
May 31, 1994 Foil 1

Typed Foundations
of Object-oriented

Programming

POPL '92 Tutorial

Luca Cardelli
DEC SRC, 130 Lytton Avenue, Palo Alto CA 94301

luca@src.dec.com

May 31, 1994 Foil 2

Outline

¢ Basic notions and puzzles.

¢ Back to foundations.

¢ Forward to objects.

¢ Approach: take a (deceivingly) simple o-o program
and try to express it in "typed λ-calculus". Or, more
precisely: desperately look for any typed λ-calculus that
can express such a program.

¢ Two main threads:
- Subtyping for its own sake.
- Subtyping vs. inheritance.

¢ One main bias: extensible records.

May 31, 1994 Foil 3

Part 1. Basic notions and puzzles.

Basic notions and first modeling attempts.

What can subtyping say about o-o concepts?

What can subtyping achieve on its own?

May 31, 1994 Foil 4

O-o languages features

Object-oriented programming bundles together a
number of important concepts, including:

Modularization (via class signatures)
Abstraction (via the method discipline)
Extensibility (via subclasses and inheritance)

But the characterizing property is extensibility:
reusing and extending existing code without editing it.

These properties are achieved in large part by extending
vanilla procedural languages with:

(1) Subtyping
(f(a) is ok if a is good enough for f)

(2) Inheritance
(self, and its amazing type rules)

May 31, 1994 Foil 5

On the road to o-o

v-p: vanilla-procedural (Algol, Modula-2, C)

s-e: subtype-enriched ‰ ‰ ‰

o-o: object-oriented (Simula, Modula-3, C++)

How much complexity is added by the first step? How
much by the second? We want to know because:

(1) O-o languages have a surprisingly difficult
semantics (and program logic). Moreover,
(2) they have a surprisingly difficult type theory.

We would like to understand them better. For (1) we
can apply well-established semantic techniques; e.g.
untyped λ-calculi (den.sem.) or to Hoare logics.
For (2) we need something much less well-established:
a sufficiently expressive typed calculus.

May 31, 1994 Foil 6

Subtyping without inheritance

What happens if we add subtyping to a v-p language,
but not inheritance? We do not get o-o programming
(according to most definitions), but:

¢ This is an important stepping stone in understanding
the more complex structure of full o-o languages.

¢ It helps making clear what inheritance really
contributes, both in terms of complexity and usefulness.

¢ The s-e language paradigm is worth investigating on
its own. It is distinct from both v-p and o-o. In some
dimensions it is richer than o-o. Has some of the
advantages of o-o and lacks some of its disadvantages.

¢ We concentrate on extensibility (in the o-o sense),
and try to take it to extremes. Extensible records.

May 31, 1994 Foil 7

Running example: Points

¢ First, define points of coords x,y, with m(-ove) and
eq(-ual) methods. (Let's do it in Modula-3.)

TYPE Point =
OBJECT

x,y: INTEGER;
METHODS

m(dx,dy: INTEGER): Point;
eq(other: Point): BOOLEAN;

END;

PROCEDURE MovePoint(self: Point; dx,dy:INTEGER): Point =
BEGIN

self.x := self.x+dx; self.y:=self.y+dy;
RETURN self;

END MovePoint;

PROCEDURE EqPoint(self,other: Point): BOOLEAN =
BEGIN

RETURN (self.x=other.x) AND (self.y=other.y);
END EqPoint;

VAR p: Point :=
NEW(Point, x:=0, y:=0, m:=MovePoint, eq:=EqPoint);

May 31, 1994 Foil 8

¢ Then, define color points as points with an additional
component: c(-olor).

TYPE ClrPoint =
Point OBJECT

c: Clr;
END;

VAR cp: ClrPoint :=
NEW(ClrPoint, x:=0, y:=0, c:=Clr.Black,

m:=MovePoint, eq:=EqPoint);

✌ G o-o d news:

¢ We reuse and extend the definition of Point.
¢ We have subtyping: every ClrPoint is a Point.
¢ We inherit the code of MovePoint and EqPoint.

☛ Bad news: later.

May 31, 1994 Foil 9

The main o-o typing trick

Suppose we have:

cp: ClrPoint

where the m method of cp changes also the color c.
By subclassing:

cp: Point

Now, if we could extract the raw procedure cpÒñm
which was provided as the method m of a point, we
would have:

cpÒñm : Point→Int×Int→Point
cpÒñm(p)(n,m)

CRASH! Whenever the point p lacks c.

May 31, 1994 Foil 10

Fortunately, o-o languages (starting with Simula) forbid
the extraction of raw procedures. Subclassing remains
sound because of the following invariant:

The self parameter of a method is always the object
from which the method is extracted.

o.m 7 oÒñm(o)

Now, this is an invariant about object values, which
leaves us with a fundamentally diffucult choice when
trying to reduce o-o typing to "something simpler":

¢ Either we have object types built in at the lowest level
of the formalism (as in o-o languages), so that the
invariant is maintained via rules about object types.

¢ Or we build objects types from more primitive
concepts, and we must find some other way to enforce
the invariant, or something equivalent.

The latter is extremely difficult. Nonetheless, this is the
road we shall follow.

May 31, 1994 Foil 11

Type systems fundamentals

¢ 1st-order types (System F1)
(data structures and higher-order functions)

Nat, A×B, A+B, A→B; µ(X)B

(Adding subtyping:
watch out for → and µ)

¢ 2nd-order types (System F2 or F)
(ML polymorphism, CLU a.d.t.'s, and more)

X, A→B, Ó(X)B; µ(X)B

(Nat, ×, +, Ô are definable)

(Adding subtyping:
bounded quantification: Ó(X<:A)B
F-bounded quantification: Ó(X<:F[X])B
meet types: A∧ B <: A)

May 31, 1994 Foil 12

1st-order record types

Programming with × and + is extremely boring. In
practice we want to use labeled, not positional, data
structures. These arise frequently in languages as
enumerations, records, modules, ... and objects.

¢ Generalize products A1×..×An to
unordered labeled tuples (l1:A1, .., ln:An).

¢ Subtype enrichment: require (l1:A, l2:B, l3:C) to be
considered as good as (l1:A, l2:B), (l2:B), etc.

May 31, 1994 Foil 13

We call the resulting structures records, written:

Rcd(l1:A1, .., ln:An) record types, li distinct
rcd(l1=a1, .., ln=an) records values, li distinct

enjoying a subtyping (<:) property, e.g.:

Rcd(l1:A, l2:B, l3:C) <: Rcd(l1:A, l3:C)

Note: a similar path may be followed to generalize +,
obtaining variants.

vnt(l1=a1) : Vnt(l1:A, l2:B, l3:C)
Vnt(l1:A, l3:C) <: Vnt(l1:A, l2:B, l3:C)

(This will not be discussed further.)

May 31, 1994 Foil 14

Expected properties of subtyping

¢ Subtyping is a reflexive and transitive relation. (A
preorder; often a partial order, but this is not useful in
typechecking.):

A<:A, A<:B ∧ B<:C ⇒ A<:C

¢ Satisfies subsumption; the single rule connecting
subtyping assertions with typing assertions:

a:A ∧ A<:B ⇒ a:B

¢ Is structural over type constructors; the subtyping of
the whole depends only on the subtyping of the parts.

A<:A' ∧ B<:B' ⇒ A×B <: A'×B' hierarchical

A'<:A ∧ B<:B' ⇒ A→B <: A'→B' contravariant

(X<:Y⇒ A<:B) ⇒ µ(X)A <: µ(Y)B infinite-unfold

May 31, 1994 Foil 15

Ex: Points (via 1st-order records)

Let Point =
µ(Self) Rcd(x,y:Int, m:Int×Int→Self)

Let ClrPoint =
µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self)

Point 7 Rcd(x,y:Int, m:Int×Int→Point)
ClrPoint 7 Rcd(x,y:Int, c:Clr, m:Int×Int→ClrPoint)

✌ Good news: ClrPoint <: Point

?! Weird: the above fails if we include eq methods.

☛ Bad news: ClrPoint does not reuse Point.
Even if we say Let ClrPoint = Point ∏ Rcd(c:Clr),
the result type of m is unsatisfactory for ClrPoint.

May 31, 1994 Foil 16

A design niche

We have reached a clear-cut point in design space: a
1st-order language featuring records and subtyping:

Nat, Rcd(l1:A1, .., ln:An), Vnt(l1:A1, .., ln:An),

A→B, µ(X)B

The next natural step is to add polymorphism. But this
is not all that easy.

May 31, 1994 Foil 17

2nd-order record types

¢ Prologue: 2nd-order types are types parameterized by
type variables:

length: Ó(X)List(X)→Nat

Type variables can be instantiated with types, e.g. Nat:

length(Nat): List(Nat)→Nat

length(Nat)([1,2,3]) = 3
length(Bool)([true,false]) = 2

May 31, 1994 Foil 18

¢ 2nd-order record types (perhaps a slight misnomer)
are record types parameterized by type-row (or row, or
extension) variables.

Rcd(l1:A1, .., ln:An, X)

where X is a type-row variable that can be instantiated
with an appropriate type-row, e.g. ln+1:An+1, Y:

Rcd(l1:A1, .., ln:An, ln+1:An+1, Y)

The empty (or more appropriately, uninteresting)

type-row is called Etc. We can use it to finally

instantiate Y above:

Rcd(l1:A1, .., ln:An, ln+1:An+1, Etc)

May 31, 1994 Foil 19

Ex: Points (via 2nd-order records)

Let Point[X ...] = (see later about the "...")
µ(Self) Rcd(x,y:Int, m:Int×Int→Self, X)

Point[X] 7 Rcd(x,y:Int, m:Int×Int→Point[X], X)

Let ClrPoint[Y ...] = Point[c:Clr, Y]

ClrPoint[Y]
7 µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, Y)
7 Rcd(x,y:Int, c:Clr, m:Int×Int→ClrPoint[Y], Y)

✌ Good news:

¢ ClrPoint[Etc] <: Point[Etc]

¢ ClrPoint reuses the definition of Point

¢ m is parametric over extensions of Point

May 31, 1994 Foil 20

Part 2. Back to foundations.

A more detailed understanding of the modeling features
we seem to need.

How to reduce them to more basic notions.

Note: this part is non-standard. Different foundational
approaches are used in the literature.

May 31, 1994 Foil 21

Type rows

In general, a 2nd-order record type has the form:

Rcd(R)

where R is a type-row; that is, either:

X type-row variable
Etc uninteresting type-row
l:A, R type-row with l:A, followed by R

But what happened to the restriction that labels in a
record must be distinct?

May 31, 1994 Foil 22

¢ First, l:A, R can be well-formed only if l
does not occur in R. This is written R¶l:

R¶L R lacks (exactly) L 7 l1, .., ln, n≥0.

¢ The notion of "lacks" must be respected under
substitution, so l:A, X requires:

X¶l i.e. X can be instantiated only to
type-rows R such that R¶l.

¢ The idea of "lacks" must be applicable to the Etc
type-row. Consider:

l:A, Etc requires Etc¶l
l1:A1, l2:A2, Etc requires Etc¶l1, l2

Hence, we need to assume that Etc lacks (exactly)
anything we want, or perhaps that there are multiple
versions of Etc indexed by what they lack.

May 31, 1994 Foil 23

¢ Only a complete row can give raise to a record:

Rcd(R) requires R¶() (R lacks nothing)

"complete" or "lacks nothing" does not mean every
label is defined; it means every label is accounted for,
either as a field or in the Etc sink.

¢ Finally, wherever there is a type variable there should
be a corresponding quantifier. So:

Ó(Y¶l)B for all type-rows Y lacking l ...

Exercise: if you think this is strange, there are
alternative approaches. Try and formalize a similar
notion of lacks at least or separate notions of has and
lacks.

May 31, 1994 Foil 24

Value rows

At the value level, we have a notion of (value-) rows
for record values:

rcd(r)

where r is a row; that is, either:

x row variable
etc uninteresting row
l=a, r row with l=a, followed by r
a\L row of record a minus all L fields

where now:

r a R¶L means r has R and lacks (exactly) L

¢ Wherever there is a value variable there should be a
corresponding function space. So:

R¶L → B functions from rows to values

May 31, 1994 Foil 25

Technical examples

¢ etc a Etc¶l an axiom

l=3,etc a l:Nat,Etc¶()

rcd(l=3,etc) : Rcd(l:Nat,Etc)

rcd(l=3,etc).l : Nat

¢ x : Rcd(l:Nat,Y) an assumption (⇒ Y¶l)

x\l a Y¶l

l=x.l+1, x\l a l:Nat,Y¶()

rcd(l=x.l+1, x\l) : Rcd(l:Nat,Y)

λ(x:Rcd(l:Nat,Y)) rcd(l=x.l+1, x\l)

 : Rcd(l:Nat,Y) → Rcd(l:Nat,Y)

λ(Y¶l) λ(x:Rcd(l:Nat,Y)) rcd(l=x.l+1, x\l)

 : Ó(Y¶l) Rcd(l:Nat,Y) → Rcd(l:Nat,Y)

May 31, 1994 Foil 26

Is this the right calculus?

When fully formalized, the calculus with extensible
records described so far is called F<:ρ and has a total of
78 typing and evaluation rules. Rather complicated!

Several other formulations of extensible records have
been proposed, and have a comparable number of rules.

Is this the right calculus? Not clear. However, what
distinguishes F<:ρ is that it can be completely encoded
into a much simpler calculus called F<: which has
"only" 32 rules (F<:ρ is in fact an extension of F<:). We
remain within pure 2nd-order calculi.

By a comparable way of counting: F2 (7F, the poly-
morphic or 2nd-order λ-calculus) has 22 rules; F1 (the
simply-typed or 1st-order λ-calculus) has 14 rules; and
the untyped λ-calculus (F0 ?) has 10 rules.

May 31, 1994 Foil 27

A pure calculus of subtyping: F<:

F<: is obtained by starting with 2nd-order types and
adding subtyping, with Top the biggest type.

X, Top, A→B, Ó(X<:A)B; µ(X)B

For terms of the calculus we have

x, top, λ(x:A)b, b(a),
λ(X<:A)b, b(A); µ(x:A)b

Unlike F, equivalence of two terms in F<: is stated
always with respect to a type. The type acts as an
observer. Values that are distinguishable in a subtype
may become undistinguishable in a supertype (this is
characteristic of objects). At the limit, everything is
undistinguishable in Top.

Models: partial equivalence relations (per's) over (ω,†),
where <: is ⊆ of per's. For recursion: per's over D∞.

May 31, 1994 Foil 28

Soundness of F<:ρ

Theorem There is a translation of F<:ρ into F<: that
preserves all derivations (typing, subtyping, and
equivalence).

Hint.

¢ Using a standard technique from F we can encode
cartesian products A×B in F<: (which are automatically
monotonic w.r.t. <:).

¢ From these, we can define:

Tuple(A1,..,An,B) = A1×..×An×B

Consider tuples where the final B7Top; then a "longer"
tuple is a subtype of a "shorter" tuple.

May 31, 1994 Foil 29

¢ Fix an enumeration of labels. Translate records to
tuples according to the index of labels, e.g.:

Rcd(l2:C,l0:A,Top) 7 Tuple(A,Top,C,Top)
 position: 0 1 2 3+

Rcd(l2:C,l0:A,X) 7 Tuple(A,X1,C,X3)
 position: 0 1 2 3+

Under this translation, for records ending with Top
(7Etc), "longer" ones are subtypes of "shorter" ones.
Moreover, the order of fields is normalized.

¢ Finally, type-row variables become rows of type
variables; if X lacks (exactly!) l0,l2, then it has (exactly)
l1 and l3,l4.... The tail can be captured by a single
variable:

Ó(X¶l0,l2)... 7 Ó(X1)Ó(X3)...

Following this pattern, type-row applications become
rows of type applications, etc.

May 31, 1994 Foil 30

Part 3. Forward to objects.

Using subtyping and parameterization to (attempt to)
emulate o-o constructs.

May 31, 1994 Foil 31

What's the connection to o-o?

We try to model (as well as we can) basic o-o concepts,
explain them (via "more fundamental notions") and
extend them (by combining fundamental notions
synergicly).

We feel the need for this exercise because not all is
well-understood or clear-cut with o-o languages.

We could use a better understanding of o-o concepts for
designing new, simpler, and more powerful languages,
and to avoid pitfalls (e.g. unsound type systems).

Or maybe, once we truly understand these concepts, we
may decide they are too complicated and scrap them...

May 31, 1994 Foil 32

Remember the Modula-3 code?
☛ Bad news:

¢ cp.move has return type Point, not ClrPoint, although
it really returns a ClrPoint. (Note that MovePoint could
allocated and return a new Point, which would certainly
not be a ClrPoint.)

¢ Although it would be highly desirable, we cannot
override eq using:

PROCEDURE EqClrPoint(self,other: ClrPoint ...

because Modula-3 requires other:Point.

This is a deep problem, not exclusive to Modula-3.

May 31, 1994 Foil 33

To fix these shortcomings, a language like Eiffel might
use something like this:

METHODS
m(dx,dy: INTEGER):Self; covariant Self
eq(other: Self): BOOLEAN; contravariant Self

But one has to be very careful: covariant Self gives
subclasses that are subtypes, but contravariant Self
gives subclasses that are not subtypes (or else the
typechecker is unsound). More about this later.

Let's now see how one might paraphrase the Point
example using extensible records, along with recursion.

May 31, 1994 Foil 34

Recursion and extension

An object type is some kind of recursive record type.

Let A = µ(S) Rcd(n:Int, f:S→S)
Let B = µ(S) Rcd(n:Int, f:S→S, g:S→S)

General problem: how can we define B by reusing A?

Record concatenation (whatever that means) does not
help much:

Let B' = A ∏ µ(S) Rcd(g:S→S)

here B' does not "loop the same way" as B.

May 31, 1994 Foil 35

A solution is to use generators, that is to leave the
recursion open so we can close it later in the desired
way.

Let GenA[S] = Rcd(n:Int, f:S→S)
Let A = µ(S) GenA[S] (i.e. Fix(GenA))

Let GenB[S] = GenA[S] with (g:S→S)
Let B = µ(S) GenB[S]

(Note: with needs to be defined appropriately.)

This technique can be carried quite far. Contravariant
Self (e.g. eq methods) leads to F-bounded
quantification.

We do not discuss this further because...

May 31, 1994 Foil 36

Instead of generators and F-bounded quantification, we
can use record extension and parametric definitions.

We close recursions immediately, but we still manage
to patch them later via extensions.

Let ExtA[X¶f] = µ(SA) Rcd(n:Int, f:SA→SA, X)
Let A = ExtA[Etc]

Let ExtB[Y¶f,g] = µ(SB) ExtA[g:SB→SB, Y]
Let B = ExtB[Etc] (</: A)

We have:

ExtB[Y]
7 µ(SB) µ(SA) Rcd(f:SA→SA, g:SB→SB, Y)
7 µ(S) Rcd(f:S→S, g:S→S, Y)

A similar trick works with value-level recursion.

Exercise: do the examples in section 3 of [Cook Hill
Canning 90] using only extensible records and
parametric definitions.

May 31, 1994 Foil 37

Ex: Points (via 2nd-order records)

¢ Points:

Let Point[X¶x,y,m] =

µ(Self) Rcd(x,y:Int, m:Int×Int→Self, X)

let newPoint(W¶x,y,m)(x,y:Int, m:Point[W]→Int×Int→Point[W])

(waW): Point[W] =

µ(self:Point[W]) rcd(x=x, y=y, m=m(self), w)

let rec movePoint(W¶x,y,m)(self:Point[W])(dx,dy:Int): Point[W] =

newPoint (W) (self.x+dx, self.y+dy, movePoint(W)) (self \x,y,m)

let p: Point[Etc] =

newPoint (Etc) (0, 0, movePoint(Etc)) (etc)

May 31, 1994 Foil 38

¢ Color points inheriting m from Point.

Let ClrPoint[Y¶x,y,c,m] = Point[c:Clr, Y]

7µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, Y)

let newClrPoint(Z¶x,y,c,m)(x,y:Int, c:Clr,

m:ClrPoint[Z]→Int×Int→ClrPoint[Z])(zaZ): ClrPoint[Z] =

newPoint(c:Clr,Z)(x, y, m)(c=c, z)

let cp:ClrPoint[Etc] =

newClrPoint(Etc) (0 ,0, black, movePoint(c:Clr,Etc)) (etc)

¢ Color points overriding m from Point.

let rec moveClrPoint(Z¶x,y,c,m)(self:ClrPoint[Z])(dx,dy:Int)

: ClrPoint[Z] =

newClrPoint (W) (self.x+dx, self.y+dy, red, moveClrPoint(W))

(self \x,y,c,m)

let cp:ClrPoint[Etc] =

newClrPoint (Etc) (0, 0, black, moveClrPoint(Etc)) (etc)

May 31, 1994 Foil 39

✌ Good news:

¢ movePoint has a self first argument, but this does not
show in the type of Point because the procedure
movePoint is converted to the method m.
Otherwise ClrPoint[Etc] <: Point[Etc] would fail
because of contravariance.

¢ The new routine for ClrPoint uses the new routine for
Point. This kind of behavior is useful or necessary to
establish the internal invariant of superclasses on
allocation of subclasses (e.g., polar points).

¢ cp.move is inherited from Point, but has the
appropriate return type when used from ClrPoint.

?! Weird: eq methods don't subtype...

May 31, 1994 Foil 40

Inheritance without subtyping

If we include the eq method in the definitions, obtaining
EqPoint (and hence ClrEqPoint), we can still inherit
methods, but then we do not have

ClrEqPoint[Etc] <: EqPoint[Etc]

Let's ignore m. (See Appendix for the full example.)

Let EqPoint[X¶x,y,eq] =
µ(Self) Rcd(x,y:Int, eq:Self→Bool, X)

Let ClrEqPoint[Y¶x,y,c,eq] = EqPoint[c:Clr, Y]
7µ(Self) Rcd(x,y:Int, c:Clr, eq:Self→Bool, Y)

May 31, 1994 Foil 41

The type rules for recursion fail to prove
ClrEqPoint[Etc] <: EqPoint[Etc] because of the
contravariant occurrence of Self in eq.

Are the type rules too weak? Or is this inclusion really
bogus?

Let's assume ClrEqPoint[Etc] <: EqPoint[Etc], and
take: cp:ClrEqPoint[Etc], p:EqPoint[Etc]. Let's also
assume that cp.eq tests the c components.

Then cp:EqPoint[Etc], by subsumption. Hence:

cp.eq: EqPoint[Etc]→Bool.

Therefore,

cp.eq(p): Bool is well-typed.

But cp.eq will access the c component of p, which p
does not have: CRASH! The type rules were right after
all.

May 31, 1994 Foil 42

Conclusions

¢ It is important to unbundle subtyping from
inheritance. We can take advantage of subtyping
without inheritance, and of inheritance without
subtyping.

¢ A language with subtyping and sufficient parameteri-
zation (several choices here) can emulate basic o-o
concepts and go beyond them. Many of the additional
features are natural o-o desiderata.

¢ On the other hand, it is very difficult to provide in a
much simpler way exactly what o-o already provides.

May 31, 1994 Foil 43

Further reading

Highly recommended:

[Cook Hill Canning 90] Inheritance is Not Subtyping.
Proc. POPL'90.

(Introduction to generators and F-bounded
 quantification.)

[Bruce 92] A Paradigmatic Object-oriented
Programming Language: Design, Static Typing, and
Semantics. To appear.

(A direct formalization of an interesting o-o
 language and its typing.)

May 31, 1994 Foil 44

Appendix. The full example
¢ Points.

Let Point[X¶x,y,m] =
µ(Self) Rcd(x,y:Int, m:Int×Int→Self, X)

let newPoint(W¶x,y,m)(x,y:Int, m:Point[W]→Int×Int→Point[W])
(waW): Point[W] =

µ(self:Point[W]) rcd(x=x, y=y, m=m(self), w)

let rec movePoint(W¶x,y,m)(self:Point[W])(dx,dy:Int): Point[W] =
newPoint (W) (self.x+dx, self.y+dy, movePoint(W)) (self \x,y,m)

let p: Point[Etc] =
newPoint (Etc) (0, 0, movePoint(Etc)) (etc)

¢ Color points inheriting m from Point.

Let ClrPoint[Y¶x,y,c,m] = Point[c:Clr, Y]
7µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, Y)

let newClrPoint(Z¶x,y,c,m)(x,y:Int, c:Clr,
m:ClrPoint[Z]→Int×Int→ClrPoint[Z])(zaZ): ClrPoint[Z] =

newPoint(c:Clr,Z)(x, y, m)(c=c, z)

let cp:ClrPoint[Etc] =
newClrPoint(Etc) (0 ,0, black, movePoint(c:Clr,Etc)) (etc)

May 31, 1994 Foil 45

¢ Points with eq, reusing m from Point.

Let EqPoint[X¶x,y,m,eq] =
µ(Self) Point[eq:Self→Bool, X]
7 µ(Self) Rcd(x,y:Int, m:Int×Int→Self, eq:Self→Bool, X)

let newEqPoint(W¶x,y,m,eq) (x,y:Int,
m:EqPoint[W]→Int×Int→EqPoint[W],
eq:EqPoint[W]→EqPoint[W]→Bool) (waW): Point[W] =

µ(self:EqPoint[W])
newPoint(eq:EqPoint[W]→Bool,W)(x,y,m)(eq=eq(self),w)

let rec eqEqPoint(W¶x,y,m,eq)(self:EqPoint[W])(other:EqPoint[W])
: Bool =

self.x=other.x & self.y=other.y

(* A movePoint "wrapper", so that p.m(2,3).eq(p)=false *)
let rec moveEqPoint(W¶x,y,m,eq)(self:EqPoint[W])(dx,dy:Int)

: EqPoint[W] =
let p = movePoint(eq:EqPoint[W]→EqPoint[W]→Bool,W)(self)(dx,dy)
in µ(self ’:EqPoint[W]) rcd(eq=eqEqPoint(W)(self ’), p\eq)

let ep: EqPoint[Etc] =
newEqPoint(Etc)(0, 0, moveEqPoint(Etc), eqEqPoint(Etc)) (etc)

May 31, 1994 Foil 46

¢ Points with eq and c, inheriting m from EqPoint,
and overriding (but still reusing) eq from EqPoint.
But not ClrEqPoint[Etc] <: EqPoint[Etc].

Let ClrEqPoint[Y¶x,y,c,m,eq] =
EqPoint[c:Clr, Y]
7µ(Self) Rcd(x,y:Int, c:Clr, m:Int×Int→Self, eq:Self→Bool, Y)

let newClrEqPoint(Z¶x,y,c,m,eq)
(x,y:Int, c:Clr,
 m:ClrEqPoint[W]→Int×Int→ClrEqPoint[W],
 eq:ClrEqPoint[Z]→ClrEqPoint[Z]→Bool)
(zaZ): ClrEqPoint[Z] =

newEqPoint(c:Clr,Z)(x, y, m, eq)(c=c,z)

let rec eqClrEqPoint(W¶x,y,m,c,eq)(self:ClrEqPoint[W])
(other:ClrEqPoint[W]): Bool =

eqEqPoint(c:Clr,Etc)(self)(other) & self.c=other.c

let cep:ClrEqPoint[Etc] =
newClrEqPoint(Etc)

(0, 0, black, moveEqPoint(c:Clr, Etc), eqClrEqPoint(Etc)) (etc)

May 31, 1994 Foil 47

Advert. F<: software

Fsub is a Modula-3 implementation of the F<: calculus. This is the
"smallest possible" calculus integrating subtyping with polymorphism.
The type structure consists of type variables, "Top", function spaces,
bounded quantification, and recursive types. The implementation supports
type inference ("argument synthesis"), a simple modularization
mechanism, and the introduction of arbitrary notation on the fly.

The system can be obtained by anonymous ftp from
gatekeeper.pa.dec.com, in the DEC directory. The distribution includes
DECstation and VAX binaries; it can be ported to other architectures that
support Modula-3 by recompilation.

The Fsub licence is covered by the Modula-3 licence; there is nothing to
sign. If needed, Modula-3 can be obtained by anonymous ftp from
gatekeeper.pa.dec.com.

A manual "F-sub, the system" is included in postscript format.
Hardcopies may be obtained from:

Luca Cardelli (luca@src.dec.com)
DEC SRC, 130 Lytton Ave
Palo Alto, CA 94310, USA

May 31, 1994 Foil 48

References on selected topics

First-order subtyping and simple records.
[Mitchell 84] J.C.Mitchell: Coercion and type inference, Proc. of the

11th ACM Symposium on Principles of Programming Languages,
pp.175-185, 1984.

[Cardelli 84] L.Cardelli: A semantics of multiple inheritance , in
Semantics of Data Types, G.Kahn, D.B.MacQueen and G.Plotkin Ed.
Lecture Notes in Computer Science n.173, Springer-Verlag 1984.

[Reynolds 88] J.C.Reynolds: Preliminary design of the programming
language Forsythe, Report CMU-CS-88-159, Carnegie Mellon
University, 1988.

Recursive type equivalence and subtyping.
[Breazu-Tannen et al. 89] V. Breazu-Tannen, C. Gunter, A. Scedrov:

Denotational semantics for subtyping between recursive types,
Report MS-CIS 89 63, Logic of Computation 12, Dept of Computer &
Information Science, University of Pennsylvania.

[Amadio Cardelli 91] R.M.Amadio, L.Cardelli: Subtyping recursive
types, Proceedings of the ACM conference on Principles of
Programming Languages, ACM Press, 1991.

Second-order typing.
[Girard 71] J-Y.Girard: Une extension de l'interprétation de Gödel à

l'analyse, et son application à l'élimination des coupures dans
l'analyse et la théorie des types, Proceedings of the second
Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63-92, North-
Holland, 1971.

[Reynolds 74] J.C.Reynolds: Towards a theory of type structure, in
Colloquium sur la programmation pp. 408-423, Springer-Verlag Lecture
Notes in Computer Science, n.19, 1974.

May 31, 1994 Foil 49

[Mitchell Plotkin 85] J.C.Mitchell, G.D.Plotkin: Abstract types have
existential type, Proc. POPL 1985.

[Scedrov 90] A.Scedrov: A guide to polymorphic types , in Logic and
Computer Science, pp 387-420, P.Odifreddi ed., Academic Press, 1990.

Second-order subtyping and simple records.
[Cardelli Wegner 85] L.Cardelli, P.Wegner: On understanding types,

data abstraction and polymorphism, Computing Surveys, Vol 17 n. 4,
pp 471-522, December 1985.

[Breazu-Tannen Coquand Gunter Scedrov 89] V.Breazu-Tannen,
T.Coquand, C.Gunter, A.Scedrov: Inheritance and explicit coercion ,
Proc. of the Fourth IEEE Symposium on Logic in Computer Science, pp
112-129, 1989.

Pure second-order subtyping.
[Ghelli 90] G.Ghelli: Proof theoretic studies about a mininal type

system integrating inclusion and parametric polymorphism, Ph.D.
Thesis TD-6/90, Università di Pisa, Dipartimento di Informatica, 1990.

[Curien Ghelli 91] P.-L.Curien, G.Ghelli: Coherence of subsumption,
Mathematical Structures in Computer Science, to appear.

[Curien Ghelli 91] P.-L.Curien, G.Ghelli: Subtyping + extensionality:
confluence of βη-reductions in F≤, in T.Ito,A.R.Meyer
Eds.Theoretical Aspects of Computer Software, Sendai, Japan, Lecture
Notes in Computer Science n.526, pp. 731-749, Springer-Verlag, 1991.

[Cardelli Martini Mitchell Scedrov 91] L.Cardelli, J.C.Mitchell, S.Martini,
A.Scedrov: An extension of system F with subtyping, in
T.Ito,A.R.Meyer Eds.Theoretical Aspects of Computer Software,
Sendai, Japan, Lecture Notes in Computer Science n.526, pp. 750-770,
Springer-Verlag, 1991.

[Pierce 91] B.C.Pierce: Programming with intersection types and
bounded polymorphism, Ph.D. Thesis, CMU-CS-91-205, 1991.

[Pierce 92] B.C.Pierce: Bounded quantification is undecidable, Proc.
POPL'92

May 31, 1994 Foil 50

Generators and F-bounded quantification.
[Reddy 88] U.S.Reddy: Objects as closures: abstract semantics of

object-oriented languages, Proc. ACM Conference on Lisp and
Functional Programming, pp. 289-297, 1988.

[Cook 89] W. Cook: A denotational semantics of inheritance, Ph.D.
thesis, Technical Report CS-89-33, Brown University, 1989.

[Canning Hill Olthoff 88] P.Canning,W.Hill, W.Olthoff: A kernel
language for object-oriented programming, Technical Report STL-
88-21, Hewlett-Packard Labs, 1988.

[Canning Cook Hill Olthoff Mitchell 89] P.Canning, W.Cook, W.Hill,
W.Olthoff, J.C.Mitchell: F-bounded polymorphism for object-
oriented programming, Proc. ACM Conference on Functional
Programming and Computer Architecture, ACM Press, 1989.

[Cook Hill Canning 90] W.Cook, W.Hill, P.Canning: Inheritance is not
subtyping, Proc. POPL'90.

Extensible records.
[Wand 87] M.Wand: Complete Type Inference for Simple Objects,

Proc. of the Second IEEE Symposium on Logic in Computer Science,
pp 37-44, 1987. Corrigendum: Complete Type Inference for Simple
Objects, Proc. of the Third IEEE Symposium on Logic in Computer
Science, 1988.

[Jategaonkar Mitchell 88] L.A.Jategaonkar, J.C.Mitchell: ML with
extended pattern matching and subtypes, Proc. of the ACM
Conference on Lisp and Functional Programming, pp.198-211, 1988.

[Wand 89] M.Wand: Type inference for record concatenation and
multiple inheritance, Proc. of the Fourth IEEE Symposium on Logic in
Computer Science, pp. 92-97, 1989.

[Rémy 89] D. Rémy: Typechecking records and variants in a natural
extension of ML, Proc. of the 16th ACM Symposium on Principles of
Programming Languages, pp.77-88, 1989.

May 31, 1994 Foil 51

[Cardelli Mitchell 91] L.Cardelli, J.C.Mitchell: Operations on records,
Mathematical Structures in Computer Science, vol 1, pp.3-48, 1991.

[Harper Pierce 90] R.Harper, B.Pierce: A record calculus with
symmetric concatenation, Technical Report CMU-CS-90-157, CMU,
1990.

[Cardelli 91] L.Cardelli: Extensible records in a pure calculus of
subtyping, DEC SRC Report #81, 1991.

[Rémy 92] D. Rémy: Typing record concatenation for free, Proc. of the
19th ACM Symposium on Principles of Programming Languages, 1992.

Type inference for subtyping and o-o languages.
Many references.

Semantics of o-o langauges.
Many references.

Models of subtyping.
Many references.

