
Object Calculi August 28, 1996 4:51 pm 1

Object Calculi

Martín Abadi
joint work with Luca Cardelli

Digital Equipment Corporation
 Systems Research Center

Object Calculi August 28, 1996 4:51 pm 2

Understanding Objects
• Many characteristics of object-oriented languages are different

presentations of a few general ideas.

• The situation is analogous in procedural programming.

The λ-calculus has provided a basic, flexible model, and a better under-
standing of actual languages.

Object Calculi August 28, 1996 4:51 pm 3

From Functions to Objects
• We develop a calculus of objects, analogous to the λ-calculus but

independent.

~ It is entirely based on objects, not on functions.

~ We go in this direction because object types are not easily, or at all, de-
finable in most standard formalisms.

• The calculus of objects is intended as a paradigm and a foundation for
object-oriented languages.

Object Calculi August 28, 1996 4:51 pm 4

• We have, in fact, a family of object calculi:

~ functional and imperative;

~ untyped, first-order, and higher-order.

Untyped and first-order object calculi
Calculus: ς Ob1 Ob1<: nn Ob1µ Ob1<:µ nn impς nn
objects ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
object types ¢ ¢ ¢ ¢ ¢ ¢ ¢
subtyping ¢ ¢ ¢ ¢ ¢
variance ¢
recursive types ¢ ¢ ¢
dynamic types ¢
side-effects ¢ ¢

Object Calculi August 28, 1996 4:51 pm 5

Higher-order object calculi
Calculus: Ob Obµ Ob<: Ob<:µ ςOb S SÓ nn Obω<:µ

objects ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
object types ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
subtyping ¢ ¢ ¢ ¢ ¢ ¢ ¢
variance • • ¢ ¢ ¢ ¢
recursive types ¢ ¢ ¢
dynamic types
side-effects ¢
quantified types ¢ ¢ ¢ ¢ ¢ ¢ ¢
Self types • ¢ ¢ ¢ ¢ •
structural rules ¢ ¢ ¢ ¢
type operators ¢

There are several other calculi (e.g., Castagna’s, Fisher&Mitchell’s).

Object Calculi August 28, 1996 4:51 pm 6

Object Calculi
• As in λ-calculi, we have:

~ operational semantics,

~ denotational semantics,

~ type systems,

~ type inference algorithms (due to J. Palsberg),

~ equational theories,

~ a theory of bisimilarity (due to A. Gordon and G. Rees),

~ examples,

~ (small) language translations,

~ guidance for language design.

Object Calculi August 28, 1996 4:51 pm 7

The Role of “Functional” Object Calculi
• Functional object calculi are object calculi without side-effects (with or

without syntax for functions).

• We have developed both functional and imperative object calculi.

• Functional object calculi have simpler operational semantics.

• “Functional object calculus” sounds odd: objects are supposed to
encapsulate state!

• However, many of the techniques developed in the context of functional
calculi carry over to imperative calculi.

• Sometimes the same code works functionally and imperatively. Often,
imperative versions require just a little more care.

• All transparencies make sense functionally, except those that are
obviously imperative.

Object Calculi August 28, 1996 4:51 pm 8

Plan
• Introduction

• Untyped object calculi

~ functional

~ imperative

• First-order object calculi

~ basic first-order typing and subtyping

~ variance annotations, recursive types, typecase

• Higher-order object calculi

~ type parameterization

~ translations into λ-calculi

~ Self types

• Conclusions

Object Calculi September 27, 1996 12:11 pm 9

Untyped Object Calculi

(Functional)

Object Calculi September 27, 1996 12:11 pm 10

An Untyped Object Calculus: Syntax
An object is a collection of methods. (Their order does not matter.)

Each method has:

~ a bound variable for self (which denotes the object itself),

~ a body that produces a result.

The only operations on objects are:

~ method invocation,

~ method update.

Syntax of the ς-calculus
a,b ::= terms

x variable
[li=ς(xi)bi iÏ1..n] object (li distinct)
a.l method invocation
a.lfiüς(x)b method update

Object Calculi September 27, 1996 12:11 pm 11

First Examples
An object o with two methods, l and m:

o @
[l = ς(x) [],
 m = ς(x) x.l]

• l returns an empty object.

• m invokes l through self.

A storage cell with two methods, contents and set:

cell @
[contents = ς(x) 0,
 set = ς(x) λ(n) x.contents fiü ς(y) n]

• contents returns 0.

• set updates contents through self.

Object Calculi September 27, 1996 12:11 pm 12

An Untyped Object Calculus: Reduction
• The notation b îïñ c means that b reduces to c in one step.

• The substitution of a term c for the free occurrences of a variable x in a
term b is written bYx←cZ, or bYcZ when x is clear from context.

Let o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o.lj îïñ bjYxj←oZ (jÏ1..n)
o.ljfiüς(y)b îïñ [lj=ς(y)b, li=ς(xi)bi iÏ(1..n)-{j}] (jÏ1..n)

In addition, if a îïñ b then C[a] îïñ C[b] where C[-] is any context.

We are dealing with a calculus of objects, not of functions.

The semantics is deterministic (Church-Rosser).
It is not imperative or concurrent.

Object Calculi September 27, 1996 12:11 pm 13

Some Example Reductions

Let o @ [l=ς(x)x.l] divergent method
then o.l îïñ x.lYx←oZ 7 o.l îïñ ...

Let o’ @ [l = ς(x)x] self-returning method
then o’.l îïñ xYx←o’Z 7 o’

Let o” @ [l = ς(y) (y.lfiüς(x)x)] self-modifying method
then o”.l îïñ (o”.lfiüς(x)x) îïñ o’

Object Calculi September 27, 1996 12:11 pm 14

Expressiveness
• Our calculus is based entirely on methods;

fields can be seen as methods that do not use their self parameter:

[..., l=b, ...] @ [..., l=ς(y)b, ...] for an unused y
 o.l:=b @ o.lfiüς(y)b for an unused y

object attributes
fields methods

object operations selection field selection method invocation
update field update method update

Terminology

• Method update is the most exotic construct, but:

~ it leads to simpler rules, and

~ it corresponds to features of several languages.

Object Calculi September 27, 1996 12:11 pm 15

• In addition, we can represent:

~ basic data types,

~ functions,

~ classes and subclasses.

• Some operations on objects are not available:

~ method extraction,

~ object extension,

~ object concatenation,

because they are atypical and in conflict with subtyping.

Object Calculi September 27, 1996 12:11 pm 16

Some Examples
These examples are:

• easy to write in the untyped calculus,

• patently object-oriented (in a variety of styles),

• sometimes hard to type.

Object Calculi September 27, 1996 12:11 pm 17

A Cell

Let cell @
[contents = 0,
 set = ς(x) λ(n) x.contents := n]

Then cell.set(3)
 îïñ (λ(n)[contents = 0, set = ς(x) λ(n) x.contents := n]

 .contents:=n)(3)
 îïñ [contents = 0, set = ς(x)λ(n) x.contents := n]

 .contents:=3
 îïñ [contents = 3, set = ς(x) λ(n) x.contents := n]

and cell.set(3).contents
 îïñ ...
 îïñ 3

Object Calculi September 27, 1996 12:11 pm 18

A Cell with an Accessor

gcell @
[contents = 0,
 set = ς(x) λ(n) x.contents := n,
 get = ς(x) x.contents]

• The get method fetches contents.

• A user of the cell may not even know about contents.

Object Calculi September 27, 1996 12:11 pm 19

A Cell with Undo

uncell @
[contents = 0,
 set = ς(x) λ(n) (x.undo := x).contents := n,
 undo = ς(x) x]

• The undo method returns the cell before the latest call to set.

• The set method updates the undo method, keeping it up to date.

Object Calculi September 27, 1996 12:11 pm 20

Object-Oriented Booleans
true and false are objects with methods if, then, and else.
Initially, then and else are set to diverge when invoked.

true @ [if = ς(x) x.then, then = ς(x) x.then, else = ς(x) x.else]
false @ [if = ς(x) x.else, then = ς(x) x.then, else = ς(x) x.else]

then and else are updated in the conditional expression:

cond(b,c,d) @ ((b.then:=c).else:=d).if

So:

cond(true, false, true) 7 ((true.then:=false).else:=true).if
 îïñ ([if = ς(x) x.then, then = false, else = ς(x) x.else].else:=true).if
 îïñ [if = ς(x) x.then, then = false, else = true].if
 îïñ [if = ς(x) x.then, then = false, else = true].then
 îïñ false

Object Calculi September 27, 1996 12:11 pm 21

Object-Oriented Natural Numbers
• Each numeral has a case field that contains either λ(z)λ(s)z for zero, or

λ(z)λ(s)s(x) for non-zero, where x is the predecessor (self).

Informally: n.case(z)(s) = if n is zero then z else s(n-1)

• Each numeral has a succ method that can modify the case field to the non-
zero version.

zero is a prototype for the other numerals:

zero @
[case = λ(z) λ(s) z,
 succ = ς(x) x.case := λ(z) λ(s) s(x)]

So:

zero 7 [case = λ(z) λ(s) z, succ = ...]
one @ zero.succ 7 [case = λ(z) λ(s) s(zero), succ = ...]
pred @ λ(n) n.case(zero)(λ(p)p)

Object Calculi September 27, 1996 12:11 pm 22

A Calculator
The calculator uses method update for storing pending operations.

calculator @
[arg = 0.0,
 acc = 0.0,
 enter = ς(s) λ(n) s.arg := n,
 add = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc+s’.arg,
 sub = ς(s) (s.acc := s.equals).equals fiü ς(s’) s’.acc-s’.arg,
 equals = ς(s) s.arg]

We obtain the following calculator-style behavior:

calculator .enter(5.0) .equals=5.0
calculator .enter(5.0) .sub .enter(3.5) .equals=1.5
calculator .enter(5.0) .add .add .equals=15.0

Object Calculi September 27, 1996 12:11 pm 23

Functions as Objects
A function is an object with two slots:

~ one for the argument (initially undefined),

~ one for the function code.

Translation of the untyped λ-calculus
äxã @ x
äλ(x)bã @

[arg = ς(x) x.arg,
 val = ς(x) äbãYx←x.argZ]

äb(a)ã @ (äbã.arg := äaã).val

Self variables get statically nested. A keyword self would not suffice.

Object Calculi September 27, 1996 12:11 pm 24

The translation validates the β rule:

ä(λ(x)b)(a)ã îïññ äbYx←aZã

where îïññ is the reflexive and transitive closure of îïñ.

For example:

ä(λ(x)x)(y)ã @ ([arg = ς(x) x.arg, val = ς(x) x.arg].arg := y).val
 îïñ [arg = ς(x) y, val = ς(x) x.arg].val
 îïñ [arg = ς(x) y, val = ς(x) x.arg].arg
 îïñ y
 @ äyã

The translation has typed and imperative variants.

Object Calculi September 27, 1996 12:11 pm 25

An Operational Semantics
The reduction rules given so far do not impose any evaluation order.

We now define a deterministic reduction system for the closed terms of the
ς-calculus.

• Our intent is to describe an evaluation strategy of the sort commonly used
in programming languages.

~ A characteristic of such evaluation strategies is that they are weak in the
sense that they do not work under binders.

~ In our setting this means that when given an object [li=ς(xi)bi iÏ1..n] we
defer reducing the body bi until li is invoked.

Object Calculi September 27, 1996 12:11 pm 26

An Operational Semantics: Results
• The purpose of the reduction system is to reduce every closed expression

to a result.

• For the pure ς-calculus, we define a result to be a term of the form
[li=ς(xi)bi iÏ1..n].

~ A result is itself an expression.

~ For example, both [l1=ς(x)[]] and [l2=ς(y)[l1=ς(x)[]].l1] are results.

~ (If we had constants such as natural numbers, we would include them
among the results.)

Object Calculi September 27, 1996 12:11 pm 27

• Our weak reduction relation is denoted Òñ.

• We write ∫ a Òñ v to mean that a reduces to a result v, or that v is the result
of a.

• This relation is axiomatized with three rules.

(Red Object) (where v 7 [li=ς(xi)bi iÏ1..n])

∫ v Òñ v

(Red Select) (where v’ 7 [li=ς(xi)bi{xi} iÏ1..n])
∫ a Òñ v’ ∫ bjYv’Z Òñ v jÏ1..n

∫ a.lj Òñ v

(Red Update)
∫ a Òñ [li=ς(xi)bi iÏ1..n] jÏ1..n

∫ a.lj fiü ς(x)b Òñ [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)–{j}]

Operational semantics

(Red Object) (where v 7 [li=ς(xi)bi iÏ1..n])

∫ v Òñ v

(Red Select) (where v’ 7 [li=ς(xi)bi{xi} iÏ1..n])
∫ a Òñ v’ ∫ bjYv’Z Òñ v jÏ1..n

∫ a.lj Òñ v

(Red Update)
∫ a Òñ [li=ς(xi)bi iÏ1..n] jÏ1..n

∫ a.lj fiü ς(x)b Òñ [lj=ς(x)b, li=ς(xi)bi iÏ(1..n)–{j}]

Object Calculi September 27, 1996 12:11 pm 28

Operational semantics

1. Results are not reduced further.

2. In order to evaluate a.lj we should first calculate the result of a, check that
it is in the form [li=ς(xi)bi{xi} iÏ1..n] with jÏ1..n, and then evaluate
bjY[li=ς(xi)bi iÏ1..n]Z.

3. In order to evaluate a.lj fiü ς(x)b we should first calculate the result of a,
check that it is in the form [li=ς(xi)bi iÏ1..n] with jÏ1..n, and return [lj=ς(x)b,
li=ς(xi)bi iÏ(1..n)–{j}]. We do not compute inside b or the bi.

Object Calculi September 27, 1996 12:11 pm 29

The reduction system is deterministic:

If ∫ a Òñ v and ∫ a Òñ v’, then v 7 v’.

The rules for Òñ immediately suggest an algorithm for reduction, which
constitutes an interpreter for ς-terms.

The next proposition says that Òñ is sound with respect to îïññ.

Proposition (Soundness of weak reduction)
If ∫ a Òñ v, then a îïññ v.

M

Further, Òñ is complete with respect to îïññ, in the following sense:

Theorem (Completeness of weak reduction)
Let a be a closed term and v be a result.
If a îïññ v, then there exists v’ such that ∫ a Òñ v’.

M

This theorem was proved by Melliès.

Object Calculi September 27, 1996 12:11 pm 30

Classes
A class is an object with:

~ a new method, for generating new objects,

~ code for methods for the objects generated from the class.

For generating the object:

o @ [li = ς(xi) bi iÏ1..n]

we use the class:

c @
[new = ς(z) [li = ς(x) z.li(x) iÏ1..n],
 li = λ(xi) bi iÏ1..n]

The method new is a generator. The call c.new yields o.

Each field li is a pre-method.

Object Calculi September 27, 1996 12:11 pm 31

A Class for Cells
cellClass @

[new = ς(z)
[contents = ς(x) z.contents(x), set = ς(x) z.set(x)],

 contents = λ(x) 0,
 set = λ(x) λ(n) x.contents := n]

Writing the new method is tedious but straightforward.

Writing the pre-methods is like writing the corresponding methods.

cellClass.new yields a standard cell:
 [contents = 0, set = ς(x) λ(n) x.contents := n]

Object Calculi September 27, 1996 12:11 pm 32

Inheritance
Inheritance is the reuse of pre-methods.

Given a class c with pre-methods c.li iÏ1..n
we may define a new class c’:

c’ @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

We may say that c’ is a subclass of c.

Object Calculi September 27, 1996 12:11 pm 33

Inheritance for Cells
cellClass @

[new = ς(z)
[contents = ς(x) z.contents(x), set = ς(x) z.set(x)],

 contents = λ(x) 0,
 set = λ(x) λ(n) x.contents := n]

uncellClass @
[new = ς(z) [...],
 contents = cellClass.contents,
 set = λ(x) cellClass.set(x.undo := x),
 undo = λ(x) x]

• The pre-method contents is inherited.

• The pre-method set is overridden, though using a call to super.

• The pre-method undo is added.

Object Calculi September 27, 1996 12:11 pm 34

Untyped Object Calculi

(Imperative)

Object Calculi September 27, 1996 12:11 pm 35

An Imperative Untyped Object Calculus
• An object is still a collection of methods.

• Method update works by side-effect (“in-place”).

• Some new operations make sense:

~ let (for controlling execution order),

~ object cloning (“shallow copying”).

Syntax of the impς-calculus
a,b ::= programs

... (as before)
let x = a in b let
clone(a) cloning

• The semantics is given in terms of stacks and stores.

Object Calculi September 27, 1996 12:11 pm 36

A Cell with Undo (Revisited)

uncell @
[contents = 0,
 set = ς(x) λ(n) (x.undo := x).contents := n,
 undo = ς(x) x]

• The undo method returns the cell before the latest call to set.

• The set method updates the undo method, keeping it up to date.

Object Calculi September 27, 1996 12:11 pm 37

The previous code works only if update has a functional semantics.
An imperative version is:

uncell @
[contents = 0,
 set = ς(x) λ(n)

let y = clone(x)
in (x.undo := y).contents := n,

 undo = ς(x) x]

(Or write a top-level definition: let uncell = [...] ;.)

Object Calculi September 27, 1996 12:11 pm 38

A Prime-Number Sieve
The next example is an implementation of the prime-number sieve.

This example is meant to illustrate advanced usage of object-oriented fea-
tures, and not necessarily transparent programming style.

let sieve =
[m = ς(s) λ(n)

let sieve’ = clone(s)
in s.prime := n;

s.next := sieve’;
s.m fiü ς(s’) λ(n’)

case (n’ mod n)
when 0 do [],
when p+1 do sieve’.m(n’);

[],
 prime = ς(x) x.prime,
 next = ς(x) x.next];

Object Calculi September 27, 1996 12:11 pm 39

• The sieve starts as a root object which, whenever it receives a prime p,
splits itself into a filter for multiples of p, and a clone of itself.

• As filters accumulate in a pipeline, they prevent multiples of known
primes from reaching the root object.

• After the integers from 2 to n have been fed to the sieve, there are as many
filter objects as there are primes smaller than or equal to n, plus a root
object.

• Each prime is stored in its filter; the n-th prime can be recovered by
scanning the pipeline for the n-th filter.

• The sieve is used, for example, in the following way:

for i in 1..99 do sieve.m(i.succ); (accumulate the primes ð 100)
sieve.next.next.prime (returns the third prime)

Object Calculi September 27, 1996 12:11 pm 40

Procedures as Imperative Objects

Translation of an imperative λ-calculus
äxã @ x
äx := aã @

let y = äaã
in x.arg := y

äλ(x)bã @
[arg = ς(x) x.arg,
 val = ς(x) äbãYx←x.argZ]

äb(a)ã @
let f = clone(äbã)
in let y = äaã
in (f.arg := y).val

Cloning on application corresponds to allocating a new stack frame.

Object Calculi September 27, 1996 12:11 pm 41

Imperative Operational Semantics
We give an operational semantics that relates terms to results in a global
store.

We say that a term b reduces to a result v to mean that, operationally, b
yields v.

Object terms reduce to object results consisting of sequences of store loca-
tions, one location for each object component:

[li=ιi iÏ1..n]

To imitate usual implementations, we do not rely on substitutions. The se-
mantics is based on stacks and closures.

• A stack associates variables with results.

• A closure is a pair of a method together with a stack that is used for the
reduction of the method body.

• A store maps locations to method closures.

Object Calculi September 27, 1996 12:11 pm 42

The operational semantics is expressed in terms of a relation that relates a
store σ, a stack S, a term b, a result v, and another store σ’.

This relation is written:

σ°S ∫ b Òñ v°σ’

This means that with the store σ and the stack S, the term b reduces to a re-
sult v, yielding an updated store σ’. The stack does not change.

We represent stacks and stores as finite sequences.

• ιi÷ïñmi iÏ1..n is the store that maps the location ιi to the closure mi,
for iÏ1..n.

• σ.ιjóï◊m is the result of storing m in the location ιj of σ,
so if σ 7 ιi÷ïñmi iÏ1..n and jÏ1..n then σ.ιjóï◊m 7 ιj÷ïñm, ιi÷ïñmi iÏ1..n–{j}.

ι
v ::= [li=ιi iÏ1..n]
σ ::= ιi÷ïñÜς(xi)bi,Siá iÏ1..n

S ::= xi÷ïñvi iÏ1..n

store location (e.g., an integer)
result (li distinct)
store (ιi distinct)
stack (xi distinct)

σ ∫ Q
σ°S ∫ Q
σ°S ∫ a Òñ v°σ’

well-formed store judgment
well-formed stack judgment
term reduction judgment

(Store ) (Store ι)
σ°S ∫ Q ιÌdom(σ)

 ∫ Q σ, ι÷ïñÜς(x)b,Sá ∫ Q

(Stack ) (Stack x) (li, ιi distinct)
σ ∫ Q σ°S ∫ Q ιiÏdom(σ) xÌdom(S) ÓiÏ1..n

σ° ∫ Q σ°(S, x÷ïñ[li=ιi iÏ1..n]) ∫ Q

Object Calculi September 27, 1996 12:11 pm 43

Operational semantics

(Red x)
σ°(S’, x÷ïñv, S”) ∫ Q

σ°(S’, x÷ïñv, S”) ∫ x Òñ v°σ

(Red Object) (li, ιi distinct)
σ°S ∫ Q ιiÌdom(σ) ÓiÏ1..n

σ°S ∫ [li=ς(xi)bi iÏ1..n] Òñ [li=ιi iÏ1..n]°(σ, ιi÷ïñÜς(xi)bi,Sá iÏ1..n)

(Red Select)
σ°S ∫ a Òñ [li=ιi iÏ1..n]°σ’ σ’(ιj) = Üς(xj)bj,S’á xjÌdom(S’) jÏ1..n

σ’°(S’, xj÷ïñ[li=ιi iÏ1..n]) ∫ bj Òñ v°σ”

σ°S ∫ a.lj Òñ v°σ”

(Red Update)
σ°S ∫ a Òñ [li=ιi iÏ1..n]°σ’ jÏ1..n ιjÏdom(σ’)

σ°S ∫ a.ljfiüς(x)b Òñ [li=ιi iÏ1..n]°(σ’.ιjóï◊Üς(x)b,Sá)

(Red Clone) (ιi’ distinct)
σ°S ∫ a Òñ [li=ιi iÏ1..n]°σ’ ιiÏdom(σ’) ιi’Ìdom(σ’) ÓiÏ1..n

σ°S ∫ clone(a) Òñ [li=ιi’ iÏ1..n]°(σ’, ιi’÷ïñσ’(ιi) iÏ1..n)

Object Calculi September 27, 1996 12:11 pm 44

(Red Let)
σ°S ∫ a Òñ v’°σ’ σ’°(S, x÷ïñv’) ∫ b Òñ v”°σ”

σ°S ∫ let x=a in b Òñ v”°σ”

Object Calculi September 27, 1996 12:11 pm 45

A variable reduces to the result it denotes in the current stack.

An object reduces to a fresh collection of locations, while the store is ex-
tended to associate method closures to those locations.

A selection operation reduces its object to a result, and activates the appro-
priate method closure.

An update operation reduces its object to a result, and updates the appropri-
ate store location with a new method closure.

A cloning operation reduces its object to a result; then it allocates a collec-
tion of locations and maps them to the method closures from the object.

Finally, a let reduces to the result of reducing its body in a stack extended
with the bound variable and the result of its associated term.

Object Calculi September 27, 1996 12:11 pm 46

Example Executions
• The first example is a simple terminating reduction.

° ∫ [l=ς(x)[]] Òñ [l=0]°(0÷ïñÜς(x)[],á) by (Red Object)
(0÷ïñÜς(x)[],á)°(x÷ïñ[l=0]) ∫ [] Òñ []°(0÷ïñÜς(x)[],á) by (Red Object)

° ∫ [l=ς(x)[]].l Òñ []°(0÷ïñÜς(x)[],á) (Red Select)

• The next one is a divergent reduction.

An attempt to prove a judgment of the form ° ∫ [l=ς(x)x.l].l Òñ ?°?
yields an incomplete derivation.

° ∫ [l=ς(x)x.l] Òñ [l=0]°(0÷ïñÜς(x)x.l,á) by (Red Object)
(0÷ïñÜς(x)x.l,á)°(x÷ïñ[l=0]) ∫ x Òñ [l=0]°(0÷ïñÜς(x)x.l,á) by (Red x)
 … …
(0÷ïñÜς(x)x.l,á)°(x÷ïñ[l=0]) ∫ x.l Òñ ?°? by (Red Select)

(0÷ïñÜς(x)x.l,á)°(x÷ïñ[l=0]) ∫ x.l Òñ ?°? (Red Select)
° ∫ [l=ς(x)x.l].l Òñ ?°? (Red Select)

An infinite branch has a repeating pattern.

Object Calculi September 27, 1996 12:11 pm 47

• As a variation of this example, we can have a divergent reduction that
keeps allocating storage.

Read from the bottom up, the derivation for this reduction has judgments
with increasingly large stores, σ0, σ1, …:

σ0 @ 0÷ïñÜς(x)clone(x).l, á

σ1 @ σ0, 1÷ïñÜς(x)clone(x).l, á

° ∫ [l=ς(x)clone(x).l] Òñ [l=0]°σ0 by (Red Object)
σ0°(x÷ïñ[l=0]) ∫ x Òñ [l=0]°σ0 by (Red x)

σ0°(x÷ïñ[l=0]) ∫ clone(x) Òñ [l=1]°σ1 (Red Clone)
 … …
σ1°(x÷ïñ[l=0]) ∫ clone(x).l Òñ ?°? by (Red Select)

σ0°(x÷ïñ[l=0]) ∫ clone(x).l Òñ ?°? (Red Select)
° ∫ [l=ς(x)clone(x).l].l Òñ ?°? (Red Select)

Object Calculi September 27, 1996 12:11 pm 48

• Another sort of incomplete derivation arises from dynamic errors.

In the next example, the error consists in attempting to invoke a method
from an object that does not have it.

° ∫ [] Òñ []° by (Red Object)
STUCK

° ∫ [].l Òñ ?°? (Red Select)

Object Calculi September 27, 1996 12:11 pm 49

• The final example illustrates method updating, and creating loops:

σ0 @ 0÷ïñÜς(x)x.lfiüς(y)x, á

σ1 @ 0÷ïñÜς(y)x, (x÷ïñ[l=0])á

° ∫ [l=ς(x)x.lfiüς(y)x] Òñ [l=0]°σ0 by (Red Object)
σ0°(x÷ïñ[l=0]) ∫ x Òñ [l=0]°σ0 by (Red x)

σ0°(x÷ïñ[l=0]) ∫ x.lfiüς(y)x Òñ [l=0]°σ1 (Red Update)
° ∫ [l=ς(x)x.lfiüς(y)x].l Òñ [l=0]°σ1 (Red Select)

The store σ1 contains a loop: it maps the index 0 to a closure that binds
the variable x to a value that contains index 0.

An attempt to read out the result of [l=ς(x)x.lfiüς(y)x].l by “inlining” the
store and stack mappings would produce the infinite term
[l=ς(y)[l=ς(y)[l=ς(y)…]]].

These loops are characteristic of imperative semantics.

Loops in the store complicate reasoning about programs and proofs of
type soundness.

Object Calculi July 15, 1997 12:55 am 50

First-Order Object Calculi

Object Calculi July 15, 1997 12:55 am 51

Object Types and Subtyping
An object type is a set of method names and of result types:

[li:Bi iÏ1..n]

An object has type [li:Bi iÏ1..n] if it has at least the methods liiÏ1..n, with a self
parameter of some type A <: [li:Bi iÏ1..n] and a result of type Bi,
e.g., [] and [l1 : [], l2 : []].

An object type with more methods is a subtype of one with fewer:

[li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

A longer object can be used instead of a shorter one by subsumption:

a:A ∧ A<:B ⇒ a:B

Object Calculi July 15, 1997 12:55 am 52

A First-Order Calculus
Environments:

E 7 xi:Ai iÏ1..n

Judgments:

E ∫ Q environment E is well-formed
E ∫ A A is a type in E
E ∫ A <: B A is a subtype of B in E
E ∫ a : A a has type A in E

Types:

A,B ::= Top the biggest type
[li:Bi iÏ1..n] object type

Terms: as for the untyped calculus (but with types for variables).

(Type Object) (li distinct) (Sub Object) (li distinct)
E ∫ Bi ÓiÏ1..n E ∫ Bi ÓiÏ1..n+m

E ∫ [li:Bi iÏ1..n] E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Val Object) (where A 7 [li:Bi iÏ1..n])
E, xi:A ∫ bi : Bi ÓiÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (Val Update) (where A 7 [li:Bi iÏ1..n])
E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

(Val Clone) (where A 7 [li:Bi iÏ1..n])
E ∫ a : A

E ∫ clone(a) : A

Object Calculi July 15, 1997 12:55 am 53

First-order type rules for the ς-calculus: rules for objects

(Env ) (Env x) (Val x)
E ∫ A xÌdom(E) E’,x:A,E” ∫ Q

 ∫ Q E,x:A ∫ Q E’,x:A,E” ∫ x:A

(Sub Refl) (Sub Trans) (Val Subsumption)
E ∫ A E ∫ A <: B E ∫ B <: C E ∫ a : A E ∫ A <: B

E ∫ A <: A E ∫ A <: C E ∫ a : B

(Type Top) (Sub Top)
E ∫ Q E ∫ A

E ∫ Top E ∫ A <: Top

(Val Let)
E ∫ a : A E, x:A ∫ b : B

E ∫ let x=a in b : B

Object Calculi July 15, 1997 12:55 am 54

First-order type rules for the ς-calculus: standard rules

Object Calculi July 15, 1997 12:55 am 55

An Operational Semantics (with Types)
We extend the functional operational semantics to typed terms.

A result is a term of the form [li=ς(xi:Ai)bi iÏ1..n].

(Red Object) (where v 7 [li=ς(xi:Ai)bi iÏ1..n])

∫ v Òñ v

(Red Select) (where v’ 7 [li=ς(xi:Ai)bi{xi} iÏ1..n])
∫ a Òñ v’ ∫ bjYv’Z Òñ v jÏ1..n

∫ a.lj Òñ v

(Red Update)
∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n] jÏ1..n

∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)–{j}]

Operational semantics

Object Calculi July 15, 1997 12:55 am 56

A Typed Divergent Term
The first-order object calculus is not normalizing: there are typable terms
whose evaluation does not terminate.

For example, the untyped term [l=ς(x)x.l].l can be annotated to obtain the
typed term [l=ς(x:[l:[]])x.l].l, which is typable as follows.

 ∫ Q (Env )
 ∫ [] (Type Object) with n = 0

 ∫ [l:[]] (Type Object) with n = 1
, x:[l:[]] ∫ Q (Env x)

, x:[l:[]] ∫ x : [l:[]] (Val x)
, x:[l:[]] ∫ x.l : [] (Val Select)

 ∫ [l=ς(x:[l:[]])x.l] : [l:[]] (Val Object) with n = 1
 ∫ [l=ς(x:[l:[]])x.l].l : [] (Val Select)

(Val Object) enables us to assume that the self variable x has the type [l:[]]
when checking that the body x.l of the method l has the type [].

Object Calculi July 15, 1997 12:55 am 57

Typed Object-Oriented Booleans
Notation

• x : A @ a stands for x @ a and E ∫ a : A
where E is determined from the preceding context.

We do not have a single type for our booleans; instead, we have a type BoolA
for every type A.

BoolA @ [if : A, then : A, else : A]

trueA : BoolA @
[if = ς(x:BoolA) x.then,
 then = ς(x:BoolA) x.then,
 else = ς(x:BoolA) x.else]

falseA : BoolA @
[if = ς(x:BoolA) x.else, ...]

Object Calculi July 15, 1997 12:55 am 58

The terms of type BoolA can be used in conditional expressions whose result
type is A.

For c and d of type A, and fresh variable x, we define:

ifA b then c else d : A @
((b.then fiü ς(x:BoolA)c).else fiü ς(x:BoolA) d).if

Moreover, we get some subtypings, e.g.:

[if : A, then : A, else : A] <: [if : A] <: []
[if : A, then : A, else : A] <: [else : A] <: []

Object Calculi July 15, 1997 12:55 am 59

Typed Cells
• We assume an imperative semantics (in order to postpone the use of

recursive types).

• If set works by side-effect, its result type can be uninformative.
(We can write x.set(3) ; x.contents instead of x.set(3).contents.)

Assuming a type Nat and function types, we let:

Cell @ [contents : Nat, set : Nat → []]
GCell @ [contents : Nat, set : Nat → [], get : Nat]

We get:

GCell <: Cell
cell @ [contents = 0, set = ς(x:Cell) λ(n:Nat) x.contents := n]

has type Cell
gcell @ [..., get = ς(x:GCell) x.contents]

has types GCell and Cell

Object Calculi July 15, 1997 12:55 am 60

Some Results
For the functional calculus (named Ob1<:):

Each well-typed term has a minimum type:

Theorem (Minimum types)
If E ∫ a : A then there exists B such that E ∫ a : B and,
for any A’, if E ∫ a : A’ then E ∫ B<:A’.

The type system is sound for the operational semantics:

Theorem (Subject reduction)
If  ∫ a : C
and ∫ a Òñ v
then  ∫ v : C.

Object Calculi July 15, 1997 12:55 am 61

Minimum Types
Because of subsumption, terms do not have unique types.

However, a weaker property holds: every term has a minimum type (if it has
a type at all).

The minimum-types property is potentially useful for developing
typechecking algorithms:

~ It guarantees the existence of a “best” type for each typable term.

~ Its proof suggests how to calculate this “best” type.

Object Calculi July 15, 1997 12:55 am 62

For proving the minimum-types property for Ob1<:, we consider a modified
system (MinOb1<:) obtained by:

~ removing (Val Subsumption), and

~ modifying the (Val Object) and (Val Update) rules as follows:

(Val Min Object) (where A 7 [li:Bi iÏ1..n])
E, xi:A ∫ bi : Bi’  ∫ Bi’ <: Bi ÓiÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Min Update) (where A 7 [li:Bi iÏ1..n])
E ∫ a : A’  ∫ A’ <: A E, x:A ∫ b : Bj’  ∫ Bj’ <: Bj jÏ1..n

E ∫ a.ljfiüς(x:A)b : A

Modified rules

Typing in MinOb1<: is unique, as we show next.

We can extract from MinOb1<: a typechecking algorithm that, given any E
and a, computes the type A such that E ∫ a : A if one exists.

Object Calculi July 15, 1997 12:55 am 63

The next three propositions are proved by easy inductions on the derivations
of E ∫ a : A in MinOb1<:.

Proposition (MinOb1<: typings are Ob1<: typings)
If E ∫ a : A is derivable in MinOb1<:,
then it is also derivable in Ob1<:.

M

Proposition (MinOb1<: has unique types)
If E ∫ a : A and E ∫ a : A’ are derivable in MinOb1<:,
then A 7 A’.

M

Proposition (MinOb1<: has smaller types than Ob1<:)
If E ∫ a : A is derivable in Ob1<:,
then E ∫ a : A’ is derivable in MinOb1<: for some A’ such that
E ∫ A’ <: A is derivable (in either system).

M

Object Calculi July 15, 1997 12:55 am 64

We obtain:

Proposition (Ob1<: has minimum types)
In Ob1<:, if E ∫ a : A
then there exists B such that E ∫ a : B and, for any A’,
if E ∫ a : A’ then E ∫ B <: A’.

Proof

Assume E ∫ a : A. So E ∫ a : B is derivable in MinOb1<: for some B such
that E ∫ B <: A.
Hence, E ∫ a : B is also derivable in Ob1<:.
If E ∫ a : A’, then E ∫ a : B’ is also derivable in MinOb1<: for some B’
such that E ∫ B’ <: A’.
Finally, B 7 B’, so E ∫ B <: A’.

M

Object Calculi July 15, 1997 12:55 am 65

Lack of type annotations in ς-binders destroys the minimum-types property.
For example, let:

A 7 [l:[]]
A’ 7 [l:A]
a 7 [l=ς(x)[l=ς(x)[]]]

then:

 ∫ a : A and  ∫ a : A’

but A and A’ have no common subtype.

This example also shows that minimum typing is lost for objects with fields
(where the ς-binders are omitted entirely).

The term a.l:=[] typechecks using  ∫ a : A but not using  ∫ a : A’.

Naive type inference algorithms might find the type A’ for a, and fail to find
any type for a.l:=[]. This poses problems for type inference.

(But cf. Palsberg’s lectures.)

Object Calculi July 15, 1997 12:55 am 66

In contrast, with annotations, both

 ∫ [l=ς(x:A)[l=ς(x:A)[]]] : A

and

 ∫ [l=ς(x:A’)[l=ς(x:A)[]]] : A’

are minimum typings.

The former typing can be used to construct a typing for a.l:=[].

Object Calculi July 15, 1997 12:55 am 67

Subject Reduction
We start the proof with two standard lemmas.

Lemma (Bound weakening)
If E, x:D, E’ ∫ ℑ and E ∫ D’ <: D, then E, x:D’, E’ ∫ ℑ.

M

Lemma (Substitution)
If E, x:D, E’ ∫ ℑ{x} and E ∫ d : D, then E, E’ ∫ ℑYdZ.

M

Using these lemmas, we obtain:

Theorem (Subject reduction)
Let c be a closed term and v be a result, and assume ∫ c Òñ v.
If  ∫ c : C, then  ∫ v : C.

Proof

The proof is by induction on the derivation of ∫ c Òñ v.

Object Calculi July 15, 1997 12:55 am 68

Case (Red Object)
This case is trivial, since c = v.

Case (Red Select)
Suppose ∫ a Òñ [li=ς(xi:Ai)bi{xi} iÏ1..n] and ∫ bjY[li=ς(xi:Ai)bi{xi} iÏ1..n]Z
Òñ v have yielded ∫ a.lj Òñ v.
Assume that  ∫ a.lj : C.
This must have come from an application of (Val Select) with assump-
tion  ∫ a : A where A has the form [lj:Bj, …], and with conclusion  ∫
a.lj : Bj, followed by a number of subsumption steps implying  ∫ Bj <:
C by transitivity.
By induction hypothesis, we have  ∫ [li=ς(xi:Ai)bi{xi} iÏ1..n] : A.
This implies that there exists A’ such that  ∫ A’ <: A, that all Ai equal
A’, that  ∫ [li=ς(xi:A’)bi{xi} iÏ1..n] : A’, and that , xj:A’ ∫ bj : Bj.
By a lemma, it follows that  ∫ bjY[li=ς(xi:A’)bi{xi} iÏ1..n]Z : Bj.
By induction hypothesis, we obtain  ∫ v : Bj and, by subsumption,  ∫
v : C.

Object Calculi July 15, 1997 12:55 am 69

Case (Red Update)
Suppose ∫ a Òñ [li=ς(xi:Ai)bi iÏ1..n] has yielded ∫ a.lj fiü ς(x:A)b Òñ
[lj=ς(x:Aj)b, li=ς(xi:Ai)bi iÏ(1..n)–{j}].
Assume that  ∫ a.lj fiü ς(x:A)b : C.
This must have come from an application of (Val Update) with assump-
tions  ∫ a : A and , x:A ∫ b : B where A has the form [lj:B, …], and with
conclusion  ∫ a.lj fiü ς(x:A)b : A, followed by a number of subsumption
steps implying  ∫ A <: C by transitivity.
By induction hypothesis, we have  ∫ [li=ς(xi:Ai)bi iÏ1..n] : A.
This implies that Aj has the form [lj:B, li:Bi iÏ(1..n)–{j}], that  ∫ Aj <: A,
that Ai equals Aj, and that , xi:Aj ∫ bi : Bi for all i.
By a lemma, it follows that , x:Aj ∫ b : B.
Therefore by (Val Object),  ∫ [lj=ς(x:Aj)b, li=ς(xi:Aj)bi iÏ(1..n)–{j}] : Aj.
We obtain  ∫ [lj=ς(x:Aj)b, li=ς(xi:Aj)bi iÏ(1..n)–{j}] : C by subsumption.

M

Object Calculi July 15, 1997 12:55 am 70

The proof of subject reduction is simply a sanity check.

It is an easy proof, with just one subtle point: the proof would have failed if
we had defined (Red Update) so that

∫ a.lj fiü ς(x:A)b Òñ [lj=ς(x:A)b, li=ς(xi:Ai)bi iÏ(1..n)–{j}]

with an A instead of an Aj in the bound for x.

Object Calculi July 15, 1997 12:55 am 71

Unsoundness of Covariance
Object types are invariant (not co/contravariant) in components.

U @ [] The unit object type.
L @ [l:U] An object type with just l.
L <: U

P @ [x:U, f:U]
Q @ [x:L, f:U]
Assume Q <: P by an (erroneous) covariant rule.

q : Q @ [x = [l=[]], f = ς(s:Q) s.x.l]
then q : P by subsumption with Q <: P
hence q.x:=[] : P that is [x = [], f = ς(s:Q) s.x.l] : P

But (q.x:=[]).f fails!

Object Calculi July 15, 1997 12:55 am 72

Classes, with Types
If A 7 [li:Bi iÏ1..n] is an object type,
then Class(A) is the type of the classes for objects of type A:

Class(A) @ [new:A, li:A→Bi iÏ1..n]

new:A is a generator for objects of type A.
li:A→Bi is a pre-method for objects of type A.

c : Class(A) @
[new = ς(z:Class(A)) [li = ς(x:A) z.li(x) iÏ1..n],

 li = λ(xi:A) bi{xi} iÏ1..n]
c.new : A

• Types are distinct from classes.

• More than one class may generate objects of a type.

Object Calculi July 15, 1997 12:55 am 73

Inheritance, with Types
Let A 7 [li:Bi iÏ1..n] and A’ 7 [li:Bi iÏ1..n, lj:Bj jÏn+1..m], with A’ <: A.

Note that Class(A) and Class(A’) are not related by subtyping.

Let c: Class(A), then for iÏ1..n

c.li: A→Bi <: A’→Bi.

Hence c.li is a good pre-method for a class of type Class(A’).

We may define a subclass c’ of c:

c’ : Class(A’) @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

where class c’ inherits the methods li from class c.

So inheritance typechecks:

If A’<:A then a class for A’ may inherit from a class for A.

Object Calculi July 15, 1997 12:55 am 74

Class Types for Cells
Class(Cell) @

[new : Cell,
 contents : Cell → Nat,
 set : Cell → Nat → []]

Class(GCell) @
[new : GCell,
 contents : GCell → Nat,
 set : GCell → Nat → [],
 get : GCell → Nat]

Class(GCell) <: Class(Cell) does not hold, but inheritance is possible:

Cell → Nat <: GCell → Nat
Cell → Nat → [] <: GCell → Nat → []

Object Calculi July 15, 1997 12:55 am 75

Typed Reasoning
In addition to a type theory, we have a simple typed proof system.

There are some subtleties in reasoning about objects.

Consider:

A @ [x : Nat, f : Nat]
a : A @ [x = 1, f = 1]
b : A @ [x = 1, f = ς(s:A) s.x]

Informally, we may say that a.x = b.x : Nat and a.f = b.f : Nat.

So, do we have a = b?

It would follow that (a.x:=2).f = (b.x:=2).f

and then 1 = 2.

Hence:

a ¦ b : A

Object Calculi July 15, 1997 12:55 am 76

Still, as objects of [x : Nat], a and b are indistinguishable from [x = 1].

Hence:

a = b : [x : Nat]

Finally, we may ask:

a m b : [f : Nat]

This is sound; it can be proved via bisimilarity.

In summary, there is a notion of typed equality that may support some inter-
esting transformations (inlining of methods).

Object Calculi July 15, 1997 12:55 am 104

Second-Order Object Calculi

Object Calculi July 15, 1997 12:55 am 105

Type Quantification
We add second-order type quantifiers to our first-order calculi.

• These quantifiers are standard.

• They are generally useful for polymorphism and data abstraction.

• However, these quantifiers have interesting interactions with object types.

The notations b{X} and B{X} show the free occurrences of X in b and in B,
respectively.

bYAZ stands for bYX←AZ and BYAZ stands for BYX←AZ when X is clear from
context.

Object Calculi July 15, 1997 12:55 am 106

The Universal Quantifier
• A term λ(X)b{X} represents a term b parameterized with respect to a type

variable X; this is a type abstraction.

• Correspondingly, a term a(A) is the application of a term a to a type A;
this is a type application.

• bYAZ is an instantiation of the type abstraction λ(X)b{X} for a specific
type A. It is the result of a type application (λ(X)b{X})(A).

• Ó(X)B{X} is the type of those type abstractions λ(X)b{X} that for any
type A produce a result bYAZ of type BYAZ.

For example:

id : Ó(X) X→X @ λ(X) λ(x:X) x the identity function
id(Int) : Int→Int its instantiation to the type Int
id(Int)(3) : Int its application to an integer

(Env X<:) (Type X<:) (Sub X)
E ∫ A XÌdom(E) E’, X<:A, E” ∫ Q E’, X<:A, E” ∫ Q

E, X<:A ∫ Q E’, X<:A, E” ∫ X E’, X<:A, E” ∫ X <: A

(Type All) (Val Fun2) (Val Appl2)
E, X ∫ B E, X ∫ b : B E ∫ b : Ó(X)B{X} E ∫

A

E ∫ Ó(X)B E ∫ λ(X)b : Ó(X)B E ∫ b(A) : BYAZ

Object Calculi July 15, 1997 12:55 am 107

• E’, X, E’’ is an abbreviation for E’, X<:Top, E’’.

• (Type All) forms a quantified type Ó(X)B in E, provided that B is well-
formed in E extended with X.

• (Val Fun2) constructs a type abstraction λ(X)b of type Ó(X)B, provided
that the body b has type B for an arbitrary type parameter X (which may
occur in b and B).

Object Calculi July 15, 1997 12:55 am 108

• (Val Appl2) applies such a type abstraction to a type A.

Object Calculi July 15, 1997 12:55 am 109

The Bounded Universal Quantifier
• We extend universally quantified types Ó(X)B to bounded universally

quantified types Ó(X<:A)B, where A is the bound on X.

• The bounded type abstraction λ(X<:A)b{X} has type Ó(X<:A)B{X} if, for
any subtype A’ of A, the instantiation bYA’Z has type BYA’Z.

(Type All<:) (Sub All)
E, X<:A ∫ B E ∫ A’ <: A E, X<:A’ ∫ B <: B’

E ∫ Ó(X<:A)B E ∫ Ó(X<:A)B <: Ó(X<:A’)B’

(Val Fun2<:) (Val Appl2<:)
E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’ <: A

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : BYA’Z

Object Calculi July 15, 1997 12:55 am 110

Structural Update
While adding type variables and type quantifiers, we have not changed the
rules for objects.

However, it is tempting to change the rule (Val Update) as follows:

(Val Structural Update) (where A 7 [li:Bi iÏ1..n])
E ∫ a : C E ∫ C <: A E, x:C ∫ b : Bj jÏ1..n

E ∫ a.ljfiüς(x:C)b : C

The difference between (Val Update) and (Val Structural Update) can be
seen when C is a type variable:

λ(C<:[l:Nat]) λ(a:C) a.l:=3 : Ó(C<:[l:Nat]) C→[l:Nat]
via (Val Update)

λ(C<:[l:Nat]) λ(a:C) a.l:=3 : Ó(C<:[l:Nat]) C→C
via (Val Structural Update)

Object Calculi July 15, 1997 12:55 am 111

The new rule (Val Structural Update) appears intuitively sound.

• It implicitly relies on the invariance of object types, and on the
assumption that every subtype of an object type is an object type.

• Such an assumption is quite easily realized in programming languages,
and holds in formal systems such as ours.

But this assumption is false in standard denotational semantics where the
subtype relation is simply the subset relation.

• In such semantics, Ó(C<:[l:Nat]) C→C contains only an identity function
and its approximations.

• Ó(C<:[l:Nat]) C→C does not contain λ(C<:[l:Nat]) λ(a:C) a.l:=3.

This difficulty suggests that we should proceed with caution.

Hence we do not adopt the rule (Val Structural Update) at once (but we will
later on).

Object Calculi July 15, 1997 12:55 am 112

The Bounded Existential Quantifier
• The existentially quantified type Ô(X<:A)B{X} is the type of the pairs

ÜA’,bá where A’ is a subtype of A and b is a term of type BYA’Z.

~ The type Ô(X<:A)B{X} can be seen as a partially abstract data type with
interface B{X} and with representation type X known only to be a sub-
type of A.

~ It is partially abstract in that it gives some information about the repre-
sentation type, namely, a bound.

• The pair ÜA’,bá describes an element of the partially abstract data type with
representation type A’ and implementation b.

Object Calculi July 15, 1997 12:55 am 113

In order to be fully explicit, we write the pair ÜA’,bá more verbosely:

pack X<:A=A’ with b{X}:B{X}

where X<:A=A’ indicates that X<:A and X=A’.

An element c of type Ô(X<:A)B{X} can be used in the construct:

open c as X<:A,x:B{X} in d{X,x}:D

where

~ d has access to the representation type X and the implementation x of c;

~ d produces a result of a type D that does not depend on X.

At evaluation time, if c is ÜA’,bá, then the result is dYA’,bZ of type D.

Object Calculi July 15, 1997 12:55 am 114

For example, we may write:

p : Ô(X<:Int)X×(X→X) @
pack X<:Int=Nat with Ü0,succNatá : X×(X→X)

a : Int @
open p as X<:Int,x:X×(X→X) in snd(x)(fst(x)):Int

and then a = 1.

(Type Exists<:) (Sub Exists)
E, X<:A ∫ B E ∫ A <: A’ E, X<:A ∫ B <: B’

E ∫ Ô(X<:A)B E ∫ Ô(X<:A)B <: Ô(X<:A’)B’

(Val Pack<:)
E ∫ C <: A E ∫ bYCZ : BYCZ

E ∫ pack X<:A=C with b{X}:B{X} : Ô(X<:A)B{X}

(Val Open<:)
E ∫ c : Ô(X<:A)B E ∫ D E, X<:A, x:B ∫ d : D

E ∫ open c as X<:A,x:B in d:D : D

Object Calculi July 15, 1997 12:55 am 115

Object Calculi July 15, 1997 12:55 am 116

To Make a Long Story Short
We added quantifiers to our object calculus.

We extended our results and examples:

~ semantics,

~ encodings of functions,

~ representation of classes,

~ ...

We developed some ideas:

~ for the treatment of Self types,

~ for the representation of objects in terms of functions.

Object Calculi July 15, 1997 12:55 am 117

Translations

Object Calculi July 15, 1997 12:55 am 118

Objects vs. Procedures
• Object-oriented programming languages have introduced (or

popularized) a number of ideas and techniques.

• However, on a case-by-case basis, one can often emulate objects in some
procedural languages.

Are object-oriented concepts reducible to procedural concepts?

~ It is easy to emulate the operational semantics of objects.

~ It is a little harder to translate object types.

~ It is much harder, or impossible, to preserve subtyping.

~ Apparently, this reduction is not feasible or attractive in practice.

Object Calculi July 15, 1997 12:55 am 119

The Translation Problem
• The problem is to find a translation from an object calculus to a λ-

calculus:

~ The object calculus should be reasonably expressive.

~ The λ-calculus should be standard enough.

~ The translation should be faithful; in particular it should preserve sub-
typing.

We prefer to deal with calculi rather than programming languages.

• The goal of explaining objects in terms of λ-calculi is not new.

~ There have been a number of more or less successful attempts (by Ka-
min, Cardelli, Cook, Reddy, Mitchell, the John Hopkins group, Pierce,
Turner, Hofmann, Remy, Bruce, ...).

~ We will review some of them (fairly informally), and then see our
translations (joint work with Ramesh Viswanathan.)

Object Calculi July 15, 1997 12:55 am 120

The Self-Application Semantics
• The self-application interpretation maps an object to a records of

functions.

• On method invocation, the whole object is passed to the method as a
parameter.

[li=ς(xi)bi iÏ1..n] @ Üli=λ(xi)bi iÏ1..ná (li distinct)
o.lj @ o†lj(o) (jÏ1..n)
o.ljfiüς(y)b @ o†lj:=λ(y)b (jÏ1..n)

Untyped self-application interpretation

Object Calculi July 15, 1997 12:55 am 121

The Self-Application Semantics (Typed)
A typed version is obtained by representing object types as recursive record
types:

[li:Bi iÏ1..n] @ µ(X)Üli:X→Bi iÏ1..ná

A 7 [li:Bi iÏ1..n] @
µ(X)Üli:X→Bi iÏ1..ná

(li distinct)

[li=ς(xi:A)bi iÏ1..n] @ fold(A,Üli=λ(xi:A)bi iÏ1..ná)
o.lj @ unfold(o)†lj(o) (jÏ1..n)
o.ljfiüς(y:A)b @ fold(A,unfold(o)†lj:=λ(y:A)b) (jÏ1..n)

Self-application interpretation

Unfortunately, the subtyping rule for object types fails to hold:
a contravariant X occurs in all method types.

Object Calculi July 15, 1997 12:55 am 122

The State-Application Semantics (Sketch)
For systems with only field update, it is natural to separate fields and meth-
ods:

• The fields are grouped into a state record st, separate from the method
suite record mt.

• Methods receive st as a parameter on method invocation, instead of the
whole object as in the self-application interpretation.

• The update operation modifies the st component and copies the mt
component.

• The method suite is bound recursively with a µ, so that each method can
invoke the others.

[fk=bk kÏ1..m | li=ς(xi)bi iÏ1..n] @
Üst=Ü fk=bk kÏ1..má, mt=µ(m)Üli=λ(s)bi’ iÏ1..náá

(fk, li distinct)
(for
appropriate bi’)

oP fj @ o†st† fj (jÏ1..m)
(external)

oP fj:=b @ Üst=(o†st† fj:=b), mt=o†mtá (jÏ1..m)
(external)

o.lj @ o†mt†lj(o†st) (jÏ1..n)
(external)

Object Calculi July 15, 1997 12:55 am 123

Untyped state-application interpretation

It is difficult to express the precise translation of method bodies (bi).

Although it is fairly clear how to translate specific examples, it is hard to de-
fine a general interpretation, particularly without types.

Object Calculi July 15, 1997 12:55 am 124

Essentially this difficulty arises because self is split into two parts.

• Internal operations manipulate s directly, and are thus coded differently
from external operations.

• Since the self parameter s gives access only to fields, internal method
invocation is done through m.

• Methods that return self should produce a whole object, but s contains
only fields, so a whole object must be regenerated.

in the context µ(m)Üli=λ(s) ... á
xiP fj @ s† fj (jÏ1..m)

(internal)
xiP fj:=b @ s† fj:=b (jÏ1..m)

(internal)
xi.lj @ m†lj(s) (jÏ1..n)

(internal)

Untyped state-application interpretation (continued)

Object Calculi July 15, 1997 12:55 am 125

The State-Application Semantics (Typed)
The state of an object, represented by a collection of fields st, is hidden by
existential abstraction, so external updates are not possible.

The troublesome method argument types are hidden as well, so this inter-
pretation yields the desired subtypings.

[li:Bi iÏ1..n] @ Ô(X) Üst: X, mt: Üli:X→Bi iÏ1..náá

• In general case, code generation is driven by types.

• The encoding is rather laborious.

• Still, it accounts well for class-based languages where methods are
separate from fields, and method update is usually forbidden.

A 7 [li:Bi iÏ1..n] @
Ô(X) C{X} where C{X} 7 Üst: X, mt: Üli:X→Bi iÏ1..náá

(li distinct)

[fk=bk kÏ1..m | li=ς(xi:A)bi{xi} iÏ1..n] @
pack X=Ü fk:Bk kÏ1..má
with Üst=Ü fk=bk kÏ1..má,

 mt=µ(m:Üli:X→Bi iÏ1..ná) Üli=λ(s:X)bi’ iÏ1..náá
: C{X}

(fk, li distinct)

(for
appropriate bi’)

xiP fj @ s† fj (jÏ1..m)
(internal)

xiP fj:=b @ s† fj:=b (jÏ1..m)
(internal)

xi.lj @ m†lj(s) (jÏ1..n)
(internal)

o.lj @ open o as X, p:C{X} in p†mt†lj(p†st) : Bj (jÏ1..n)
(external)

Object Calculi July 15, 1997 12:55 am 126

State-application interpretation

Object Calculi July 15, 1997 12:55 am 127

The Recursive-Record Semantics (Example)
This interpretation is often used to code objects within λ-calculi, for specific
examples.

A typical application concerns movable color points:
CPoint @

Obj(X)[x:Int, c:Color | mv:Int→X]
cPoint : CPoint @

[x = 0, c = black | mv = ς(s:CPoint) λ(dx:Int) sPx:=sPx+dx]

(Here X is the type of self, that is, the Self type of CPoint.)

Object Calculi July 15, 1997 12:55 am 128

The translation is:
CPoint @

µ(X)Üx:Int, c:Color, mv:Int→Xá

cPoint : CPoint @
let rec init(x0:Int, c0:Color) =

µ(s:CPoint) fold(CPoint,
Üx = x0, c = c0,
 mv = λ(dx:Int) init(unfold(s)†x+dx, unfold(s)†c)á)

in init(0, black)

• An auxiliary function init is used both for field initialization and for the
creation of modified objects during update.

• Only internal field update is handled correctly.

• This translation achieves the desired effect, yielding the expected
behavior for cPoint and the expected subtypings for CPoint.

• If the code for mv had been λ(dx:Int) f(s)Px:=sPx+dx, where f is of
appropriate type, it would not have been clear how to proceed.

Object Calculi July 15, 1997 12:55 am 129

The Split-Methods Semantics

[li=ς(xi)bi iÏ1..n] @
let rec create(yi iÏ1..n) =

Üli
sel=yi,

 li
upd=λ(yi’) create(yj jÏ1..i–1, yi’, yk kÏi+1..n) iÏ1..ná

in create(λ(xi)bi iÏ1..n)

(li distinct)

o.lj @ o†lj
sel(o) (jÏ1..n)

o.ljfiüς(y)b @ o†lj
upd(λ(y)b) (jÏ1..n)

Untyped split-method interpretation

• A method lj is represented by two record components, ljsel and ljupd.

• create takes a collection of functions and produces a record.
The uses of create are encapsulated within the definition of create.

• A method lj is updated by supplying the new code for lj to the function
ljupd. This code is passed on to create.

• A method lj is invoked by applying the function ljsel to o.

Object Calculi July 15, 1997 12:55 am 130

The Split-Method Semantics (Typed)
• A first attempt at typing this interpretation could be to set:

[li:Bi iÏ1..n] @ µ(X) Ülisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

but this type contains contravariant occurrences of X.
Subtypings fail.

• As a second attempt, we can use quantifiers to obtain covariance:
[li:Bi iÏ1..n] @

µ(Y) Ô(X<:Y) Ülisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

~ Now the interpretation validates the subtypings for object types, since
all occurrences of X, bound by Ô, are covariant.

~ Unfortunately, it is impossible to perform method invocations: after
opening the Ô we do not have an appropriate argument of type X to pass
to lisel.

Object Calculi July 15, 1997 12:55 am 131

~ But since this argument should be the object itself, we can solve the
problem by adding a record component, r, bound recursively to the ob-
ject:

[li:Bi iÏ1..n] @
µ(Y) Ô(X<:Y) Ür:X, lisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

Split-method interpretation

A 7 [li:Bi iÏ1..n] @
µ(Y)Ô(X<:Y)C{X}

where
C{X} 7 Ür:X, li

sel:X→Bi iÏ1..n, li
upd:(X→Bi)→X iÏ1..ná

(li distinct)

Object Calculi July 15, 1997 12:55 am 132

[li=ς(xi:A)bi iÏ1..n] @
let rec create(yi:A→Bi iÏ1..n):A =

fold(A,
pack X=A
with

Ür=create(yi iÏ1..n),
 li

sel=yi iÏ1..n,
 li

upd=λ(yi’:A→Bi)create(yj jÏ1..i–1, yi’, yk kÏi+1..n) iÏ1..ná
: C{X})

in create(λ(xi:A)bi iÏ1..n)
oA.lj @

open unfold(o) as X<:A, p:C{X}
in p†lj

sel(p†r) : Bj

(jÏ1..n)

o.ljfiüς(y:A)b @
open unfold(o) as X<:A, p:C{X}
in p†lj

upd(λ(y:A)b) : A

(jÏ1..n)

Object Calculi July 15, 1997 12:55 am 133

• We obtain both the expected semantics and the expected subtyping
properties.

• The definition of the interpretation is syntax-directed.

• The interpretation covers all of the first-order object calculus (including
method update).

• It extends naturally to other constructs:

~ variance annotations,

~ Self types (with some twists),

~ a limited form of method extraction
(but in general method extraction is unsound),

~ imperative update,

~ imperative cloning.

• It suggests principles for reasoning about objects.

Object Calculi July 15, 1997 12:55 am 134

An Imperative Version
For an imperative split-method interpretation, it is not necessary to split
methods, because updates can be handled imperatively.

The imperative version correctly deals with a cloning construct.
[fk:Bk kÏ1..m | li:Bi iÏ1..n] @

µ(Y) Ô(X<:Y) Ür:X, fk:Bk kÏ1..m, li:X→Bi iÏ1..n, cl:Üá→Xá

Imperative self-application interpretation

A 7 [fk:Bk kÏ1..m | li:Bi iÏ1..n] @
µ(Y)Ô(X<:Y)C{X}

with
C{X} 7 Ür:X, fk:Bk kÏ1..m, li:X→Bi iÏ1..n, cl:Üá→Xá

(fk, li distinct)

Object Calculi July 15, 1997 12:55 am 135

[fk=bk kÏ1..m | li=ς(xi:A)bi iÏ1..n] @
let rec create(yk:Bk kÏ1..m, yi:A→Bi iÏ1..n):A =

let z:CYAZ = Ür=nil(A), fk=yk kÏ1..m, li=yi iÏ1..n, cl=nil(Üá→A)á
in z†r:=fold(A,pack X<:A=A with z : CYXZ);

z†cl:=λ(x:Üá)create(z† fk kÏ1..m, z†li iÏ1..n);
z†r

in create(bk kÏ1..m, λ(xi:A)bi iÏ1..n)
oAP fj @ open unfold(o) as X<:A, p:C{X} in p† fj : Bj (jÏ1..m)
oAP fj:=b @

open unfold(o) as X<:A, p:C{X}
in fold(A,pack X’<:X=X with p† fj:=b : CYX’Z) : A

(jÏ1..m)

oA.lj @
open unfold(o) as X<:A, p:C{X}
in p†lj(p†r) : Bj

(jÏ1..n)

Object Calculi July 15, 1997 12:55 am 136

o.ljfiüς(x:A)b @
open unfold(o) as X<:A, p:C{X}
in fold(A,pack X’<:X=X

 with p†lj:=λ(x:A)b : CYX’Z) : A

(jÏ1..n)

clone(oA) @
open unfold(o) as X<:A, p:C{X}
in p†cl(Üá) : A

(jÏ1..n)

Object Calculi July 15, 1997 12:55 am 137

Conclusion to the Encodings
In our interpretations:

• Objects are records of functions, after all.

• Object types combine recursive types and existential types (with a
recursion going through a bound!).

• The interpretations are direct and general enough to explain objects.

• But they are elaborate, and perhaps not definitive, and hence not a
replacement for primitive objects.

Object Calculi September 27, 1996 12:32 pm 137

Self Types

Object Calculi September 27, 1996 12:32 pm 138

Self Types
We now axiomatize Self types directly, taking Self as primitive.

In order to obtain a flexible type system, we need constructions that provide
both covariance and contravariance.

~ Both variances are necessary to define function types.

There are several possible choices at this point.

~ One choice would be to take invariant object types plus the two bound-
ed second-order quantifiers.

~ Instead, we prefer to use variance annotations for object types.
This choice is sensible because it increases expressiveness, delays the
need to use quantifiers, and is relatively simple.

Object Types and Self
We consider object types with Self of the form:

Obj(X)[liυi:Bi{X+} iÏ1..n]
where B{X+} indicates that X occurs only covariantly in B

Object Calculi September 27, 1996 12:32 pm 139

Obj binds a type variable X, which represents the Self type (the type of self),
as in Cell @ Obj(X)[contentso : Nat, seto : Nat→X].

Each υi (a variance annotation) is one of –, o, and +, for contravariance, in-
variance, and covariance, respectively.

• Invariant components are the familiar ones. They can be regarded, by
subtyping, as either covariant or contravariant.

• Covariant components allow covariant subtyping, but prevent updating.

• Symmetrically, contravariant components allow contravariant subtyping,
but prevent invocation.

A,B ::=
X
Top
Obj(X)[liυi:Bi iÏ1..n]

types
type variable
the biggest type
object type
(li distinct, υiÏ{–,o,+})

Object Calculi September 27, 1996 12:32 pm 140

Syntax of types

Y{X+}
Top{X+}
Obj(Y)[liυi:Bi iÏ1..n]{X+}

whether X = Y or X ¦ Y
always
if X = Y or for all iÏ1..n:

if υi7 +, then Bi{X+}
if υi7 –, then Bi{X–}
if υi7 o, then XÌFV(Bi)

Y{X–}
Top{X–}
Obj(Y)[liυi:Bi iÏ1..n]{X–}

if X ¦ Y
always
if X = Y or for all iÏ1..n:

if υi7 +, then Bi{X–}
if υi7 –, then Bi{X+}
if υi7 o, then XÌFV(Bi)

A{Xo} if neither A{X+} nor A{X–}

Object Calculi September 27, 1996 12:32 pm 141

Variant occurrences

Object Calculi September 27, 1996 12:32 pm 142

Terms with Self

a,b ::=
x
obj(X=A)[li=ς(xi:X)bi iÏ1..n]
a.l
a.lfiü(Y<:A,y:Y)ς(x:Y)b

terms
variable
object (li distinct)
method invocation
method update

Syntax of terms

An object has the form obj(X=A)[li=ς(xi:X)bi iÏ1..n], where A is the chosen
implementation of the Self type.

Variance information for this object is given as part of the type A.

All the variables xi have type X (so the syntax is redundant).

Object Calculi September 27, 1996 12:32 pm 143

Method Update and Self
Method update is written a.lfiü(Y<:A,y:Y)ς(x:Y)b, where

~ a has type A,

~ Y denotes the unknown Self type of a,

~ y denotes the old self (a), and

~ x denotes self (at the time the updating method is invoked).

To understand the necessity of the parameter y, consider the case where the
method body b has result type Y.

• This method body cannot return an arbitrary object of type A, because the
type A may not be the true Self type of a.

• Since a itself has the true Self type, the method could soundly return it.

• But the typing does not work because a has type A rather than Y.

• To allow a to be returned, it is bound to y with type Y.

Object Calculi September 27, 1996 12:32 pm 144

Abbreviations

[liυi:Bi iÏ1..n] @ Obj(X)[liυi:Bi iÏ1..n] for XÌFV(Bi), iÏ1..n

[li:Bi iÏ1..n] @ Obj(X)[lio:Bi iÏ1..n] for XÌFV(Bi), iÏ1..n

[li=ς(xi:A)bi iÏ1..n] @ for XÌFV(bi), iÏ1..n
obj(X=A)[li=ς(xi:X)bi iÏ1..n]

a.ljfiüς(x:A)b @ a.ljfiü(Y<:A,y:Y)ς(x:Y)b for Y,yÌFV(b)

Object Calculi September 27, 1996 12:32 pm 145

Cells

Cell @ Obj(X)[contents : Nat, set : Nat→X]
cell : Cell @

[contents = 0,
 set = ς(x:Cell) λ(n:Nat) x.contents := n]

7 obj(X=Cell)
[contents = ς(x:X) 0,
 set = ς(x:X) λ(n:Nat) x.contents fiü (Y<:X, y:Y) ς(z:Y) n]

GCell @ Obj(X)[contents : Nat, set : Nat → X, get : Nat]
GCell <: Cell

Object Calculi September 27, 1996 12:32 pm 146

Cells with Undo
A difficulty arises when trying to update fields of type Self.

This difficulty is avoided by using the old-self parameter.

UnCell @ Obj(X)[contents : Nat, set : Nat→X, undo : X]
uncell : UnCell @

obj(X=UnCell)
[contents = ς(x:X) 0,
 set = ς(x:X) λ(n:Nat)

(x.undo fiü (Y<:X, y:Y) ς(z:Y) y)
.contents fiü (Y<:X, y:Y) ς(z:Y) n,

 undo = ς(x:X) x]

The use of y in the update of undo is essential.

Object Calculi September 27, 1996 12:32 pm 147

Operational Semantics
The operational semantics is given in terms of a reduction judgment, ∫ a Òñ
v.

The results are objects of the form obj(X=A)[li=ς(xi:X)bi iÏ1..n].

(Red Object) (where v 7 obj(X=A)[li=ς(xi:X)bi iÏ1..n])

∫ v Òñ v

(Red Select) (where v’ 7 obj(X=A)[li=ς(xi:X)bi{X,xi} iÏ1..n])
∫ a Òñ v’ ∫ bjYA,v’Z Òñ v jÏ1..n

∫ a.lj Òñ v

(Red Update) (where v 7 obj(X=A)[li=ς(xi:X)bi iÏ1..n])
∫ a Òñ v jÏ1..n

∫ a.ljfiü(Y<:A’,y:Y)ς(x:Y)b{Y,y} Òñ obj(X=A)[lj=ς(x:X)bYX,vZ, li=ς(xi:X)bi iÏ1..n–{j}]

Operational semantics

Object Calculi September 27, 1996 12:32 pm 148

Type Rules for Self

E ∫ Q

E ∫ A
E ∫ A <: B
E ∫ υA <: υ’B

E ∫ a : A

well-formed environment
judgment
type judgment
subtyping judgment
subtyping judgment
with variance
value typing judgment

Judgments

The rules for the judgments E ∫ Q, E ∫ A, and E ∫ A <: B are standard, except
of course for the new rules for object types.

(Env ) (Env x) (Env X<:)
E ∫ A xÌdom(E) E ∫ A XÌdom(E)

 ∫ Q E, x:A ∫ Q E, X<:A ∫ Q

(Type X<:) (Type Top) (Type Object) (li distinct, υiÏ{o,–,+})
E’, X<:A, E” ∫ Q E ∫ Q E, X<:Top ∫ Bi{X+} ÓiÏ1..n

E’, X<:A, E” ∫ X E ∫ Top E ∫ Obj(X)[liυi:Bi{X} iÏ1..n]

(Sub Refl) (Sub Trans) (Sub Top) (Sub X)
E ∫ A E ∫ A <: B E ∫ B <: C E ∫ A E’, X<:A, E” ∫ Q

E ∫ A <: A E ∫ A <: C E ∫ A <: Top E’, X<:A, E” ∫ X <: A

(Sub Object) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n+m], A’ 7 Obj(X)[liυi’:Bi’{X} iÏ1..n])
E ∫ A E ∫ A’ E, Y<:A ∫ υi BiYYZ <: υi’ Bi’YYZ ÓiÏ1..n

E ∫ A <: A’

(Sub Invariant) (Sub Covariant) (Sub Contravariant)
E ∫ B E ∫ B <:

B’ υÏ{o,+}
E ∫ B’ <: B υÏ{o,–

}

E ∫ o B <: o B E ∫ υ B <: + B’ E ∫ υ B <: – B’

Object Calculi September 27, 1996 12:32 pm 149

Environments, types, and subtypes

Object Calculi September 27, 1996 12:32 pm 150

• The formation rule for object types (Type Object) requires that all the
component types be covariant in Self.

• The subtyping rule for object types (Sub Object) says, to a first
approximation, that a longer object type A on the left is a subtype of a
shorter object type A’ on the right.

~ Because of variance annotations, we use an auxiliary judgment and
auxiliary rules.

• The type Obj(X)[…] can be seen as an alternative to the recursive type
µ(X)[…], but with differences in subtyping.

~ (Sub Object), with all components invariant, reads:

E, X<:Top ∫ Bi{X+} ÓiÏ1..n+m

E ∫ Obj(X)[li:Bi{X} iÏ1..n+m] <: Obj(X)[li:Bi{X} iÏ1..n]

~ An analogous property fails with µ instead of Obj.

(Val Subsumption) (Val x)
E ∫ a : A E ∫ A <: B E’, x:A, E” ∫ Q

E ∫ a : B E’, x:A, E” ∫ x : A

(Val Object) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E, xi:A ∫ biYAZ : BiYAZ ÓiÏ1..n

E ∫ obj(X=A)[li=ς(xi:X)bi{X} iÏ1..n] : A

(Val Select) (where A’ 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E ∫ A <: A’ υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAZ

(Val Update) (where A’ 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E ∫ A <: A’ E, Y<:A, y:Y, x:Y ∫ b : BjYYZ υjÏ{o,–} jÏ1..n

E ∫ a.ljfiü(Y<:A,y:Y)ς(x:Y)b : A

Object Calculi September 27, 1996 12:32 pm 151

Terms with typing annotations

Object Calculi September 27, 1996 12:32 pm 152

• (Val Object) can be used for building an object of a type A from code for
its methods.

~ In that code, the variable X refers to the Self type; in checking the code,
X is replaced with A, and self is assumed of type A.

~ Thus the object is built with knowledge that Self is A.

• (Val Select) treats method invocation, replacing the Self type X with a
known type A for the object a whose method is invoked.

~ The type A might not be the true type of a.

~ The result type is obtained by examining a supertype A’ of A.

• (Val Update) requires that an updating method work with a partially
unknown Self type Y, which is assumed to be a subtype of a type A of the
object a being modified.

~ The updating method must be “parametric in Self”: it must return self,
the old self, or a modification of these.

~ The result type is obtained by examining a supertype A’ of A.

Object Calculi September 27, 1996 12:32 pm 153

(Val Select) and (Val Update) rely on the structural assumption that every
subtype of an object type is an object type.

In order to understand them, it is useful to compare them with the following
more obvious alternatives:

(Val Non-Structural Select) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A υjÏ{o,+} jÏ1..n

E ∫ a.lj : BjYAZ

(Val Non-Structural Update) (where A 7 Obj(X)[liυi:Bi{X} iÏ1..n])
E ∫ a : A E, Y<:A, y:Y, x:Y ∫ b : BjYYZ υjÏ{o,–} jÏ1..n

E ∫ a.ljfiü(Y<:A,y:Y)ς(x:Y)b : A

These are special cases of (Val Select) and (Val Update) for A 7 A’.

(Val Select) and (Val Update) are more general in that they allow A to be a
variable.

Object Calculi September 27, 1996 12:32 pm 154

Adding the Universal Quantifier

A,B ::=
…
Ó(X<:A)B

types
(as before)
bounded universal type

a,b ::=
…
λ(X<:A)b
a(A)

terms
(as before)
type abstraction
type application

Syntax of type parameterization

Object Calculi September 27, 1996 12:32 pm 155

We add two rules to the operational semantics.

• According to these rules, evaluation stops at type abstractions and is
triggered again by type applications.

• We let a type abstraction λ(X<:A)b be a result.

(Red Fun2) (where v 7 λ(X<:A)b)

∫ v Òñ v

(Red Appl2)
∫ b Òñ λ(X<:A)c{X} ∫ cYA’Z Òñ v

∫ b(A’) Òñ v

Operational semantics for type parameterization

(Type All<:) (Sub All)
E, X<:A ∫ B E ∫ A’ <: A E, X<:A’ ∫ B <: B’

E ∫ Ó(X<:A)B E ∫ Ó(X<:A)B <: Ó(X<:A’)B’

(Val Fun2<:) (Val Appl2<:)
E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’ <: A

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : BYA’Z

Object Calculi September 27, 1996 12:32 pm 156

Quantifier rules

(Ó(Y<:A)B){X+} if X = Y or both A{X–} and B{X+}
(Ó(Y<:A)B){X–} if X = Y or both A{X+} and B{X–}

Variant occurrences for quantifiers

Theorem (Subject reduction)
If  ∫ a : A and ∫ a Òñ v, then  ∫ v : A.

Object Calculi September 27, 1996 12:32 pm 157

Classes and Self
As before, we associate a class type Class(A) with each object type A.

A 7 Obj(X)[liυi:Bi{X} iÏ1..n]

Class(A) @
[new:A,
 li:Ó(X<:A)X→Bi{X} iÏ1..n]

c : Class(A) @
[new=ς(z:Class(A)) obj(X=A)[li=ς(s:X)z.li(X)(s) iÏ1..n],
 li = λ(Self<:A) λ(s:Self) … iÏ1..n]

Now pre-methods have polymorphic types.

Object Calculi September 27, 1996 12:32 pm 158

For example:

Class(Cell) @
[new : Cell,
 contents : Ó(Self<:Cell) Self→Nat,
 set : Ó(Self<:Cell) Self→Nat→Self]

cellClass : Class(Cell) @
[new = ς(z:Class(Cell)) obj(Self=Cell)

[contents = ς(s:Self) z.contents(Self)(s),
 set = ς(s:Self) z.set(Self)(s)],

 contents = λ(Self<:Cell) λ(s:Self) 0,
 set = λ(Self<:Cell) λ(s:Self) λ(n:Nat) s.contents := n]

Object Calculi September 27, 1996 12:32 pm 159

Inheritance and Self
We can now reconsider the inheritance relation between classes.

Suppose that we have A’ <: A:

A’ 7 Obj(X)[liυi’:Bi’{X} iÏ1..n+m]
Class(A’) 7 [new:A’, li : Ó(X<:A’)X→Bi’{X} iÏ1..n+m]

We say that:

li is inheritable from Class(A) into Class(A’)
if and only if X <: A’ implies Bi{X} <: Bi’{X}, for all iÏ1..n

• Inheritability is not an immediate consequence of A’ <: A.

• Inheritability is expected between a class type C and another class type C’
obtained as an extension of C.

Object Calculi September 27, 1996 12:32 pm 160

When li is inheritable, we have:

Ó(X<:A)X→Bi{X} <: Ó(X<:A’)X→Bi’{X}

So, if c : Class(A) and li is inheritable, we have c.li : Ó(X<:A’)X→Bi’{X}.

Then c.li can be reused when building a class c’ : Class(A’).

Object Calculi September 27, 1996 12:32 pm 161

For example, set is inheritable from Class(Cell) to Class(GCell):

Class(GCell) @
[new : GCell,
 contents : Ó(Self<:GCell) Self→Nat,
 set : Ó(Self<:GCell) Self→Nat→Self,

 get : Ó(Self<:GCell) Self→Nat]

gcellClass : Class(GCell) @
[new = ς(z:Class(GCell)) obj(Self=GCell)[…],
 contents = λ(Self<:GCell) λ(s:Self) 0,
 set = cellClass.set,
 get = λ(Self<:GCell) λ(s:Self) s.contents]

Object Calculi September 27, 1996 12:32 pm 162

Self Types

and

Higher-Order Object Calculi

Object Calculi September 27, 1996 12:32 pm 163

Inheritance without Subtyping?
• Up to this point, subtyping justifies inheritance.

• This leads to a great conceptual economy.

• It corresponds well to the rules of most typed languages.

• But there are situations where one may want inheritance without
subtyping.

• There are also a few languages that support inheritance without subtyping
(e.g., Theta, TOOPLE, Emerald).

Object Calculi September 27, 1996 12:32 pm 164

The Problem
Consider cells with an equality method:

CellEq @
µ(X)[contents : Nat, set : Nat → X, eq : X → Bool]

CellSEq @
µ(X)[contents : Nat, set : Nat → X, sign : Bool, eq : X → Bool]

But then CellSEq is not a subtype of CellEq.

This situation is typical when there are binary methods, such as eq.

Giving up on subtyping is necessary for soundness.

On the other hand, it would be good still to be able to reuse code, for exam-
ple the code eq = ς(x)λ(y) x.contents = y.contents.

Object Calculi September 27, 1996 12:32 pm 165

Solutions
• Avoid contravariant occurrences of recursion variables,

to preserve subtyping.

CellEq’ @ µ(X)[..., eq : Cell → Bool]
CellSEq’ @ µ(X)[..., sign : Bool, eq : Cell → Bool]

• Axiomatize a primitive matching relation between types <#, work out its
theory, and relate it somehow to code reuse.

CellSeq <# CellEq

(But the axioms are not trivial, and not unique.)

• Move up to higher-order calculi and see what can be done there.
There are two approaches:

~ F-bounded quantification (Cook et al.);

~ higher-order subtyping (us).

Object Calculi September 27, 1996 12:32 pm 166

The Higher-Order Path
• Let us define two type operators:

CellEqOp @
λ(X)[contents : Nat, set : Nat → X, eq : X → Bool]

CellSEqOp @
λ(X)[contents : Nat, set : Nat → X, sign : Bool, eq : X → Bool]

• We write:

CellEqOp :: Ty⇒Ty
CellSEqOp :: Ty⇒Ty

to mean that these are type operators.

Object Calculi September 27, 1996 12:32 pm 167

• Then, for each type X, we have:

CellSEqOp(X) <: CellEqOp(X)

• This is higher-order subtyping: pointwise subtyping between
type operators.

• We say that CellSEqOp is a suboperator of CellEqOp, and
we write:

CellSEqOp <: CellEqOp :: Ty⇒Ty

• Object types can be obtained as fixpoints of these operators:

CellEq @
µ(X)CellEqOp(X)

CellSEq @
µ(X)CellSEqOp(X)

• So although CellSEq is not a subtype of CellEq, these types still have
something in common:
they are fixpoints of two suboperators of CellEqOp.

Object Calculi September 27, 1996 12:32 pm 168

• We can then write polymorphic functions by quantifying over
suboperators:

eqF @
λ(F <: CellEqOp :: Ty⇒Ty) λ(x : µ(X)F(X)) λ(y : µ(X)F(X))

x.contents = y.contents
: Ó(F <: CellEqOp :: Ty⇒Ty) µ(X)F(X) → µ(X)F(X) → Bool

• This function can be instantiated at both CellEqOp and CellSEqOp.

• This function can also be used to write pre-methods for classes.
(For this we let pre-methods be polymorphic functions.)

Object Calculi September 27, 1996 12:32 pm 169

Conclusions

Object Calculi September 27, 1996 12:32 pm 170

• Functions vs. objects:

~ Functions can be translated into objects.
Therefore, pure object-based languages are at least as expressive as
procedural languages.
(Despite all the Smalltalk philosophy, to our knowledge nobody had
proved that one can build functions from objects.)

~ Conversely, using sophisticated type systems, it is possible to translate
objects into functions.
(But this translation is difficult and not practical.)

Object Calculi September 27, 1996 12:32 pm 171

• Classes vs. objects:

~ Classes can be encoded in object calculi, easily and faithfully. There-
fore, object-based languages are just as expressive as class-based ones.
(To our knowledge, nobody had shown that one can build type-correct
classes out of objects.)

~ Method update, a distinctly object-based construct, is tractable and can
be useful.

• We can make (some) sense of object-oriented constructs.

~ Object calculi are simple enough to permit precise definitions and
proofs.

~ Object calculi are quite expressive and object-oriented.

	Object Calculi
	Martín Abadi
	joint work with Luca Cardelli
	Digital Equipment Corporation Systems Research Center

	Understanding Objects
	From Functions to Objects
	Object Calculi
	The Role of “Functional” Object Calculi
	Plan
	Untyped Object Calculi (Functional)
	An Untyped Object Calculus: Syntax
	Syntax of the V-calculus
	a,b ::= terms
	x variable
	[li=V(xi)bi iÏ1..n] object (li distinct)
	a.l method invocation
	a.lﬁüV(x)b method update

	First Examples
	o @
	[l = V(x) [],
	m = V(x) x.l]
	cell @
	[contents = V(x) 0,
	set = V(x) l(n) x.contents ﬁü V(y) n]

	An Untyped Object Calculus: Reduction
	Let o 7 [li=V(xi)bi iÏ1..n] (li distinct)
	o.lj îïñ bjYxj¨oZ (jÏ1..n)
	o.ljﬁüV(y)b îïñ [lj=V(y)b, li=V(xi)bi iÏ(1..n)-{j}] (jÏ1..n)
	In addition, if a îïñ b then C[a] îïñ C[b] where C[-] is any context.

	Some Example Reductions
	Let o @ [l=V(x)x.l] divergent method
	then o.l îïñ x.lYx¨oZ 7 o.l îïñ ...
	Let o’ @ [l = V(x)x] self-returning method
	then o’.l îïñ xYx¨o’Z 7 o’
	Let o” @ [l = V(y) (y.lﬁüV(x)x)] self-modifying method
	then o”.l îïñ (o”.lﬁüV(x)x) îïñ o’

	Expressiveness
	[..., l=b, ...] @ [..., l=V(y)b, ...] for an unused y
	o.l:=b @ o.lﬁüV(y)b for an unused y

	Some Examples
	A Cell
	Let cell @
	[contents = 0,
	set = V(x) l(n) x.contents := n]
	Then cell.set(3)
	îïñ (l(n)[contents = 0, set = V(x) l(n) x.contents := n]
	.contents:=n)(3)
	îïñ [contents = 0, set = V(x)l(n) x.contents := n] .contents:=3
	îïñ [contents = 3, set = V(x) l(n) x.contents := n]
	and cell.set(3). contents
	îïñ ...
	îïñ 3

	A Cell with an Accessor
	gcell @
	[contents = 0,
	set = V(x) l(n) x.contents := n,
	get = V(x) x.contents]

	A Cell with Undo
	uncell @
	[contents = 0,
	set = V(x) l(n) (x.undo := x).contents := n,
	undo = V(x) x]

	Object-Oriented Booleans
	true @ [if = V(x) x.then, then = V(x) x.then, else = V(x) x.else]
	false @ [if = V(x) x.else, then = V(x) x.then, else = V(x) x.else]
	cond(b,c,d) @ ((b.then:=c).else:=d).if
	cond(true, false, true) 7 ((true.then:=false).else:=true).if
	îïñ ([if = V(x) x.then, then = false, else = V(x) x.else].else:=true).if
	îïñ [if = V(x) x.then, then = false, else = true].if
	îïñ [if = V(x) x.then, then = false, else = true].then
	îïñ false

	Object-Oriented Natural Numbers
	zero @
	[case = l(z) l(s) z,
	succ = V(x) x.case := l(z) l(s) s(x)]
	zero 7 [case = l(z) l(s) z, succ = ...]
	one @ zero.succ 7 [case = l(z) l(s) s(zero), succ = ...]
	pred @ l(n) n.case(zero)(l(p)p)

	A Calculator
	calculator @
	[arg = 0.0,
	acc = 0.0,
	enter = V(s) l(n) s.arg := n,
	add = V(s) (s.acc := s.equals).equals ﬁü V(s’) s’.acc+s’.arg,
	sub = V(s) (s.acc := s.equals).equals ﬁü V(s’) s’.acc-s’.arg,
	equals = V(s) s.arg]
	calculator .enter(5.0) .equals = 5.0
	calculator .enter(5.0) .sub .enter(3.5) .equals = 1.5
	calculator .enter(5.0) .add .add .equals = 15.0

	Functions as Objects
	Translation of the untyped l-calculus
	äxã @ x
	äl(x)bã @
	[arg = V(x) x.arg,
	val = V(x) äbãYx¨x.argZ]
	äb(a)ã @ (äbã.arg := äaã).val
	ä(l(x)b)(a)ã îïññ äbYx¨aZã
	ä(l(x)x)(y)ã @ ([arg = V(x) x.arg, val = V(x) x.arg].arg := y).val
	îïñ [arg = V(x) y, val = V(x) x.arg].val
	îïñ [arg = V(x) y, val = V(x) x.arg].arg
	îïñ y
	@ äyã

	An Operational Semantics
	An Operational Semantics: Results
	If º a Òñ v and º a Òñ v’, then v 7 v’.
	Proposition
	(Soundness of weak reduction)
	Theorem
	(Completeness of weak reduction)

	Classes
	o @ [li = V(xi) bi iÏ1..n]
	c @
	[new = V(z) [li = V(x) z.li(x) iÏ1..n],
	li = l(xi) bi iÏ1..n]

	A Class for Cells
	cellClass @
	[new = V(z)
	[contents = V(x) z.contents(x), set = V(x) z.set(x)],
	contents = l(x) 0,
	set = l(x) l(n) x.contents := n]
	cellClass.new yields a standard cell:
	[contents = 0, set = V(x) l(n) x.contents := n]

	Inheritance
	c’ @ [new=..., li=c.li iÏ1..n, lj=... jÏn+1..m]

	Inheritance for Cells
	cellClass @
	[new = V(z)
	[contents = V(x) z.contents(x), set = V(x) z.set(x)],
	contents = l(x) 0,
	set = l(x) l(n) x.contents := n]
	uncellClass @
	[new = V(z) [...],
	contents = cellClass.contents,
	set = l(x) cellClass.set(x.undo := x),
	undo = l(x) x]
	Untyped Object Calculi (Imperative)

	An Imperative Untyped Object Calculus
	Syntax of the impV-calculus
	a,b ::= programs
	... (as before)
	let x = a in b let
	clone(a) cloning

	A Cell with Undo (Revisited)
	uncell @
	[contents = 0,
	set = V(x) l(n) (x.undo := x).contents := n,
	undo = V(x) x]
	uncell @
	[contents = 0,
	set = V(x) l(n)
	let y = clone(x)
	in (x.undo := y).contents := n,
	undo = V(x) x]

	A Prime-Number Sieve
	let sieve =
	[m = V(s) l(n)
	let sieve’ = clone(s)
	in s.prime := n;
	s.next := sieve’;
	s.m ﬁü V(s’) l(n’)
	case (n’ mod n)
	when 0 do [],
	when p+1 do sieve’.m(n’);
	[],
	prime = V(x) x.prime,
	next = V(x) x.next];
	for i in 1..99 do sieve.m(i.succ); (accumulate the primes ² 100)
	sieve.next.next.prime (returns the third prime)

	Procedures as Imperative Objects
	Translation of an imperative l-calculus
	äxã @ x
	äx := aã @
	let y = äaã
	in x.arg := y
	äl(x)bã @
	[arg = V(x) x.arg,
	val = V(x) äbãYx¨x.argZ]
	äb(a)ã @
	let f = clone(äbã)
	in let y = äaã
	in (f.arg := y).val

	Imperative Operational Semantics
	[li=ii iÏ1..n]
	s°S º b Òñ v°s’

	Example Executions
	First-Order Object Calculi
	Object Types and Subtyping
	A First-Order Calculus
	An Operational Semantics (with Types)
	A Typed Divergent Term
	Typed Object-Oriented Booleans
	Notation

	Typed Cells
	Some Results
	Theorem (Minimum types)
	Theorem (Subject reduction)

	Minimum Types
	Proposition
	(MinOb1<: typings are Ob1<: typings)
	Proposition
	(MinOb1<: has unique types)
	Proposition
	(MinOb1<: has smaller types than Ob1<:)
	Proposition
	(Ob1<: has minimum types)
	Proof

	Subject Reduction
	Lemma
	(Bound weakening)
	Lemma
	(Substitution)
	Theorem
	(Subject reduction)
	Proof
	Case (Red Object)
	Case (Red Select)
	Case (Red Update)

	Unsoundness of Covariance
	Classes, with Types
	Inheritance, with Types
	Class Types for Cells
	Typed Reasoning
	Second-Order Object Calculi
	Type Quantification
	The Universal Quantifier
	id : Ó(X) XÆX @ l(X) l(x:X) x the identity function
	id(Int) : IntÆInt its instantiation to the type Int
	id(Int)(3) : Int its application to an integer

	The Bounded Universal Quantifier
	Structural Update
	l(C<:[l:Nat]) l(a:C) a.l:=3 : Ó(C<:[l:Nat]) CÆ[l:Nat]
	via (Val Update)
	l(C<:[l:Nat]) l(a:C) a.l:=3 : Ó(C<:[l:Nat]) CÆC
	via (Val Structural Update)

	The Bounded Existential Quantifier
	pack X<:A=A’ with b{X}:B{X}
	open c as X<:A,x:B{X} in d{X,x}:D
	p : Ô(X<:Int)X¥(XÆX) @
	pack X<:Int=Nat with Ü0,succNatá : X¥(XÆX)
	a : Int @
	open p as X<:Int,x:X¥(XÆX) in snd(x)(fst(x)):Int

	To Make a Long Story Short
	Translations

	Objects vs. Procedures
	The Translation Problem
	The Self-Application Semantics
	Untyped self-application interpretation

	The Self-Application Semantics (Typed)
	[li:Bi iÏ1..n] @ m(X)Üli:XÆBi iÏ1..ná
	Self-application interpretation

	The State-Application Semantics (Sketch)
	Untyped state-application interpretation
	Untyped state-application interpretation (continued)

	The State-Application Semantics (Typed)
	[li:Bi iÏ1..n] @ Ô(X) Üst: X, mt: Üli:XÆBi iÏ1..náá
	State-application interpretation

	The Recursive-Record Semantics (Example)
	CPoint @
	Obj(X)[x:Int, c:Color | mv:IntÆX]
	cPoint : CPoint @
	[x = 0, c = black | mv = V(s:CPoint) l(dx:Int) sPx:=sPx+dx]
	CPoint @
	m(X)Üx:Int, c:Color, mv:IntÆXá
	cPoint : CPoint @
	let rec init(x0:Int, c0:Color) =
	m(s:CPoint) fold(CPoint,
	Üx = x0, c = c0,
	mv = l(dx:Int) init(unfold(s)†x+dx, unfold(s)†c)á)
	in init(0, black)

	The Split-Methods Semantics
	Untyped split-method interpretation

	The Split-Method Semantics (Typed)
	[li:Bi iÏ1..n] @ m(X) Ülisel:XÆBi iÏ1..n, liupd:(XÆBi)ÆX iÏ1..ná
	[li:Bi iÏ1..n] @
	m(Y) Ô(X<:Y) Ülisel:XÆBi iÏ1..n, liupd:(XÆBi)ÆX iÏ1..ná
	[li:Bi iÏ1..n] @
	m(Y) Ô(X<:Y) Ür:X, lisel:XÆBi iÏ1..n, liupd:(XÆBi)ÆX iÏ1..ná
	Split-method interpretation

	An Imperative Version
	[fk:Bk kÏ1..m | li:Bi iÏ1..n] @
	m(Y) Ô(X<:Y) Ür:X, fk:Bk kÏ1..m, li:XÆBi iÏ1..n, cl:ÜáÆXá
	Imperative self-application interpretation

	Conclusion to the Encodings
	Self Types
	Self Types
	Object Types and Self
	Terms with Self
	Method Update and Self
	Abbreviations
	Cells
	Cells with Undo
	Operational Semantics
	Type Rules for Self
	Adding the Universal Quantifier
	Theorem
	(Subject reduction)

	Classes and Self
	Inheritance and Self
	Self Types and Higher-Order Object Calculi

	Inheritance without Subtyping?
	The Problem
	Solutions
	The Higher-Order Path
	Conclusions

