Typed Foundations of Object-oriented Programming

POPL '92 Tutorial

Luca Cardelli DEC SRC, 130 Lytton Avenue, Palo Alto CA 94301 luca@src.dec.com

Outline

- Basic notions and puzzles.
- Back to foundations.
- Forward to objects.

• Approach: take a (deceivingly) simple o-o program and try to express it in "typed λ -calculus". Or, more precisely: desperately look for *any* typed λ -calculus that can express such a program.

- Two main threads:
- Subtyping for its own sake.
- Subtyping vs. inheritance.
- One main bias: extensible records.

Part 1. Basic notions and puzzles.

Basic notions and first modeling attempts.

What can subtyping say about o-o concepts?

What can subtyping achieve on its own?

O-o languages features

Object-oriented programming bundles together a number of important concepts, including:

Modularization	(via class signatures)
Abstraction	(via the method discipline)
Extensibility	(via subclasses and inheritance)

But the characterizing property is *extensibility*: reusing and extending existing code **without editing** it.

These properties are achieved in large part by extending vanilla procedural languages with:

(1) Subtyping(f(a) is ok if a is good enough for f)

(2) *Inheritance* (*self*, and its amazing type rules)

May 31, 1994

13

May 31, 1994

Foil 1

On the road to o-o

v-p : vanilla-procedural	(Algol,	Modula-2,	C)
s-e: subtype-enriched	₩	\Downarrow	₩
o-o: object-oriented	(Simula,	Modula-3,	C++)

How much complexity is added by the first step? How much by the second? We want to know because:

(1) O-o languages have a surprisingly difficult semantics (and program logic). Moreover,(2) they have a surprisingly difficult type theory.

We would like to understand them better. For (1) we can apply well-established semantic techniques; e.g. untyped λ -calculi (den.sem.) or to Hoare logics. For (2) we need something much less well-established: a sufficiently expressive typed calculus.

Subtyping without inheritance

What happens if we add subtyping to a v-p language, but *not* inheritance? We do not get o-o programming (according to most definitions), but:

- This is an important stepping stone in understanding the more complex structure of full o-o languages.
- It helps making clear what inheritance really contributes, both in terms of complexity and usefulness.

• The s-e language paradigm is worth investigating on its own. It is distinct from both v-p and o-o. In some dimensions it is richer than o-o. Has some of the advantages of o-o and lacks some of its disadvantages.

• We concentrate on extensibility (in the o-o sense), and try to take it to extremes. **Extensible records**.

Running example: Points

• First, define **points** of coords **x**,**y**, with **m**(-ove) and **eq**(-ual) methods. (Let's do it in Modula-3.)

TYPE Point = OBJECT x,y: INTEGER; METHODS m(dx,dy: INTEGER): Point; eq(other: Point): BOOLEAN; END; PROCEDURE MovePoint(self: Point; dx,dy:INTEGER): Point = BEGIN self.x := self.x+dx; self.y:=self.y+dy; RETURN self; END MovePoint; PROCEDURE EqPoint(self,other: Point): BOOLEAN = BEGIN

RETURN (self.x=other.x) AND (self.y=other.y); END EqPoint;

VAR p: Point := NEW(Point, x:=0, y:=0, m:=MovePoint, eq:=EqPoint); • Then, define **color points** as points with an additional component: **c**(-olor).

TYPE ClrPoint = Point OBJECT c: Clr; END;

VAR cp: ClrPoint := NEW(ClrPoint, x:=0, y:=0, c:=Clr.Black, m:=MovePoint, eq:=EqPoint);

- We reuse and extend the definition of *Point*.
- We have subtyping: every *ClrPoint* is a *Point*.
- We inherit the code of *MovePoint* and *EqPoint*.
- Bad news: later.

May 31, 1994

May 31, 1994

Foil 7

Foil 5

The main o-o typing trick

Suppose we have:

cp: ClrPoint

where the m method of cp changes also the color c. By subclassing:

cp: Point

May 31, 1994

Now, if we could extract the **raw procedure** $cp \rightsquigarrow m$ which was provided as the method *m* of a point, we would have:

 $cp \rightarrow m$: Point \rightarrow Int \times Int \rightarrow Point $cp \rightarrow m(p)(n,m)$

CRASH! Whenever the point p lacks c.

Fortunately, o-o languages (starting with Simula) forbid the extraction of raw procedures. Subclassing remains sound because of the following invariant:

The self parameter of a method is always the object from which the method is extracted.

 $o.m \equiv o \leadsto m(o)$

Now, this is an invariant about object **values**, which leaves us with a fundamentally diffucult choice when trying to reduce o-o **typing** to "something simpler":

• Either we have object types built in at the lowest level of the formalism (as in o-o languages), so that the invariant is maintained via rules about object types.

• Or we build objects types from more primitive concepts, and we must find some other way to enforce the invariant, or something equivalent.

The latter is extremely difficult. Nonetheless, this is the road we shall follow.

Type systems fundamentals

• 1st-order types (**System** F_I) (data structures and higher-order functions)

Nat, $A \times B$, A + B, $A \rightarrow B$; $\mu(X)B$

(Adding subtyping: watch out for \rightarrow and μ)

• 2nd-order types (**System** *F*₂ or *F*) (ML polymorphism, CLU a.d.t.'s, and more)

 $X, A \rightarrow B, \forall (X)B; \mu(X)B$

(*Nat*, \times , +, \exists are definable)

(Adding subtyping: bounded quantification: $\forall (X <: A)B$ F-bounded quantification: $\forall (X <: F[X])B$ meet types: $A \land B <: A$)

1st-order record types

Programming with \times and + is extremely boring. In practice we want to use **labeled**, not positional, data structures. These arise frequently in languages as enumerations, records, modules, ... and objects.

- Generalize products $A_1 \times .. \times A_n$ to unordered labeled tuples $(l_1:A_1, ..., l_n:A_n)$.
- Subtype enrichment: require (l₁:A, l₂:B, l₃:C) to be considered **as good as** (l₁:A, l₂:B), (l₂:B), etc.

Foil 11

Foil 9

We call the resulting structures **records**, written:

 $\begin{array}{ll} Rcd(l_1:A_1, ..., l_n:A_n) & \text{record types, } l_i \text{ distinct} \\ rcd(l_1=a_1, ..., l_n=a_n) & \text{records values, } l_i \text{ distinct} \end{array}$

enjoying a subtyping (<:) property, e.g.:

 $Rcd(l_1:A, l_2:B, l_3:C) <: Rcd(l_1:A, l_3:C)$

Note: a similar path may be followed to generalize +, obtaining **variants**.

vnt(*l*₁=*a*₁) : *Vnt*(*l*₁:*A*, *l*₂:*B*, *l*₃:*C*) *Vnt*(*l*₁:*A*, *l*₃:*C*) <: *Vnt*(*l*₁:*A*, *l*₂:*B*, *l*₃:*C*)

(This will not be discussed further.)

Expected properties of subtyping

• Subtyping is a **reflexive** and **transitive** relation. (A preorder; often a partial order, but this is not useful in typechecking.):

 $A <: A, \quad A <: B \land B <: C \Longrightarrow A <: C$

• Satisfies **subsumption**; the single rule connecting subtyping assertions with typing assertions:

 $a:A \land A <: B \Rightarrow a:B$

• Is **structural** over type constructors; the subtyping of the whole depends only on the subtyping of the parts.

 $\begin{array}{ll} A <: A' \land B <: B' \Longrightarrow A \times B <: A' \times B' & \mbox{hierarchical} \\ A' <: A \land B <: B' \Longrightarrow A \longrightarrow B <: A' \longrightarrow B' & \mbox{contravariant} \\ (X <: Y \Longrightarrow A <: B) \Longrightarrow \mu(X)A <: \mu(Y)B & \mbox{infinite-unfold} \end{array}$

Ex: Points (via 1st-order records)

Let Point = $\mu(Self) Rcd(x,y:Int, m:Int \times Int \rightarrow Self)$

Let ClrPoint = $\mu(Self) Rcd(x,y:Int, c:Clr, m:Int \times Int \rightarrow Self)$

 $Point \equiv Rcd(x,y:Int, m:Int \times Int \rightarrow Point)$ $ClrPoint \equiv Rcd(x,y:Int, c:Clr, m:Int \times Int \rightarrow ClrPoint)$

Good news: *ClrPoint <: Point*

Weird: the above fails if we include *eq* methods.

Bad news: *ClrPoint* does not reuse *Point*.
Even if we say *Let ClrPoint = Point || Rcd(c:Clr)*, the result type of *m* is unsatisfactory for *ClrPoint*.

A design niche

We have reached a clear-cut point in design space: a 1st-order language featuring records and subtyping:

Nat, $Rcd(l_1:A_1, ..., l_n:A_n)$, $Vnt(l_1:A_1, ..., l_n:A_n)$, $A \rightarrow B$, $\mu(X)B$

The next natural step is to add polymorphism. But this is not all that easy.

May 31, 1994

May 31, 1994

Foil 13

2nd-order record types

• Prologue: **2nd-order types** are types parameterized by **type variables**:

length: \forall (X)*List*(X) \rightarrow Nat

Type variables can be instantiated with types, e.g. Nat:

length(*Nat*): *List*(*Nat*)→*Nat*

length(Nat)([1,2,3]) = 3length(Bool)([true,false]) = 2 • 2nd-order record types (perhaps a slight misnomer) are record types parameterized by type-row (or row, or extension) variables.

 $Rcd(l_1:A_1, ..., l_n:A_n, X)$

where *X* is a type-row variable that can be instantiated with an appropriate **type-row**, e.g. $l_{n+1}:A_{n+1}$, *Y*:

 $Rcd(l_1:A_1, ..., l_n:A_n, l_{n+1}:A_{n+1}, Y)$

The **empty** (or more appropriately, **uninteresting**) type-row is called *Etc*. We can use it to finally instantiate *Y* above:

 $Rcd(l_1:A_1, ..., l_n:A_n, l_{n+1}:A_{n+1}, Etc)$

Ex: Points (via 2nd-order records)

Let Point[X ...] = (see later about the "...") $\mu(Self) Rcd(x,y:Int, m:Int \times Int \rightarrow Self, X)$

 $Point[X] \equiv Rcd(x, y:Int, m:Int \times Int \rightarrow Point[X], X)$

Let ClrPoint[Y...] = Point[c:Clr, Y]

ClrPoint[Y]

May 31, 1994

- $\equiv \mu(Self) \ Rcd(x,y:Int, \ c:Clr, \ m:Int \times Int \rightarrow Self, \ Y)$ $\equiv Rcd(x,y:Int, \ c:Clr, \ m:Int \times Int \rightarrow ClrPoint[Y], \ Y)$
- Bood news:
- ClrPoint[Etc] <: Point[Etc]
- ClrPoint reuses the definition of Point
- *m* is parametric over extensions of *Point*

Part 2. Back to foundations.

A more detailed understanding of the modeling features we seem to need.

How to reduce them to more basic notions.

Note: this part is non-standard. Different foundational approaches are used in the literature.

May 31, 1994

Foil 17

Type rows

In general, a 2nd-order record type has the form:

Rcd(R)

where R is a type-row; that is, either:

Χ	type-row variable
Etc	uninteresting type-row
l:A, R	type-row with <i>l</i> : <i>A</i> , followed by <i>R</i>

But what happened to the restriction that labels in a record must be distinct?

• First, *l*:*A*, *R* can be well-formed only if *l* does not occur in *R*. This is written $R^{\uparrow}l$:

 $R \uparrow L$ R lacks (exactly) $L \equiv l_1, ..., l_n, n \ge 0$.

• The notion of "lacks" must be respected under substitution, so *l:A*, *X* requires:

 $X^{\uparrow}l$ i.e. X can be instantiated only to type-rows R such that $R^{\uparrow}l$.

• The idea of "lacks" must be applicable to the *Etc* type-row. Consider:

l:A, Etc requires $Etc \uparrow l$ $l_1:A_1, l_2:A_2, Etc$ requires $Etc \uparrow l_1, l_2$

Hence, we need to assume that *Etc* lacks (exactly) anything we want, or perhaps that there are multiple versions of *Etc* indexed by what they lack.

• Only a **complete** row can give raise to a record:

Rcd(R) requires $R^{\uparrow}()$ (*R* lacks nothing)

"complete" or "lacks nothing" does not mean every label is defined; it means every label is accounted for, either as a field or in the *Etc* sink.

• Finally, wherever there is a type variable there should be a corresponding quantifier. So:

 $\forall (Y^{\uparrow}l)B$ for all type-rows *Y* lacking *l*...

Exercise: if you think this is strange, there are alternative approaches. Try and formalize a similar notion of **lacks at least** or separate notions of **has** and **lacks**.

Value rows

Foil 21

May 31, 1994

At the value level, we have a notion of (**value-**) **rows** for record values:

rcd(r)

where r is a row; that is, either:

x	row variable
etc	uninteresting row
l=a, r	row with $l=a$, followed by r
a L	row of record <i>a</i> minus all <i>L</i> fields

where now:

 $r :: R^{\uparrow}L$ means *r* has *R* and lacks (exactly) *L*

• Wherever there is a value variable there should be a corresponding function space. So:

 $R^{\uparrow}L \rightarrow B$ functions from rows to values

May 31, 1994

Foil 23

May 31, 1994

Foil 2

Technical examples

•	$etc \therefore Etc^{l}$	an axiom
	$l=3, etc :: l:Nat, Etc^{\uparrow}()$	
	rcd(l=3,etc) : Rcd(l:Nat,Etc)	
	rcd(l=3, etc).l : Nat	
•	x : Rcd(l:Nat,Y) an assump	tion $(\Rightarrow Y^{\uparrow}l)$
	$x \mid l \therefore Y \mid l$	
	$l=x.l+1, x \mid l \therefore l:Nat, Y \uparrow ()$	
	rcd(l=x.l+1, x l) : $Rcd(l:Nat, Y)$	
	$\lambda(x:Rcd(l:Nat,Y)) \ rcd(l=x.l+1, x \mid l)$	
	$: Kca(\iota.Ival, I) \to Kca(\iota.Ival, I)$	
	$\lambda(Y^{\uparrow}l) \ \lambda(x:Rcd(l:Nat,Y)) \ rcd(l=x.l)$: $\forall(Y^{\uparrow}l) \ Rcd(l:Nat,Y) \rightarrow Rcd(l:Rat,Y)$	$+1, x \mid l$) Nat, Y)

Is this the right calculus?

When fully formalized, the calculus with extensible records described so far is called $F_{<:}\rho$ and has a total of 78 typing and evaluation rules. Rather complicated!

Several other formulations of extensible records have been proposed, and have a comparable number of rules.

Is this the **right** calculus? Not clear. However, what **distinguishes** $F_{<:}\rho$ is that it can be completely encoded into a much simpler calculus called $F_{<:}$ which has "only" 32 rules ($F_{<:}\rho$ is in fact an extension of $F_{<:}$). We remain **within pure 2nd-order** calculi.

By a comparable way of counting: $F_2 (\equiv F, \text{the poly-morphic or } 2^{\text{nd}}\text{-order } \lambda\text{-calculus})$ has 22 rules; F_1 (the simply-typed or $1^{\text{st}}\text{-order } \lambda\text{-calculus})$ has 14 rules; and the untyped $\lambda\text{-calculus}(F_0 ?)$ has 10 rules.

A pure calculus of subtyping: $F_{<:}$

 $F_{<:}$ is obtained by starting with 2nd-order types and adding subtyping, with *Top* the biggest type.

 $X, Top, A \rightarrow B, \forall (X \le A)B; \mu(X)B$

For terms of the calculus we have

x, top, $\lambda(x:A)b$, b(a), $\lambda(X <: A)b$, b(A); $\mu(x:A)b$

Unlike *F*, **equivalence** of two terms in $F_{<:}$ is stated always **with respect to a type**. The type acts as an observer. Values that are distinguishable in a subtype may become undistinguishable in a supertype (this is characteristic of objects). At the limit, everything is undistinguishable in *Top*.

Models: partial equivalence relations (per's) over (ω, \cdot) , where $\langle : is \subseteq of per's$. For recursion: per's over D_{∞} .

Soundness of $F_{<:}\rho$

Theorem There is a translation of $F_{<:}\rho$ into $F_{<:}$ that preserves all derivations (typing, subtyping, and equivalence).

Hint.

May 31, 1994

Foil 25

- Using a standard technique from F we can encode cartesian products $A \times B$ in $F_{<:}$ (which are automatically monotonic w.r.t. <:).
- From these, we can define:

 $Tuple(A_1,..,A_n,B) = A_1 \times .. \times A_n \times B$

Consider tuples where the final $B \equiv Top$; then a "longer" tuple is a subtype of a "shorter" tuple.

May 31, 1994

• Fix an enumeration of labels. Translate records to tuples according to the index of labels, e.g.:

 $Rcd(l^2:C, l^0:A, Top) \equiv Tuple(A, Top, C, Top)$ position: 0 1 2 3+

 $Rcd(l^2:C, l^0:A, X) \equiv Tuple(A, X^1, C, X^3)$ position: 0 1 2 3+

Under this translation, for records ending with *Top* (=Etc), "longer" ones are subtypes of "shorter" ones. Moreover, the order of fields is normalized.

• Finally, type-row variables become rows of type variables; if *X* lacks (exactly!) l^{0} , l^{2} , then it has (exactly) l^{1} and l^{3} , l^{4} The tail can be captured by a single variable:

 $\forall (X \uparrow l^0, l^2) ... \equiv \forall (X^1) \forall (X^3) ...$

Following this pattern, type-row applications become rows of type applications, etc.

Part 3. Forward to objects.

Using subtyping and parameterization to (attempt to) emulate o-o constructs.

What's the connection to o-o?

We try to *model* (as well as we can) basic o-o concepts, *explain* them (via "more fundamental notions") and *extend* them (by combining fundamental notions synergicly).

We feel the need for this exercise because not all is well-understood or clear-cut with o-o languages.

We could use a better understanding of o-o concepts for designing new, simpler, and more powerful languages, and to avoid pitfalls (e.g. unsound type systems).

Or maybe, once we truly understand these concepts, we may decide they are too complicated and scrap them...

Remember the Modula-3 code?

Bad news:

May 31, 1994

• *cp.move* has return type *Point*, not *ClrPoint*, although it really returns a *ClrPoint*. (Note that *MovePoint* could allocated and return a new *Point*, which would certainly not be a *ClrPoint*.)

• Although it would be highly desirable, we **cannot** override *eq* using:

PROCEDURE EqClrPoint(self,other: ClrPoint ...

because Modula-3 requires other: Point.

This is a deep problem, not exclusive to Modula-3.

May 31, 1994

May 31, 1994

Foil 29

To fix these shortcomings, a language like **Eiffel** might use something like this:

METHODS

m(dx,dy: INTEGER):Self; eq(other: Self): BOOLEAN; covariant *Self* contravariant *Self*

But one has to be *very careful*: covariant *Self* gives subclasses that are subtypes, but contravariant *Self* gives subclasses that are **not** subtypes (or else the typechecker is unsound). More about this later.

Let's now see how one might paraphrase the *Point* example using extensible records, along with recursion.

Recursion and extension

An **object type** is some kind of recursive record type.

Let $A = \mu(S) \operatorname{Rcd}(n:Int, f:S \rightarrow S)$ Let $B = \mu(S) \operatorname{Rcd}(n:Int, f:S \rightarrow S, g:S \rightarrow S)$

General problem: how can we define *B* by reusing *A*?

Record concatenation (whatever that means) does not help much:

Let $B' = A \parallel \mu(S) \operatorname{Rcd}(g:S \rightarrow S)$

here *B*′ does not "loop the same way" as *B*.

A solution is to use **generators**, that is to leave the recursion open so we can close it later in the desired way.

Let $GenA[S] = Rcd(n:Int, f:S \rightarrow S)$ Let $A = \mu(S) GenA[S]$ (i.e. Fix(GenA))

Let GenB[S] = GenA[S] with $(g:S \rightarrow S)$ Let $B = \mu(S)$ GenB[S]

(Note: *with* needs to be defined appropriately.)

This technique can be carried quite far. Contravariant Self (e.g. *eq* methods) leads to **F-bounded quantification**.

We do not discuss this further because...

Instead of generators and F-bounded quantification, we can use **record extension** and **parametric definitions**.

We close recursions immediately, but we still manage to patch them later via extensions.

Let $ExtA[X^{f}] = \mu(SA) Rcd(n:Int, f:SA \rightarrow SA, X)$ Let A = ExtA[Etc]

Let $ExtB[Y \uparrow f,g] = \mu(SB) ExtA[g:SB \rightarrow SB, Y]$ Let B = ExtB[Etc] (</: A)

We have:

 $\begin{aligned} ExtB[Y] \\ &\equiv \mu(SB) \ \mu(SA) \ Rcd(f:SA \rightarrow SA, \ g:SB \rightarrow SB, \ Y) \\ &\equiv \mu(S) \ Rcd(f:S \rightarrow S, \ g:S \rightarrow S, \ Y) \end{aligned}$

A similar trick works with value-level recursion.

Exercise: do the examples in section 3 of [Cook Hill Canning 90] using only extensible records and parametric definitions.

May 31, 1994

May 31, 1994

Foil 33

Ex: Points (via 2nd-order records)

• Points:

 $\equiv \mu(Self) Rcd(x,y:Int, c:Clr, m:Int \times Int \rightarrow Self, Y)$ Let $Point[X \uparrow x, y, m] =$ *let newClrPoint*($Z^{\uparrow}x, y, c, m$)(x, y:*Int*, c:*Clr*, $\mu(Self) Rcd(x,y:Int, m:Int \times Int \rightarrow Self, X)$ $m:ClrPoint[Z] \rightarrow Int \times Int \rightarrow ClrPoint[Z])(z:Z): ClrPoint[Z] =$ newPoint(c:Clr,Z)(x, y, m)(c=c, z)*let newPoint*($W^{\uparrow}x, y, m$)(x, y:*Int, m*:*Point*[W] \rightarrow *Int* \times *Int* \rightarrow *Point*[W]) (w:W): Point[W] =let cp:ClrPoint[Etc] = $\mu(self:Point[W]) rcd(x=x, y=y, m=m(self), w)$ newClrPoint(Etc) (0,0, black, movePoint(c:Clr,Etc)) (etc) *let rec movePoint*($W^{\uparrow}x,y,m$)(*self:Point*[W])(dx,dy:*Int*): *Point*[W] = • Color points overriding *m* from *Point*. *newPoint* (W) (*self*.x+dx, *self*.y+dy, *movePoint*(W)) (*self*\x,y,m) *let rec moveClrPoint*($Z^{\uparrow}x, y, c, m$)(*self:ClrPoint*[Z])(dx, dy:Int) let p: Point[Etc] = : ClrPoint[Z] =newPoint (Etc) (0, 0, movePoint(Etc)) (etc) *newClrPoint* (*W*) (*self.x+dx*, *self.y+dy*, *red*, *moveClrPoint*(*W*)) $(self \setminus x, y, c, m)$ let cp:ClrPoint[Etc] = newClrPoint (Etc) (0, 0, black, moveClrPoint(Etc)) (etc) Foil 37 May 31, 1994 May 31, 1994

Good news: 問

• movePoint has a self first argument, but this does not show in the type of *Point* because the **procedure** *movePoint* is converted to the **method** *m*. Otherwise *ClrPoint[Etc] <: Point[Etc]* would fail because of contravariance.

• The *new* routine for *ClrPoint* uses the *new* routine for Point. This kind of behavior is useful or necessary to establish the internal invariant of superclasses on allocation of subclasses (e.g., polar points).

• cp.move is inherited from Point, but has the appropriate return type when used from ClrPoint.

?? Weird: *eq* methods don't subtype...

Inheritance without subtyping

• Color points inheriting *m* from *Point*.

Let $ClrPoint[Y^{x,y,c,m}] = Point[c:Clr, Y]$

If we include the *eq* method in the definitions, obtaining *EqPoint* (and hence *ClrEqPoint*), we can still inherit methods, but then we do **not** have

ClrEqPoint[Etc] <: EqPoint[Etc]

Let's ignore *m*. (See Appendix for the full example.)

Let $EqPoint[X^{x}, y, eq] =$ $\mu(Self) Rcd(x, y:Int, eq:Self \rightarrow Bool, X)$

Let $ClrEqPoint[Y^{\uparrow}x,y,c,eq] = EqPoint[c:Clr, Y]$ $\equiv \mu(Self) Rcd(x, y:Int, c:Clr, eq:Self \rightarrow Bool, Y)$

The type rules for recursion fail to prove *ClrEqPoint[Etc] <: EqPoint[Etc]* because of the contravariant occurrence of *Self* in *eq*.

Are the type rules too weak? Or is this inclusion really bogus?

Let's assume *ClrEqPoint[Etc] <: EqPoint[Etc]*, and take: *cp:ClrEqPoint[Etc]*, *p:EqPoint[Etc]*. Let's also assume that *cp.eq* tests the *c* components.

Then cp:EqPoint[Etc], by subsumption. Hence:

cp.eq: $EqPoint[Etc] \rightarrow Bool.$

Therefore,

May 31, 1994

cp.eq(p): Bool is well-typed.

But *cp.eq* will access the *c* component of *p*, which *p* does not have: **CRASH!** The type rules were right after all.

Conclusions

• It is important to unbundle subtyping from inheritance. We can take advantage of subtyping without inheritance, and of inheritance without subtyping.

• A language with subtyping and sufficient parameterization (several choices here) can emulate basic o-o concepts and go beyond them. Many of the additional features are natural o-o desiderata.

• On the other hand, it is very difficult to provide in a much simpler way *exactly* what o-o already provides.

Further reading

Highly recommended:

[Cook Hill Canning 90] *Inheritance is Not Subtyping*. Proc. POPL'90.

(Introduction to generators and F-bounded quantification.)

[Bruce 92] A Paradigmatic Object-oriented Programming Language: Design, Static Typing, and Semantics. To appear.

(A direct formalization of an interesting o-o language and its typing.)

Appendix. The full example

• Points.

May 31, 1994

Foil 41

Let $Point[X^{x}, y, m] = \mu(Self) Rcd(x, y:Int, m:Int \times Int \rightarrow Self, X)$

 $let newPoint(W^{\uparrow}x, y, m)(x, y:Int, m:Point[W] \rightarrow Int \times Int \rightarrow Point[W])$ (w:W): Point[W] = $\mu(self:Point[W]) rcd(x=x, y=y, m=m(self), w)$

let rec movePoint(W¹x,y,m)(self:Point[W])(dx,dy:Int): Point[W] = newPoint (W) (self.x+dx, self.y+dy, movePoint(W)) (self \x,y,m)

let p: Point[Etc] =
 newPoint (Etc) (0, 0, movePoint(Etc)) (etc)

• Color points inheriting *m* from *Point*.

Let $ClrPoint[Y^{x},y,c,m] = Point[c:Clr, Y]$ = $\mu(Self) Rcd(x,y:Int, c:Clr, m:Int \times Int \rightarrow Self, Y)$

 $let newClrPoint(Z^{x,y,c,m})(x,y:Int, c:Clr, \\ m:ClrPoint[Z] \rightarrow Int \times Int \rightarrow ClrPoint[Z])(z:Z): ClrPoint[Z] = \\ newPoint(c:Clr,Z)(x, y, m)(c=c, z)$

let cp:ClrPoint[Etc] =
newClrPoint(Etc) (0,0, black, movePoint(c:Clr,Etc)) (etc)

• Points with eq, reusing m from Point.

$$\begin{split} &Let \ EqPoint[X^{\uparrow}x, y, m, eq] = \\ &\mu(Self) \ Point[eq:Self \rightarrow Bool, X] \\ &\equiv \mu(Self) \ Rcd(x, y:Int, m:Int \times Int \rightarrow Self, \ eq:Self \rightarrow Bool, X) \end{split}$$

 $let newEqPoint(W^{\uparrow}x, y, m, eq) (x, y:Int, \\ m:EqPoint[W] \rightarrow Int \times Int \rightarrow EqPoint[W], \\ eq:EqPoint[W] \rightarrow EqPoint[W] \rightarrow Bool) (w:W): Point[W] = \\ \mu(self:EqPoint[W]) \\ newPoint(eq:EqPoint[W] \rightarrow Bool, W)(x, y, m)(eq=eq(self), w)$

let rec eqEqPoint(W¹x,y,m,eq)(self:EqPoint[W])(other:EqPoint[W])
 : Bool =
 self.x=other.x & self.y=other.y

(* A movePoint "wrapper", so that p.m(2,3).eq(p)=false *) let rec moveEqPoint(W[↑]x,y,m,eq)(self:EqPoint[W])(dx,dy:Int) : EqPoint[W] = let p = movePoint(eq:EqPoint[W]→EqPoint[W]→Bool,W)(self)(dx,dy)

 $let p = movePoint(eq:EqPoint[W] \rightarrow EqPoint[W] \rightarrow Bool, W)(self)(dx, dy)$ in $\mu(self':EqPoint[W]) \ rcd(eq=eqEqPoint(W)(self'), p \mid eq)$

let ep: EqPoint[Etc] =
 newEqPoint(Etc)(0, 0, moveEqPoint(Etc), eqEqPoint(Etc)) (etc)

• Points with *eq* and *c*, inheriting *m* from *EqPoint*, and overriding (but still reusing) *eq* from *EqPoint*. But **not** *ClrEqPoint*[*Etc*] <: *EqPoint*[*Etc*].

Let $ClrEqPoint[Y^{x}, y, c, m, eq] =$ EqPoint[c:Clr, Y] $\equiv \mu(Self) Rcd(x, y:Int, c:Clr, m:Int \times Int \rightarrow Self, eq:Self \rightarrow Bool, Y)$ let $newClrEqPoint(Z^{x}, y, c, m, eq)$ (x, y:Int, c:Clr, $m:ClrEqPoint[W] \rightarrow Int \times Int \rightarrow ClrEqPoint[W],$ $eq:ClrEqPoint[Z] \rightarrow ClrEqPoint[Z] \rightarrow Bool)$ (z:Z): ClrEqPoint[Z] =newEqPoint(c:Clr,Z)(x, y, m, eq)(c=c,z)

let rec eqClrEqPoint(W¹x,y,m,c,eq)(self:ClrEqPoint[W]) (other:ClrEqPoint[W]): Bool = eqEqPoint(c:Clr,Etc)(self)(other) & self.c=other.c

let cep:ClrEqPoint[Etc] =
 newClrEqPoint(Etc)
 (0, 0, black, moveEqPoint(c:Clr, Etc), eqClrEqPoint(Etc)) (etc)

May 31, 1994

Foil 45

May 31, 1994

Advert. *F*<: software

Fsub is a Modula-3 implementation of the $F_{<:}$ calculus. This is the "smallest possible" calculus integrating subtyping with polymorphism. The type structure consists of type variables, "Top", function spaces, bounded quantification, and recursive types. The implementation supports type inference ("argument synthesis"), a simple modularization mechanism, and the introduction of arbitrary notation on the fly.

The system can be obtained by anonymous ftp from

gatekeeper.pa.dec.com, in the **DEC** directory. The distribution includes DECstation and VAX binaries; it can be ported to other architectures that support Modula-3 by recompilation.

The Fsub licence is covered by the Modula-3 licence; there is nothing to sign. If needed, Modula-3 can be obtained by anonymous ftp from gatekeeper.pa.dec.com.

A manual "**F-sub, the system**" is included in postscript format. Hardcopies may be obtained from:

Luca Cardelli (luca@src.dec.com) DEC SRC, 130 Lytton Ave Palo Alto, CA 94310, USA

References on selected topics

First-order subtyping and simple records.

[Mitchell 84] J.C.Mitchell: **Coercion and type inference**, Proc. of the 11th ACM Symposium on Principles of Programming Languages, pp.175-185, 1984.

[Cardelli 84] L.Cardelli: A semantics of multiple inheritance, in Semantics of Data Types, G.Kahn, D.B.MacQueen and G.Plotkin Ed. Lecture Notes in Computer Science n.173, Springer-Verlag 1984.

[Reynolds 88] J.C.Reynolds: **Preliminary design of the programming language Forsythe**, Report CMU-CS-88-159, Carnegie Mellon University, 1988.

Recursive type equivalence and subtyping.

[Breazu-Tannen et al. 89] V. Breazu-Tannen, C. Gunter, A. Scedrov: Denotational semantics for subtyping between recursive types, Report MS-CIS 89 63, Logic of Computation 12, Dept of Computer & Information Science, University of Pennsylvania.

[Amadio Cardelli 91] R.M.Amadio, L.Cardelli: Subtyping recursive types, Proceedings of the ACM conference on Principles of Programming Languages, ACM Press, 1991.

Second-order typing.

[Girard 71] J-Y.Girard: **Une extension de l'interprétation de Gödel à l'analyse, et son application à l'élimination des coupures dans l'analyse et la théorie des types**, Proceedings of the second Scandinavian logic symposium, J.E.Fenstad Ed. pp. 63-92, North-Holland, 1971.

[Reynolds 74] J.C.Reynolds: **Towards a theory of type structure**, in Colloquium sur la programmation pp. 408-423, Springer-Verlag Lecture Notes in Computer Science, n.19, 1974.

[Mitchell Plotkin 85] J.C.Mitchell, G.D.Plotkin: Abstract types have existential type, Proc. POPL 1985.

[Scedrov 90] A.Scedrov: A guide to polymorphic types, in Logic and Computer Science, pp 387-420, P.Odifreddi ed., Academic Press, 1990.

Second-order subtyping and simple records.

[Cardelli Wegner 85] L.Cardelli, P.Wegner: **On understanding types, data abstraction and polymorphism**, Computing Surveys, Vol 17 n. 4, pp 471-522, December 1985.

[Breazu-Tannen Coquand Gunter Scedrov 89] V.Breazu-Tannen, T.Coquand, C.Gunter, A.Scedrov: **Inheritance and explicit coercion**, Proc. of the Fourth IEEE Symposium on Logic in Computer Science, pp 112-129, 1989.

Pure second-order subtyping.

- [Ghelli 90] G.Ghelli: **Proof theoretic studies about a mininal type system integrating inclusion and parametric polymorphism**, Ph.D. Thesis TD-6/90, Università di Pisa, Dipartimento di Informatica, 1990.
- [Curien Ghelli 91] P.-L.Curien, G.Ghelli: Coherence of subsumption, Mathematical Structures in Computer Science, to appear.
- [Curien Ghelli 91] P.-L.Curien, G.Ghelli: **Subtyping** + extensionality: confluence of βη-reductions in F≤, in T.Ito,A.R.Meyer Eds.Theoretical Aspects of Computer Software, Sendai, Japan, Lecture Notes in Computer Science n.526, pp. 731-749, Springer-Verlag, 1991. [Cardelli Martini Mitchell Scedrov 911 L.Cardelli, J.C.Mitchell, S.Martini,

A.Scedrov: **An extension of system F with subtyping**, in T.Ito,A.R.Meyer Eds.Theoretical Aspects of Computer Software, Sendai, Japan, Lecture Notes in Computer Science n.526, pp. 750-770, Springer-Verlag, 1991.

[Pierce 91] B.C.Pierce: Programming with intersection types and bounded polymorphism, Ph.D. Thesis, CMU-CS-91-205, 1991. [Pierce 92] B.C.Pierce: Bounded quantification is undecidable, Proc. POPL'92

Generators and F-bounded quantification.

[Reddy 88] U.S.Reddy: Objects as closures: abstract semantics of object-oriented languages, Proc. ACM Conference on Lisp and Functional Programming, pp. 289-297, 1988.

[Cook 89] W. Cook: A denotational semantics of inheritance, Ph.D. thesis, Technical Report CS-89-33, Brown University, 1989.

[Canning Hill Olthoff 88] P.Canning, W.Hill, W.Olthoff: A kernel language for object-oriented programming, Technical Report STL-88-21, Hewlett-Packard Labs, 1988.

[Canning Cook Hill Olthoff Mitchell 89] P.Canning, W.Cook, W.Hill, W.Olthoff, J.C.Mitchell: **F-bounded polymorphism for objectoriented programming**, Proc. ACM Conference on Functional Programming and Computer Architecture, ACM Press, 1989.

[Cook Hill Canning 90] W.Cook, W.Hill, P.Canning: Inheritance is not subtyping, Proc. POPL'90.

Extensible records.

[Wand 87] M.Wand: **Complete Type Inference for Simple Objects**, Proc. of the Second IEEE Symposium on Logic in Computer Science, pp 37-44, 1987. **Corrigendum: Complete Type Inference for Simple Objects**, Proc. of the Third IEEE Symposium on Logic in Computer Science, 1988.

[Jategaonkar Mitchell 88] L.A.Jategaonkar, J.C.Mitchell: **ML with extended pattern matching and subtypes**, Proc. of the ACM Conference on Lisp and Functional Programming, pp.198-211, 1988.

[Wand 89] M.Wand: **Type inference for record concatenation and multiple inheritance**, Proc. of the Fourth IEEE Symposium on Logic in Computer Science, pp. 92-97, 1989.

[Rémy 89] D. Rémy: Typechecking records and variants in a natural extension of ML, Proc. of the 16th ACM Symposium on Principles of Programming Languages, pp.77-88, 1989.

[Cardelli Mitchell 91] L.Cardelli, J.C.Mitchell: Operations on records, Mathematical Structures in Computer Science, vol 1, pp.3-48, 1991.
[Harper Pierce 90] R.Harper, B.Pierce: A record calculus with symmetric concatenation, Technical Report CMU-CS-90-157, CMU, 1990.

[Cardelli 91] L.Cardelli: Extensible records in a pure calculus of subtyping, DEC SRC Report #81, 1991.

[Rémy 92] D. Rémy: Typing record concatenation for free, Proc. of the 19th ACM Symposium on Principles of Programming Languages, 1992.

Type inference for subtyping and o-o languages. Many references. *Semantics of o-o languages.*

Many references.

May 31, 1994

Models of subtyping.

Many references.

Foil 49