

HOOTS’95 August 16, 1995 1 of 27

Operationally Sound Update

Luca Cardelli

Digital Equipment Corporation
Systems Research Center

HOOTS’95 August 16, 1995 2 of 27

Outline

¥ The type rules necessary for Òsufficiently polymorphicÓ update operations on
records and objects are based on unusual operational assumptions.

¥ These update rules are sound operationally, but not denotationally (in standard
models). They arise naturally in type systems for programming, and are not easily
avoidable.

¥ Thus, we have a situation where operational semantics is clearly more advantageous
than denotational semantics.

¥ However (to please the semanticists) I will show how these operationally-based type
systems can be translated into type systems that are denotationally sound.

HOOTS’95 August 16, 1995 3 of 27

The polymorphic update problem

L.Cardelli, P.Wegner

Ò

The need for bounded quantification arises very frequently in object-oriented programming.
Suppose we have the following types and functions:

It is typical in (type-free) object-oriented programming to reuse functions like moveX on objects
whose type was not known when moveX was defined. If we now define:

we may want to use moveX to move tiles, not just points.

Ó

type

Point

 = [

x

:

Int

,

y

:

Int

]

value

moveX

0

 =

λ

(

p

:

Point

,

dx

:

Int

)

p

.

x

 :=

p

.

x

 +

dx

;

p

value

moveX

 =

λ

(

P

 <:

Point

)

λ

(

p

:

P

,

dx

:

Int

)

p

.

x

 :=

p

.

x

 +

dx

;

p

type

Tile

 = [

x

:

Int

,

y

:

Int

,

hor

:

Int

,

ver

:

Int

]

Tile

 <:

Point

moveX

0

([

x

=0,

y

=0,

hor

=1,

ver

=1], 1).

hor

fails

moveX

(

Tile

)([

x

=0,

y

=0,

hor

=1,

ver

=1], 1).

hor

succeeds

HOOTS’95 August 16, 1995 4 of 27

¥ In that paper, bounded quantification was justified as a way of handling polymor-
phic update, and was used in the context of

imperative

 update.

¥ The examples were inspired by object-oriented applications. Object-oriented lan-
guages combine subtyping and polymorphism with state encapsulation, and hence
with imperative update. Some form of polymorphic update is inevitable.

¥ Simplifying the situation a bit, letÕs consider the equivalent example in a functional
setting. We might hope to achieve the following typing:

But ...

bump

@

λ

(

P

 <:

Point

)

λ

(

p

:

P

)

p

.

x

 :=

p

.

x

 + 1

bump

 :

Ó

(

P

 <:

Point

)

P

→

P

HOOTS’95 August 16, 1995 5 of 27

There is no bump there!

Neither semantically

J.Mitchell

In standard models, the type

Ó

(

P

<:

Point

)P→P contains only the identity function.

Consider {p} for any pÏPoint. If f : Ó(P<:Point)P→P, then f({p}) : {p}→{p}, therefore f must
map every point to itself, and must be the identity.

Nor parametrically
M.Abadi, L.Cardelli, G.Plotkin

By parametricity (for bounded quantifiers), we can show that if f : Ó(P<:Point)P→P,
then Ó(P<:Point) Ó(x:P) f(P)(x) =P x. Thus f is an identity.

Nor by standard typing rules
As shown next ...

HOOTS’95 August 16, 1995 6 of 27

The simple rule for update

¥ According to this rule, bump does not typecheck as desired:

We must go from p:P to p:Point by subsumption before we can apply the rule. There-
fore we obtain only:

(Val Simple Update)

E ∫ a : [li:Bi iÏ1..n] E ∫ b : Bj jÏ1..n

E ∫ a.lj:=b : [li:Bi iÏ1..n]

bump @ λ(P <: Point) λ(p: P) p.x := p.x + 1

bump : Ó(P <: Point) P→Point

HOOTS’95 August 16, 1995 7 of 27

The ÒstructuralÓ rule for update

¥ According to this rule, bump typechecks as desired, using the special case where A
is a type variable.

¥ Therefore, (Val Structural Update) is not sound in most semantic models, because it
populates the type Ó(P<:Point)P→P with a non-identity function.

¥ However, (Val Structural Update) is in practice highly desirable, so the interesting
question is under which conditions it is sound.

(Val Structural Update)

E ∫ a : A E ∫ A <: [li:Bi iÏ1..n] E ∫ b : Bj jÏ1..n

E ∫ a.lj:=b : A

bump @ λ(P <: Point) λ(p: P) p.x := p.x + 1

bump : Ó(P <: Point) P→P

HOOTS’95 August 16, 1995 8 of 27

CanÕt allow too many subtypes
¥ Suppose we had:

then:

unsound!

¥ To recover from this problem, the subtyping rule for records/objects must forbid
certain subtypings:

¥ Therefore, for soundness, the rule for structural updates makes implicit assump-
tions about the subtype relationships that may exist.

BoundedPoint @ {x: 0..9, y: 0..9}
BoundedPoint <: Point

bump(BoundedPoint)({x=9, y=9}) : BoundedPoint

(Sub Object)

E ∫ Bi ÓiÏ1..m

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

HOOTS’95 August 16, 1995 9 of 27

Relevant rules for structural update

(Sub Object) (Val Subsumption)

E ∫ Bi ÓiÏ1..m E ∫ a : A E ∫ A <: B

E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n] E ∫ a : B

(Val Object) (Val Structural Update)

E ∫ bi : Bi ÓiÏ1..n E ∫ a : A E ∫ A <: [li:Bi iÏ1..n] E ∫ b : Bj jÏ1..n

E ∫ [li=bi iÏ1..n] : [li:Bi iÏ1..n] E ∫ a.lj:=b : A

(Red Update)

∫ a Òñ [li=vi iÏ1..n] ∫ b Òñ v jÏ1..n

∫ a.lj:=b Òñ [lj=v, li=vi iÏ1..nÐ{j}]

HOOTS’95 August 16, 1995 10 of 27

The structural subtyping lemmas

Lemma (Structural subtyping)
If E ∫ [li:Bi iÏI]<:C then either C 7 Top, or C 7 [li:Bi iÏJ] with J⊆ I.
If E ∫ C<:[li:Bi iÏJ] then either C 7 [li:Bi iÏI] with J⊆ I,
 or C 7 X1 and E contains a chain X1 <: ... <: Xp <: [li:Bi iÏI] with J⊆ I.

Proof

By induction on the derivations of E ∫ [li:Bi iÏI]<:C and E ∫ C<:[li:Bi iÏI].

M

HOOTS’95 August 16, 1995 11 of 27

Soundness by subject reduction

Theorem (Subject reduction)
If ∫ a : A and ∫ a Òñ v then ∫ v : A.

Proof By induction on the derivation of ∫ a Òñ v.

Case (Red Update)

By hypothesis ∫ c.lj:=b : A. This must have come from (1) an application of (Val
Structural Update) with assumptions ∫ c : C, and ∫ C <: D where D 7 [lj:Bj, ...],
and ∫ b : Bj, and with conclusion ∫ c.lj:=b : C, followed by (2) a number of sub-
sumption steps implying ∫ C <: A by transitivity.

By induction hypothesis, since ∫ c : C and ∫ c Òñ z 7 [li=zi iÏ1..n], we have ∫ z : C.

By induction hypothesis, since ∫ b : Bj and ∫ b Òñ w, we have ∫ w : Bj.

Now, ∫ z : C must have come from (1) an application of (Val Object) with assump-
tions ∫ zi : BiÕ and CÕ 7 [liÕ:BiÕ iÏ1..n], and with conclusion ∫ z : CÕ, followed by (2)
a number of subsumption steps implying ∫ CÕ <: C by transitivity. By transitivity,
 ∫ CÕ <: D. Hence by the Structural Subtyping Lemma, we must have Bj 7 BjÕ. Thus
 ∫ w : BjÕ. Then, by (Val Object), we obtain ∫ [lj=w, li=zi iÏ1..nÐ{j}] : CÕ. Since ∫ CÕ<:A
by transitivity, we have ∫ [lj=w, li=zi iÏ1..nÐ{j}] : A by subsumption.

∫ c Òñ [li=zi iÏ1..n] ∫ b Òñ w jÏ1..n

∫ c.lj:=b Òñ [lj=w, li=zi iÏ1..nÐ{j}]

HOOTS’95 August 16, 1995 12 of 27

Other structural rules
¥ Rules based on structural assumptions (structural rules, for short) are not restricted

to record/object update. They also arise in:

~ method invocation with Self types,

~ object cloning,

~ class encodings,

~ unfolding recursive types.

¥ The following is one of the simplest examples of the phenomenon (although not very
useful in itself):

HOOTS’95 August 16, 1995 13 of 27

A structural rule for product types
M.Abadi

¥ The following rule for pairing enables us to mix two pairs a and b of type C into a
new pair of the same type. The only assumption on C is that it is a subtype of a prod-
uct type B1×B2.

The soundness of this rule depends on the property that every subtype of a product
type B1×B2 is itself a product type C1×C2.

¥ This property is true operationally for particular systems, but fails in any semantic
model where subtyping is interpreted as the subset relation. Such a model would al-
low the set {a,b} as a subtype of B1×B2 whenever a and b are elements of B1×B2. If a
and b are different, then Ü fst(a),snd(b)á is not an element of {a,b}. Note that {a,b} is not
a product type.

E ∫ C <: B1×B2 E ∫ a : C E ∫ b : C

E ∫ Ü fst(a),snd(b)á : C

HOOTS’95 August 16, 1995 14 of 27

A structural rule for recursive types
M.Abadi, L.Cardelli, R.Viswanathan

¥ In the paper ÒAn Interpretation of Objects and Object typesÓ we give a translation of
object types into ordinary types:

this works fine for non-structural rules.

¥ In order to validate a structural update rule in the source calculus, we need a struc-
tural update rule in the target calculus. It turns out that the necessary rule is the fol-
lowing, which is operationally sound:

[li:Bi iÏ1..n] @
µ(Y) Ô(X<:Y) Ür:X, lisel:X→Bi iÏ1..n, liupd:(X→Bi)→X iÏ1..ná

E ∫ C <: µ(X)B{X} E ∫ a : C

E ∫ unfold(a) : BYCZ

HOOTS’95 August 16, 1995 15 of 27

A structural rule for method invocation
¥ In the context of object types with Self types:

This structural rule is necessary to ÒencapsulateÓ structural update inside methods:

(Val Select)

E ∫ a : A E ∫ A <: Obj(X)[li:Bi{X} iÏ1..n] jÏ1..n

E ∫ a.lj : BjYAZ

A @ Obj(X)[n: Int, bump: X]

λ(Y <: A) λ(y: Y) y.bump
: Ó(Y <: A) Y→Y

HOOTS’95 August 16, 1995 16 of 27

Structural rules and class encodings
Types of the form Ó(X<:A)X→B{X} are needed also for defining classes as collections
of pre-methods. Each pre-method must work for all possible subclasses, parametrically
in self, so that it can be inherited.

A @ Obj(X)[li:Bi{X} iÏ1..n]

Class(A) @ [new: A, li: Ó(X<:A)X→Bi{X} iÏ1..n]

Bump @ Obj(X)[n: Int, bump: X]

Class(Bump) @ [new: Bump, bump: Ó(X<:Bump)X→X]

c : Class(Bump) @
[new = ς(c: Class(Bump)) [n = 0, bump = ς(s: Bump) c.bump(Bump)(s)],
 bump = λ(X<:Bump) λ(x:X) x.n:=x.n+1}]

HOOTS’95 August 16, 1995 17 of 27

A structural rule for cloning
¥ In the context of imperative object calculi:

This structural rule is necessary for bumping and returning a clone instead of the
original object:

(Val Clone)

E ∫ a : A E ∫ A <: [li:Bi iÏ1..n] jÏ1..n

E ∫ clone(a) : A

bump @ λ(P <: Point) λ(p: P) clone(p).x := p.x + 1

bump : Ó(P <: Point) P→P

HOOTS’95 August 16, 1995 18 of 27

Comments
¥ Structural rules are quite satisfactory. The operational semantics is the right one, the

typing rules are the right ones for writing useful programs, and the rules are sound
for the semantics.

¥ We do not have a denotational semantics (yet?). (The paper ÒOperations on
RecordsÓ by L.Cardelli and J.Mitchell contains a limited model for structural update;
no general models seems to be known.)

¥ Even without a denotational semantcs, there is an operational semantics from which
one could, hopefully, derive a theory of typed equality.

¥ Still, I would like to understand in what way a type like Ó(X<:Point)X→X does not
mean what most people in this room might think.

¥ Insight may come from translating a calculus with structural rules, into one without
structural rules for which we have a standard semantics.

HOOTS’95 August 16, 1995 19 of 27

Translating away structural rules
¥ The ÒPenn translationÓ can be used to map F<: into F by threading coercion functions.

¥ Similarly, we can map an F<:-like calculus with structural rules into a normal F<:-like
calculus by threading update functions (c.f. M.Hofmann and B.Pierce: Positive sub-
typing).

¥ Example :

translates to:

¥ Next I discuss a simplified, somewhat ad-hoc, calculus to formalize the main ideas
for this translation.

f : Ó(X <: [l: Int]) X → X @
λ(X <: [l: Int]) λ(x: X) x.l := 3

 f ([l: Int])

 (N.B. the update x.l:=3 uses the structural rule)

f : Ó(X <: [l: Int]) [l: X→Int→X] → X → X @
λ(X <: [l: Int]) λ(πX: [l: X→Int→X]) λ(x: X) πX.l(x)(3)

f ([l: Int]) ([l = λ(x: [l: Int]) λ(y: Int) x.l := y])

 (N.B. the update x.l:=y uses the non-structural rule)

HOOTS’95 August 16, 1995 20 of 27

Syntax

¥ We consider method update instead of field update (aA.l:=b @ a.lfiüς(x:A)b).

¥ We do not consider object types with Self types.

¥ We do not consider arbitrary bounds for type variables, only object-type bounds.

A,B ::=
X
[li:Bi iÏ1..n]
A→B
Ó(X<:[li:Bi iÏ1..n])B

types
type variable
object type (li distinct)
function types
bounded universal type

a,b ::=
x
[li=ς(xi:Ai)bi iÏ1..n]
a.l
a.lfiüς(x:A)b
λ(x:A)b
b(a)
λ(X<:[li:Bi iÏ1..n])b
b(A)

terms
variable
object (li distinct)
method invocation
method update
function
application
polymorphic function
polymorphic instantiation

HOOTS’95 August 16, 1995 21 of 27

Environments

Types

(Env) (Env x) (Env X<:) (where A 7 [li:Bi iÏ1..n])

E ∫ A xÌdom(E) E ∫ A XÌdom(E)

 ∫ Q E, x:A ∫ Q E, X<:A ∫ Q

(Type X<:) (Type Object) (li distinct)

EÕ, X<:A, EÓ ∫ Q E ∫ Bi ÓiÏ1..n

EÕ, X<:A, EÓ ∫ X E ∫ [li:Bi iÏ1..n]

(Type Arrow) (Type All<:)

E ∫ A E ∫ B E, X<:A ∫ B

E ∫ A→B E ∫ Ó(X<:A)B

HOOTS’95 August 16, 1995 22 of 27

Subtyping

(Sub Refl) (Sub Trans)

E ∫ A E ∫ A <: B E ∫ B <: C

E ∫ A <: A E ∫ A <: C

(Sub X) (Sub Object) (li distinct)

EÕ, X<:A,EÓ ∫ Q E ∫ Bi ÓiÏ1..n+m

EÕ, X<:A, EÓ ∫ X<:A E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Sub Arrow) (Sub All)

E ∫ AÕ <: A E ∫ B <: BÕ E ∫ AÕ <: A E, X<:AÕ ∫ B <: BÕ

E ∫ A→B <: AÕ→BÕ E ∫ Ó(X<:A)B <: Ó(X<:AÕ)BÕ

HOOTS’95 August 16, 1995 23 of 27

Typing

(Val Subsumption) (Val x)

E ∫ a : A E ∫ A <: B EÕ, x:A, EÓ ∫ Q

E ∫ a : B EÕ, x:A, EÓ ∫ x:A

(Val Object) (where A 7 [li:Bi iÏ1..n]) (Val Select)

E, xi:A ∫ bi : Bi ÓiÏ1..n E ∫ a : [li:Bi iÏ1..n] jÏ1..n

E ∫ [li=ς(xi:A)bi iÏ1..n] : A E ∫ a.lj : Bj

(Val Update Obj) (where A 7 [li:Bi iÏ1..n]) (Val Update X) (where A 7 [li:Bi iÏ1..n])

E ∫ a : A E, x:A ∫ b : Bj jÏ1..n E ∫ a : X E ∫ X<:A E, x:X ∫ b : Bj jÏ1..n

E ∫ a.ljfiüς(x:A)b : A E ∫ a.ljfiüς(x:X)b : X

(Val Fun) (Val Appl)

E, x:A ∫ b : B E ∫ b : A→B E ∫ a : A

E ∫ λ(x:A)b : A→B E ∫ b(a) : B

(Val Fun2<:) (Val Appl2<:) (where AÕ 7 [li:Bi iÏ1..n] or AÕ 7 Y)

E, X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ AÕ<:A

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(AÕ) : BYAÕZ

HOOTS’95 August 16, 1995 24 of 27

¥ The source system for the translation is the one given above. The target system is the
one given above minus the (Val Update X) rule.

¥ Derivations in the source system can be translated to derivations that do not use (Val
Update X). The following tables give a slightly informal summary of the translation
on derivations.

Translation of Environments

where each li: X→(X→äBiã)→X is an updator that takes an object of type X, takes a pre-
method for X (of type X→äBiã), updates the i-th method of the object, and returns the
modified object of type X.

äã @

äE, x:Aã @ äEã, x:äAã

äE, X<:[li:Bi iÏ1..n]ã @ äEã, X<:ä[li:Bi iÏ1..n]ã, πX:[li:X→(X→äBiã)→X iÏ1..n]

HOOTS’95 August 16, 1995 25 of 27

Translation of Types

¥ N.B. the translation preserves subtyping. In particular:

since:

¥ We have a calculus with polymorphic update where quantifier and arrow types are
contravariant on the left (c.f. Positive Subtyping).

äXã @ X

ä[li:Bi iÏ1..n]ã @ [li:äBiã iÏ1..n]

äA→Bã @ äAã→äBã

äÓ(X<:[li:Bi iÏ1..n])Bã @ Ó(X<:ä[li:Bi iÏ1..n]ã)[li:X→(X→äBiã)→X iÏ1..n]→äBã

äÓ(X<:[li:Bi iÏ1..n])Bã <: äÓ(X<:[li:Bi iÏ1..n+m])Bã

Ó(X<:ä[li:Bi iÏ1..n]ã) [li:X→(X→äBiã)→X iÏ1..n]→äBã <:

Ó(X<:ä[li:Bi iÏ1..n+m]ã) [li:X→(X→äBiã)→X iÏ1..n+m]→äBã

HOOTS’95 August 16, 1995 26 of 27

Translation of Terms

äxã @ x

ä[li=(xi:Ai)bi iÏ1..n]ã @ [li=ς(xi:äAiã)äbiã iÏ1..n]

äa.ljã @ äaã.lj

äa.lfiüς(x:A)bã @ äaã.lfiü(x:äAã)äbã) for (Val Update Obj)

äa.lfiüς(x:X)bã @ πX.l(äaã)(λ(x:X)äbã) for (Val Update X)

äλ(x:A)bã @ λ(x:äAã)äbã

äb(a)ã @ äbã(äaã)

äλ(X<:[li:Bi iÏ1..n])bã @
λ(X<:ä[li:Bi iÏ1..n]ã) λ(πX:[li:X→(X→äBiã)→X iÏ1..n]) äbã

äb(A)ã @ for A = [li:Bi iÏ1..n]
äbã(äAã) ([li = λ(xi:äAã) λ(f:äAã→äBiã) x.lifiüς(z:äAã)f(z) iÏ1..n])

äb(Y)ã @ äbã(Y)(πY)

HOOTS’95 August 16, 1995 27 of 27

Conclusions
¥ Structural rules for polymorphic update are sound for operational semantics. They

work equally well for functional and imperative semantics.

¥ Structural rules can be translated into non structural rules. I have shown a transla-
tion for a restricted form of quantification.

¥ Theories of equality for systems with structural rules have not been studied directly
yet. Similarly, theories of equality induced by the translation have not been studied.

