
Dynamic Typingin Polymorphic LanguagesMart��n Abadi Luca CardelliSystems Research CenterDigital Equipment Corporation Benjamin PierceLFCSUniversity of Edinburgh Didier R�emyINRIA Rocquencourt1 IntroductionDynamic types are sometimes used to palliate de�cien-cies in languages with static type systems. They can beused instead of polymorphic types, for example, to buildheterogeneous lists; they are also exploited to simu-late object-oriented techniques safely in languages thatlack them, as when emulatingmethods with procedures.But dynamic types are of independent value, even whenpolymorphic types and objects are available. They pro-vide a solution to a kind of computational incomplete-ness inherent to statically-typed languages, o�ering, forexample, storage of persistent data, inter-process com-munication, type-dependent functions such as print,and the eval function.Hence, there are situations in programming whereone would like to use dynamic types even in the pres-ence of arbitrarily advanced type features. In this pa-per we investigate the interplay of dynamic typing withpolymorphism. Our study extends earlier work (see [1])in allowing polymorphism, but keeps the same basiclanguage constructs (dynamic and typecase) and thesame style.The interaction of polymorphismand dynamic typesgives rise to problems in binding type variables. We�nd that these problems can be more clearly addressedin languages with explicit polymorphism. Even then,we encounter some perplexing di�culties (as indicatedin [1]). In particular, there is no unique way to matchthe type tagging a dynamic value with a typecase pat-tern. Our solution consists in constraining the syntaxof typecase patterns, providing static guarantees ofunique solutions. The examples we have examined sofar suggest that our restriction is not an impediment inpractice. This solution applies also to languages withabstract data types, and it extends to languages with

subtyping.Drawing from the experience with explicit polymor-phism, we consider languages with implicit polymor-phism in the ML style. The same ideas can be used,with some interesting twists. In particular, we are ledto introduce tuple variables, which stand for tuples oftype variables.In addition to [1], several recent studies have con-sidered languages with dynamic types [14, 17, 23]. Thework most relevant to ours is that of Leroy and Mauny,who de�ne and investigate two extensions of ML withdynamic types. We compare their designs to ours insection 6.Section 2 is a brief review of dynamic typing insimply-typed languages, based on [1]. Section 3 con-siders the general case of adding dynamic typing to alanguage with higher-order polymorphism [11]. An al-gorithmic formulation of the general framework is ob-tained in section 3.5 by restricting polymorphism to thesecond order and placing conditions on the patters usedin typecase expressions. Sections 4 and 5 discuss ab-stract data types and subtyping, respectively. Section 6deals with a language with implicit polymorphism.2 ReviewThe integration of static and dynamic typing is fairlystraightforward for monomorphic languages. The sim-plest approach introduces a new base type Dynamicalong with a dynamic expression for constructing valuesof type Dynamic and a typecase expression for inspect-ing them. The typechecking rules for these expressionsare: � ` a 2 T� ` dynamic(a:T) 2 Dynamic (Dyn-I)� ` d 2 Dynamic�; x:P ` b 2 T � ` e 2 T� ` typecase d of (x:P) b else e 2 T (Dyn-E)The phrases (x:P) and else are branch guards; P isa pattern|here, just a monomorphic type; b and care branch bodies. For notational simplicity, we have1

considered only typecase expressions with exactly oneguarded branch and an else clause; typecase involv-ing several patterns can be seen as syntactic sugar forseveral nested instances of the single-pattern typecase.In the intended implementation, the compilation ofa dynamic is a pair consisting of a value and its type:compile[dynamic(a:A)] ="<`compile[a]', `grab[A]'>"The double quotes here indicate that the result ofcompile is a run-time structure; single quotes marksubstructures to be built at compile time. The keyword\grab" indicates a metalevel shift: a compile-time datastructure or routine is inserted into the run-time value.Because of this, Dynamic is particularly easy to imple-ment in a bootstrapped compiler, where the run-timeand compile-time structures coincide.The typecase construct uses the compiler's type-match routine to compare the tag of a given dynamicto the branch guard:compile[typecase d of (x:A) b else e] ="let d = `compile[d]' inif `grab[typematch]' (`grab[A]') (snd(d))then push[x=fst(d)]; `compile[b]'else `compile[e]'"In languages with subtyping, it is common to use asubtype test in the typecase construct to give a lessrestrictive matching rule, allowing a tag to be a sub-type of the guard type instead of requiring that thetwo match exactly.Constructs analogous to dynamic and typecasehave been provided in a number of languages, includingSimula-67 [2], CLU [18], Cedar/Mesa [16], Amber [3],Modula-2+ [22], Oberon [25], and Modula-3 [9].These constructs have surprising expressive power;for example, �xpoint operators can be de�ned at ev-ery type already in a simply typed lambda-calculus ex-tended with Dynamic [1]. Important applications ofdynamics include persistence and inter-address-spacecommunication. For example, the following primitivesprovide input and output of a dynamic value from andto a stream:extern 2 Writer�Dynamic!Unitintern 2 Reader!DynamicMoreover, dynamics can be used to give a type for aneval primitive [12, 20]:eval 2 Exp!DynamicWe obtain a much more expressive system by al-lowing typecase guards to contain pattern variables.For example, the following function takes two Dynamicarguments and attempts to apply the contents of the�rst (after checking that it is of functional type) to thecontents of the second:

dynApply =�(df:Dynamic) �(da:Dynamic)typecase df offU,Vg (f:U!V)typecase da offg (a:U)dynamic(f(a):V)else ...else ...Here U and V are pattern variables introduced by the�rst guard. In this example, if the arguments are:df = dynamic((�(x:Int)x+2):Int!Int)da = dynamic(5:Int)then the typecase guards match as follows:Tag: Int!IntPattern: U!VResult: fU = Int; V = IntgTag: IntPattern: IntResult: fgand the result of dynApply is dynamic(7 : Int).A similar example is the dynamic-composition func-tion, which accepts two Dynamic arguments and at-tempts to construct a Dynamic containing their func-tional composition:dynCompose =�(df:Dynamic) �(dg:Dynamic)typecase df offU,Vg (f:U!V)typecase dg offTg (g:T!U)dynamic(f�g:T!V)else ...else ...3 Explicit PolymorphismThis formulation of dynamic types may be carried overalmost unchanged to languages based on explicit poly-morphism [11, 21]. For example, the following func-tion checks that its argument df contains a polymor-phic function f taking elements of any type into Int. Itthen creates a new polymorphic function that acceptsa type and an argument of that type, instantiates fappropriately, applies it, and squares the result:squarePolyFun =�(df:Dynamic)typecase df offg (f:8(Z)Z!Int)�(W) �(x:W) f[W](x)*f[W](x)else �(W) �(x:W) 02

Here the type abstraction operator is written �.Type application is written with square brackets. Thetypes of polymorphic functions begin with 8. For exam-ple, 8(T)T!T is the type of the polymorphic identityfunction, �(T) �(x:T) x.3.1 Higher-order pattern variablesFirst-order pattern variables, by themselves, do not giveus su�cient expressive power in matching against poly-morphic types. For example, we might like to generalizethe dynamic application example from section 2 so thatit can accept a polymorphic function and instantiate itappropriately before applying it:dynApply2ltd =�(df:Dynamic) �(da:Dynamic)typecase df offg (f:8(Z)?!?)typecase da offWg (a:W))dynamic(f[W](a):?)else ...else dynApply(df)(da)But there is no single expression we can �ll in for the do-main of f that will make dynApply2ltd apply to both:df = dynamic(�(Z) �(x:Z�Z) <snd(x),fst(x)>: ...)da = dynamic(<3,4>: ...)and:df = dynamic((�(Z) �(x:Z!Z) x): ...)da = dynamic((�(x:Int) x): ...)Thus we are led to introducing higher-order pat-tern variables, which range over \pattern contexts"|patterns abstracted with respect to some collection oftype variables. These su�ce to express polymorphicdynamic application:dynApply2 =�(df:Dynamic) �(da:Dynamic)typecase df offF,Gg (f:8(Z)F(Z)!G(Z))typecase da offWg (a:F(W))dynamic(f[W](a):G(W))else ...else dynApply(df)(da)For example, if:df = dynamic(id:8(A)A!A)da = dynamic(3:Int)then the typecase expressions match as follows:Tag: 8(A)A!APattern: 8(Z)F(Z)!G(Z)Result: fF =�(X)X;G =�(X)Xg

Tag: IntPattern: F (W) (which reduces to W)Result: fW = Intgand the result of the application dynApply2(df)(da) isdynamic(id[Int](3) : Int).3.2 SyntaxWe now formalize dynamic types within the context ofa higher-order polymorphic �-calculus, F! [11]. Thesyntax of F! with type Dynamic is given in Figure 1.In examples we also use base types, cartesian prod-ucts, and labeled records in types and patterns, but weomit these in the formal treatment.We regard as identical any pair of formulas that dif-fer only in the names of bound variables. For brevity,we sometimes omit kinding declarations of the form\: Type" and empty pattern-variable bindings. Also,it is technically convenient to write the pattern vari-ables bound by a typecase expression as a syntacticpart of the pattern, rather than putting them in frontof the guard as we have done in the examples. Thus,typecase e1 of fVg(x:T)e2 else e3 should be readformally as typecase e1 of (x:fV:TypegT)e2 elsee3.3.3 Tag ClosureOne critical design decision for a programming languagewith type Dynamic is the question of whether type tagsmust be closed (except for occurrences of pattern vari-ables), or whether they may mention universally boundtype variables from the surrounding context.In the simplest scenario, dynamic(a:A) is legalonly when A is a closed (but possibly polymorphic)type. Similarly, we would require that the guard ina typecase expression be a closed type.If the closure restriction is not instituted, then typesmust actually be passed as arguments to polymorphicfunctions at run time, so that code can be compiled forexpressions like:�(X) �(x:X) dynamic(<x,x>:X�X).where the type X �X must be generated at run time.For languages such as ML, where type information isnot retained at run time, the closure restriction becomesessential (see section 6). For now, we consider the gen-eral case where tags may contain free type variables.3.4 De�nitenessThe most simple-minded formulation of higher-orderpattern variables may seem to provide adequate expres-sive power, but it is not su�ciently constrained to leadto a viable language design. The problem is that thereis no guarantee of unique matches of patterns againsttags. For example, when the pattern F (Int) is matched3

K ::= Type kind of typesj K!K kinds of type operatorsT ::= A type variablesj T!T function typesj 8(A : K)T quanti�ed typesj �(A : K)T type operatorsj T (T) application of a type operatorj Dynamic the dynamic typeP ::= fV1 : K1; : : : ; Vn : KngT patternse ::= x variablesj �(x : T)e abstractionj e(e) applicationj �(A : K)e type abstractionj e[T] type applicationj dynamic(e : T) taggingj typecase e of (x : P) e else e tag matchingFigure 1: Syntax of F! termsagainst the tag Bool, the pattern variable F is forced tobe �(X)Bool. But when the same pattern is matchedagainst the tag Int, we �nd that F can be either �(X)Xor �(X)Int. There is no reasonable way to choose.Worse yet, consider F (W) or F (W!Int) for a patternvariable W.These problems compel us to introduce restrictionson the form of patterns. We may require that a patternmatches a tag in at most one way at run time, and failotherwise. But this leads to unpredictable matchingfailures. Therefore we prefer a stronger condition.Informally, we want to allow only patterns thatmatch each tag in at most one way. This conditionis called de�niteness. For example, assume that thetype variables A and B and the operator variable H arebound in the current context, and consider the follow-ing patterns:Valid: fVg H(V)since, at run time, if V appears in the expression towhich H is bound, then matching is the usual for �rst-order pattern variables; and otherwise matching leavesV completely undetermined, and we set it to a new typeconstant. Patterns of this form are used in many of ourexamples, so we want to consider them de�nite eventhough they may sometimes leave V unconstrained.Invalid: fFg F(A)because, for example, it can match the tagA!A in fourways, instantiating F to any of: �(C)C!C, �(C)C!A,�(C)A!C, �(C)A!A.Valid: fFg 8(X)F(X)

since, when the scope of X is narrower than that of F ,we can only match the tag 8(Y)Y!Y by instantiatingF to �(C)C!C.Valid: fFg (8(X)F(X))!F(A)since the �rst occurrence of F determines its value.Valid: fF,Vg (8(X)F(X))!F(V)since F can be matched �rst and then considered \al-ready bound" at the de�ning occurrence of V .Invalid: fF,Gg 8(X)F(G(X))!G(F(X))since neither F nor G can be considered \alreadybound" unless the other is bound �rst.Note that de�niteness of patterns cannot be checkedlocally. For example,Valid: fFg F(Int)!F(Bool)is de�nite, although neither occurrence of F would bede�nite in isolation.The de�niteness condition can be formalized, andthen one can put a de�niteness requirement in the type-checking rule for typecase, so that only programs withde�nite patterns are legal.Unfortunately, the notion of de�niteness does notsuggest a typechecking algorithm in any straightfor-ward way. A related problem is that we have no al-gorithm for the run-time operation of matching pat-terns against tags. Indeed, it is not known whetherthe general case of higher-order matching is decidable.Even the second- and third-order cases, whose decid-ability has been established [15, 7, 8], lead to algorithmstoo ine�cient to be of practical use in implementingtypecase.4

3.5 Second-order polymorphismTo obtain a practical language design, we need a re-striction of our general treatment for which e�cienttypechecking and matching algorithms can be given.We begin by considering the fragment of F! with onlysecond-order polymorphism. This restriction is mostlya matter of convenience, and it seems possible that theapproach described below applies to the full F!.The syntax of System F (the second-order polymor-phic lambda-calculus) with Dynamic is given by the fol-lowing restriction of F! with Dynamic. We show onlythe lines that di�er.K ::= : : :j Type!K type operatorsT ::= : : :j 8(A)T quanti�ed typesj �(A)T type operatorsj : : :P ::= : : :e ::= : : :j �(A)e type abstractionj : : :Here, kinds other than Type are used only to specify thefunctionality of pattern variables; abstractions and ap-plications at the level of types are used only to describepatterns. Since every kind has the formType!� � �| {z }n Type;we can simply say that a pattern variable with this kindhas arity n.A pattern fV1 : K1; : : : ; Vn : Kng T is ordered ifthere is some total ordering < of the pattern variablesV1; : : : ; Vn such that each Vi has a de�ning occurrence,that is, a subterm occurrence U � ViA1 � � � Ap in Tsuch that:1. U does not appear in an argument to a patternvariable Vj where Vj � Vi (i.e., there is no occur-rence U 0 � Vj Q with U a proper subphrase ofU 0 and Vj � Vi);2. Vi is fully applied (i.e., the arity of Vi is p);3. the Aj 's are pairwise distinct; and4. all of the Aj 's have narrower scope than Vi (i.e.,Aj 62 FV(T)).Note that this condition can be checked statically.Ordered matching is a matching algorithm for or-dered patterns; given an ordered pattern, this algorithminstantiates variables according to one of the orders that

make the pattern ordered. We believe that ordered pat-terns are always de�nite, and that ordered matching iscorrect, that is, it terminates on every input and alwaysyields the same solution independently of the order ofvariable instantiations. Hence we replace the de�nite-ness condition with the ordered condition in typecheck-ing, and in evaluation we adopt ordered matching. Weomit a detailed description of ordered matching; sec-tion 6.3 contains a similar algorithm in a somewhatdi�erent context.4 Abstract TypesThe interaction between the use of Dynamic and ab-stract data types gives rise to a puzzling design issue:should the type tag of a dynamically typed value con-taining an element of an abstract type be matched ab-stractly or concretely? There are good arguments forboth choices:� Abstract matching protects the identity of \hid-den" representation types and prevents acciden-tal matches in cases where several abstract typeshappen to have the same representation.� Transparent matching allows a more permissivestyle of programming, where a dynamically typedvalue of some abstract type is considered to be avalue of a di�erent version of \the same" abstracttype. This
exibility is critical in many situa-tions. For example, a program may create disk�les containing dynamic values, which should re-main usable even after the program is recompiled,or two programs on di�erent machines may wantto exchange abstract data in the form of dynam-ically typed values.By viewing abstract types formally as existentialtypes [19], we can see exactly where the di�erence be-tween these two solutions lies and suggest a generaliza-tion of existential types that supports both. (Existen-tial types can in turn be coded using universal types;with this coding, our design for dynamic types of theprevious sections yields the second solution.)To add existential types to the variant of F! de�nedin the previous section, we extend the syntax of typesand terms as in Figure 2.The typechecking rules for pack and open are:S =� 9(A : K) T � ` e 2 [R=A]T� ` (pack e as S hiding R) 2 S (Pack)� ` e 2 9(A : K) SA 62 FV(T) �; A : K;x : S ` b 2 T� ` (open e as [A; x] in b) 2 T (Open)A typical example where an element of an abstract typeis packed into a Dynamic is:5

T ::= :::j 9(A : K)T existential typese ::= :::j pack e as T hiding T packing (existential introduction)j open e as [A;x] in e unpacking (existential elimination)Figure 2: Extended syntax with existential typeslet stackpack =packpush = �(s:IntList)�(i:Int) cons(i)(s),pop = �(s:IntList) cdr(s),top = �(s:IntList) car(s),new = nilas Some(X)push:X->Int->X,pop:X->X, top:X->Int, new:Xhiding IntListinopen stackpack as [Stack,stackops] inlet dstack =dynamic(stackops.push(stackops.new)(5):Stack)in typecase dstack of(s:Stack) stackops.top(s)else 0Note that this sort of example depends critically onthe use of open type tags. As above, open tags mustbe implemented using run-time types. The evaluationof pack must construct a value that carries the repre-sentation type.We have a choice in the evaluation rule for the openexpression:� We can evaluate the expression open e as [R; x]in b by replacing the representation type variableR by the actual representation type obtained byevaluating e.� Alternatively, we can replace R by a new typeconstant.Without Dynamic, the di�erence between these rulescannot be detected. But with Dynamic we get di�erentbehaviors. Since both behaviors are desirable, we maychoose to introduce an extended open form that pro-vides separate names for the abstract and transparentversions of the representation type:� ` e 2 9(H : K) S H 62 FV(T)�;H : K;x : S ` [H=R]b 2 T� ` (open e as [R;H; x] in b) 2 T (Open)In the body of b, we can build dynamic values with tagsR or H; a typecase on the former could investigate

the representation type while a typecase on the lattercould not violate the type abstraction.5 SubtypingIn simple languages with subtyping (e.g., [3, 9]) it isnatural to extend typecase to perform a subtyping testinstead of an exact match. Consider for example:let dx = dynamic(3:Nat)intypecase dx offg (x:Int) ...else ...The �rst typecase branch is taken: although the tagof dx, Nat, is di�erent from Int, we have Nat�Int.Unfortunately, this idea runs into di�culties whenapplied to more complex languages. In general, theredoes not exist a most general instantiation for pat-tern variables when a subtype-match is performed. Forexample, consider the pattern V!V and the prob-lem of subtype-matching (Int!Nat)�(V!V). BothInt!Int and Nat!Nat are instances of V!V and su-pertypes of Int!Nat, but they are incomparable. Evenwhen the pattern is covariant there may be no most gen-eral match. Given a pattern V �V , there may be a typeA�B such that A and B have no least upper bound, andso there may be no best instantiation for V. This canhappen, for example, in a system with bounded quan-ti�ers [6, 10], and in systems where the collection ofbase types does not form an upper semi-lattice. Linearpatterns (where each pattern variable occurs at mostonce) avoid these problems, but we �nd linearity toorestrictive.Therefore, we take a di�erent approach that worksin general and �ts well with the language described insection 3.2. We intend to extend System F with sub-typing along the lines of [5]. In order to incorporate alsothe higher-order pattern variables, we resort to power-kinds [4]. The kind structure of section 3.2 is thereforeextended as follows:K ::= Typej K!Kj Power(K)(T) (where T : K)Informally, Power(Type)(T) is the collection of all sub-types of T , and Power(K!K 0)(F) is the collection of6

all operators of kind K!K 0 that are pointwise in sub-type relation with F . Subtyping (�) is introduced byinterpreting:A�B : K as A : Power(K)(B); where A;B : KF�G : (K!K0) as F (X)�G(X) : K 0;for all X : K, where F;G : (K!K 0)The axiomatization of Power(K)(T) [4] is designed toinduce the expected subtyping rules. For example, A :Power(A) says that A�A.As in section 3.5, we limit kinds to appear only inpatterns, although we may allow bounded quanti�ers8(X�T) T 0 since they can be handled easily. Becauseof power-kinds, we can now write patterns such as:typecase dx offV,W�(V�V)g (x:W) ...(that is: fV:Type, W:Power(Type)(V�V)g (x:W))else ...Each branch guard is used in typechecking the cor-responding branch body. The shape of branch guards isfV1 : P1; : : : ; Vn : Png(x : P) where each Vi may occurin the Pj with j > i and in P . This shape �ts withinthe normal format of typing environments, and henceintroduces no di�culties for static typechecking.Next we consider the dynamic semantics of type-case in presence of subtyping. The idea is to preservethe previous notion that typecase performs exact typematches at run time. Subtyping is introduced as a se-quence of additional constraints to be checked at runtime only after matching. These constraints are eas-ily checked because, by the time they are evaluated,all the pattern variables have been fully instantiated(perhaps to undetermined types, as discussed in sec-tion 3). In the example above, suppose that the tag ofdx is (Nat�Int)�Int; then we have the instantiationsW = Nat � Int and V = Int. When the matching iscompleted, we successfully check that W�(V � V).Some examples will illustrate the additional
exibil-ity obtained with subtyping. First we show how to emu-late simple monomorphic languages with subtyping butwithout pattern variables, where typecase performs asubtype test. The �rst example of this section can bereformulated as:typecase dx offV�Intg (x:V) f[V](x)else ...where f:8(W�Int)W!Int. In this example, the tag ofdx can be any subtype of Int. Note that the assumptionV�Int is used statically to typecheck f[V](x).The next example is similar to dynApply in sec-tion 2, but the type of the argument can be any subtypeof the domain of the function:

typecase df offV,Wg (f:V!W)typecase da offV'�Vg (a:V')dynamic(f(a):W)else ...else ...With polymorphic tag types, or with polymorphicpattern types with only �rst-order pattern variables,nothing new happens except that the matching andsubtype tests must be the adequate ones for polymor-phism.The next degree of complexity is introduced byhigher-order pattern variables. Just as we had V 0�V ,a subtype constraint between two �rst-order patternvariables, we may have F�G:(K!K') for two higher-order pattern variables F,G:(K!K'). As mentionedabove, the inclusion is intended pointwise: F�G i�F(X)�G(X):K' under the assumption X:K.Another form of dynamic application provides anexample of higher-order matches with subtyping:typecase df offF,G:Type!Type,Vg (f:8(Z�V)F(Z)!G(Z))typecase da offW�Vg (a:F(W))dynamic(f[W](a):G(W))else ...else...Finally, dynamic composition calls for a constraintof the form G0�G:typecase df offG,H:Type!Typeg (f:8(X)G(X)!H(X))typecase dg offF:Type!Type,G'�G:(Type!Type)g(g:8(Y)F(Y)!G'(Y))dynamic((�(Z) f[Z]�g[Z]):8(Z)F(Z)!H(Z))else ...else ...This example generalizes to functions of bounded poly-morphic types, such as 8(X�A)G(X)!H(X).6 Implicit PolymorphismIn this section we investigate dynamics in an implic-itly typed language, namely ML. First we show thatthe general treatment of dynamics for explicitly typedlanguages directly applies to ML, providing explicitlytagged dynamics in an untyped language. This solu-tion is not in the spirit of ML, and all the rest of thesection will be devoted to the study of implicitly taggeddynamics in ML.In the obvious extension of ML, types can still beinferred for all constructs but dynamics; the user needs7

to provide type information when creating or readingdynamics. For instance, let us consider the program:twice = dynamic(�(f) �(x) f(f x):8(A)(A!A)!(A!A))First, the type scheme 8(A)(A!A)!(A!A) is inferredfor �(f) �(x) f(f x) as if it were to be let-bound.Then we check that this type scheme has no freevariables and is more general than the required tag8(A)(A!A)!(A!A). Conversely, when the extractionof a value from a dynamic succeeds, it is given the typescheme of its tag as if it had been let-bound. Thus,all instances of the value can be used with di�erent in-stances of the tag as infoo = �(df)typecase df of(f:8(A)(A!A)!(A!A)) <f succ, f not>else ...where succ and not are the successor function on inte-gers and the negation function on booleans.This works perfectly. However, it requires explicittype information in dynamic patterns, which is not inthe spirit of ML. Since the ML typechecker can infermost general types for expressions, one would expectthe compiler to tag dynamic values with their principaltypes. For instance, the user writestwice = dynamic(�(f) �(x) f (f x))and the dynamic is tagged with 8(A)(A!A)!(A!A).However, there is a di�culty with the programapply = dynamic(�(f) �(x) f x)Should the dynamic's tag be 8(A,B)(A!B)!(A!B)or 8(B,A)(A!B)!(A!B)? As typecase is de�ned, itsucceeds if the tag exactly matches the pattern, in-cluding quanti�ers. With implicit tagging, the orderof quanti�ers should not matter.Moreover, since the tag of twice is more generalthan the pattern of the function foo, an ML program-mer would probably expect that twice can be passedto foo. This is also justi�ed by the fact that the type-checker could have built a dynamic with a weaker tag,and the typecase would have succeeded. That is, inML, the typecase would be expected to succeed if aninstance of the tag matches the pattern. This principleis called tag instantiation. Dynamics with tag instanti-ation but no pattern variables have been implementedin the language CAML [24]. The dynamics studied byLeroy and Mauny [17] have tag instantiation and �rst-order pattern variables. First-order pattern variablesare not powerful enough to type some reasonable ex-amples, such as the applyTwice function shown later.Below we describe a version of dynamics for ML withtag instantiation and second-order pattern variables.

6.1 Tuple variablesTag instantiation and second-order pattern variables donot �t well together. The di�culty comes from themerging of two features:� As in the pattern fFg (f:8(A)F(A)!A), second-order pattern variables may depend on universalvariables.� Tag instantiation requires that if a typecase suc-ceeds, then it also succeeds for a dynamic withan argument that has a more general tag. Thetag 8(A)(A�A)!A matches the previous pattern.So should the tag 8(A,B)(A�B)!A. But F is notsupposed to depend on B!Because of tag instantiation, polymorphic pattern vari-ables may always depend on more variables than theones explicitly mentioned. We capture all variables thatappear in the tag but that do not correspond to vari-ables in the pattern into a tuple of variables P. The de-pendence of pattern variable F on all universal variablesis written F(P), even though the exact set of variablesin P is not statically known. The tuple variable P willbe dynamically instantiated to the tuple of all variablesof the tag not matched with variables of the pattern.In particular, if the pattern is F(P;A), then P will nevercontain A.For instance, the pattern fFg (f:8(A)F(A)!A)should be written fFg (f:8(A)F(P;A)!A), so thattag instantiation is possible. The tag 8(A)(A�A)!Amatches this pattern for an empty tuple. The tag8(A,B)(A�B)!A matches it for a one-element tuple,namely (B).Tuple variables bound in di�erent patterns may beinstantiated to tuples with di�erent numbers of vari-ables, as in the example just given. Because of such sizeconsiderations, it is not always possible to use a tuplevariable as argument to an operator, since it may expectan argument of di�erent size. We use tuple sorts in or-der to guarantee that type expressions are well formed.Formally, a typecase with explicit information shouldbe written, for instance:fp Tuple,F:p!Type!Typeg(f:8(P:p,A:Type)F(P;A)!A)where F (A0;A1; : : : ; An) stands for a fully applied pat-tern variable F (A0)(A1) : : : (An); this notation remindsthat the �rst argument A0 is a tuple. The sort variablep is to be bound at run time. However, it is not neces-sary to write the sorts in programs since a typecheckercan easily infer them.6.2 Description of the languageWe assume given a denumerable collection of tuplesorts, written �, �0, etc., and a sort Type. Then the8

sorts are:k ::= � j Type atomic sortsK ::= k j k! K sortsTypes are:T ::= Dynamic j A j T (T) j T!T typesP ::= fA1; : : : ; AngT patternsS ::= 8(A1 : K1; : : : ; An : Kn) T type schemesIn traditional ML style, we have left quanti�ers implicitin types and hence in patterns. The formation of types,patterns, and contexts is controlled by judgements ofthe form:� ` T 2 K type T is of sort K in �� ` S 2 K type schema S is of sort K in �� ` P 2 K pattern P is of sort K in �where contexts are:� ::= ; empty contextj �; � tuple sort declarationj �; F : K symbol declarationFormation rules ensure that type variables are alwaysbound in the proper context, with a sort consistent withtheir uses. For instance, we have the rule:� ` T : k � ` T 0 : k! K� ` T 0(T) : K (Sort-App)In examples only, we help the reader by using di�erentletters for variables of di�erent sorts: type variables oftuple sorts are written P and Q and type variables ofsort Type are written A, B, etc. We also use F, G, and Hfor pattern variables.Patterns are pairs of a set of pattern variablesfV1; : : : ; Vng and a type T . They are well formed ifthe signature of all Vi's if of the form � ! K for thesame tuple sort �. The exact rule for pattern formationis: �;A0; A1; : : : ; An =2 ��; �; V1 : � ! K1; : : : ; Vn : � ! Kn;A0 : �;A1 : Type; : : : ; An : Type ` T 2 Type�; � ` fV1 : �! K1; : : : ; Vn : � ! Kng T2 8(A0 : �;A1 : Type; : : : ; An : Type) TIn particular, there is exactly one pattern variable oftuple sort per pattern.Again, we would like to guarantee de�niteness ofpatterns, and we impose the su�cient condition thatpatterns be ordered. Ordered patterns are those thatsatisfy the conditions given in section 3.5, and in addi-tion all non-pattern free variables of sort Type must ap-pear at least once outside of all pattern variables in thepattern. In the context of ML, our de�niteness require-ment is reminiscent of the type-explication restriction

imposed on signatures in Standard ML (see section 7.7of [13]).Pattern variables are bound at the beginning of thetypecase, and their scope is the typecase in whichthey have been introduced. All other free variables arebound at the beginning of the pattern and their scopeis the pattern.Expressions are:e ::= x j �(x) e j e ej dynamic(e)j typecase e offV1 : K1; : : : ; Vn : Kng (x : P) e else eType inference Pattern variables behave as localtype symbols in ML. Typechecking with local type sym-bols implies an extension of judgement contexts in orderto control the scope of type symbols:� ::= : : :j �; x : S variable type assignmentThe typing judgements are � ` e : T .The \instance" rule of ML becomes:e : S 2 �� ` T : Type T is an instance of S� ` e 2 T (Inst)It says that instances have to be well formed in the cur-rent context, which prevents us from using local sym-bols out of their scope.Since we do not want to carry types at run time, werequire that the types of values to become dynamic beclosed, and then tags can be statically compiled.� ` e 2 S S is closed� ` dynamic(e) 2 Dynamic (Dyn-I)This rule may destroy the principal typing property ofML. If the principal type of an expression e is S andS is not closed, then typing dynamic(e) requires thatfree variables of S are instantiated by ground types.However, the set of closed instances of a principal typethat is not closed does not have a principal element.We want to avoid such situations, since the nonex-istence of a principal type corresponds to an ambiguityconcerning the tag that a dynamic value should carry.Therefore, we say that a program is not well typed if ithas no principal typing derivation.Type inference is realized by the same algorithm asin ML but delaying tag-closure checking to the end oftypechecking (by gathering free variables of types ofdynamic values in a list, for instance). If one of thesevariables is still free at the end of typechecking, thenthere exists no principal derivation, and the program isnot well typed.9

The rule for typecase is:� ` d 2 Dynamic � ` e0 2 B�; � ` fV1 : K1; : : : ; Vn : KngT 2 S�; �; V1 : K1; : : : ; Vn : Kn; x : S ` e 2 B�; P : � ` typecase d offV1; : : : ; Vng (x:T) e else e0 2 BThe other rules of ML are unchanged.6.3 EvaluationCompilation is easily decomposed into two phases. The�rst phase translates ML into a variant, called ML{,where dynamics are explicitly typed; this translationrequires a bit of inference. ML{ di�ers form ML onlyin its dynamic construct:e ::= : : : j dynamic(e : S)and its typing rule:� ` a 2 S S is closed� ` dynamic(a : S) 2 Dynamic (Dyn-I)The translation of an ML program e into ML{ is anyML{ program M whose principal type derivation isalso a principal type derivation for e. This de�nes Muniquely (types being equal up to alpha-conversion).The type reconstruction algorithm is a trivial adapta-tion of the usual type inference algorithm. The seman-tics of an ML program e is the semantics of its transla-tion into ML{.The evaluation rules are mostly standard. The onlyinteresting one is for typecase, as it involves new meth-ods for matching and pattern-variable instantiation.Matching is not quite as usual, since it allows tag in-stantiation, and it also has to deal with tuple variables.Its inputs are a pattern fV1 : K1; : : : ; Vn : Kng T anda tag, that is, a closed type 8(�1; : : : ; �n) � . The pat-tern variables are the Vi's, and the universal variablesare the remaining free variables of T . The set of vari-ables that occur in the tag (the �i's) can increase duringtag instantiation. The algorithm returns a substitution� with domain the pattern variables, such that thereexists a substitution �0 with domain the tag variables,and with �0(�) = �(T).We describe the algorithm as transformations onsets of uni�cation constraints called uni�cands; thetransformations keep unchanged the set of substitutionsthat satisfy the constraints. The substitutions that weconsider can instantiate both pattern and tag variables,but not universal variables.The metavariable T still stands for any type, and �stands for a type that does not contain pattern vari-ables. The atomic constraints are pairs, T _= � or� _= T . The pairs T _= � and � _= T are consideredequal. A substitution � is a solution of an atomic con-straint if it uni�es both sides. In addition, the constant

? is used to represent failure; it is the atomic constraintwith no solution.In general, a uni�cand U is an atomic constraint,the conjunction of two uni�cands U 0 ^ U 00, or the ex-istential uni�cand 9�:U 0. The solution set of U 0 ^ U 00is the intersection of the solution sets of U 0 and U 00.The solution set of the existential uni�cand 9�:U 0 isthe set of solutions of U 0 restricted to variables distinctfrom �. We identify uni�cands up to: commutativityand associativity of conjunction, renaming of variablesbound by 9's, exchange of consecutive 9's, and removalof vacuous 9's.Two uni�cands U and V are equivalent if they havethe same set of solutions. This obviously de�nes anequivalence relation on uni�cands, and in fact a con-gruence.We reduce the original matching problem to that of�nding the solutions of the uni�cand 9FV(�):(T _= �).In order to solve this problem, we now give a list ofequivalences between uni�cands|the uni�cand on topis always equivalent to the one at the bottom. Tagvariables are written �; C and C0 are constant sym-bols, and always occur fully applied; and X is either auniversal variable A or a pattern variable V . The setof all variables is V.� DecompositionC(Ti) _= C(�i)V(Ti _= � 0i) C(Ti) _= C0(�j)? C 6= C0� Instantiation C(Ti) _= �9�i:�� _= C(�i) ^V(Ti _= �i)�V (A0;�1; : : : ; �n) _= �V _= �(A0;�1; : : : ; �n):�� Propagation X _= � ^MX _= � ^ [�=X]M� _= �? � =2 FV(�); � =2 V� Universal-variable restrictionAi _= � ^Aj _= �? A _= �? � =2 V� Existential simpli�cationsU ^ (9�:U 0)9�:(U ^ U 0) � =2 FV(U)9�:(� _= � ^U)9�:U � =2 FV(�) [FV(U)10

� Trivial constraints� _= � ^ UU ?^ U?These equivalences can be used as rewriting rules. Allrules are oriented from top to bottom; one step ofrewriting is the application of exactly one rule; apply-ing the rules in any order always terminates. Whensuccessful, this process produces canonical uni�candsof the form:9�k:�^(Ai = �i) ^^(Vj = �j)�A uni�cand that cannot be reduced and that is not yetin canonical form is either ? or contains a constraintV (A0;T1; : : : ; Tn) _= � . The ordered condition on pat-terns prevents the latter (as the second instantiationrule would apply to one of the constraints). Hence,for ordered patterns, rewriting always produces eithera canonical uni�cand or ?.Because of the form of the rules, the matching isunitary, and all solutions are equal up to renaming ofthe �k's. The unique tuple variable that appears inall the �j can be bound to the tuple (�k), and its sizebound to the tuple sort.6.4 Related workThe work on dynamics most closely related to ours isthat of Leroy and Mauny [17]. Our system can be seenas an extension of their system with \mixed quanti�ca-tion."Instead of introducing a typecase statement, Leroyand Mauny merge dynamic elimination with the usualcase statement of ML. If we ignore this di�erence, theirdynamic patterns have the form QA where A is a typeand Q a list of existentially or universally quanti�edvariables.For instance,8(A)9(F)8(B)9(G) (v:T(A,F,B,G))is a pattern of their system. The existentially-quanti�edvariables play the role of our pattern variables. Theorder of quanti�ers determines the dependencies amongquanti�ed variables. Thus, the pattern above can berephrased:9(F)9(G)8(A)8(B) (v:T(A,F(A),B,G(A,B)))Writing quanti�ers in our patterns explicitly (for easeof comparison), the equivalent pattern in our system is:fF,Gg (v:8(P,A,B)T(A,F(P;A),B,G(P;A,B)))With the same approach, in fact, we can translate allof their patterns into equivalent patterns in our system,preserving the intended semantics.

On the other hand, there does not seem to be atranslation from our language to theirs. They have nopattern equivalent to our pattern:fF,Gg (v:8(P,A,B)T(A,F(P;A),B,G(P;B)))because the quanti�ers in the pre�x of their patternsare in linear order, and hence it is not possible to havethe \parallel" dependencies of F on A and of G on B. Wecan obtain a system intermediate between theirs andours by leaving tuple variables implicit, and there wewould rewrite the pattern above:fF,Gg (v:8(A,B)T(A,F(A),B,G(B)))However, we believe that explicit tuple variables areuseful, since they allow examples like the applyTwicefunction:let applyTwice =�(df) �(dxy)typecase df offF,F'g (f:F(P)!F'(P))typecase dxy offG,Hg (x,y:F(G(Q)) � (F(H(Q))))f x, f yelse ...else ...This cannot be expressed in our intermediate system,nor in systems with just type quanti�ers, such as Leroyand Mauny's.References[1] Mart��n Abadi, Luca Cardelli, Benjamin Pierce,and Gordon Plotkin. Dynamic typing in astatically-typed language. ACM Transactions onProgramming Languages and Systems, 13(2):237{268, April 1991.[2] Graham M. Birtwistle, Ole-Johan Dahl, BjornMyhrhaug, and Kristen Nygaard. Simula Begin.Studentlitteratur (Lund, Sweden), Bratt InstituteFuer Neues Lerned (Goch, FRG), Chartwell-BrattLtd (Kent, England), 1979.[3] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors, Com-binators and Functional Programming Languages.Springer-Verlag, 1986. Lecture Notes in ComputerScience No. 242.[4] Luca Cardelli. Structural subtyping and the no-tion of power type. In Proceedings of the 15thACM Symposium on Principles of ProgrammingLanguages, pages 70{79, San Diego, CA, January1988.11

[5] Luca Cardelli, Simone Martini, John C. Mitchell,and Andre Scedrov. An extension of system F withsubtyping. In T. Ito and A. R. Meyer, editors,Theoretical Aspects of Computer Software, number526 in Lecture Notes in Computer Science, pages750{770. Springer-Verlag, September 1991.[6] Luca Cardelli and Peter Wegner. On understand-ing types, data abstraction, and polymorphism.Computing Surveys, 17(4), December 1985.[7] Gilles Dowek. A second order pattern matchingalgorithm in the cube of typed �-calculi. In Pro-ceedings of Mathematical Foundation of ComputerScience, volume 520 of Lecture Notes in ComputerScience, pages 151{160. Springer Verlag, 1991.Also Rapport de Recherche INRIA, 1992.[8] Gilles Dowek. Third order matching is decidable.In Proceedings of the Seventh Annual IEEE Sym-posium on Logic in Computer Science, 1992. Toappear.[9] Greg Nelson (ed.). Systems Programming inModula-3. Prentice Hall, 1991.[10] Giorgio Ghelli. Proof Theoretic Studies about aMinimal Type System Integrating Inclusion andParametric Polymorphism. PhD thesis, Universit�adi Pisa, March 1990. Technical report TD{6/90,Dipartimento di Informatica, Universit�a di Pisa.[11] Jean-Yves Girard. Interpr�etation fonctionelle et�elimination des coupures de l'arithm�etique d'ordresup�erieur. PhD thesis, Universit�e Paris VII, 1972.[12] Mike Gordon. Adding Eval to ML. Personal com-munication, circa 1980.[13] Robert Harper, Robin Milner, and Mads Tofte.Commentary of Standard ML. The MIT Press,1991.[14] Fritz Henglein. Dynamic typing. In ESOP, 1992.[15] G�erard Huet and Bernard Lang. Proving andapplying program transformations expressed withsecond-order patterns. Acta Informatica, 11:31{55,1978.[16] Butler Lampson. A description of the Cedar lan-guage. Technical Report CSL-83-15, Xerox PaloAlto Research Center, 1983.[17] Xavier Leroy and Michel Mauny. Dynamics in ML.In Proceedings of the ACM Conference on Func-tional Programming Languages and Computer Ar-chitecture, 1991.[18] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C.Scha�ert, R. Schei
er, and A. Snyder. CLU Ref-erence Manual. Springer-Verlag, 1981.

[19] John Mitchell and Gordon Plotkin. Abstract typeshave existential type. ACM Transactions on Pro-gramming Languages and Systems, 10(3), July1988.[20] Alan Mycroft. Dynamic types in ML. Draft article,1983.[21] John Reynolds. Towards a theory of type struc-ture. In Proc. Colloque sur la Programmation,pages 408{425, New York, 1974. Springer-VerlagLecture Notes in Computer Science 19.[22] Paul Rovner. On extending Modula-2 to buildlarge, integrated systems. IEEE Software, 3(6):46{57, November 1986.[23] Satish R. Thatte. Quasi-static typing (prelimi-nary report). In Proceedings of the SeventeenthACM Symposium on Principles of ProgrammingLanguages, pages 367{381, 1990.[24] Pierre Weis, Maria-Virginia Aponte, Alain Laville,Michel Mauny, and Ascander Su�arez. The CAMLreference manual. Research report 121, INRIA,Rocquencourt, September 1990.[25] Niklaus Wirth. From Modula to Oberon and theprogramming language Oberon. Technical Re-port 82, Institut f�ur Informatik, ETH, Zurich,1987.

12

