules, for short) are not restricted to record/

object update. They also arise in:

~ method invocation with Self types, 

~ object cloning, 

~ class encodings,

~ unfolding recursive types. 

• The following is one of the simplest examples of the phenomenon (although not very useful 
in itself):



Operationally Sound Update July 15, 1997 12:48 am 220

A structural rule for product types
M.Abadi

• The following rule for pairing enables us to mix two pairs a and b of type C into a new pair 
of the same type. The only assumption on C is that it is a subtype of a product type B1×B2. 

E ∫ C <: B1×B2      E ∫ a : C      E ∫ b : C

E ∫ Ü fst(a),snd(b)á : C

The soundness of this rule depends on the property that every subtype of a product type B1×B2

is itself a product type C1×C2. 

• This property is true operationally for particular systems, but fails in any semantic model 
where subtyping is interpreted as the subset relation. Such a model would allow the set {a,b} 
as a subtype of B1×B2 whenever a and b are elements of B1×B2. If a and b are different, then 
Ü fst(a),snd(b)á is not an element of {a,b}. Note that {a,b} is not a product type.
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A structural rule for recursive types
M.Abadi, L.Cardelli, R.Viswanathan

• In the paper “An Interpretation of Objects and Object types” we give a translation of object 
types into ordinary types:

[li:Bi iÏ1..n]   @   
µ(Y) Ô(X<:Y) Ür:X, lisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

this works fine for non-structural rules.

• In order to validate a structural update rule in the source calculus, we need a structural update 
rule in the target calculus. It turns out that the necessary rule is the following, which is oper-
ationally sound:

E ∫ C <: µ(X)B{X}      E ∫ a : C

E ∫ unfold(a) : BYCZ
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A structural rule for method invocation
• In the context of object types with Self types:

(Val Select)
E ∫ a : A      E ∫ A <: Obj(X)[li:Bi{X} iÏ1..n]      jÏ1..n

E ∫ a.lj : BjYAZ

This structural rule is necessary to “encapsulate” structural update inside methods:

A   @   Obj(X)[n: Int, bump: X]

λ(Y <: A) λ(y: Y) y.bump
:   Ó(Y <: A) Y→Y
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Structural rules and class encodings
Types of the form Ó(X<:A)X→B{X} are needed also for defining classes as collections of pre-
methods. Each pre-method must work for all possible subclasses, parametrically in self, so that 
it can be inherited.

A   @  Obj(X)[li:Bi{X} iÏ1..n]

Class(A)   @   [new: A, li: Ó(X<:A)X→Bi{X} iÏ1..n]

Bump   @  Obj(X)[n: Int, bump: X]

Class(Bump)   @   [new: Bump, bump: Ó(X<:Bump)X→X]

c : Class(Bump)   @   
[new = ς(c: Class(Bump)) [n = 0, bump = ς(s: Bump) c.bump(Bump)(s)], 
 bump = λ(X<:Bump) λ(x:X) x.n:=x.n+1}]
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A structural rule for cloning
• In the context of imperative object calculi:

(Val Clone)
E ∫ a : A      E ∫ A <: [li:Bi iÏ1..n]      jÏ1..n

E ∫ clone(a) : A

This structural rule is necessary for bumping and returning a clone instead of the original ob-
ject:

bump   @   λ(P <: Point) λ(p: P) clone(p).x := p.x + 1

bump : Ó(P <: Point) P→P



Operationally Sound Update July 15, 1997 12:48 am 225

Comments
• Structural rules are quite satisfactory. The operational semantics is the right one, the typing 

rules are the right ones for writing useful programs, and the rules are sound for the semantics. 

• We do not have a denotational semantics (yet?). (The paper “Operations on Records” by 
L.Cardelli and J.Mitchell contains a limited model for structural update; no general models 
seems to be known.)

• Even without a denotational semantcs, there is an operational semantics from which one 
could, hopefully, derive a theory of typed equality. 

• Still, I would like to understand in what way a type like Ó(X<:Point)X→X does not mean 
what most people in this room might think.

• Insight may come from translating a calculus with structural rules, into one without structural 
rules for which we have a standard semantics.
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Translating away structural rules
• The “Penn translation” can be used to map F<: into F by threading coercion functions.

• Similarly, we can map an F<:-like calculus with structural rules into a normal F<:-like calculus 
by threading update functions (c.f. M.Hofmann and B.Pierce: Positive <:).

• Example :

f : Ó(X <: [l: Int]) X → X   @
λ(X <: [l: Int]) λ(x: X) x.l := 3

 f ([l: Int])

 (N.B. the update x.l:=3 uses the structural rule)

translates to:
f : Ó(X <: [l: Int]) [l: X→Int→X] → X → X  @

λ(X <: [l: Int]) λ(πX: [l: X→Int→X ]) λ(x: X) πX.l(x)(3)

f ([l: Int]) ([l = λ(x: [l: Int]) λ(y: Int) x.l := y])

 (N.B. the update x.l:=y uses the non-structural rule)

• Next I discuss a simplified, somewhat ad-hoc, calculus to formalize the main ideas for this 
translation.



A,B   ::=
X
[li:Bi iÏ1..n]
A→B
Ó(X<:[li:Bi iÏ1..n])B

types
type variable
object type (li distinct)
function types
bounded universal type

a,b ::=
x
[li=ς(xi:Ai)bi iÏ1..n]
a.l
a.lfiüς(x:A)b
λ(x:A)b
b(a)
λ(X<:[li:Bi iÏ1..n])b
b(A)

terms
variable
object (li distinct)
method invocation
method update
function
application
polymorphic function
polymorphic instantiation
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Syntax

• We consider method update instead of field update (aA.l:=b  @  a.lfiüς(x:A)b).

• We do not consider object types with Self types.

• We do not consider arbitrary bounds for type variables, only object-type bounds.
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Environments

(Env ) (Env x) (Env X<:)    (where  A 7 [li:Bi iÏ1..n])
E ∫ A      xÌdom(E) E ∫ A      XÌdom(E)

 ∫ Q E, x:A ∫ Q E, X<:A ∫ Q

(Type X<:) (Type Object)    (li distinct)
E’, X<:A, E” ∫ Q E ∫ Bi      ÓiÏ1..n

E’, X<:A, E” ∫ X E ∫ [li:Bi iÏ1..n]

(Type Arrow)    (Type All<:)
E ∫ A      E ∫ B E, X<:A ∫ B

E ∫ A→B E ∫ Ó(X<:A)B

Types
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Subtyping

(Sub Refl) (Sub Trans)
E ∫ A E ∫ A <: B      E ∫ B <: C

E ∫ A <: A E ∫ A <: C

(Sub X) (Sub Object)    (li distinct)
E’, X<:A,E” ∫ Q E ∫ Bi      ÓiÏ1..n+m

E’, X<:A, E” ∫ X<:A E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Sub Arrow) (Sub All)
E ∫ A’ <: A      E ∫ B <: B’ E ∫ A’ <: A      E, X<:A’ ∫ B <: B’

E ∫ A→B <: A’→B’ E ∫ Ó(X<:A)B <: Ó(X<:A’)B’



(Val Subsumption) (Val x)
E ∫ a : A      E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x:A

(Val Object)    (where  A 7 [li:Bi iÏ1..n]) (Val Select)
E, xi:A ∫ bi : Bi      ÓiÏ1..n E ∫ a : [li:Bi iÏ1..n]      jÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A E ∫ a.lj : Bj

(Val Update Obj)  (where  A 7 [li:Bi iÏ1..n]) (Val Update X)  (where  A 7 [li:Bi iÏ1..n])
E ∫ a : A      E, x:A ∫ b : Bj      jÏ1..n E ∫ a : X      E ∫ X<:A      E, x:X ∫ b : Bj      jÏ1..n

E ∫ a.ljfiüς(x:A)b : A E ∫ a.ljfiüς(x:X)b : X

(Val Fun) (Val Appl)
E, x:A ∫ b : B E ∫ b : A→B      E ∫ a : A

E ∫ λ(x:A)b : A→B E ∫ b(a) : B

(Val Fun2<:) (Val Appl2<:)  (where  A’ 7 [li:Bi iÏ1..n] or A’ 7 Y)
E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X}      E ∫ A’<:A

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : BYA’Z
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Typing
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• The source system for the translation is the one given above. The target system is the one giv-
en above minus the (Val Update X) rule.

• Derivations in the source system can be translated to derivations that do not use (Val Update 
X). The following tables give a slightly informal summary of the translation on derivations.

äã   @    

äE, x:Aã   @  äEã, x:äAã

äE, X<:[li:Bi iÏ1..n]ã   @   äEã, X<:ä[li:Bi iÏ1..n]ã, πX:[li:X→(X→äBiã)→X iÏ1..n]

Translation of Environments

where each li: X→(X→äBiã)→X is an updator that takes an object of type X, takes a pre-method 
for X (of type X→äBiã), updates the i-th method of the object, and returns the modified object 
of type X.



äXã   @   X

ä[li:Bi iÏ1..n]ã   @   [li:äBiã iÏ1..n] 

äA→Bã   @   äAã→äBã

äÓ(X<:[li:Bi iÏ1..n])Bã   @   Ó(X<:ä[li:Bi iÏ1..n]ã)[li:X→(X→äBiã)→X iÏ1..n]→äBã
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Translation of Types

• N.B. the translation preserves subtyping. In particular:

äÓ(X<:[li:Bi iÏ1..n])Bã  <:   äÓ(X<:[li:Bi iÏ1..n+m])Bã

since:

Ó(X<:ä[li:Bi iÏ1..n]ã) [li:X→(X→äBiã)→X iÏ1..n]→äBã   <:

Ó(X<:ä[li:Bi iÏ1..n+m]ã) [li:X→(X→äBiã)→X iÏ1..n+m]→äBã

• We have a calculus with polymorphic update where quantifier and arrow types are contravar-
iant on the left (c.f. Positive Subtyping).



äxã   @   x

ä[li=(xi:Ai)bi iÏ1..n]ã   @   [li=ς(xi:äAiã)äbiã iÏ1..n]

äa.ljã   @   äaã.lj
äa.lfiüς(x:A)bã   @   äaã.lfiü(x:äAã)äbã) for (Val Update Obj)

äa.lfiüς(x:X)bã   @   πX.l(äaã)(λ(x:X)äbã) for (Val Update X)

äλ(x:A)bã   @   λ(x:äAã)äbã

äb(a)ã   @   äbã(äaã)

äλ(X<:[li:Bi iÏ1..n])bã   @   
λ(X<:ä[li:Bi iÏ1..n]ã) λ(πX:[li:X→(X→äBiã)→X iÏ1..n]) äbã

äb(A)ã   @   for A = [li:Bi iÏ1..n]
äbã(äAã) ([li = λ(xi:äAã) λ(f:äAã→äBiã) x.lifiüς(z:äAã)f(z) iÏ1..n])

äb(Y)ã   @   äbã(Y)(πY)
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Translation of Terms
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Conclusions
• Structural rules for polymorphic update are sound for operational semantics. They work 

equally well for functional and imperative semantics.

• Structural rules can be translated into non structural rules. I have shown a translation for a 
restricted form of quantification.

• Theories of equality for systems with structural rules have not been studied directly yet. Sim-
ilarly, theories of equality induced by the translation have not been studied.
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EXTRA SLIDES
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Unsoundness of Naive Object Subtyping with 
Binary Methods

Max   @   µ(X)[n:Int, max+:X→X]
MinMax   @   µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

Consider:

m : Max   @   [n = 0, max = ... ]
mm : MinMax @   

[n = 0, min = ... ,
 max = ς(s:MinMax) λ(o:MinMax)

if o.min(o).n > s.n then o else s]

Assume MinMax <: Max, then: 

mm : Max (by subsumption)
mm.max(m) : Max

But (Eiffel, O2, ...):

mm.max(m)   Òñ   if m.min(m).n > mm.n then m else mm   Òñ   CRASH!
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Unsoundness of Covariant Object Types
With record types, it is unsound to admit covariant subtyping of record components in presence 
of imperative field update. With object types, the essence of that couterexample can be repro-
duced even in a purely functional setting. 

 
U   @    [] The unit object type.
L   @   [l:U] An object type with just l.
L <: U

P   @   [x:U, f:U]
Q   @   [x:L, f:U]
Assume  Q <: P        by an (erroneous) covariant rule for object subtyping

q : Q   @   [x = [l=[]], f = ς(s:Q) s.x.l]
then q : P by subsumption with Q <: P
hence q.x:=[] : P    that is [x = [], f = ς(s:Q) s.x.l] : P

But (q.x:=[]).f fails!
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Unsoundness of Method Extraction
It is unsound to have an operation that extracts a method as a function.

(Val Extract)    (where  A 7 [li:Bi iÏ1..n])
E ∫ a : A      jÏ1..n

E ∫ a†lj : A→Bj

(Eval Extract)    (where  A 7 [li:Bi iÏ1..n],  a 7 [li=ς(xi:A’)bi iÏ1..n+m])
E ∫ a : A     jÏ1..n

E ∫ a†lj  ↔  λ(xj:A)bj : A→Bj

P   @   [f:[]]
Q   @   [f:[], y:[]] Q <: P

p : P   @   [f=[]]
q : Q   @   [f=ς(s:Q)s.y, y=[]]
then q : P by subsumption with Q <: P
hence q†f : P→[]          that is λ(s:Q)s.y : P→[]

But q.f(p)  fails!
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Unsoundness of a Naive 
Recursive Subtyping Rule

Assume:

A   7   µ(X)X→Nat   <:   µ(X)X→Int   7   B

Let:                                                                                                        Type-erased:

f : Nat →Nat (given)
a : A = fold(A, λ(x:A) 3)  = λ(x) 3
b : B = fold(B, λ(x:B) –3)  = λ(x) –3

c : A = fold(A, λ(x:A) f(unfold(x)(a)))  = λ(x) f(x(a))

By subsumption:

c : B

Hence:

unfold(c)(b) : Int Well-typed!  = c(b)

But:

unfold(c)(b) = f(–3) Error!
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MATCHING AS  
F-BOUNDED SUBTYPING

• An attempt to formalize matching as F-bounded subtyping.
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Type Operators
• We introduce a theory of type operators that will enable us to express various formal relation-

ships between types. Alternatives interpretations of matching will become available.

• A type operator is a function from types to types.

λ(X)B{X} maps each type X to a corresponding type B{X}
B(A) applies the operator B to the type A

(λ(X)B{X})(A) = B{A}

• Notation for fixpoints:

F* abbreviates µ(X)F(X)

AOp abbreviates λ(X)D{X} whenever A 7 µ(X)D{X}
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• We obtain:
MaxOp 7   λ(X)[n:Int, max+:X→X]
MinMaxOp 7   λ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

• The unfolding property of recursive types yields: 

MaxOp* =   µ(X) MaxOp(X)   =   µ(X) [n:Int, max+:X→X]   =   Max
MaxOp* =   MaxOp(µ(X) MaxOp(X))   =   MaxOp(Max)

• Note that AOp is defined in terms of the syntactic form µ(X)D{X} of A. In particular, the un-
folding D{A} of A is not necessarily in a form such that D{A}Op is defined. Even if D{A}Op 

is defined, it need not equal AOp. For example, consider:

D{X} @ µ(Y) X→Y

A @ µ(X) D{X}
D{A} 7 µ(Y) A→Y = A

AOp 7   λ(X) D{X}
D{A}Op 7   λ(Y) A→Y ¦ AOp

• Thus, we may have two types A and B such that A = B but AOp ¦ BOp (when recursive types 
are taken equal up to unfolding). This is a sign of trouble to come.



F-Bounded Matching September 1, 1996 4:40 pm 243

F-bounded Subtyping
• F-bounded subtyping was invented to support parameterization in the absence of subtyping. 

• The property:

A <: BOp(A) (A is a pre-fixpoint of BOp)

is seen as a statement that A extends B. 

• This view is justified because, for example, a recursive object type A such that A <: [n:Int, 
max+:A→A] often has the shape µ(Y)[n:Int, max+:Y→Y, ... ].
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• Both Max and MinMax are pre-fixpoints of MaxOp:

Max <: MaxOp(Max) ( = Max)
MinMax ( = [n:Int, max+:MinMax→MinMax, min+: ... ])

<: MaxOp(MinMax) ( = [n:Int, max+:MinMax→MinMax])

So, we can parameterize over all types X with the property that X <: MaxOp(X).

Ó(X<:MaxOp(X))B{X}

This form of parameterization leads to a general typing of pre-max, and permits the inherit-
ance of pre-max:

pre-max : Ó(X<:MaxOp(X))X→X→X   @
λ(X<:MaxOp(X)) λ(self:X) λ(other:X) 

if self.n>other.n then self else other

pre-max(Max) : Max→Max→Max
pre-max(MinMax) : MinMax→MinMax→MinMax
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The F-bounded Interpretation
• The central idea of the interpretation is:

A <# B 1 A <: BOp(A)
Ó(X<#A)B{X} 1 Ó(X<:AOp(X))B{X}

• However, this interpretation is not defined when the right-hand side of <# is a variable, as in 
the case of cascading quantifiers:

Ó(X<#A) Ó(Y<#X) ... 1 ?

Since Ó(X<:AOp(X)) Ó(Y<:XOp(Y)) ... does not make sense the type structure supported by 
this interpretation is somewhat irregular: type variables are not allowed in places where ob-
ject types are allowed. 
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Reflexivity and Transitivity
• We would expect A <# A to hold, e.g. to justifying the instantiation f(A) of a polymorphic 

function f : Ó(X<#A)B. We have:

A <# A 1 A <: AOp(A)

with A = AOp(A) by the unfolding property of recursive types. However, if A is a type vari-
able X, then XOp is not defined, so X <: XOp(X) does not make sense.  
Hence, reflexivity does not hold in general.
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• If A, B, and C are object types of the source language, then we would expect that A <# B and 
B <# C imply A <# C; this would mean:

 A <: BOp(A)   and   B <: COp(B)   imply   A <: COp(A)

As in the case of reflexivity, we run into difficulties with type variables. 

• Worse, transitivity fails even for closed types, with the following counterexample:

A @   µ(X)[p+: X→Int, q: Int]
B @   µ(X)[p+: X→Int]
C @   µ(X)[p+: B→Int]

We have both A <# B and B <# C, but we do not have A <# C (because [p+:A→Int, q:Int] <: 
[p+:B→Int] fails). 

A =   [p+: A→Int, q: Int] <:
BOp(A) =   [p+: A→Int]

B =   [p+: B→Int] <:
COp(B) =   [p+: B→Int]

A =   [p+: A→Int, q: Int] E :
COp(A) =   [p+: B→Int]
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• We can trace this problem back to the definition of DOp, which depends on the exact syntax 
of the type D. Because of the syntactic character of that definition, two equal types may be-
have differently with respect to matching. 

In our example, we have B = C by the unfolding property of recursive types. Despite the 
equality B = C, we have A <# B but not A <# C !
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Matching Self
• According to the F-bounded interpretation, two types that look rather different may match. 

Consider two types A and A’ such that:

A 7 µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ] 

<# µ(X)[vi:Bi iÏI, mj
+:Cj’{X} jÏJ’] 7 A’

This holds when A <: A’Op(A), that is, when [vi:Bi iÏI, mj
+:Cj{A} jÏJ] <: [vi:Bi iÏI, mj

+:Cj’{A} 
jÏJ’]. It suffices that, for every jÏJ’:

Cj{A} <: Cj’{A}

• For example, we have:

µ(X)[v:Int, m+:X] <# µ(X)[m+: [v:Int]]

The variable X on the left matches the type [v:Int] on the right. Since X is the Self variable, 
we may say that Self matches not only Self but also other types (here [v:Int]). This treatment 
of Self is both sound and flexible. On the other hand, it can be difficult for a programmer to 
see whether two types match.
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	. A subclass is a differential description of a class.
	. Example: restorable cells.

	Subsumption and Dynamic Dispatch
	Polymorphism
	Static Dispatch vs. Dynamic Dispatch

	Type Information, Lost and Found
	A Simple Formalization of Typecase
	Covariance, Contravariance, and Invariance
	Method Specialization
	Self Type Specialization
	Type Parameters
	Inheritance, Subclassing, Subtyping
	Object Types
	Distinguishing Subclassing from Subtyping
	Subclassing without Subtyping
	Object Protocols
	Lecture 4
	. A Language with Subtyping.

	The Language O-1
	Synthesis of a Language
	. O-1 is a language built out of constructs from object calculi.

	Some Features of O-1
	. Both class-based and object-based constructs.
	. First-order object types with subtyping and variance annotations.
	. Classes with single inheritance.
	. Method overridding and specialization.
	. Recursion.
	. Typecase. (To compensate for, e.g., lack of Self types.)
	. Separation of interfaces from implementations.
	. Separation of inheritance from subtyping.

	Some Non-Features of O-1
	. No public/private/protected/abstract, etc.,
	. No cloning,
	. No basic types, such as integers,
	. No arrays and other data structures,
	. No procedures,
	. No concurrency.

	Syntax of Types
	A,B ::=
	X
	Top
	Object(X)[liui:Bi iÏ1..n]
	Class(A)
	types
	type variable
	the biggest type
	object type (li distinct)
	class type
	. Roughly, we may think Object = m. But the fold/unfold coercions do not appear in the syntax of O- 1.
	. Usually, + variance is for methods, and o variance is for fields.


	Syntax of Programs
	a,b,c ::=
	x
	object(x:A) li=bi iÏ1..n end
	terms
	variable
	direct object construction
	a.l
	field selection / method invocation
	a.l := b
	a.l := method(x:A) b end
	update with a term
	update with a method
	new c
	root
	object construction from a class
	root class
	subclass of c:C with(x:A)
	li=bi iÏn+1..n+m
	override li=bi iÏOvrÕ1..n end
	subclass
	additional attributes
	overridden attributes
	c^l(a)
	typecase a when (x:A)b1 else b2 end
	class selection
	typecase
	. Superclass attributes are inherited “automatically”. (No copying premethods by hand as in the encodings of classes.)
	. Inheritance “by hand” still possible by class selection c^l(a).
	. Classes are first-class values.
	. Parametric classes can be written as functions that return classes.
	. We could drop the object-based constructs (object construction and method update). The result would be a language expressive enough for traditional class-based programming.
	. Alternatively, we could drop the class-based construct (root class, subclass, new, and class selection), obtaining an object- based language.
	. Classes, as well as objects, are first-class values. A parametric class can be obtained as a function that returns a class.

	Abbreviations
	Root @
	Class(Object(X)[])
	class with(x:A) li=bi iÏ1..n end @
	subclass of root:Root with(x:A) li=bi iÏ1..n override end
	subclass of c:C with (x:A) … super.l … end @
	subclass of c:C with (x:A) … c^l(x) … end
	object(x:A) … l copied from c … end @
	object(x:A) … l=c^l(x) … end


	Examples
	. We assume basic types (Bool, Int) and function types (AÆB, contravariant in A and covariant in B).
	Point @ Object(X)[x: Int, eq+: XÆBool, mv+: IntÆX]
	CPoint @ Object(X)[x: Int, c: Color, eq+: PointÆBool, mv+: IntÆPoint]
	. CPoint <: Point
	. The type of mv in CPoint is IntÆPoint. One can explore the effect of changing it to IntÆX.
	. The type of eq in CPoint is PointÆBool. If we were to change it to XÆBool we would lose the subtyping CPoint <: Point.

	Class(Point)
	pointClass : Class(Point) @
	class with (self: Point)
	x = 0,
	eq = fun(other: Point) self.x = other.x end,
	mv = fun(dx: Int) self.x := self.x+dx end
	end

	Class(CPoint)
	cPointClass : Class(CPoint) @
	subclass of pointClass: Class(Point)
	with (self: CPoint)
	c = black
	override
	eq = fun(other: Point)
	typecase other
	when (other’: CPoint) super.eq(other’) and self.c = other’.c
	else false
	end
	end
	end

	Comments
	. The class cPointClass inherits x and mv from its superclass pointClass.
	. Although it could inherit eq as well, cPointClass overrides this method as follows.
	. We can use cPointClass to create color points of type CPoint:
	cPoint : CPoint @ new cPointClass
	. Calls to mv lose the color information.
	. In order to access the color of a point after it has been moved, a typecase is necessary:

	movedColor : Color @
	typecase cPoint.mv(1)
	when (cp: CPoint) cp.c
	else black
	end

	Typing
	. The rules of O-1 are based on the following judgments:
	E º Q environment E is well-formed
	E º A A is a well-formed type in E
	E º A <: B A is a subtype of B in E
	E º uA <: u’B A is a subtype of B in E , with variance annotations u and u’
	E º a : A a has type A in E
	. The rules for environments are standard:


	Type Formation Rules
	Subtyping Rules
	. Note that there is no rule for subtyping class types.

	Term Typing Rules
	. Legend


	Translation
	. We give a translation into a functional calculus (with all the features described earlier).
	. A similar translation could be given into an appropriate imperative calculus.
	. At the level of types, the translation is simple.
	Translation of Types
	äXã @ X
	äTopã @ Top
	äObject(X)[liui:Bi iÏ1..n]ã @ m(X)[liui:äBiã iÏ1..n]
	äClass(A)ã @ [new+:äAã, li+:äAãÆäBiãYäAãZ iÏ1..n]
	where A 7 Object(X)[liui:Bi{X} iÏ1..n]
	äðã @ ð
	äE, X<:Aã @ äEã, X<:äAã
	äE, x:Aã @ äEã, x:äAã

	Translation of Terms
	. The translation is guided by the type structure.
	. The translation maps a class to a collection of pre-methods plus a new method.
	äxã @ x
	äobject(x:A) li=bi iÏ1..n endã @ [li=V(x:äAã)äbiã iÏ1..n]
	äa.lã @ äaã.l
	äa.l := bã @ äaã.l:=äbã
	äa.l := method(x:A) b endã @ äaã.lﬁüV(x:äAã)äbã
	änew cã @ äcã.new
	ärootã @ [new=[]]
	äsubclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr endã @
	[new=V(z:äClass(A)ã)[li=V(s:äAã)z.li(s) iÏ1..n+m],
	li=äc’ã.li iÏ1..n-Ovr,
	li=l(x:äAã)äbiã iÏOvr»n+1..n+m]
	äc^l(a)ã @ äcã.l(äaã)
	ätypecase a when (x:A)b1 else b2 endã @ typecase äaã | (x:äAã)äb1ã | äb2ã

	Soundness
	. If E º J is valid in O-1, then äE º Jã is valid in the object calculus.
	. The object subtyping rule relies on the following rule for recursive types:
	. The most interesting case is for subclass. We need to check:
	äsubclass of c’:Class(A’) with(x:A) li=bi iÏn+1..n+m override li=bi iÏOvr endã : äClass(A)ã
	That is:

	[new=V(z:äClass(A)ã)[li=V(s:äAã)z.li(s) iÏ1..n+m],
	li=äc’ã.li iÏ1..n-Ovr,
	li=l(x:äAã)äbiã iÏOvr»n+1..n+m]
	: [new+:äAã, li+:äAãÆäBiãYäAãZ iÏ1..n]

	Usefulness of the Translation
	. The translation validates the typing rules of O-1. That is, if E º J is valid in O-1, then äE º Jã is valid in the object calculus.
	. The translation served as an important guide in finding sound typing rules for O-1, and for “tweaking” them to make them both simpler and more general.
	. In particular, typing rules for subclasses are so inherently complex that it is difficult to “guess” them correctly without the aid of some interpretation.
	. Thus, we have succeeded in using object calculi as a platform for explaining a relatively rich object-oriented language and for validating its type rules.
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	The Language O-3
	A,B ::=
	X
	Top
	Object(X)[liui:Bi{X} iÏ1..n]
	Class(A)
	All(X<#A)B
	types
	type variable
	maximum type
	object type
	class type
	match-quantified type
	a,b,c ::=
	x
	object(x:X=A) li=bi{X,x} iÏ1..n end
	a.l
	a.l := method(x:X<#A) b end
	new c
	root
	subclass of c:C with(x:X<#A)
	li=bi{X,x} iÏn+1..n+m
	override li=bi{X,x} iÏOvrÕ1..n end
	c^l(A,a)
	fun(X<#A) b end
	b(A)
	terms
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	field/method selection
	update
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	match-polymorphic instantiation
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	A is a well formed type in E
	A is a well formed object type in E
	E º A <: B
	E º A <# B
	E º a : A
	A is a subtype of B in E
	A matches B in E
	a has type A in E

	Translation of O-3 (Sketch)
	K,L ::=
	Ty
	KﬁL
	kinds
	types
	operators from K to L
	A,B ::=
	X
	Top
	[liui:Bi iÏ1..n]
	Ó(X<:A::K)B
	m(X)A
	l(X::K)B
	B(A)
	constructors
	constructor variable
	the biggest constructor at kind Ty
	object type (li distinct, uiÏ{o,-,+})
	bounded universal type
	recursive type
	operator
	operator application
	a,b ::=
	x
	[l=V(xi:Ai)bi iÏ1..n]
	a.l
	a.lﬁüV(x:A)b
	l(X<:A::K)b
	b(A)
	fold(A,a)
	unfold(a)
	terms
	variable
	object formation (li distinct)
	method invocation
	method update
	constructor abstraction
	constructor application
	recursive fold
	recursive unfold
	X 5Op X (where X is match-bound in the environment)
	Object(X)[liui:Bi iÏ1..n] 5Op l(X)[liui:Bi iÏ1..n]
	X 5Ty X (when X is subtype-bound in the environment)
	X 5Ty X* (when X is match-bound in the environment)
	Top 5Ty Top
	Object(X)[liui:Bi iÏ1..n] 5Ty (l(X)[liui:Bi iÏ1..n])*
	Class(A) 5Ty [new+:A, li+:Ó(X':A)X*ÆBi iÏ1..n]
	where A 7 Object(X)[liui:Bi iÏ1..n]
	All(X<#A)B 5Ty Ó(X':A)B
	x 5 x
	object(x:A) li=bi{x} iÏ1..n end 5 fold(A,[li=V(x:A(A))biYfold(A,x)Z iÏ1..n])
	a.lj 5 unfold(a).lj
	a.lj := method(x:A’)b{x} end 5
	fold(A’,unfold(a).ljﬁüV(x:A’(A’))bY fold(A’,x)Z)
	new c 5 c.new
	root 5 [new=V(z:[new+:m(X)[]])fold(m(X)[],[])]
	subclass of c’:C’ with(x:X<#A) li=bi iÏn+1..n+m override li=bi iÏOvr end 5
	[new=V(z:C)fold(A,[li=V(s:A(A))z.li(A)( fold(A,s)) iÏ1..n+m])
	li=V(z:C) c’.li iÏ1..n-Ovr,
	li=V(z:C)l(X':A)l(x:X*)bi iÏOvr»n+1..n+m]
	where C 7 Class(A)
	c^lj(A’,a) 5 c.lj(A’)(a)
	fun(X<#A)b end 5 l(X':A)b
	b(A’) 5 b(A’)

	Summary

	Translations
	. In order to give insight into type rules for object-oriented languages, translations must be judgment-preserving (in particular, type and subtype preserving).
	. Translating object-oriented languages directly to typed l- calculi is just too hard. Object calculi provide a good stepping stone in this process, or an alternative endpoint.
	. Translating object calculi into l-calculi means, intuitively, “programming in object-oriented style within a procedural language”. This is the hard part.
	Untyped Translations
	. Give insights into the nature of object-oriented computation.
	. Objects = records of functions.

	Type-Preserving Translations
	. Give insights into the nature of object-oriented typing and subsumption/coercion.
	. Object types = recursive records-of-functions types.

	Subtype-Preserving Translations
	. Give insights into the nature of subtyping for objects.
	. Object types = recursive bounded existential types (!!).
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