IFIP State of the Art Seminar on
Formal Description of Programming Concepts

Typeful Programming

Luca Cardelli

Digital Equipment Corporation, Systems Research Center
130 Lytton Avenue, Palo Alto, CA 94301

QOutline

1. Introduction: typeful programming
Typed A-calculi and universe levels
The Quest language; fundamentals

2. The Quest language; constructions
Formal systems. Ex.: first-order typed A-calculus

3. Quest core formal system
Quest typing
Quest subtyping
Other Quest design topics

4. Modules and interfaces
Module combination
System programming

Conclusions

Talk: Operations on records
Talk: Introduction to constructive type theory

Introduction
Typing trends
Typeful programming
Relevant concepts
Theory and practice
Why types?
Why subtypes?
Why polymorphism?

Typed A-calculi and universe levels

Notation(s)
Levels

One type

Many types

One kind

Many kinds

Kinds are types

Types are values
Universes/Predicativity

The Quest language; fundamentals
Goals/ Approach
Why a new language?
Language Overview
Language levels
Binary vs n-ary quantifiers
Generalized correspondence principle

The Quest language; constructions
Simple values
Simple declarations
Function declarations
Recursive declarations
Tuples
Tuples and functions
Type declarations
Type operators
Polymorphic functions
Polymorphic lists

Abstract types
Information hiding
Parametric abstract types

Formal systems

General principles

First-order typed A-calculus
Types, terms
Free variables, substitution
Environments, judgements
General rules
Specific typing rules
Specific subtyping rules

Specific computation rules

Quest core formal system
Syntax
Judgements
Notation
Congruence, extension, subsumption
Signatures, bindings
Kinds, Types, Operators
Values
SubSignatures, SubKinds, SubTypes

Quest typing
Function types
Parametric polymorphism
Type operators
Simple tuples
Abstract types
Polymorphism + abstract types

Other Quest design topics
Quantifier closures
Quantifiers: pick your own
Phase distinctions
Subtyping
Abstract types and the dot notation
Alpha conversion
Compilation techniques
Syntax

Quest subtyping
Power types
Records
Higher-order subtypes
The subsumption rule
Subtyping + polymorphism
Subtyping + abstract types
Set types

Subtyping + set types
Classes and methods

Modules and interfaces
Programming in the large
Modules and interfaces
Separate compilation and linking
Diamond import

Module combination
System modelling
Major approaches
A different approach

Open systems
Closed systems
Sealed systems

System Programming
Low-level programming
Dynamic types
Type violations
Unsound features

Conclusions

Introduction

Typing trends

Languages for describing large and well-structured software
systems have been evolving towards stronger and stronger

notions of typing.
(Non-chronological)
Impémtive: Fortran -> Algol60 ->Pascal ->Modula2
System: Assm -> C -> Mesa, C++
Object-or.: Smalltalk -> Simula67 -> Trellis/ Owl, Modula3
Functional: ~ Lisp -> Scheme -> CLU,ML,Id,Miranda
Concurrent: (semaphores/monitors) -> NIL, FX
Logical: Prolog ->?

There have been also serious attempts to typecheck
Smalltalk, Lisp/Scheme, and Prolog.

Typeful programming

Diverse language paradigms, imperative, functional ,
concurrent, object-oriented, etc. have been converging towards
a common programming style; typeful programming.

This style is characterized by the widespread use of type
information intended as a partial specification of a program.
But:

Typing constraints should be (largely) decidably verifiable;
the purpose of type constraints is not simply to state
programmer intentions, but to actively trap programmer
errors. (Arbitrary formal specifications do not have this

property).

Typing constraints should be transparent: a programmer
should be able to easily predict when a program will
typecheck, and if it fails to typecheck the reason should be
apparent. (Automatic theorem proving does not have this
property, at least not yet).

Typing constraints should be enforceable: statically checked
as much as possible, otherwise dynamically checked. (Program
comments and conventions do not have this properties).

Hence we require strong typing, intended as any
combination of static and dynamic typing that prevents
unchecked run time type errors (the notion of type error has to be
defined for each particular language).

It would be nice to require static typing, but this is
impossible in practice, e.g. because of persistent data,
bootstrapping, and embedded eval primitives. Dynamic
typechecking can be confined so that it does not cause too
many problems.

An old tenet claims that many diverse forms of computation
can be understood in terms of the untyped
A-calculus (or similarly minimal systems, e.g. CCS).

The new tenet is that many diverse forms of program typing
can be understood in terms of suitable typed A-calculi.

The purpose of these lectures is to show how existing and
novel features of typeful languages can be expressed in a single
type system. This will provide insights in how to extend or
simplify these features.

This single system is in a sense rather powerful and
sophisticated, but in another sense is also fundamentally
simple: it is obtained by variations over a small and well-
studied kernel.

10

Relevant concepts

Higher-order functions
Abstract types
Polymorphism

Subtyping

(ISWIM)
(CLU)
(ML)

(Simula67)

Modules and Interfaces (Mesa)

Theory and practice

The conceptual framework for typeful programming is
derived from various theories of typed A-calculi, collectively
called type theory.

In particular, we base our discussion on Girard's system Fw
(also called the higher-order A-calculus), extended with a notion
of subtyping.

There is a strong correspondence between constructs in type
theory and constructs in programming (this is because type
theory is a form of constructive logic).

Constructs studied in type theory have provided new
insights on constructs already developed in programming (e.g.
for abstract types and polymorphism). Vice versa, some
programming constructs pose interesting type theory
questions.

This kind of theoretical understanding is very useful to
understand, simplify and generalize programming constructs.

However we should not oversimplify: a programming
language is not just a formal system. It has very different
requirements and constraints in terms of compiler engineering,
user "aesthetics”, and programming "sociology".

12

Here is a list of situations where nice theory tends to ignore
or conflict with programming reality.

Notation
Conciseness vs. redundancy.
Languages should be designed for readability

Scale
Small cute example vs huge real programs.
Languages should be designed for large programs.

Typechecking
Should be decidable, efficient, and easily understood.

Translation
Should be "linear" and efficient.

Efficiency
Translated code should executed efficiently and not
require complex optimizations.

Generality

A language should be usable for building many
different kinds of systems.

(1) Theoretically complete (Turing-complete).

(2) Practically complete:
should be able to express, in order of ambition:
- its own interpreter
- its own translator
- its own run-time system
- its own operating system

Why types? (a methodological view)

To aid in the evolution of software systems.
Large software systems are not created, they evolve.
Evolving software systems are (unfortunately):

not correct
(people keep finding and fixing bugs)

or else, not good enough
(people keep improving on space and time
requirements)

or else, not clean enough
(people keep restructuring for future evolution)

or else, not functional enough
(people keep adding and integrating new features)

Some form of "software hygiene" is necessary.

Reliability:
Naively, software either works or it does not, but evolving
software is always sort of in-between.

Working hardware is reliable if it does not break too
often, in spite of wear.

Evolving software is reliable if it does not break too
often, in spite of change.

Type systems provide a way of controlling change, inspire
some degree of confidence after each evolutionary step, and
help in producing and maintaining reliable software systems.

Why subtypes? (a methodological view)

To aid in the extension of software systems.

A software system provides some service. To extend the
service one can modify the system, but this is inconvenient and
unreliable.

To increase reliability, there should be ways of extending a
system from the outside, by adding to it without modifying it
directly.

Subtyping is one such mechanism. The types handled by the
basic system can be extended by the derived system. The
extended types are still recognized by the basic system.

The extended system will be more reliable (with respect to
changes to the basic system) if some abstraction of the basic
system has been used in building the extended system.

Why polymorphism?

Type systems constrain the underlying untyped language.
Good type systems, while providing static checking, do not
impose excessive constraints.
A simple untyped language
Terms: (x variables; k constants; 1labels; a,b,c terms)
construct introduction elimination (may fail)

variable X
constant k

function fun(x)b b(a)
tuple tuple ly=a4, ..., l,=a,end bl
Flexible, but computation may fail.

Failure points reduce software reliability.

To prevent failure, organize terms into a fype system.

17

Try to preserve the flexibility of the untyped calculus as much
as possible through polymorphism:

(fun(x) tuple fst=x snd=x end) (3)
(fun(x) tuple fst=x snd=x end) (true)

preserved by parametric polymorphism.

(fun(x) x.t) (tuple t=3 end)
(fun(x) x.t) (tuple t=3, u=true end)

preserved by subtype polymorphism.

Typed A-calculi and
universe levels

Notation(s)

Functions

Polymorphic Func.

Tuples

Function Spaces

Cartesian Prod.

Disjoint Union

Universal Quant.

Existential Quant.

Programming

fun(x:A) x
f(a)

fun(A) fun(x:A) x
fun(A:TYPE) b
f[A]

f(:A)

3,

tuple a=3, b="x' end
let (x,y) =t

t.a

A->B
All(x:A)B

A#B
Tuple f:A, s:B end

A+B
Variant a:A, b:B end

All[A] A=A
All (A) A->A

Some[A] AH#(A->B)
Tuple A, f:A->B end

Logic Semantics
AX:A. X AXEA. X
(fa) f(a)

AA. Ax:AL x MAEType. b

AA:Type.b f(A)

flA]

(3,x') (3,%')

fst(t) snd(t) let (x,y) =t
mi(t)

A—B A—B
ADB A—-B
AxB AxB
AnB
A+B A+B
AvB
VA. A—A ITA.A—A

JA. Ax(A—B) SA. Ax(A—B)

20

Levels

(values, types and operators, kinds)

One type
(untyped A-calculus)

let id = fun(x) x
id(3)

Many types
(first-order typed A-calculus)

let id : Int->Int =
fun (x:Int) x

id(3)

22

One kind
(second-order typed A-calculus)
(second-order polymorphic A-calculus)

letid : AlI(A) A->A =
fun(A) fun(c:A) x

id(:Int)(3)

Many kinds
(higher-order typed A-calculus)

Let Endo:: TYPE=>TYPE =
All(A:TYPE) A>A

letid : AlI(A:TYPE) Endo(A) =
fun(A:TYPE) fun(x:A) x

id(:Int)(3)

24

Kinds are types
(higher-order typed A-calculus with Type:Type)

let Endo: Type->Type =
fun(A:Type) A—A

let id : All(A:Type) Endo(A) =
fun(A:Type) fun(x:A) x

id(:Int)(3)
Problem: static levelchecking becomes impossible.

fun(A:Type) fun(x:A) x is A a type or a kind?
is x a type or a value?

id (:Int) (3) id (:Type) (:Int)
comp | run comp | run

Types are values
(untyped A-calculus with Type:Value)

let Endo = fun(A) A->A
let id = fun(A) fun(x) x
id(Int)(3)
Problem: static typechecking becomes impossible.

id (Int) (true) id (3) (4)

26

Universes

The predicative hierarchy

Values 3 e U0
Types Int, Int->Int, (Int->Int)->Int € U1
Polytypes All(A:U1)A->A

Operators Ul=>Ul e U2

Higher operators U2=>U2 € U3

Problem: polymorphic functions and elements of abstract
types are not values.

The impredicative hierarchy

Values 3 € Value
Types Int, Int->Int, (Int->Int)->Int

Polytypes All(A=TYPE)A->A € Type
Operators Type=>Type

Higher operators (Type=>Type)=>Type € Kind

Problem: model construction is delicate (but possible).

We will work in the impredicative hierarchy.

27

The Quest Language

Fundamentals

Goal: reduce programming concepts
to mathematical concepts.

Approach in these lectures:

Programming Language:
Quest (used in examples)

Core Language:
Quest Kernel (used in explaining type rules)

Technique:
operational semantics
(variations on type theory)

Commitment:
use a single framework for explaining
polymorphism, abstract types, inheritance
and modularization.

For presentation reasons:
(A) We will not provide typing rules for the full language
(rely on translation to core language).
(B) We will not provide explicit translation of full
language to core language (rely on similarities and intuition).

29

Why a new language?

There is now a general understanding of:

- Explicit polymorphism as:
(predicative or impredicative) general products

- Abstract types as:
(impredicative) general sums

- Interfaces as:
(predicative or impredicative) general sums

- Inheritance (partially) as:
subtyping

These language features where developed independently of
these explanations. Very few attempts have been made to feed
back the explanations into language features (main exceptions:
SML's modules, Pebble's dependent types, Amber's
subtyping).

Language overview

An exploration of type QUantifiers & SubTypes.

Based on Fw [Girard] plus subtyping;

impredicative value/type/kind structure.

Strongly typed. Explicit quantification for polymorphism
and abstract types.

Modules and interfaces; modules are first-class values.
Structural typing and subtyping (type matching is
determined by type structure, not by the way types are
declared or named).

This includes structural matching of abstract types.

User-definable type operators and computations at the
type level. Typechecking involves A-reduction.

Generalized correspondence principle (uniformity of
declarations/ formal-parameters/interfaces and
definitions/ actual-parameters/ modules).

Expression-based, functional style but with imperative
features. Call-by-value evaluation.

Interactive but compiled

31

Addressing pragmatic questions such as:

Notation
(To make software easily readable and writable.)

Scale
(Care about the organization of large programs.
Promote reusability and extensibility.)

Typechecking
(Decidability, heuristics, efficiency.)

Translation
(Make it possible.)

Efficiency
(Of generated code.)

Generality
(A "real" language, as opposed to a special-purpose or
application-oriented language. (a) Turing complete,
and (b) able to express its own compiler conveniently.)

32

Language levels

KINDS
(Level 2
TYPE (ALL(AzTYPE)TYPE)
é ':3;;‘
b .::
Types Operators / \
(Level 1

\

Pair A=TYPE x:A end

-

Int ; .

-

values

\

(Level 0

3
fun(A:TYPE)fun(x:A)x
pair Let A=Int let x=3 end

Yo

van

L)

33

e All(x:A)B (e.g: fun (cInt)x)

This is the type of functions from values in A to values in
B, where A and B are types. The variable x can appear in B
only in special circumstances, so this is normally
equivalent to the function space A->B. Sample element:

o AII(X::K)B (e.g: fun(A:TYPE)fun(x:A)x)

This is the type of functions from types in K to values in B,
where K is a kind, B is a type, and X may occur in B.
Sample element:

e ALL(X::K)L (e.g: Fun(A::TYPE)A)

This is the kind of functions from types in K to types in L,
where K and L are kinds, and X may occur in L.

e Pair x:A y:B end (e.g: pair let x=true let y=3 end)
This is the type of pairs of values in A and values in B,
where A and B are types. The variable x can appear in B
only in special circumstances, so this is normally
equivalent to the cartesian product A#B.

e Pair X:K y:Bend (e.g: pair Let X=Int let y:X=3 end)

This is the type of pairs of types in K and values in B,
where K is a kind, B is a type, and X may occur in B.

Binary vs. n-ary quantifiers

g: All(A:TYPE) All(a:A) All(f:A->Int) Int
= fun(A:TYPE) fun(a:A) fun(f: A->Int) f(a)

g(:Int)(3)(succ)
VS,

g: All(A:=TYPE a:A f:A->Int) Int
= fun(A:TYPE a:A f:A->Int) f(a)

g(:Int 3 succ)

t: Pair(A:TYPE) Pair(a:A) A->Int

= pair(A:TYPE=Int) pair(a:A=3) succ end end
ie.. t=pair:Int pair 3 succend end

snd(snd(t))(fst(snd(t)) : Int

fst(snd(t)) : Fst(t)

0S.

t: Tuple A:TYPE a:A f:A->Int end
= tuple
Let A=TYPE =Int let a:A =3 let f:A->Int = succ
end
Le.. t=tuple :Int 3 succ end
t.f(t.a) : Int

ta:tA

Introduce the notion of a signature S,
e.g.:

A:TYPE a:A f:A->Int

n-ary universals: AIL(S) A

n-ary existentials: Tuple S end
Correspondingly, introduce the notion of a bindingD .. S
e.g.:

Let A::TYPE =Int let a:A =3 let f;A—Int = succ

n-ary application f(D)

n-ary products tuple D end

37

Generalized correspondence principle

(Burstall-Lampson)

IR

let £(S51)..(5n)B=Db
(S1)..(Sp):B

let f = fun(Sq) .. fun(Sp):B b
f: All(Sq) .. All(S)B

IR

Signatures in:
Declarations
Let AxTYPE =Int let a:A =3 let f(x:A):Int = x+1
Formal parameters
let f(A=TYPE a:A f(x:A):Int):A = ...
Types

All(A:TYPE a:A f(c:A):Int) A
Tuple A:TYPE a:A fOcA):Int end

Interfaces

interface I import ...
export

A:TYPE

aA

fOc:A):Int

end

Bindings in:
Definitions (e.g. at the top-level)

Let A:TYPE = Int leta:A =3 let f(x:A):Int = x+1
dnt 3 funCcInt)x+1

Actual parameters

f(Let A=TYPE = Int leta:A =3 let f(x:A):Int = x+1)
f:Int 3 fun(GcInt)x+1)

Tuples
tuple
Let A:TYPE = Int leta:A =3 let fOcA):Int = x+1
end
tuple :Int 3 fun(cInt)x+1l end
Modules
module m:I import ...
export
Let A::TYPE = Int
leta:A =3

let f(x:A):Int = x+1
end

9

The Quest language

Constructions

Simple values

"abc"; the string "abc”
34l the value 4

Simple declarations

let a = 3; declare a to be a constant
let a:Int = 3; the same, with type information
a; evaluate a
let var b = 3; declare b to be a variable
b §= 5% change b
b+3; = §
let a = 3 simultaneous declarations
and b = 5;
begin local declarations

let a = 2*n

at+l

end; result is 2*n+1

41

Function declarations

The successor function
let succ(x:Int):Int = x+1;
succ(0);
=1

A function of no arguments
let one():Int = 1;
one();
=1

A function of two arguments
let average(x,y:Int):Int =
(x+y)/2;
average(3 5);
= 4

A curried function
let twice(f(:Int):Int)(y:Int):Int =
£(£(y));
twice(succ)(3);
= 5

Partial application
let it = twice(succ);
it(3);
=5

Recursive declarations

Recursive functions

let rec fact(n:Int):Int =
if n is 0 then 1

else n*fact(n-1)
end;

Mutually recursive functions

let rec f(a:Int):Int

if a is 0 then 0 else g(n-1) end
and g(b:Int):Int

if b is 0 then 0 else f(n-1) end;
Recursive values

let rec self

tuple

let b = 3

let f(n:Int):Int = n + self.b
end;

43

Tuples

A triple and its type
tuple 3 true 'c' end ;
¢ Tuple :Int :Bool :Char end

A labeled pair and its type
tuple let a=3 and b=true end;
¢ Tuple a:Int b:Bool end

A dependent pair and its type
tuple Let A:Type=Int let b:A=3 end;
¢ Tuple A:Type b:A end

A labeled pair with type info
tuple let a:Int=3 and b:Bool=true end;

Selecting a field
let p = tuple a=3; b=true end;

p.a;
=3

Tuples and functions

A function expecting a pair
let f(x: Tuple a,b:Int end):Int
X84K.D§

A legal application
let p = tuple 3 5 end;

f(p):

A tuple with function components
let q =
tuple
let succ(n:Int):Int = n+l
let plus(n,m:Int):Int = n+m
end;

Selection and application

g.succ(3);

45

Type declarations

The Ok type
Let Ok::TYPE = Tuple end;
let ok:0k = tuple end;

An integer pair type
Let IntPair::TYPE =
Tuple fst:Int snd:Int end;

A pair of that type
let p:IntPair =
tuple let fst=3 and snd=4 end;

The integer function type

Let IntFun::TYPE = All(:Int)Int;

..a function of that type
let f:IntFun = succ;

46

Type operators

Cartesian product
Let #(A,B::TYPE)::TYPE =
Tuple fst:A snd:B end;

Function space
Let ->(A,B::TYPE)::TYPE =
All(:A) B;

Ex: (Int # Int) -> Int :: TYPE

Homogeneous lists
Let List(A::TYPE)::TYPE =
Rec (B::TYPE)
Option
nil
cons with hd:A t1l:B end
end;

Ex. List(Int) :: TYPE

47

Polymorphic functions

The type of the integer identity
Let IntId::TYPE =
Int -> Int;

The integer identity
let intId(a:Int):Int =
a

Usage of integer identity
intld{3):

The type of the polymorphic identity
Let Id::TYPE =
All(A::TYPE) A -> A;

The polymorphic identity
let id(A::TYPE) (a:A):A = a;
.application of a polymorphic function
id(:Int)(3);
..abbreviated application
1d£3); where the missing TNt parameter can be inferred

Specialized identities
let intId: Int->Int = id(:Int);
let boolId: Bool->Bool = id(:Bool);

48

Passing polymorphic functions
let f£(g:Id): Int#Bool =
tuple g(3) g(true) end;
ie. g(:Int)(3),etc.

The polymorphic swap function
let swap(A,B::TYPE) (p:A#B): B#A =
tuple p.snd p.fst end;
.usage
swap(3 true); ie swap(:Int :Bool)(3 true)

49

Polymorphic lists

let hd
and tl

= exception "hd" end
= exception "tl" end;
Let List(A::TYPE)::TYPE =
Rec (B::TYPE)
Option
nil
cons with hd:A tl:B end
end;

let nil(A::TYPE):List(A) =
option nil of List(A) end;

let cons(A::TYPE hd:A tl:List(A))
:List(A) =
option
cons of List(A) with hd tl
end;

let null(A::TYPE a:List(A)):Bool =
case a
when nil then true
when cons then false
end;

cons(:Int 3 nil(:Int))

cons(3 nil())

let head(A::TYPE) (a:List(A)):A =
case a
when nil then raise hd end
when cons with p then p. hd
end;

let tail(A::TYPE)(a:List(A)):List(A) =
case a
when nil then raise tl end
when cons with p then p.tl
end;

let rec length(A::TYPE) (a:List(A)):Int =
case a
when nil then 0
when cons with p then l+length(p.tl)
end;

let rec map(A,B:TYPE)
(f:A->B) (a:List(A)):List(B) =
case a
when nil then nil(:B)
when cons with p then
cons(:B)(f(p.hd) map(A B)(f)(p.tl))
end;

51

Abstract types

A signature (interface)
Let Alg::TYPE =

Tuple
T::TYPE (abstract type)
ohb]sT (constants)
op:T->Int (operations)
end;

An algebra (implementation)
let algl =
tuple
Let T::TYPE = Int (hidden representation)
let obj:T = 0
let op:T->Int = succ
end;

Another implementation
let alg2 =
tuple
Let T::TYPE = List(Int)
let obj:T = nil(:Int)
let op:T->Int = length(:Int)
end;

A function operating on any implementation of the interface
let f(alg:Alg):Int =
alg.op(alg.obj);

f(algl):
f(alg2);

52

Information hiding

Representation types are not revealed "outside:

:algl.T;
ralgl.T g2 TYPE

algl.obj;
= <value> : algl.T

algl.obj 4 1;

error

Different implementations cannot be mixed:

alg2.op(algl.obj);

error

But values of the "same" implementation can be mixed:

algl.op(algl.obj);
= 1 : Int

53

Note that alg1 can be defined totally independently of Alg.
As a consequence, a package can implement more than one
abstract type as long as its type matches the abstract type (this
will come handy for modules).

Let Alg'::TYPE =
Tuple
T::TYPE obj:T op:T->Int
end;

Alg' matches Alg Hence algl:Alg', although Alg' was
defined after algl was created. Alg' can impersonate Alq.
Sometimes non-impersonation is a required characteristics of
abstract types. This is not the case here.

This problem can be fixed by branding, i.e. associating a
unique identifier with a type. Branding is said to be generative,
because two elaborations of the same type expression generate
two different types.

Non-generative abstract types (matched by structure) have
some advantages over generative ones (matched by name):
e.g.: (a) automatic support of multiple implementations, (b)
possibility of storing abstract objects beyond the life-span of a
single program run, (c) in interactive systems, reloading an
abstract type definition does not invalidate old objects.

54

Parametric abstract types

Let StackPackage(Item::Type)::Type =

Tuple

Stack(A: :TYPE) : : TYPE

empty:Stack(Item)
isEmpty(s:Stack(Item)) :Bool
push(s:Stack(Item) i:Item):Stack(Item)
top(s:Stack(Item)):Item
pop(s:Stack(Item)):Stack(Item)

end;

let stackFromList(Item: :TYPE)
:StackPackage(Item) =

tuple
Let
let
let
let
let
let

end;

Stack = List

empty = nil(:Item)
isEmpty = null(:Item)
push = cons(:Item)
top head(:Item)
pop tail(:Item)

55

Let IntStack::TYPE =
StackPackage(Int);

let intStackFromList:IntStack =
stackFromList(:Int);

intStackFromList.push(
intStackFromList.empty
0);

Let GenericStack::TYPE =
All(Item::TYPE) StackPackage(Item);

let f(genericStack:GenericStack): Int
begin
let p = genericStack(:Int)
p.top(p.push(3 p.empty))
end;

f(stackFromList);

56

Other Quest design topics

Quantifier closures

(A,B: types; K,L: kinds)

II(X:K)L{X} isakind (functions from types to types)

Kinds are closed under quantification over kinds.

II(x:A)L{x} isakind (functions from values to types)

Kinds are closed under quantification over types.

II(X:K)B{X} isatype (functions from types to values)

Types are closed under quantification over kinds.

II(x:A)B{x} isatype (functions from values to values)

Types are closed under quantification over types.

(Similarly for X.)

Quantifiers: pick your own

(A,B: types; K,L: kinds)

Quest ELF Fw Constructions

ALLX:K)L - K=L I1(X::K) L a kind
- IIx:A)L - I1(x:A) L a kind
All(X:K) B . VX:K)B II(X:K)B a type
A—B [(x:A)B A —B II(x:A) B a type

derivable:

- (could add) - - (=K) L a kind
- - - >(x:A) L a kind
Pair(X:K)B - - >(X:K)B a type

AxB - 2 2(x:A) B a type

Phase distinctions
(a,b: values; A,B: types; K,L: kinds)
Compilers are organized in two phases:
1st phase (compile-time) EFaA typechecking

2nd phase (run-time) EFa=b:A evaluation

The phases are distinct: value-equality judgements should not
be used in the derivation of typing judgements:

1st EFaA (a,A are symbolic expressions)
U translation
2nd Ela=b:A (a,b are bunches of bits)

Since strings of bits cannot be symbolically analyzed (or it is
very hard to do so), we loose the ability to substitute equals for
equals at run-time.

(Also, in practical language value computations may be
impure.)

Strings of bits should not appear in symbolic expressions. lL.e.,
run-time expressions should not appear within compile-time
expressions.

Phase distinctions can be related to level distinctions:

Kinds and types are elaborated in the compile-time phase.

Values are elaborated in the run-time phase.

Levels separate phases in, e.g., second-order lambda
calculus:

(fun(A:TYPE) fyn(a:A) a) (Int) (3) (1st 2nd)

But levels do not separate phases in full dependent types
(there should be no subscripts nested inside superscripts):

last = fun(n:dnt) fun(a:Array(n)) a[n-1]

62

Run-time should be distinct from compile-time:

(1) Weaker constraint: value-equality judgements
should not be used in the derivation of type or kind
judgements.

(2) Stronger constraint: forbid all substitutions of the
form B{x<—a} or L{x<a}

Adopt (2); remove all the quantifiers that are made useless:

II(x:A)B has B{x<—a} in the elim rule (keep A—B).
II(x:A)L has L{x<-a} in the elim rule.
(A—L has B{x<—a} in reduction rule.)

>(x:A)B has B{x<Ift(a)} in the elim rule (keep AxB).
S(c:A)L has L{x<Ift(a)} in the elim rule.
(could keep AxL, but it is isom. to LxA.)

Hence, we can define the syntax so that value-expressions
do not occur in type or kind expressions.

Note: constant expressions are evaluated at compile-time
in standard compilers (e.g. in Array(n-1)). But these
evaluations never involve real run-time values.

63

Subtyping

A <:B isthe natural relation of subtyping, e.g. Nat<:Int
(reflexive and transitive)

all objects of A are objects of B
or, objects of A have all the properties of
objects of B (inheritance).

Instead of admitting arbitrary (semantic) inclusions, this
relation is defined structurally (syntactically) on type
operators, in order to maintain feasible typechecking.
E.g.if A'<: A and B <: B' then A—=B <: A'—=B.

Then, if b:B, B<:A, and f:A—C, then f(b) is legal.

This is very important for software extensibility and
reusability.

However, if b:B, B<tA, and f:A— A is the identity, then f(b):A.
This is not good because we loose type information.

One way to fix the above problem, is to introduce bounded
quantifiers:

id : All(A<:B) All(a:A) A
= fun(A<:B) fun(a:A) a

t : Pair(A<:Int) Ax(Int—=A)x(A—Int)
= pair(A<:Int=Nat) <0, abs, pred>

64

One way of generalizing bounded quantifiers is to introduce
POWER kinds: POWER(B) is the kind of all subtypes of B.

A<:B isnow an abbreviation for A:POWER(B)

All(A<:B) C abbreviates All(A::POWER(B)) C
(i.e. we no longer need special bounded quantifiers)

65

From ''bind (X;..X,)=ain .. x;.." to "a.x;"

The notation "bind (x7..xy) =ainb" is too sensitive to
changes in the type of "a" (when software is evolving).

Also, simple selectors like "bind (x1..xp) = ain x;" are very
cumbersome to write.

Programming languages universally use the dot notation
"a.x;" (named projections) as the elimination rule for tuples.

But note that the type rule for "bind" has restrictions on the
type variables which can occur in the result type. To preserve
these restrictions, one must transform programs to embed

every occurrence of "a.xj" in an adequate (i.e. large enough)
context of the form:

lety =cin... y.xj .. yxj..end
which can then be interpreted as equivalent to:

bind x1..Xp = ¢in ... Xj ... Xj ... end

i.e., the type rules for "a.x;" are contextual (in the dependent

case) and not easy to formulate concisely, although it is clear
what should be done according to the above correspondence.

The loss of o.-conversion

Again, one must embed an occurrence of "y.x;" in a large
enough context of the form:

lety =cin ... y.xj ... y-Xj ... end
which can then be transformed into:

bind x1..xp=cin... xj ... Xj ... end

Unfortunately, the "large enough" context required by the
above transformation may be hard to establish. The "c"
quantity above may be out of reach, e.g. if "c" is defined in a
different module: we cannot write a "let" which embraces
multiple modules.

Although a-conversion is still possible on a large-scale, by a-
converting all the modules involved, this is no longer a local
operation of an individual construct.

Le. a-conversion it does not scale up to large software systems.

67

So, the ordinary interpretation of "a.x" is that "x" is a fixed
name,which is not subject to a-conversion. Le. while it is clear
that (with the usual free-variable restrictions):

Some(x:A) B{x} <> Some(y:A) Bfy}

bind (¢1.%) = €10 yue X wxe X . end
<o bind (y1..yp) =cin..yj .. yj--end

the average programmer would be extremely surprised to see
the following program typecheck:

let f = fun(t: Tuple x:Int y:Int end) t.x + t.y
leta =tuple lety=3 letx=4 end;
f(a)

This feeling is even stronger for abstract types: abstract types
with different operator names are instinctively regarded as
different abstract types, although the corresponding existential
types may a-convert. Any such matching up to a-conversion
would be considered an "accidental” match which should be
trapped by the typechecker.

68

The consequence for our language is that signatures and
bindings are not equivalent up to a-conversion.

This implies that even functions are not a-convertible.
Functions are normally a-convertible in programming
languages, but note that languages with a notion of "keyword
parameters” (which, again, is advocated for large software
systems) also loose a-convertibility to various degrees.

We however adopt a weaker form of a-conversion. In many

situations, identifiers may be omitted; such omitted
identifiers match any other identifier.

69

Compilation techniques

Typechecker
Reduction to head normal form, for matching.
Loop detection, for recursive types.
Unification, for inference.

Compiler
Interactive, bootstrapped.
Recursive descent, in-core.
Full closures.
Producing bytecode (initially).

Linker
Interactive.
Version control.

Run-Time
Pickling (support for separate compilation and linking).
GC (Compacting).

70

Quest Syntax

Program ::=
{[Interface | Module | Linkage | Binding] ";"}

Interface ::=
["unsound"] "interface" ide ["import" Import] "export" Signature "end"

Module ::=
["unsound"] "module" ide ":" ide ["import" Import] "export" Binding "end"

Linkage ::=
"import" Import

Import ::=
{[ideList] ":" ide}

ide |

"TYPE" |

"POWER" " (] Type ") " |

"ALL" "(" TypeSignature ")" Kind |

ide "_" ide |
u{u Kind u}u
Type ::=
ide {"." ide} |
"Ok" | "Bool" | "Char" | "String” | "Int" | "Real" |
"Array" "(" Type ")" | "Exception" |

"All" "(" Signature ")" Type |

"Tuple" Signature "end" |

"Option" OptionSignature "end" |

"Auto" [ide] HasKind "with" Signature "end" |
"Record" ValueSignature "end" |

"Variant" ValueSignature "end" |

"Fun" “(" TypeSignature ")" [HasKind] Type |
"Rec" "(" ide HasKind ")" Type |

Type "(" TypeBinding ")" |

Type infix Type |

Type "_" ide |
" { Ll TYPE Ll } "
Value ::=
ide
"ok" | "true" | "false" | char | string | integer | real |

"if" Test ["then" Binding] {"elsif" Test ["then" Binding]} ["else" Binding]"end"|
"begin" Binding "end" |

"loop" Binding "end" | "exit" |
"while" Test "do" Binding "end" |
"for" ide "=" Binding ("upto" | "downto") Binding "do" Binding "end" |

"fun" "(" Signature ")" [":" Type] Value |

Value "(" Binding ")" |

Value (infix | "is" | “isnot" | ":=") Value |

"tuple" Binding "end" |

"auto" (["let" ide [HasKind] "="] ":") Type "with" Binding "end" |

|

"option" (ide | "ordinal" "(" Value ")") "of" Type ["with" Binding] "end" |
"record" ValueBinding "end" |

"variant" ["var"] ide "of" Type ["with" Value] "end" |
value ("." | "2" | "1") ide |

"case" Binding CaseBranches "end" |

"array" Binding "end" |

Value "[" Binding "]" [":=" Value] |

"inspect"” Binding InspectBranches "end" |

"exception” ide [":" Type] "end" |

"raise" Value ["with" Value] ["as" Type] "end"|

"try" Binding TryBranches "end" |

"{" value "}"

Signature ::=
{ "DEF" KindDecl |
"Def" ["Rec"] TypeDecl |
[IdeList] HasKind |
["var"] IdeList (HasType|ValueFormals) | HasMutType }

TypeSignature ::=
{ "DEF" KindDecl |
"Def" ["Rec"] TypeDecl |
[IdeList] HasKind }

ValueSignature ::=
{["var"] IdeList HasType}

OptionSignature ::=
{IdeList ["with" Signature "end"]}

Binding ::=
{ "DEF" KindDecl |
"Def" ["Rec"] TypeDecl |
"Let" ["Rec"] TypeDecl |
"let" ["rec"] ValueDecl |
"::" Kind |
":" Type |
"var" "(" Value ")" |
"@" value |
Value }

TypeBinding ::=
{ Type }

ValueBinding ::=
{["var"] ide "=" Value}

KindDecl ::=
ide "=" Kind |
KindDecl "and" KindDecl

TypeDecl ::=
ide [HasKind | TypeFormals] "=" Type |
TypeDecl "and" TypeDecl

ValueDecl ::=
["var"] ide [HasType | ValueFormals] "=" Value |

ValueDecl "and" ValueDecl

TypeFormals ::=
{"(" TypeSignature ")"} HasKind

ValueFormals ::=
{l‘l (" Signature n) L] } L] : " Type

Test :=
Binding {"andif" Test | "orif" Test)}

CaseBranches ::=
{"when" IdeList ["with" ide [":" Type]] "then" Binding)
["else" Binding]

InspectBranches ::=
{"when" Type ["with" {IdeList [":" Type]}] "then" Binding}
["else" Binding]

TryBranches ::=
{"when" Binding ["with" ide [":" Type]] "then" Binding}

["else" Binding]

HasType ::=
" : " Type

HasMutType ::=
"ew 'I'Ype | WMt Nypagen W (" TYPE ") "

HasKind ::=
"<:" Type | "::" Kind

IdeList ::=
ide | ide "," IdeList

Operators:

prefix monadic: not minus size
infix: NN+ -) % < > <= >= <O
Keywords:

DEF ALL Array Auto Def All Let Fun Option Rec Record Tuple Var Variant and andif
array auto begin case downto else elsif end exception export for fun if import
inspect interface is isnot let loop module of orif option ordinal raise rec record
then try tuple unsound upto var variant when while with 2 ! : :: <: := = @
Notes:

The @ keywords can only appear in actual-parameter bindings;.

Bindings evaluated for a single result must end with a value component (modulo
manifest declarations).

Bindings in the array construct may begin with a type (the type of array elements)
and must then contain only values.

Recursive value bindings can only contain constructors, i.e. functions, tuples, etc.

73

Formal systems

General principles

Typed (and untyped) A-calculi can be described as formal systems
based on judgements:

EF®

Where E is a list of assumptions for variables free in ®, and @ is the
conclusion. Normally E is called the environment.

Formal systems for type inference are called type inference systems.
Common judgements in type inference systems are "a given term

has a given type in a given environment” and "two given terms are
equal members of a given type, in a given environment".

75

Judgements like E - ® are used to define a relation +- (entailment)

between assumptions and conclusions, which determines the
valid conclusions.

This relation is normally defined inductively by axioms and
inference rules:

Eo F @9

Ei1F®1 ... Enk ®p
En+1 F ®n+1

(and nothing else is in the I relation)

First-order typed A-calculus
(with subtyping)

Types (X variables; K constants; 1labels; A,B,C types)

Kj basic constants and operators
A—B functions
extensions
AxB pairs
(11:A1, ., In:Ap) records
[11:A1, ..., In:AR] variants
X variables (just for recursion)
Rec(X) A recursive types

Terms (x variables; k constants; t tags; a,b,c terms)

X
ki]'
fun(x:A) b b(a)
extensions
<a,b> Ift(c) rht(c)
(11=81 5 s ; Lyi=811) cl
[1=a] as A casec | [11=x1] b1 | ... | [In=xnl bn
rec(x:A) a
Free variables (omitted)

Substitution (omitted)

78

Environments (E)

%,
E, x:A

extensions
E, X type
E, x:A

Judgements

FE env
E+ A type
ElFaA
E-A<B
EFa<b:A

extensions
EF A<B

EFC|X

for recursion
for subtyping

E is a well-formed environment

A is alegal type (trivial)

a has type A

A and B are equivalent types (trivial)
a and b equivalent terms of type A

A is a subtype of B
C is contractive in X

79

General rules

Pure calculus
Environments & env

EF A type x & Dom(E)
FE,x:A env

Type congruence
(<> is a substitutive equivalence relation over well-formed types)

EFA<B EFA<B EFB<C
EFB<A EFAeC
EFK, type EFA<A'" EFB<B
EFK<K EFA—B < A'-B

Congruence
(<> 1s a substitutive equivalence relation over the syntax of terms)

(omitted)

Recursion extensions

Environments
- E env X&Dom(E)

FE, Xtype env

Contractiveness (eliminates types such as Rec(X)X)

E, X type F K type E, Xtypel A type E, Xtypel B type
EFK|X EF(A—B){X
E, XtypekY type Y=X E,YtypeFA|X E XtypeFAlY Y=zX
EFY|X E |- (Rec(Y)A) | X
Type Equivalence E F Rec(X) A type Y & Dom(E)

E F Rec(X)A <> Rec(Y) A{X<Y}

E I Rec(X) A type
E F Rec(X) A < A{X<Rec(X) A)

EFA < C{X<A} EFB < C[X<B} EFC|X
EFA<B

Retyping ErFaA EFA<B
EFaB

81

Subtyping extensions

Environments

Reflexivity

Transitivity

Subsumption

(Retyping is now derivable)

EF A type
FE, X<:A env

EFA<B
E+ A<B

EFA<B EFB<:C
EF A<C

EFaA EFA<B
EFaB

X&Dom(E)

82

Specific typing rules

Formation

FE env

E, X type - X type

FEenv
EFK, type

EFAtype EFBtype

E - A—Btype

Extensions

EFAtype EFlBtype

E+ AxB type

EF A type
EF (1:A) type
EF A type

E - [1:A] type

EFA|X
E FRec(X) A type

Introduction

EF A type
E, xA Fx:A

FE env
EF ki’j K

E, x:A +b:B

EF fun(x:A)b: A—=B

Era:A EFDb:B

EF<ab>: AxB

ElFa:A
EF (l=a): (L:A)

El—a:Ai

EF[l=a] as [I;A] : [1:A]

E, x:A Fa:A
Elrec(x:A)a: A

Elimination

EFb:A—=B ElaA

EFb(a):B

EFc:AxB

E F1ft(c):A E F rht(c):B

EFc(l:A)
Et c.lj : A].

Etcll;A] E x:A Fb:C

Ercasee | [l=x]b.:C

83

Specific subtyping rules

Subtyping

FE env
Ei—Ki<:Kj

EFA'<tA EFB<B
EFA—-B< A'—B

Extensions

EFA<:A' EFB<B
EFAxB<: A'xB'

EFA<B, EFA type
EF {1:A, L:A)<: {|iB)

EF-A<B;, EFBtype
EF[1;:A] < [I:B, 1:B]

E, X type, X<¥ A <tB
E F Rec(X) A <: Rec(Y) B

for some pairs i,j

X=Y X¢FV(B)

YEZFV(A)

85

Specific computation rules

Computation

(omitted)

E, xAFbB y&Dom(E) E,xAl-bB ElaA

EF fun(x:A)b < fun(y:A)b{x<y}:B E F (fun(x:A)b)(a) <> b{x<a)}:B
Extensions

(omitted)

(omitted)

(omitted)

E, x:A Fa:A y & Dom(E) E, x:A Fa:A

Elrec(x:A)a <> rec(y:A) a{x <y} : A E Frec(x:A) a <> a{x<rec(x:A) a}: A

86

Quest core formal system

87

Syntax

Signatures (S):
%)
S, X:K
S, x:A

Bindings (D):
%,
D, Let X::K=A
D, let x:A=a

Kinds (K, L, M):
TYPE
ALL(X:K)L
POWER(A)

Types and operators
(A,B,C; type idents X,Y,Z; labels 1):

All(S)A
Tuple S end
Fun(X:K)A
A(B)

Record 11:A 4, ..., ;A , end
Variant 11:A 4, ..., 1:A end
Set Ay, ..., A, end
Rec(X:TYPE) A

Values (a,b,c; value idents x,y,z):

X
fun(S) a

a(D)

tuple D end
bindS=ainb end

record l;=ay, ..., l,=a, end
a.t

variant 1=a end

case a ... when(l;=x;) b; ... end
setay, ..., a, end

rec(x:A)a

Lett = tuple Let A =Intleta =3 end
B 36 = -

(=]

bind A:TYPE a:Int = tuple Let A = Int let a = 3 end
in..:A..a..

Judgements

Formation
- S sig S is a signature

SFKkind Kisakind
SHAtype Aisatype
(same as S A:TYPE)

Equivalence
SFS'<..>8" equivalent signatures

SFK<:>L equivalent kinds
SFA<>B equivalent types

Inclusion
SFS<..S" S'is asubsignature of S"
S K<zl K is a subkind of L

SHA<B A'is a subtype of B
(same as S+ A:POWER(B))

Membership
SFED..S" D hassignature S'

SHA:K A has kind K
SkaA a has type A

Notation

S S' is the concatenation (iterated extension) of S with S

Signatures and bindings are ordered, however we freely use
the notation XEDom(S) (type X is defined in S), x€EDom(S)
(value x is defined in S), S(X) (the kind of X in S), and S(x) (the
type of x in S). Similarly for bindings, where D(X) is the type
associated with X in D, and D(x) is the value associated with x
in D.

E{X<-A} denotes the substitution of the type variable X by
the type A within an expression E of any sort.

E{D} denotes the sequential substitution of all the variables
XeDom(D) and xEDom(D) by D(X) and D(x), within an
expression E of any sort.

Equivalence of signatures, kinds and types
(Omitted. It involves reflexivity, transitivity, congruence,
and typed p- and n-conversion of type operators.)

Self Inclusion
58 <8 SkHK<ixL SFA<>B
55 < 8" SFK=3L SHFA<:B
Subsumption
S-DES B85 SFA:K SkK<:L SFa:A S+ A<B
SHD 8" SLA 2L Ska:B
Conversion

S, XeKFB:L SFA:K

S I (Fun(X::K)B)(A) <:> B{X <A}

Signatures
- sig

SFKkind X&Dom(S)
FS, X:K sig

SFAtype x&Dom(S)
S, x:A sig
Bindings

S sig
SF& .. I

SFD.S S +A{D}:K{D)
SEFD, Let X:K=A .. S, X:K

SFED..S" S Fa{D}A{D}
SED,letx:A=a .. S, x:A

Ex.
SFInt: TYPE

SF@ & SEInt{d} :: TYPE(D) B3 Int
S, Let AxTYPE=Int .. &, A:TYPE S} 3{Q@, Let A=Int} : A{d,Let A=Int}

S+, Let AuTYPE=Int, leta:A=3 .. &, AZTYPE, a: A

93

Kinds

S sig
S - TYPE kind

SFKkind S, X:KFLkind
S+ ALL(X:K)L kind

S Atype
S F POWER(A) kind
Types and Operators
FSsig XEDom(S)
S FX::S(X)
SS' A type
S - All(S)A type
-SS'sig
SkTupleS' end type
5, XK FBuL
S F Fun(X::K)B :: ALL(X:K)L

SFB:ALL(X:K)L S+ A=K
SEB(A) :: L{X<A}

SFA type SFA_ type
Stk Record I;:A,, ..., 1 ;A end type

SEA; type SFA_ type
Sk Variant1:A,, ..., 1 :A_end type

94

SHA, type SFA_ type
SkSetA,, .., A end type

S, XuTYPE - A type
S Rec(X:TYPE) A type

Values

-Ssig xEDom(S)
S Fx:S(x)

S5 FaA
S F fun(S)a: AlI(S)A

SkaAll(S)A SkD..S
S+ a(D) : A{D}

5 DnE
S tuple D end : Tuple S' end

StaTupleS'end SFBtype SS'|b:B
SkbindS'=ainbend : Bend

SkapA; .. Ska A
Strecordl;=a,, ..., | =a end :Record I;:A,, ..., 1 :A_end

Sta:Record t;:A,, ..., t ;A end i€l.n
& al; : Ay

SkB,type .. SFB, type Vi€l.n JEL.mS - a.Bj

Skseta, .., a end :Set By ooy B, €6l

95

S, x:AlFaA
S Frec(x:A)a: A

Ex.

S Falg : Tuple A:TYPE, a:A, A —Int end
5 Fntk o TYPE
S, AXTYPE, a:A, £A—Int - f(a) : Int

SFbind A:TYPE, a:A, fA—Int = alg in f(a) end : Int

S Falg : Tuple A:TYPE, a:A, f:A—Int end
S Ints TYPE
S, A:TYPE, a:A, fA—Int - a+1 : Int

Skbind A:TYPE, a:A, ffA—Int=algin a+lend : Int

S Falg : Tuple A=TYPE, a:A, f:A—Int end
SHA:TYPE
S, AxTYPE, a:A, fA—IntFa: A

S bind A:TYPE, a:A, fA—Int=alginaend: A

97

SubSignatures

58«

5" 85 FK=lL

a8, XaK <, 5", Xil

SES'<,

S" S§S'FA<B

8+H8. %A s BhxB

SubKinds

Sr-KaEk B.X8R L=

S F ALL(X::

K)L <:: ALL(X:K)L'

SHA<B

S POWER(A) <:: POWER(B)

SFA type
S - POWER(A) <:: TYPE

SubTypes

SH5"<aE §,8"FA'<A"
S AIl(S)A’ <: AlI(S")A"

-55'S" sig S S'<..8™

S FTuple S'S'

SHA<B, .. S

S FRecord I:A, ...

"end <: Tuple S"" end
FA<B, .. 5FA, type

AgAL, ., 1A end <: Record 1;:B;,

SFA<B, .. SFA<B, .. SFB_ type

St Variantl:A,, ..., 1 :A end <: Variant1,:B,, ..., 1

B

v
n"-n”

ey LoD, €1d

RV - |

58

Vi€l.n Jj€l.m S F Ai<B,
B I~ SELAyy oy S, BT SUBEE B, oo, B, Bl

Quest typing

100

Function types

An object of typeAll(x:A)B (or simply A—>B)is a
function fun(x:A)b of argument x:A and result b: B

Let IntId::TYPE =
All(x:Int) Int;

let intId:Intid =
fun(x:Int) x;

intId(3);

101

Parametric polymorphism

(Girard-Reynolds)

An object of type A1l (X: :K)B{X} is a polymorphic
function fun(X: :K)b of argument A: : K and result
b:B{X< A}

Let Id::TYPE =
All(A::TYPE) All(x:A) A;

let id:Id =
fun(A::TYPE) fun(x:A) Xx;

IdixInt)s
= fun(x:Int) x
All(x:Int) Int

intIid
IntId

i

id(Int)(3);
= 3 ¢ Int

A polymorphic function can be applied to its own type:

id(:Id) (id) uses impredicativity in an essential way

102

Type operators

An object of kind ALL (X : : K)L{X} is an operator
Fun(X::K)b of argument A: :K and result B: : L{X<A}

Let -> :: ALL(A::TYPE) ALL(B::TYPE) TYPE
Fun(A: :TYPE) Fun(B::Type) All(x:A) B;

Int -> Int; ->(Int) (Int)
= All(x:Int) Int :: TYPE

103

Simple tuples

An object of type Tuple x:A, y:B end is a pair of left
component a:A and right component b:B.

Let IntPackage::TYPE =
Tuple x:Int f:Int—Int end;

let intPackage::IntPackage =
tuple let x=0 let f=succ end;

intPackage. f(intPackage.x);
= 1:Int

104

Abstract types
(Mitchell-Plotkin)

An object of type Tuple X::K, y:B{X} end isa
package of representation A: : K and implementation
y:B{X<A}.

Let Package::TYPE =

Tuple
A::TYPE abstract type
a:A f:A—Int interface
end;

let package:Package =

tuple
Let A=Int hidden representation
let a=0 let f=succ implementation
end;

An element of an abstract type can be implemented by its own
type

let packagel:Package =
tuple
Let A=Package
let a=package
let f(p:Package)=p.f(p.a)
end;

uses impredicativity in an essential way

105

Polymorphism + abstract types

Let Stack :: ALL(A::TYPE)TYPE
Fun(A::TYPE)

Tuple
S:: TYPE
empty: S
push: All(a:A s:S)S
top: All(s:S)A
pop: All(s:S)S

end;

:Stack(Int)

106

Quest subtyping

Power Kinds

For any type A, POWER (A) is the kind of all the subtypes of A.
A::POWER(B) meansthat A<:B (A isasubtype of B)
A <: B ~ A: : POWER(B)

fun(A<:B) ¢ = fun(A::POWER(B)) cC
All(A<:B) C = All(A::POWER(B)) C

Formation S A type
S F POWER(A) kind
Introduction SFA<>B
SFA<:B
Elimination Sta:A SFA<B
Sa:B
Power-Power SHA<B

S F POWER(A) <:: POWER(B)

Power-Type SHAtype
S - POWER(A) <:: TYPE

Records

Let Object =

Record age:Int end;
Let Vehicle =

Record age:Int speed:Int end;
Let Machine =

Record age:Int fuel:String end;
Let Car =

Record age:Int speed:Int fuel:String end;

Subtyping is multiple
<3 Vehicle <:
Car Object
<3 Machine <:

Subtyping is structural

let myObj: Object =
record age=3 end;

let myCar: Car =
record age=3 speed=120 fuel="gas" end;

Subtyping works in width and in depth
S FA<B; . SEASE, ... SEA ype

S Record t:A, ..., t A, ..., t A end <:Record t;:B,, ..., t :B_end

Higher-order Subtypes

SFA<:A S} B<B
SFA—-B<: A'—=B

58«48 §5,5'FA<A”
S AII(S)A' <: AlI(S")A"

let speed: Vehicle — Int = ... ;
Vehicle — Int @ <: Car — Int

(speed takes cars)

let speed': All(A<:Vehicle)A—Int = ... ;
All (A<:Vehicle)A—Int <: All(A<:Car)A—>Int

let serialNo: Int — Car = ...
Int — Car <s Int — Vehicle
(serialNo returns vehicles)

let f: Vehicle — Vehicle = ...
Vehicle — Vehicle <: Car — Object

age (f(myCar));

let £f': All(A<:Vehicle) A — A = ... ;
(f':s Vehicle — vVehicle)

age(:Car)(f'(:Car) (myCar));
(f , used as Car — Object)
age(f' (myCar)); (abbreviated)

110

The subsumption rule

SFa:A S+ A<B
Ska:B
Then myCar:Car implies myCar:Object.
let age': Object — Int =
fun(x:0bject) x.age;

age' (myCar) ;
= 3:Int

The subsumption rule is useful but not sufficient by itself:

let objId': Object — Object =
fun(a:0bject) a;

objId' (myCar);
=myCar:0Object

objId' (myCar) .speed; Wrong!

111

Subtyping + polymorphism

let age: All(A<:Object) A — Int =
fun(A<:0Object) fun(x:A) x.age;

Here we must check A: : TYPE, but A: : POWER (Object).
Hence we use embedding (POWER (X)<: : TYPE).

Then we must check that x has a record type in x. age,
but x:A. However A<:0bject , hence by subsumption
X :0Object.

age(:Car) (myCar) ;
= 3:Int

age (mycCar) ; the usual abbreviation
=3:Int

let objId : All(A<:0bject) A — A =
fun(A<:0bject) fun(x:A) x;

objId(:Car) (myCar);
= myCar:Car

objId(:Car) (myCar) .speed;
=120:Int

112

The simple aging function
let older(obj:0Object):0bject =

begin
obj.age := obj.age+l
obj
end;
older (myCar); the result type is Object

unwanted loss of type information

The parametric aging function (“<: " reads “subtype of ")
let older(A<:0bject)(obj:A):A =
begin
obj.age := obj.age+l
obj
end;

older(:Car) (myCar); the result type is now Car

older (myCar); the same, abbreviated
older (myCar) .speed; this works

113

Subtyping + abstract types

Abstract subtypes

Let Package::Type =
Tuple A::TYPE a:A end;

Let ExtendedPackage::Type =
Tuple A::TYPE a:A f:A—Int end;

Partially abstract types

Let ObjectPackage: :Type =
Tuple A<:0Object f:A—Int end;

let objectPackage:0ObjectPackage =
tuple Let A=Car let f=speed end;

114

Set types

(Buneman-Ohori)

Let AllCars::TYPE =
Set Car end; (type of all cars)

let allCars: AllCars =
set myCar yourCar end (extension of all cars)

allCars |><| set record age=3 end end;
= set myCar end

SFB,type .. SFB type ViEl.ndjEl.mS - a;:Bj

81 set.ay; « »a, end: Set' By, .. B, end

115

Subtyping + set types

(Buneman-Ohori)

Let AllObjects::TYPE =
Set Object end;

Let AllVehiclesAndMachines: :TYPE =
Set Vehicle Machine end:

Let AllCars::TYPE =
Set Car end;

AllCars<:AllvVehiclesAndMachines<:AllObjects

let allCars:AllCars =
set myCar yourCar end;

allCars |><| set record age=3 end end;

= set myCar end
LET RELATION = POWER(Set Record end end)
AllObjects :: RELATION

Join :: ALL(A,B::RELATION)RELATION
|><]| All(A,B::RELATION) (A#B)->Join(A B)

ViEl.n 3j€E1.m S - A<B;
SkSetA,, ..., A end <: Set By, ..., B_ end

116

Classes and methods (Hint)

A class signature for objects with an instance variable and two
methods, one of which returns self:

Let Rec Counter::TYPE =
Record
var count: Int
fetch: Ok -> Int
incr: Int -> Counter
end;

A class (= object generator):

let newCounter(init:Int):Counter =
rec self:Counter
record
let var count = init
let incr(n:Int):0k =
begin
self.count := self.count + n
self
end
let fetch():Int =
self.count
end;

An object (= object generator):
let count = newCounter(0);

Invocation of methods:

count.incr(3).fetch();

17

Modules and interfaces

118

Programming in the large

The usefulness, even necessity, of typeful programming is
most apparent in the construction of large systems

Large programs have the property that no single person can
understand or remember all of their details at the same time.

Large programs must be split into modules, for better
understanding and maintenance.

Module boundaries are called interfaces. They declare the
types (or kinds) of identifiers supplied by modules; that is they
describe how modules plug together to form systems.

An interface may provide:
A collection of types to be used by many modules.
A collection of related routines.
One or more abstract types with operations.

Both interfaces and modules may import other interfaces or
modules.

Both interfaces and modules export a set of identifiers.

State of the art: Modula2/Modula3:
Advantages:
Nice and simple.
Problems: does not support multiple implementations,
parametric modules, or first-class modules.

119

Modules and interfaces

In Quest, each interface, say A, can be implemented by many
modules, say b and c. Each module specifies the interface it
implements:

interface A module b:A
import .. import ..
export export
end; end;

The following line imports:

- interfaces C, D, and E;

- module c implementing C;

- modules d1 and d2 both implementing D.
import c¢:C d1,d2:D :E

Imported modules are just tuples (hence first-class).

Imported interfaces are just tuple types.

120

Separate compilation and linking

Interfaces can be separately compiled (after the interfaces they
recursively import) (imported modules do not matter).

Modules can be separately compiled (after the interfaces they
recursively import) (imported modules do not matter).

Modules are linked by importing them at the top level (after
all the involved modules and interfaces are compiled):

Version checking ensures consistency.
import b:A;
let b:d = .
The result is the definition at the top-level of a tuple b, of

type A, from which values and types can be extracted in the
usual fashion.

121

Diamond import

A module d imports two modules ¢ and b which both
import a module a. Then the types flowing from a to d
through two different import paths are made to interact in d.

interface A module a:A
export export
T::TYPE Let T::TYPE = Int
new(x:Int):T let new(x:Int):T = x
int(x:T):Int and int(x:T):Int = x
end; end;
interface B module b:B
import a:A import a:A
export export
X:a.T let x = a.new(0)
end; end;
interface C module c:C
import a:A import a:A
export export
f(x:a.T):Int let f(x:a.T):Int =
end; a.int(x)+1
end;
interface D module d:D
export import b:B c:C
z:Int export
end; let z = c.f(b.x)
end;

Note that the application c. £ (b.x) in module d typechecks
because the a imported by b and the a imported by ¢ are the
"same” implementation of the interface A, since a is a global

122

external name.

To illustrate the correspondence between interfaces and
signatures, and between modules and bindings, we can
rephrase the diamond import example as follows.

Let A::TYPE = let a:A =
Tuple tuple
T::TYPE Let T::TYPE = Int
new(x:Int):T let new(x:Int):T = x
int(x:T):Int and int(x:T):Int = x
end; end;
Let B::TYPE = let b:B =
Tuple tuple
Xra,T let x = a.new(0)
end; end;
Let C::TYPE = let c:C =
Tuple tuple
F{xza.TysInk let F{zia.T)iInt =
end; a.int(x)+1
end;
Let D::TYPE = let d:D =
Tuple tuple
z:Int let z = ¢.f(b.x)
end; end;

In this case, c. f (b.x) typechecks because the typesofc. f
and b. both refer to the same variable a which is lexically in
the scope of both ¢ and b.

123

Module combination

124

System modelling

When programs first started becoming large (hundreds of
procedures), it became necessary to split them into pieces.
Eventually this trend led to modules and interfaces.

Today programs are starting to become huge (hundreds of
interfaces). Unfortunately, interface systems have a flat
structure (this is also an advantage).

It would clearly be desirable to be able to group interfaces

into systems which could then be grouped into larger systems,

and so on.

125

Major approaches:

Unix "make"
Properties:
Language independent.
Problems:

Cannot know about true dependencies.
Unreliable (hand-generated).

Pebble
Properties:

Parametric modules (universally quantified).
First-class modules, multiple implementations.

Module composition obtained by (dependent)
function application.

Problems: the interface of each parametric module

may have to express the entire module hierarchy

above it. Practically unusable without additional
assistance.

Standard ML
Properties:
Parametric modules (existentially quantified,
predicative hierarchy).
Multiple implementations.
"Sharing constraints" to fix the Pebble problem.

Module composition obtained by (dependent)
function application.
Problems:

Modules are not first-class.
Needs additional notion: "sharing constraints",

126

A different approach

Motivated by ease of reconfiguration of subsystems.

Classify systems as open, closed, and sealed,
based on membership and visibility restrictions.

Open systems have no restriction regarding membership or
visibility. Each module can claim membership to one or more
(open) systems and can import from any (open) system.

System structure can be reorganized very easily just by
changing membership claims and without affecting unrelated
parts; this flexibility is important in initial stages of
development. At the same time, the membership claims
provide some degree of structuring.

Closed systems explicitly export interfaces, and only these
interfaces are visible from the outside. However membership is
still unrestricted.

The latter property facilitates access to "friends" of the
system developers, while limiting visibility to the "public”. This
reflects intermediate stages of development.

Sealed systems have a membership list, as well as an
interface export list.

Sealed systems can implement large abstract types
composed of many modules, and are protected from
interference. This reflects the final stages of development.

127

Open systems

Consider the following system organization.

We express this arrangement by the following notation:

system U system S of U system T of U
end; end; end;

interface A of S interface B of S interface C of S
import :B :C export ... export ...
export ... end; end;

end;

interface D of T
import :A :C
export ...

end;

A new interface E could
belong to it.

join system T just by claiming to

128

Closed systems

Closing systems U and S:

system U system S of U
export :A of S export :A :B
end; end;

interface D of T
import :A

export

end;

Prevents D from importing C.

129

D could counteract by claiming to belong to S too, thereby
being able again to import C

interface D of T,S
import :A :C
export

end;

Joining a system one explicitly declares the intention of
depending on its internal structure, while simply importing an
interface provided by a system declares the intention of not
depending on any implementation details of that system.

Note that we still have a single name space for interfaces and
modules. This is a doubtful feature, but this way interfaces and
modules can be moved from one system to another without
having to modify all their clients.

130

Sealed systems

Sealing system S:

system S of U
components a:A b:B :C
export :A :C

end;

Now D is again cut out of S and prevented access to B,
although D could be added to the component list of S if
desired.

131

The process of closing a system may reveal unintentional
dependencies that may have accumulated during
development. The process of sealing a system may reveal
deficiencies in the system interface that have to be fixed,

It is expected that, during its evolution, a software system
will start as open to facilitate initial development. Then it will
be closed when relatively stable interfaces have been
developed and the system is ready to be released to clients.

However, at this stage developers may still want to have
easy access to the closed system, and they can do so by joining
it. When the system is finally quite stable it can be sealed,
effectively forming a large, structured abstract type, for
example an operating system or file system interface.

132

System Programming

Low-level programming

As we mentioned in the introduction, a language cannot be
considered "real" unless it allows some form of low-level
programming; for example a "real" language should be able to
express its own compiler, including its own run-time system
(memory allocation, garbage collection, etc.).

Most interesting systems, at some point, must get down to
the bit level. One can always arrange that these parts of the
system are written in some other language, but this is
unsatisfactory.

A better solution is to allow these low-level parts to be
written in some variation (a subset with some special
extensions) of the language at hand, and be clearly marked as

such.

One can find solutions that are relatively or completely
implementation-independent, that provide good checking, and
that localize responsibility when unpredicted behavior results.
Some such mechanisms are considered here.

Explicity polymorphic typing turns out to be handy in
expressing some of these features.

Dynamic types

Static typechecking cannot cover all situations. One problem
is with giving a type to an eval function, or to a generic print
function.

A more common problem is handling in a type-sound way
data that lives longer than any activation of the compiler.

These problems can be solved by introducing a (static) type
of dynamically typechecked data.

Objects of type Dynamic_T should be imagined as pairs of a
type and an object of that type. The type component of a
Dynamic_T object can be tested at run-time.

One can construct dynamic objects as follows:
let d3:Dynamic T = dynamic.new(:Int 3);
These objects can then be narrowed to a given type:

dynamic.be(:Int d3);
3: Int

dynamic.be(:Bool d3);
Exception: dynamicError

The matching rules for narrowing and inspecting are the

same as for static typechecking, except that the check happens
at run-time.

135

Since an object of type dynamic is self-describing it can be
saved to a file and then read back and narrowed, maybe in a
separate programming session:

let wr = writer.file("d3.dyn");
dynamic.extern(wr d3); (Write d3 to file)
writer.close(wr);

let rd = reader.file("d3.dyn");
let d3 = dynamic.intern(rd); (Read d3)

The operations extern and intern preserve sharing and
circularities within a single dynamic object, but not across
different objects. All values can be made into dynamics,
including functions and dynamics. All dynamic values can be
externed, except readers and writers; in general it is not
meaningful to extern objects that are bound to input/ output
devices.

136

Type violations

Most system programming languages allow arbitrary type
violations, some indiscriminately, some only in restricted parts

of a program. Operations that involve type violations are
called unsound.

Type violations fall in several classes:
Basic-value coercions.
Bit and word operations.
Address arithmetic.
Memory mapping.

Metalevel operations.

137

Unsound features
%

Here is the Quest mechanism for type violations:

unsound interface Value
export
T::TYPE
(An arbitrary value)

error:Exception (0Ok)

(Raised when an operation cannot be carried out)
new(A::TYPE a:A):T

(Convert anything to a value)
be(A::TYPE v:T):A

(Convert a value to anything.)
fetch(addr:T displ:Int):T

(Fetch the value at location addr+displ in memory)
store(addr:T displ:Int w:T) :0k

(Store a value at location addr+displ in memory)

end;

Whatever the type violation mechanisms are, they need to be

controlled somehow, lest they compromise the reliability of the
entire language. Hence the keyword "unsound".

138

Following Cedar-Mesa and Modula3:

Operations that may violate run-time system invariants are
called unsound. Unsound operations can only be used in
modules that are explicitly declared unsound. If a module is
declared sound, the compiler checks that (a) its body contains
no unsound operations, and (b) it imports no unsound
interfaces.

Unsound modules may advertise an unsound interface.
However, unsound modules can also have ordinary interfaces.
In the latter case, the programmer of the unsound module
guarantees (i.e. proves or, more likely, trusts) that the module
is not actually unsound, from an external point of view,
although internally it uses unsound operations.

This way, low-level facilities can be added to the system
without requiring all the users of such facilities to declare their
modules unsound just because they import them.

The main advantage of this scheme is that if something goes

very wrong the responsibility can be restricted to unsound
modules.

139

Conclusions

In order to manage large and complex systems, many
programming paradigms show convergence in at least one
area: typing.

Vice versa, type theory is evolving to cover the typing needs
of diverse programming styles and methodologies.

The result is typeful programming, a combination of language
features, programming methodologies, and formal system that
is relatively independent of the control-flow paradigms of the
underlying language.

140

Comparison with other programming styles;

Typeless programming
Type-free programming
Functional programming
Imperative programming
Object-oriented programming
Relational programming
Algebraic programming
Concurrent programming
Programming in the large
System programming

Database programming

141

Type quantifiers, subtyping and recursive types account for
a wide range of language features.

The resulting type system is effectively typecheckable.
Typechecking is based on a normal-order reducer for an
extended lambda-calculus.

Issues of predicativity, impredicativity and stratifications
guide the design. Impredicativity leads to more flexibility.
Stratification helps in distinguishing compile-time and run-
time phases, and in introducing updatable state.

Active research areas:

Models of subtyping
(+ quantifiers, recursion, recursive types).

Meaning of subsumption and coercions,
translation to a subsumption-free calculus.

Typechecking techniques
(reduction, matching, inference).

Modelling of objects and classes.

Module systems.

142

