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Outline

¢ Basic notions and puzzles.

¢ Back to foundations.

¢ Forward to objects.

¢ Approach: take a (deceivingly) simple o-o program
and try to express it in "typed λ-calculus". Or, more
precisely: desperately look for any typed λ-calculus that
can express such a program.

¢ Two main threads:
- Subtyping for its own sake.
- Subtyping vs. inheritance.

¢ One main bias: extensible records.
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Part 1. Basic notions and puzzles.

Basic notions and first modeling attempts.

What can subtyping say about o-o concepts?

What can subtyping achieve on its own?
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O-o languages features

Object-oriented programming bundles together a
number of important concepts, including:

Modularization (via class signatures)
Abstraction (via the method discipline)
Extensibility (via subclasses and inheritance)

But the characterizing property is extensibility:
reusing and extending existing code without editing it.

These properties are achieved in large part by extending
vanilla procedural languages with:

(1) Subtyping
(f(a) is ok if a is good enough for f)

(2) Inheritance
(self, and its amazing type rules)
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On the road to o-o

v-p: vanilla-procedural (Algol, Modula-2, C)

s-e: subtype-enriched   ‰            ‰             ‰

o-o: object-oriented (Simula, Modula-3, C++)

How much complexity is added by the first step? How
much by the second? We want to know because:

(1) O-o languages have a surprisingly difficult
semantics (and program logic). Moreover,
(2) they have a surprisingly difficult type theory.

We would like to understand them better. For (1) we
can apply well-established semantic techniques; e.g.
untyped λ-calculi (den.sem.) or to Hoare logics.
For (2) we need something much less well-established:
a sufficiently expressive typed calculus.
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Subtyping without inheritance

What happens if we add subtyping to a v-p language,
but not inheritance? We do not get o-o programming
(according to most definitions), but:

¢ This is an important stepping stone in understanding
the more complex structure of full o-o languages.

¢ It helps making clear what inheritance really
contributes, both in terms of complexity and usefulness.

¢ The s-e language paradigm is worth investigating on
its own. It is distinct from both v-p and o-o. In some
dimensions it is richer than o-o. Has some of the
advantages of o-o and lacks some of its disadvantages.

¢ We concentrate on extensibility (in the o-o sense),
and try to take it to extremes. Extensible records.
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Running example: Points

¢ First, define points of coords x,y, with m(-ove) and
eq(-ual) methods. (Let's do it in Modula-3.)

TYPE Point =
OBJECT

x,y: INTEGER;
METHODS

m(dx,dy: INTEGER): Point;
eq(other: Point): BOOLEAN;

END;

PROCEDURE MovePoint(self: Point;  dx,dy:INTEGER): Point =
BEGIN

self.x := self.x+dx;  self.y:=self.y+dy;
RETURN self;

END MovePoint;

PROCEDURE EqPoint(self,other: Point): BOOLEAN =
BEGIN

RETURN (self.x=other.x) AND (self.y=other.y);
END EqPoint;

VAR p: Point :=
NEW(Point, x:=0, y:=0, m:=MovePoint, eq:=EqPoint);
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¢ Then, define color points as points with an additional
component: c(-olor).

TYPE ClrPoint =
Point OBJECT

c: Clr;
END;

VAR cp: ClrPoint :=
NEW(ClrPoint, x:=0, y:=0, c:=Clr.Black,

m:=MovePoint, eq:=EqPoint);

✌ G o-o d news:

¢ We reuse and extend the definition of Point.
¢ We have subtyping: every ClrPoint is a Point.
¢ We inherit the code of MovePoint and EqPoint.

☛ Bad news: later.
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The main o-o typing trick

Suppose we have:

cp: ClrPoint

where the m method of cp changes also the color c.
By subclassing:

cp: Point

Now, if we could extract the raw procedure cpÒñm
which was provided as the method m of a point, we
would have:

cpÒñm : Point→Int×Int→Point
cpÒñm(p)(n,m)

CRASH! Whenever the point p lacks c.
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Fortunately, o-o languages (starting with Simula) forbid
the extraction of raw procedures. Subclassing remains
sound because of the following invariant:

The self parameter of a method is always the object 
from which the method is extracted.

o.m   7   oÒñm(o)

Now, this is an invariant about object values, which
leaves us with a fundamentally diffucult choice when
trying to reduce o-o typing to "something simpler":

¢ Either we have object types built in at the lowest level
of the formalism (as in o-o languages), so that the
invariant is maintained via rules about object types.

¢ Or we build objects types from more primitive
concepts, and we must find some other way to enforce
the invariant, or something equivalent.

The latter is extremely difficult. Nonetheless, this is the
road we shall follow.
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Type systems fundamentals

¢ 1st-order types (System F1)
(data structures and higher-order functions)

Nat, A×B, A+B, A→B;    µ(X)B

(Adding subtyping:
watch out for → and µ)

¢ 2nd-order types (System F2 or F)
(ML polymorphism, CLU a.d.t.'s, and more)

X, A→B, Ó(X)B;    µ(X)B

(Nat, ×, +, Ô are definable)

(Adding subtyping:
bounded quantification: Ó(X<:A)B
F-bounded quantification: Ó(X<:F[X])B
meet types: A∧ B <: A)
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1st-order record types

Programming with × and + is extremely boring. In
practice we want to use labeled, not positional, data
structures. These arise frequently in languages as
enumerations, records, modules, ... and objects.

¢ Generalize products A1×..×An to
unordered labeled tuples (l1:A1, .., ln:An).

¢ Subtype enrichment: require (l1:A, l2:B, l3:C) to be
considered as good as (l1:A, l2:B), (l2:B), etc.
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We call the resulting structures records, written:

Rcd(l1:A1, .., ln:An) record types, li distinct
rcd(l1=a1, .., ln=an) records values, li distinct

enjoying a subtyping (<:) property, e.g.:

Rcd(l1:A, l2:B, l3:C) <: Rcd(l1:A, l3:C)

Note: a similar path may be followed to generalize +,
obtaining variants.

vnt(l1=a1) : Vnt(l1:A, l2:B, l3:C)
Vnt(l1:A, l3:C) <: Vnt(l1:A, l2:B, l3:C)

(This will not be discussed further.)
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Expected properties of subtyping

¢ Subtyping is a reflexive and transitive relation. (A
preorder; often a partial order, but this is not useful in
typechecking.):

A<:A, A<:B ∧  B<:C ⇒  A<:C

¢ Satisfies subsumption; the single rule connecting
subtyping assertions with typing assertions:

a:A ∧  A<:B ⇒  a:B

¢ Is structural over type constructors; the subtyping of
the whole depends only on the subtyping of the parts.

A<:A' ∧  B<:B' ⇒  A×B <: A'×B' hierarchical

A'<:A ∧  B<:B' ⇒  A→B <: A'→B' contravariant

(X<:Y⇒ A<:B) ⇒  µ(X)A <: µ(Y)B infinite-unfold
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Ex: Points (via 1st-order records)

Let Point =
µ(Self) Rcd(x,y:Int, m:Int×Int→Self)

Let ClrPoint =
µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self)

Point 7 Rcd(x,y:Int, m:Int×Int→Point)
ClrPoint 7 Rcd(x,y:Int, c:Clr, m:Int×Int→ClrPoint)

✌ Good news: ClrPoint <: Point

?! Weird: the above fails if we include eq methods.

☛ Bad news: ClrPoint does not reuse Point.
Even if we say Let ClrPoint = Point ∏ Rcd(c:Clr),
the result type of m is unsatisfactory for ClrPoint.
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A design niche

We have reached a clear-cut point in design space: a
1st-order language featuring records and subtyping:

Nat, Rcd(l1:A1, .., ln:An), Vnt(l1:A1, .., ln:An),

A→B, µ(X)B

The next natural step is to add polymorphism. But this
is not all that easy.
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2nd-order record types

¢ Prologue: 2nd-order types are types parameterized by
type variables:

length: Ó(X)List(X)→Nat

Type variables can be instantiated with types, e.g. Nat:

length(Nat): List(Nat)→Nat

length(Nat)([1,2,3]) = 3
length(Bool)([true,false]) = 2
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¢ 2nd-order record types (perhaps a slight misnomer)
are record types parameterized by type-row (or row, or
extension) variables.

Rcd(l1:A1, .., ln:An, X)

where X is a type-row variable that can be instantiated
with an appropriate type-row, e.g.  ln+1:An+1, Y:

Rcd(l1:A1, .., ln:An, ln+1:An+1, Y)

The empty (or more appropriately, uninteresting)

type-row is called Etc. We can use it to finally

instantiate Y above:

Rcd(l1:A1, .., ln:An, ln+1:An+1, Etc)
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Ex: Points (via 2nd-order records)

Let Point[X ... ] = (see later about the "...")
µ(Self) Rcd(x,y:Int, m:Int×Int→Self, X)

Point[X] 7 Rcd(x,y:Int, m:Int×Int→Point[X], X)

Let ClrPoint[Y ... ] = Point[c:Clr, Y]

ClrPoint[Y]
7 µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, Y)
7 Rcd(x,y:Int, c:Clr, m:Int×Int→ClrPoint[Y], Y)

✌ Good news:

¢ ClrPoint[Etc] <: Point[Etc]

¢ ClrPoint reuses the definition of Point

¢ m is parametric over extensions of Point
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Part 2. Back to foundations.

A more detailed understanding of the modeling features
we seem to need.

How to reduce them to more basic notions.

Note: this part is non-standard. Different foundational
approaches are used in the literature.
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Type rows

In general, a 2nd-order record type has the form:

Rcd(R)

where R is a type-row; that is, either:

X type-row variable
Etc uninteresting type-row
l:A, R type-row with l:A, followed by R

But what happened to the restriction that labels in a
record must be distinct?
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¢ First, l:A, R can be well-formed only if l
does not occur in R. This is written R¶l:

R¶L  R lacks (exactly) L 7 l1, .., ln, n≥0.

¢ The notion of "lacks" must be respected under
substitution, so l:A, X requires:

X¶l  i.e. X can be instantiated only to
type-rows R such that  R¶l.

¢ The idea of "lacks" must be applicable to the Etc
type-row. Consider:

l:A, Etc requires Etc¶l
l1:A1, l2:A2, Etc requires Etc¶l1, l2

Hence, we need to assume that Etc lacks (exactly)
anything we want, or perhaps that there are multiple
versions of Etc indexed by what they lack.
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¢ Only a complete row can give raise to a record:

Rcd(R) requires R¶() (R lacks nothing)

"complete" or "lacks nothing" does not mean every
label is defined; it means every label is accounted for,
either as a field or in the Etc sink.

¢ Finally, wherever there is a type variable there should
be a corresponding quantifier. So:

Ó(Y¶l)B for all type-rows Y lacking l ...

Exercise: if you think this is strange, there are
alternative approaches. Try and formalize a similar
notion of lacks at least or separate notions of has and
lacks.
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Value rows

At the value level, we have a notion of (value-) rows
for record values:

rcd(r)

where r is a row; that is, either:

x row variable
etc uninteresting row
l=a, r row with l=a, followed by r
a\L row  of record a minus all L fields

where now:

r a R¶L means r has R and lacks (exactly) L

¢ Wherever there is a value variable there should be a
corresponding function space. So:

R¶L → B functions from rows to values
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Technical examples

¢ etc   a   Etc¶l an axiom

l=3,etc   a   l:Nat,Etc¶()

rcd(l=3,etc)   :   Rcd(l:Nat,Etc)

rcd(l=3,etc).l   :   Nat

¢ x   :   Rcd(l:Nat,Y) an assumption (⇒ Y¶l)

x\l   a   Y¶l

l=x.l+1, x\l   a   l:Nat,Y¶()

rcd(l=x.l+1, x\l)   :   Rcd(l:Nat,Y)

λ(x:Rcd(l:Nat,Y)) rcd(l=x.l+1, x\l)

   :   Rcd(l:Nat,Y) → Rcd(l:Nat,Y)

λ(Y¶l) λ(x:Rcd(l:Nat,Y)) rcd(l=x.l+1, x\l)

   :   Ó(Y¶l) Rcd(l:Nat,Y) → Rcd(l:Nat,Y)
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Is this the right calculus?

When fully formalized, the calculus with extensible
records described so far is called F<:ρ and has a total of
78 typing and evaluation rules. Rather complicated!

Several other formulations of extensible records have
been proposed, and have a comparable number of rules.

Is this the right calculus? Not clear. However, what
distinguishes F<:ρ is that it can be completely encoded
into a much simpler calculus called F<: which has
"only" 32 rules (F<:ρ is in fact an extension of F<:). We
remain within pure 2nd-order calculi.

By a comparable way of counting: F2 (7F, the poly-
morphic or 2nd-order λ-calculus) has 22 rules; F1 (the
simply-typed or 1st-order λ-calculus) has 14 rules; and
the untyped λ-calculus (F0 ?) has 10 rules.
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A pure calculus of subtyping: F<:

F<: is obtained by starting with 2nd-order types and
adding subtyping, with Top the biggest type.

X, Top, A→B, Ó(X<:A)B;    µ(X)B

For terms of the calculus we have

x, top, λ(x:A)b, b(a),
λ(X<:A)b, b(A);    µ(x:A)b

Unlike F, equivalence of two terms in F<: is stated
always with respect to a type. The type acts as an
observer. Values that are distinguishable in a subtype
may become undistinguishable in a supertype (this is
characteristic of objects). At the limit, everything is
undistinguishable in Top.

Models: partial equivalence relations (per's) over (ω,†),
where <: is ⊆  of per's. For recursion: per's over D∞.

May 31, 1994 Foil  28

Soundness of F<:ρ

Theorem There is a translation of F<:ρ into F<: that
preserves all derivations (typing, subtyping, and
equivalence).

Hint.

¢ Using a standard technique from F we can encode
cartesian products A×B in F<: (which are automatically
monotonic w.r.t. <:).

¢ From these, we can define:

Tuple(A1,..,An,B) = A1×..×An×B

Consider tuples where the final B7Top; then a "longer"
tuple is a subtype of a "shorter" tuple.
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¢ Fix an enumeration of labels. Translate records to
tuples according to the index of labels, e.g.:

Rcd(l2:C,l0:A,Top) 7 Tuple(A,Top,C,Top)
   position:   0     1     2    3+

Rcd(l2:C,l0:A,X) 7 Tuple(A,X1,C,X3)
  position:   0   1    2   3+

Under this translation, for records ending with Top
(7Etc), "longer" ones are subtypes of "shorter" ones.
Moreover, the order of fields is normalized.

¢ Finally, type-row variables become rows of type
variables; if X lacks (exactly!) l0,l2, then it has (exactly)
l1 and l3,l4.... The tail can be captured by a single
variable:

Ó(X¶l0,l2)... 7 Ó(X1)Ó(X3)...

Following this pattern, type-row applications become
rows of type applications, etc.
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Part 3. Forward to objects.

Using subtyping and parameterization to (attempt to)
emulate o-o constructs.
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What's the connection to o-o?

We try to model (as well as we can) basic o-o concepts,
explain them (via "more fundamental notions") and
extend them (by combining fundamental notions
synergicly).

We feel the need for this exercise because not all is
well-understood or clear-cut with o-o languages.

We could use a better understanding of o-o concepts for
designing new, simpler, and more powerful languages,
and to avoid pitfalls (e.g. unsound type systems).

Or maybe, once we truly understand these concepts, we
may decide they are too complicated and scrap them...
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Remember the Modula-3 code?
☛ Bad news:

¢ cp.move has return type Point, not ClrPoint, although
it really returns a ClrPoint. (Note that MovePoint could
allocated and return a new Point, which would certainly
not be a ClrPoint.)

¢ Although it would be highly desirable, we cannot
override eq using:

PROCEDURE EqClrPoint(self,other: ClrPoint ...

because Modula-3 requires other:Point.

This is a deep problem, not exclusive to Modula-3.
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To fix these shortcomings, a language like Eiffel might
use something like this:

METHODS
m(dx,dy: INTEGER):Self; covariant Self
eq(other: Self): BOOLEAN; contravariant Self

But one has to be very careful: covariant Self gives
subclasses that are subtypes, but contravariant Self
gives subclasses that are not subtypes (or else the
typechecker is unsound). More about this later.

Let's now see how one might paraphrase the Point
example using extensible records, along with recursion.
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Recursion and extension

An object type is some kind of recursive record type.

Let A = µ(S) Rcd(n:Int, f:S→S)
Let B = µ(S) Rcd(n:Int, f:S→S, g:S→S)

General problem: how can we define B by reusing A?

Record concatenation (whatever that means) does not
help much:

Let B' = A ∏ µ(S) Rcd(g:S→S)

here B' does not "loop the same way" as B.
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A solution is to use generators, that is to leave the
recursion open so we can close it later in the desired
way.

Let GenA[S] = Rcd(n:Int, f:S→S)
Let A = µ(S) GenA[S] (i.e. Fix(GenA))

Let GenB[S] =  GenA[S] with (g:S→S)
Let B = µ(S) GenB[S]

(Note: with needs to be defined appropriately.)

This technique can be carried quite far. Contravariant
Self (e.g. eq methods) leads to F-bounded
quantification.

We do not discuss this further because...
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Instead of generators and F-bounded quantification, we
can use record extension and parametric definitions.

We close recursions immediately, but we still manage
to patch them later via extensions.

Let ExtA[X¶f] = µ(SA) Rcd(n:Int, f:SA→SA, X)
Let A = ExtA[Etc]

Let ExtB[Y¶f,g] = µ(SB) ExtA[g:SB→SB, Y]
Let B = ExtB[Etc] (</: A)

We have:

ExtB[Y]
7 µ(SB) µ(SA) Rcd(f:SA→SA, g:SB→SB, Y)
7 µ(S) Rcd(f:S→S, g:S→S, Y)

A similar trick works with value-level recursion.

Exercise: do the examples in section 3 of [Cook Hill
Canning 90] using only extensible records and
parametric definitions.
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Ex: Points (via 2nd-order records)

¢ Points:

Let Point[X¶x,y,m] =

µ(Self) Rcd(x,y:Int, m:Int×Int→Self, X)

let newPoint(W¶x,y,m)(x,y:Int, m:Point[W]→Int×Int→Point[W]) 

(waW): Point[W] =

µ(self:Point[W]) rcd(x=x, y=y, m=m(self), w)

let rec movePoint(W¶x,y,m)(self:Point[W])(dx,dy:Int): Point[W] =

newPoint (W) (self.x+dx, self.y+dy, movePoint(W)) (self \x,y,m)

let p: Point[Etc] =

newPoint (Etc) (0, 0, movePoint(Etc)) (etc)
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¢ Color points inheriting m from Point.

Let ClrPoint[Y¶x,y,c,m] = Point[c:Clr, Y]

7µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, Y)

let newClrPoint(Z¶x,y,c,m)(x,y:Int, c:Clr,

m:ClrPoint[Z]→Int×Int→ClrPoint[Z])(zaZ): ClrPoint[Z] =

newPoint(c:Clr,Z)(x, y, m)(c=c, z)

let cp:ClrPoint[Etc] =

newClrPoint(Etc) (0 ,0, black, movePoint(c:Clr,Etc)) (etc)

¢ Color points overriding m from Point.

let rec moveClrPoint(Z¶x,y,c,m)(self:ClrPoint[Z])(dx,dy:Int)

: ClrPoint[Z] =

newClrPoint (W) (self.x+dx, self.y+dy, red, moveClrPoint(W))

(self \x,y,c,m)

let cp:ClrPoint[Etc] =

newClrPoint (Etc) (0, 0, black, moveClrPoint(Etc)) (etc)
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✌ Good news:

¢ movePoint has a self first argument, but this does not
show in the type of Point because the procedure
movePoint is converted to the method m.
Otherwise ClrPoint[Etc] <: Point[Etc] would fail
because of contravariance.

¢  The new routine for ClrPoint uses the new routine for
Point. This kind of behavior is useful or necessary to
establish the internal invariant of superclasses on
allocation of subclasses (e.g., polar points).

¢ cp.move is inherited from Point, but has the
appropriate return type when used from ClrPoint.

?! Weird:  eq methods don't subtype...
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Inheritance without subtyping

If we include the eq method in the definitions, obtaining
EqPoint (and hence ClrEqPoint), we can still inherit
methods, but then we do not have

ClrEqPoint[Etc] <: EqPoint[Etc]

Let's ignore m. (See Appendix for the full example.)

Let EqPoint[X¶x,y,eq] =
µ(Self) Rcd(x,y:Int, eq:Self→Bool, X)

Let ClrEqPoint[Y¶x,y,c,eq] = EqPoint[c:Clr, Y]
7µ(Self) Rcd(x,y:Int, c:Clr, eq:Self→Bool, Y)



May 31, 1994 Foil  41

The type rules for recursion fail to prove
ClrEqPoint[Etc] <: EqPoint[Etc] because of the
contravariant occurrence of Self in eq.

Are the type rules too weak? Or is this inclusion really
bogus?

Let's assume ClrEqPoint[Etc] <: EqPoint[Etc], and
take: cp:ClrEqPoint[Etc], p:EqPoint[Etc]. Let's also
assume that cp.eq tests the c components.

Then cp:EqPoint[Etc], by subsumption. Hence:

cp.eq: EqPoint[Etc]→Bool.

Therefore,

cp.eq(p): Bool  is well-typed.

But cp.eq will access the c component of p, which p
does not have: CRASH! The type rules were right after
all.
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Conclusions

¢ It is important to unbundle subtyping from
inheritance. We can take advantage of subtyping
without inheritance, and of inheritance without
subtyping.

¢ A language with subtyping and sufficient parameteri-
zation (several choices here) can emulate basic o-o
concepts and go beyond them. Many of the additional
features are natural o-o desiderata.

¢ On the other hand, it is very difficult to provide in a
much simpler way exactly what o-o already provides.
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Further reading

Highly recommended:

[Cook Hill Canning 90] Inheritance is Not Subtyping.
Proc. POPL'90.

(Introduction to generators and F-bounded
 quantification.)

[Bruce 92] A Paradigmatic Object-oriented
Programming Language: Design, Static Typing, and
Semantics. To appear.

(A direct formalization of an interesting o-o
  language and its typing.)
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Appendix. The full example
¢ Points.

Let Point[X¶x,y,m] =
µ(Self) Rcd(x,y:Int, m:Int×Int→Self, X)

let newPoint(W¶x,y,m)(x,y:Int, m:Point[W]→Int×Int→Point[W])
(waW): Point[W] =

µ(self:Point[W]) rcd(x=x, y=y, m=m(self), w)

let rec movePoint(W¶x,y,m)(self:Point[W])(dx,dy:Int): Point[W] =
newPoint (W) (self.x+dx, self.y+dy, movePoint(W)) (self \x,y,m)

let p: Point[Etc] =
newPoint (Etc) (0, 0, movePoint(Etc)) (etc)

¢ Color points inheriting m from Point.

Let ClrPoint[Y¶x,y,c,m] = Point[c:Clr, Y]
7µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, Y)

let newClrPoint(Z¶x,y,c,m)(x,y:Int, c:Clr,
m:ClrPoint[Z]→Int×Int→ClrPoint[Z])(zaZ): ClrPoint[Z] =

newPoint(c:Clr,Z)(x, y, m)(c=c, z)

let cp:ClrPoint[Etc] =
newClrPoint(Etc) (0 ,0, black, movePoint(c:Clr,Etc)) (etc)
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¢ Points with eq, reusing m from Point.

Let EqPoint[X¶x,y,m,eq] =
µ(Self) Point[eq:Self→Bool, X]
7 µ(Self) Rcd(x,y:Int, m:Int×Int→Self, eq:Self→Bool, X)

let newEqPoint(W¶x,y,m,eq) (x,y:Int,
m:EqPoint[W]→Int×Int→EqPoint[W],
eq:EqPoint[W]→EqPoint[W]→Bool) (waW): Point[W] =

µ(self:EqPoint[W])
newPoint(eq:EqPoint[W]→Bool,W)(x,y,m)(eq=eq(self),w)

let rec eqEqPoint(W¶x,y,m,eq)(self:EqPoint[W])(other:EqPoint[W])
: Bool =

self.x=other.x & self.y=other.y

(* A movePoint "wrapper", so that p.m(2,3).eq(p)=false *)
let rec moveEqPoint(W¶x,y,m,eq)(self:EqPoint[W])(dx,dy:Int)

: EqPoint[W] =
let p = movePoint(eq:EqPoint[W]→EqPoint[W]→Bool,W)(self)(dx,dy)
in µ(self    ’:EqPoint[W]) rcd(eq=eqEqPoint(W)(self   ’), p\eq)

let ep: EqPoint[Etc] =
newEqPoint(Etc)(0, 0, moveEqPoint(Etc), eqEqPoint(Etc)) (etc)
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¢ Points with eq and c, inheriting m from EqPoint,
and overriding (but still reusing) eq from EqPoint.
But not ClrEqPoint[Etc] <: EqPoint[Etc].

Let ClrEqPoint[Y¶x,y,c,m,eq] =
EqPoint[c:Clr, Y]
7µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, eq:Self→Bool, Y)

let newClrEqPoint(Z¶x,y,c,m,eq)
(x,y:Int, c:Clr,
 m:ClrEqPoint[W]→Int×Int→ClrEqPoint[W],
 eq:ClrEqPoint[Z]→ClrEqPoint[Z]→Bool)
(zaZ): ClrEqPoint[Z] =

newEqPoint(c:Clr,Z)(x, y, m, eq)(c=c,z)

let rec eqClrEqPoint(W¶x,y,m,c,eq)(self:ClrEqPoint[W])
(other:ClrEqPoint[W]): Bool =

eqEqPoint(c:Clr,Etc)(self)(other) & self.c=other.c

let cep:ClrEqPoint[Etc] =
newClrEqPoint(Etc)

(0, 0, black, moveEqPoint(c:Clr, Etc), eqClrEqPoint(Etc)) (etc)
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Advert. F<: software

Fsub is a Modula-3 implementation of the F<: calculus. This is the
"smallest possible" calculus integrating subtyping with polymorphism.
The type structure consists of type variables, "Top", function spaces,
bounded quantification, and recursive types. The implementation supports
type inference ("argument synthesis"), a simple modularization
mechanism, and the introduction of arbitrary notation on the fly.

The system can be obtained by anonymous ftp from
gatekeeper.pa.dec.com, in the DEC directory. The distribution includes
DECstation and VAX binaries; it can be ported to other architectures that
support Modula-3 by recompilation.

The Fsub licence is covered by the Modula-3 licence; there is nothing to
sign. If needed, Modula-3 can be obtained by anonymous ftp from
gatekeeper.pa.dec.com.

A manual "F-sub, the system" is included in postscript format.
Hardcopies may be obtained from:

Luca Cardelli (luca@src.dec.com)
DEC SRC, 130 Lytton Ave
Palo Alto, CA 94310, USA
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