Martin Abadi

Dynamic Typing
i Polymorphic Languages

Luca Cardelli

Benjamin Pierce

Didier Rémy

Systems Research Center
Digital Equipment Corporation

1 Introduction

Dynamic types are sometimes used to palliate deficien-
cies in languages with static type systems. They can be
used instead of polymorphic types, for example, to build
heterogeneous lists; they are also exploited to simu-
late object-oriented techniques safely in languages that
lack them, as when emulating methods with procedures.
But dynamic types are of independent value, even when
polymorphic types and objects are available. They pro-
vide a solution to a kind of computational incomplete-
ness inherent to statically-typed languages, offering, for
example, storage of persistent data, inter-process com-
munication, type-dependent functions such as print,
and the eval function.

Hence, there are situations in programming where
one would like to use dynamic types even in the pres-
ence of arbitrarily advanced type features. In this pa-
per we investigate the interplay of dynamic typing with
polymorphism. Our study extends earlier work (see [1])
in allowing polymorphism, but keeps the same basic
language constructs (dynamic and typecase) and the
same style.

The interaction of polymorphism and dynamic types
gives rise to problems in binding type variables. We
find that these problems can be more clearly addressed
in languages with explicit polymorphism. Even then,
we encounter some perplexing difficulties (as indicated
in [1]). In particular, there is no unique way to match
the type tagging a dynamic value with a typecase pat-
tern. Our solution consists in constraining the syntax
of typecase patterns, providing static guarantees of
unique solutions. The examples we have examined so
far suggest that our restriction is not an impediment in
practice. This solution applies also to languages with
abstract data types, and it extends to languages with

LFCS INRIA Rocquencourt

University of Edinburgh

subtyping.

Drawing from the experience with explicit polymor-
phism, we consider languages with implicit polymor-
phism in the ML style. The same ideas can be used,
with some interesting twists. In particular, we are led
to introduce tuple variables, which stand for tuples of
type variables.

In addition to [1], several recent studies have con-
sidered languages with dynamic types [14, 17, 23]. The
work most relevant to ours is that of Leroy and Mauny,
who define and investigate two extensions of ML with
dynamic types. We compare their designs to ours in
section 6.

Section 2 is a brief review of dynamic typing in
simply-typed languages, based on [1]. Section 3 con-
siders the general case of adding dynamic typing to a
language with higher-order polymorphism [11]. An al-
gorithmic formulation of the general framework is ob-
tained in section 3.5 by restricting polymorphism to the
second order and placing conditions on the patters used
in typecase expressions. Sections 4 and 5 discuss ab-
stract data types and subtyping, respectively. Section 6
deals with a language with implicit polymorphism.

2 Review

The integration of static and dynamic typing is fairly
straightforward for monomorphic languages. The sim-
plest approach introduces a new base type Dynamic
along with a dynamic expression for constructing values
of type Dynamic and a typecase expression for inspect-
ing them. The typechecking rules for these expressions
are:

' - aeT
. , (DyN-T)
I' F dynamic(a:7T) € Dynamic
I' H d € Dynamic
Le:P FbeT rtE T
il < c€ (DyN-E)

I' - typecase d of (#:P)b else e T

The phrases (#:P) and else are branch guards, P is
a pattern—here, just a monomorphic type; b and ¢
are branch bodies. For notational simplicity, we have

considered only typecase expressions with exactly one
guarded branch and an else clause; typecase involv-
ing several patterns can be seen as syntactic sugar for
several nested instances of the single-pattern typecase.
In the intended implementation, the compilation of
a dynamic is a pair consisting of a value and its type:

compile[dynamic(a:4)] =
"<‘compilel[al’, ‘grabl[A]l’>"

The double quotes here indicate that the result of
compile 1s a run-time structure; single quotes mark
substructures to be built at compile time. The keyword
“grab” indicates a metalevel shift: a compile-time data
structure or routine is inserted into the run-time value.
Because of this, Dynamic is particularly easy to imple-
ment in a bootstrapped compiler, where the run-time
and compile-time structures coincide.

The typecase construct uses the compiler’s type-
match routine to compare the tag of a given dynamic
to the branch guard:

compile[typecase d of (x:4) b else e] =
"let d = ‘compile[d]’ in
if ‘grabl[typematch]’ (‘grab[A]’) (snd(d))
then push[x=fst(d)]; ‘compile[b]’
else ‘compilel[e]’"

In languages with subtyping, it is common to use a
subtype test in the typecase construct to give a less
restrictive matching rule, allowing a tag to be a sub-
type of the guard type instead of requiring that the
two match exactly.

Constructs analogous to dynamic and typecase
have been provided in a number of languages, including
Simula-67 [2], CLU [18], Cedar/Mesa [16], Amber [3],
Modula-2+ [22], Oberon [25], and Modula-3 [9].

These constructs have surprising expressive power;
for example, fixpoint operators can be defined at ev-
ery type already in a simply typed lambda-calculus ex-
tended with Dynamic [1]. Important applications of
dynamics include persistence and inter-address-space
communication. For example, the following primitives
provide input and output of a dynamic value from and
to a stream:

extern € Writer xDynamic—Unit
intern € Reader—Dynamic

Moreover, dynamics can be used to give a type for an
eval primitive [12, 20]:

eval € Exp—Dynamic

We obtain a much more expressive system by al-
lowing typecase guards to contain pattern variables.
For example, the following function takes two Dynamic
arguments and attempts to apply the contents of the
first (after checking that it is of functional type) to the
contents of the second:

dyndpply =
A(df:Dynamic) A(da:Dynamic)
typecase df of
{U,v} (£:U—=V)
typecase da of
{} (a:U)
dynamic(f(a):V)
else ...
else ...

Here U and V are pattern variables introduced by the
first guard. In this example, if the arguments are:

df
da

dynamic((A(x:Int)x+2):Int—Int)
dynamic(5:Int)

then the typecase guards match as follows:

Tag: Int—Int

Pattern: U—-V

Result: {U = Int,V = Int}
Tag: Int

Pattern: Int

Result: {}

and the result of dynApply is dynamic(7 : Int).

A similar example 1s the dynamic-composition func-
tion, which accepts two Dynamic arguments and at-
tempts to construct a Dynamic containing their func-
tional composition:

dynCompose =
A(df :Dynamic) A(dg:Dynamic)
typecase df of
{U,v} (£:U—=V)
typecase dg of
{T} (g:T—U)
dynamic(fog:T—V)
else ...
else ...

3 Explicit Polymorphism

This formulation of dynamic types may be carried over
almost unchanged to languages based on explicit poly-
morphism [11, 21]. For example, the following func-
tion checks that its argument df contains a polymor-
phic function £ taking elements of any type into Int. It
then creates a new polymorphic function that accepts
a type and an argument of that type, instantiates f
appropriately, applies it, and squares the result:

squarePolyFun =
A(df :Dynamic)
typecase df of
{} (£:¥(2)Z—Int)
AW A(x:w) £IW] (o) *£[W] (x)
else A(W) A(x:W) O

Here the type abstraction operator is written A.
Type application is written with square brackets. The
types of polymorphic functions begin with V. For exam-
ple, Y(T)T—T is the type of the polymorphic identity
function, A(T) A(x:T) x.

3.1 Higher-order pattern variables

First-order pattern variables, by themselves, do not give
us sufficient expressive power in matching against poly-
morphic types. For example, we might like to generalize
the dynamic application example from section 2 so that
it can accept a polymorphic function and instantiate it
appropriately before applying it:

dyndpply2ltd =
A(df:Dynamic) A(da:Dynamic)
typecase df of
{} (£:¥(2)?—7)
typecase da of
{w} (a:wW))
dynamic(£[W](a):?)
else ...
else dynApply(df)(da)

But there is no single expression we can fill in for the do-
main of £ that will make dynApply21td apply to both:

df = dynamic

(A(Z) A(x:ZxZ) <snd(x),fst(x)>: ...)
da = dynamic(<3,4>: ...)
and:
df = dynamic((A(Z) A(x:Z—Z) x): ...)
da = dynamic((A(x:Int) x): ...)

Thus we are led to introducing higher-order pat-
tern variables, which range over “pattern contexts” —
patterns abstracted with respect to some collection of
type variables. These suffice to express polymorphic
dynamic application:

dyndpply2 =
A(df:Dynamic) A(da:Dynamic)
typecase df of
{F,G} (£:Y(Z)F(Z)—G(Z))
typecase da of
{Ww} (a:F(W))
dynamic (£ [W](a):G(W))
else ...
else dynApply(df)(da)

For example, if:

df = dynamic(id:V(A)A—A)
da = dynamic(3:Int)

then the typecase expressions match as follows:

Tag: V(4)A—4
Pattern: V(Z)F(Z)—G(Z)
Result: {F =A(X)X,G =A(X)X}

Tag: Int
Pattern: F(WW) (which reduces to W)
Result: {W = Int}

and the result of the application dynApply2(df)(da) is
dynamic(éd[Int](3) : Int).

3.2 Syntax

We now formalize dynamic types within the context of
a higher-order polymorphic A-calculus, F, [11]. The
syntax of F,, with type Dynamic is given in Figure 1.

In examples we also use base types, cartesian prod-
ucts, and labeled records in types and patterns, but we
omit these in the formal treatment.

We regard as identical any pair of formulas that dif-
fer only in the names of bound variables. For brevity,
we sometimes omit kinding declarations of the form
“: Type” and empty pattern-variable bindings. Also,
it is technically convenient to write the pattern vari-
ables bound by a typecase expression as a syntactic
part of the pattern, rather than putting them in front
of the guard as we have done in the examples. Thus,
typecase el of {V}(x:T)e2 else e3should be read
formally as typecase el of (x:{V:Type}T)e2 else
e3.

3.3 Tag Closure

One critical design decision for a programming language
with type Dynamic is the question of whether type tags
must be closed (except for occurrences of pattern vari-
ables), or whether they may mention universally bound
type variables from the surrounding context.

In the simplest scenario, dynamic(a:A4) is legal
only when A is a closed (but possibly polymorphic)
type. Similarly, we would require that the guard in
a typecase expression be a closed type.

If the closure restriction is not instituted, then types
must actually be passed as arguments to polymorphic
functions at run time, so that code can be compiled for
expressions like:

A(X) A(x:X) dynamic(<x,x>:XxX).

where the type X x X must be generated at run time.
For languages such as ML, where type information is
not retained at run time, the closure restriction becomes
essential (see section 6). For now, we consider the gen-
eral case where tags may contain free type variables.

3.4 Definiteness

The most simple-minded formulation of higher-order
pattern variables may seem to provide adequate expres-
sive power, but it is not sufficiently constrained to lead
to a viable language design. The problem is that there
is no guarantee of unique matches of patterns against
tags. For example, when the pattern F'(Int) is matched

K Type

K—K

A

T—T

V(A : K)T
A(A:K)T
T(T)

Dynamic

Vit Ky, Vet K} T

(x
(e
(
e[T]

dynamic(e : T

T)e

> D> B
p—

e

K)e

typecase ¢ of (x:P)e else ¢

kind of types
kinds of type operators

type variables

function types

quantified types

type operators

application of a type operator
the dynamic type

patterns

variables
abstraction
application
type abstraction
type application
tagging

tag matching

Figure 1: Syntax of F, terms

against the tag Bool, the pattern variable F is forced to
be A(X)Bool. But when the same pattern is matched
against the tag Int, we find that F can be either A(X)X
or A(X)Int. There is no reasonable way to choose.
Worse yet, consider F'(W) or F(IW—Int) for a pattern
variable W.

These problems compel us to introduce restrictions
on the form of patterns. We may require that a pattern
matches a tag in at most one way at run time, and fail
otherwise. But this leads to unpredictable matching
failures. Therefore we prefer a stronger condition.

Informally, we want to allow only patterns that
match each tag in at most one way. This condition
is called definiteness. For example, assume that the
type variables 4 and B and the operator variable H are
bound in the current context, and consider the follow-
ing patterns:

Valid: {v} H(V)

since, at run time, if V appears in the expression to
which H i1s bound, then matching is the usual for first-
order pattern variables; and otherwise matching leaves
V completely undetermined, and we set it to a new type
constant. Patterns of this form are used in many of our
examples, so we want to consider them definite even
though they may sometimes leave V unconstrained.

Invalid: {F} F(4)

because, for example, it can match the tag A— A in four
ways, instantiating F' to any of: A(C)C—C, A(C)C—A4,
A(C)A—C, A(C)A—A.

Valid: {F} Y(X)F(X)

since, when the scope of X is narrower than that of F,
we can only match the tag V(Y)Y—Y by instantiating
I to A(C)C—cC.

Valid: {F} (V(X)F(X))—F(4)

since the first occurrence of F' determines its value.
Valid: {FVvi (VXF(X))—=F()

since F' can be matched first and then considered “al-
ready bound” at the defining occurrence of V.

Invalid: {F,G} V(X)F(G(X))—G(F(X))

since neither F nor (' can be considered “already
bound” unless the other i1s bound first.

Note that definiteness of patterns cannot be checked
locally. For example,

Valid: {F} F(Int)—F(Bool)

is definite, although neither occurrence of F' would be
definite in isolation.

The definiteness condition can be formalized, and
then one can put a definiteness requirement in the type-
checking rule for typecase, so that only programs with
definite patterns are legal.

Unfortunately, the notion of definiteness does not
suggest a typechecking algorithm in any straightfor-
ward way. A related problem is that we have no al-
gorithm for the run-time operation of matching pat-
terns against tags. Indeed, it is not known whether
the general case of higher-order matching is decidable.
Even the second- and third-order cases, whose decid-
ability has been established [15, 7, 8], lead to algorithms
too inefficient to be of practical use in implementing
typecase.

3.5 Second-order polymorphism

To obtain a practical language design, we need a re-
striction of our general treatment for which efficient
typechecking and matching algorithms can be given.
We begin by considering the fragment of F, with only
second-order polymorphism. This restriction is mostly
a matter of convenience, and it seems possible that the
approach described below applies to the full F,.

The syntax of System F' (the second-order polymor-
phic lambda-calculus) with Dynamic is given by the fol-
lowing restriction of F, with Dynamic. We show only
the lines that differ.

K == ...
| Type—K type operators
T = ...
| V(AT quantified types
| AA)T type operators
P =
e = ...
| A(A)e type abstraction
|

Here, kinds other than Type are used only to specify the
functionality of pattern variables; abstractions and ap-
plications at the level of types are used only to describe
patterns. Since every kind has the form

Type—---Type,
N’

n

we can simply say that a pattern variable with this kind
has arity n.

A pattern {Vi @ Ky,...,V, : K.} T is ordered if
there is some total ordering < of the pattern variables
Vi,...,V, such that each V; has a defining occurrence,
that is, a subterm occurrence U = V; A4y --- A4, in T
such that:

1. U does not appear in an argument to a pattern
variable V; where V; > V; (i.e., there is no occur-

rence U’ = V; @ with U a proper subphrase of
U'and V; > V;);

2. V; is fully applied (i.e., the arity of V; is p);
3. the A;’s are pairwise distinct; and

4. all of the A;’s have narrower scope than V; (i.e.,

Aj ¢ EV(T)).

Note that this condition can be checked statically.
Ordered matching is a matching algorithm for or-

dered patterns; given an ordered pattern, this algorithm

instantiates variables according to one of the orders that

make the pattern ordered. We believe that ordered pat-
terns are always definite, and that ordered matching is
correct, that is, it terminates on every input and always
yields the same solution independently of the order of
variable instantiations. Hence we replace the definite-
ness condition with the ordered condition in typecheck-
ing, and in evaluation we adopt ordered matching. We
omit a detailed description of ordered matching; sec-
tion 6.3 contains a similar algorithm in a somewhat
different context.

4 Abstract Types

The interaction between the use of Dynamic and ab-
stract data types gives rise to a puzzling design issue:
should the type tag of a dynamically typed value con-
taining an element of an abstract type be matched ab-
stractly or concretely? There are good arguments for
both choices:

e Abstract matching protects the identity of “hid-
den” representation types and prevents acciden-
tal matches in cases where several abstract types
happen to have the same representation.

e Transparent matching allows a more permissive
style of programming, where a dynamically typed
value of some abstract type is considered to be a
value of a different version of “the same” abstract
type. This flexibility is critical in many situa-
tions. For example, a program may create disk
files containing dynamic values, which should re-
main usable even after the program is recompiled,
or two programs on different machines may want
to exchange abstract data in the form of dynam-
ically typed values.

By viewing abstract types formally as existential
types [19], we can see exactly where the difference be-
tween these two solutions lies and suggest a generaliza-
tion of existential types that supports both. (Existen-
tial types can in turn be coded using universal types;
with this coding, our design for dynamic types of the
previous sections yields the second solution.)

To add existential types to the variant of F,, defined
in the previous section, we extend the syntax of types
and terms as in Figure 2.

The typechecking rules for pack and open are:

S=sIA:K)T T F e€[R/AT

I' - (pack e as S hiding R) € S (Pack)
'ee3d(4:K) S
AgFV(T LA Kz:SFbeT
g FVv(T) , {,x: 5 € (OPEN)

I' - (openeas[Az]inb)eT

A typical example where an element of an abstract type
is packed into a Dynamic is:

T =
| (A K)T

pack ¢ as T hiding T
opene as [A,z] in ¢

existential types

packing (existential introduction)
unpacking (existential elimination)

Figure 2: Extended syntax with existential types

let stackpack =

pack
push = A(s:IntList)

A(i:Int) comns(i)(s),
pop = A(s:IntList) cdr(s),
top = A(s:IntList) car(s),
new = nil

as Some(X)

push:X->Int->X,
pop:X->X, top:X->Int, new:X
hiding IntList
in
open stackpack as [Stack,stackops] in
let dstack =
dynamic
(stackops.push(stackops.new) (5):Stack)
in
typecase dstack of
(s:Stack) stackops.top(s)
else O

Note that this sort of example depends critically on
the use of open type tags. As above, open tags must
be implemented using run-time types. The evaluation
of pack must construct a value that carries the repre-
sentation type.

We have a choice in the evaluation rule for the open
expression:

e We can evaluate the expression open ¢ as [R,]
in b by replacing the representation type variable
R by the actual representation type obtained by
evaluating e.

e Alternatively, we can replace R by a new type
constant.

Without Dynamic, the difference between these rules
cannot be detected. But with Dynamic we get different
behaviors. Since both behaviors are desirable, we may
choose to introduce an extended open form that pro-
vides separate names for the abstract and transparent
versions of the representation type:

P Feed(H:K)S HEFV(T)
I''H:K,z:S F [H/RbeT
I't (openeas [R, H,z]inb)eT

(OPEN)

In the body of b, we can build dynamic values with tags
R or H; a typecase on the former could investigate

the representation type while a typecase on the latter
could not violate the type abstraction.

5 Subtyping

In simple languages with subtyping (e.g., [3, 9]) it is
natural to extend typecase to perform a subtyping test
instead of an exact match. Consider for example:

let dx = dynamic(3:Nat)
in
typecase dx of
{} (x:Int)

else ...

The first typecase branch is taken: although the tag
of dx, Nat, is different from Int, we have Nat<Int.

Unfortunately, this idea runs into difficulties when
applied to more complex languages. In general, there
does not exist a most general instantiation for pat-
tern variables when a subtype-match is performed. For
example, consider the pattern V—V and the prob-
lem of subtype-matching (Int—Nat)<(V—V). Both
Int—Int and Nat—Nat are instances of V—V and su-
pertypes of Int—Nat, but they are incomparable. Even
when the pattern is covariant there may be no most gen-
eral match. Given a pattern V x V', there may be a type
A x B such that A and B have no least upper bound, and
so there may be no best instantiation for V. This can
happen, for example, in a system with bounded quan-
tifiers [6, 10], and in systems where the collection of
base types does not form an upper semi-lattice. Linear
patterns (where each pattern variable occurs at most
once) avoid these problems; but we find linearity too
restrictive.

Therefore, we take a different approach that works
in general and fits well with the language described in
section 3.2. We intend to extend System F with sub-
typing along the lines of [5]. In order to incorporate also
the higher-order pattern variables, we resort to power-
kinds [4]. The kind structure of section 3.2 is therefore
extended as follows:

K = Type
| K—K
|

Power(K)(T) (where T': K)

Informally, Power(Type)(T) is the collection of all sub-
types of T, and Power(K—K')(F) is the collection of

all operators of kind K— K’ that are pointwise in sub-
type relation with F'. Subtyping (<) is introduced by
interpreting:

A<B:K as A:Power(K)(B), where A, B:K

F<G:(K—K") as F(X)<G(X): K,
for all X : K, where F, G : (K—K')

The axiomatization of Power(K)(7') [4] is designed to
induce the expected subtyping rules. For example, A :
Power(A) says that A<A.

As in section 3.5, we limit kinds to appear only in
patterns, although we may allow bounded quantifiers
V(XLT) T since they can be handled easily. Because
of power-kinds, we can now write patterns such as:

typecase dx of

{V,u<(yxv)} (x:W)

(that is: {V:Type, W:Power(Type) (VxV)} (x:W))
else ...

Each branch guard is used in typechecking the cor-
responding branch body. The shape of branch guards is
Vi P,..., Vo Py} (2 : P) where each V; may occur
in the P; with j > ¢ and in P. This shape fits within
the normal format of typing environments, and hence
introduces no difficulties for static typechecking.

Next we consider the dynamic semantics of type-
case in presence of subtyping. The idea is to preserve
the previous notion that typecase performs exact type
matches at run time. Subtyping is introduced as a se-
quence of additional constraints to be checked at run
time only after matching. These constraints are eas-
ily checked because, by the time they are evaluated,
all the pattern variables have been fully instantiated
(perhaps to undetermined types, as discussed in sec-
tion 3). In the example above, suppose that the tag of
dx is (Nat x Int) x Int; then we have the instantiations
W = Nat x Int and V = Int. When the matching is
completed, we successfully check that W<(V x V).

Some examples will illustrate the additional flexibil-
ity obtained with subtyping. First we show how to emu-
late simple monomorphic languages with subtyping but
without pattern variables, where typecase performs a
subtype test. The first example of this section can be
reformulated as:

typecase dx of
{Vv<Int} (x:V) £[VI(x)
else ...

where £:V(W<Int)W—Int. In this example, the tag of
dx can be any subtype of Int. Note that the assumption
V<Int is used statically to typecheck £[V](x).

The next example is similar to dynApply in sec-
tion 2, but the type of the argument can be any subtype
of the domain of the function:

typecase df of
{v,u} (£:Vv—W)
typecase da of
{v<v} (a:v?)
dynamic(f(a):W)
else ...
else ...

With polymorphic tag types, or with polymorphic
pattern types with only first-order pattern variables,
nothing new happens except that the matching and
subtype tests must be the adequate ones for polymor-
phism.

The next degree of complexity is introduced by
higher-order pattern variables. Just as we had V'<V,
a subtype constraint between two first-order pattern
variables, we may have F<G:(K—K’) for two higher-
order pattern variables F,G:(K—K’). As mentioned
above; the inclusion is intended pointwise: F<G iff
F(X)<G(X):K’ under the assumption X:K.

Another form of dynamic application provides an
example of higher-order matches with subtyping:

typecase df of
{F,G:Type—Type,V} (£:V(Z<V)F(Z)—G(Z))
typecase da of
{w<v} (a:F(W))
dynamic (£ [W](a):G(W))
else ...
else...

Finally, dynamic composition calls for a constraint

of the form G'<G:

typecase df of
{G,H:Type—Type} (£:V(X)G(X)—H(X))
typecase dg of
{F:Type—Type,G’<G: (Type—Type) }
(g:V(VF(Y)—G’(Y))
dynamic
((A(Z) £[Z1oglZ]):V(Z)F(Z)—H(Z))

else ...

else ...

This example generalizes to functions of bounded poly-
morphic types, such as V(X<4)G(X)—H(X).

6 Implicit Polymorphism

In this section we investigate dynamics in an implic-
itly typed language, namely ML. First we show that
the general treatment of dynamics for explicitly typed
languages directly applies to ML, providing explicitly
tagged dynamics in an untyped language. This solu-
tion is not in the spirit of ML, and all the rest of the
section will be devoted to the study of implicitly tagged
dynamics in ML.

In the obvious extension of ML, types can still be
inferred for all constructs but dynamics; the user needs

to provide type information when creating or reading
dynamics. For instance, let us consider the program:

twice = dynamic

(A(E) A(x) £(f x):V(A)(A—4)—(A—1))

First, the type scheme V(4) (A—A)—(A—A4) is inferred
for A(£) A(x) £(f x) as if it were to be let-bound.
Then we check that this type scheme has no free
variables and is more general than the required tag
V(A) (A—A)—(A—A4). Conversely, when the extraction
of a value from a dynamic succeeds, it is given the type
scheme of its tag as if it had been let-bound. Thus,
all instances of the value can be used with different in-
stances of the tag as in

foo = A(df)
typecase df of
(£:V(A)(A—A)—(A—A)) <f succ, f not>
else ...

where succ and not are the successor function on inte-
gers and the negation function on booleans.

This works perfectly. However, it requires explicit
type information in dynamic patterns, which i1s not in
the spirit of ML. Since the ML typechecker can infer
most general types for expressions, one would expect
the compiler to tag dynamic values with their principal
types. For instance, the user writes

twice = dynamic(A(L) A(x) £ (£ x))

and the dynamic is tagged with V(4) (A—A)—(A—A).
However, there is a difficulty with the program

apply = dynamic(A(f) A(x) £ x)

Should the dynamic’s tag be V(4,B)(A—B)—(A—B)
or V(B,A) (A—B)—(A—B)7 As typecase is defined, it
succeeds 1if the tag exactly matches the pattern, in-
cluding quantifiers. With implicit tagging, the order
of quantifiers should not matter.

Moreover, since the tag of fwice is more general
than the pattern of the function foo, an ML program-
mer would probably expect that twice can be passed
to foo. This 1s also justified by the fact that the type-
checker could have built a dynamic with a weaker tag,
and the typecase would have succeeded. That is, in
ML, the typecase would be expected to succeed if an
instance of the tag matches the pattern. This principle
is called tag instantiation. Dynamics with tag instanti-
ation but no pattern variables have been implemented
in the language CAML [24]. The dynamics studied by
Leroy and Mauny [17] have tag instantiation and first-
order pattern variables. First-order pattern variables
are not powerful enough to type some reasonable ex-
amples, such as the applyTwice function shown later.
Below we describe a version of dynamics for ML with
tag instantiation and second-order pattern variables.

6.1 Tuple variables

Tag instantiation and second-order pattern variables do
not fit well together. The difficulty comes from the
merging of two features:

e Asin the pattern {F} (£:V(A)F(A)—A), second-
order pattern variables may depend on universal
variables.

e Tag instantiation requires that if a typecase suc-
ceeds, then it also succeeds for a dynamic with
an argument that has a more general tag. The
tag V(A) (AxA)—A matches the previous pattern.
So should the tag V(4,B) (AxB)—A. But F is not
supposed to depend on B!

Because of tag instantiation, polymorphic pattern vari-
ables may always depend on more variables than the
ones explicitly mentioned. We capture all variables that
appear in the tag but that do not correspond to vari-
ables in the pattern into a tuple of variables P. The de-
pendence of pattern variable F on all universal variables
is written F(P), even though the exact set of variables
in P is not statically known. The tuple variable P will
be dynamically instantiated to the tuple of all variables
of the tag not matched with variables of the pattern.
In particular, if the pattern is F(P;4), then P will never
contain A.

For instance, the pattern {F} (f:V(A)F(4)—4)
should be written {F} (£:V(&)F(P;A)—A4), so that
tag instantiation is possible. The tag V(4) (AxA)—A
matches this pattern for an empty tuple. The tag
V(4,B) (AxB)—A matches it for a one-element tuple,
namely (B).

Tuple variables bound in different patterns may be
instantiated to tuples with different numbers of vari-
ables, as in the example just given. Because of such size
considerations, it is not always possible to use a tuple
variable as argument to an operator, since it may expect
an argument of different size. We use tuple sorts in or-
der to guarantee that type expressions are well formed.
Formally, a typecase with explicit information should
be written, for instance:

{p Tuple,F:p—Type—Type}
(£:V(P:p,A:Type)F(P;A)—4)

where F'(Ag; Ay, ..., Ay) stands for a fully applied pat-
tern variable F'(Ag)(A1)...(Ay); this notation reminds
that the first argument Ag is a tuple. The sort variable
p is to be bound at run time. However, it is not neces-
sary to write the sorts in programs since a typechecker
can easily infer them.

6.2 Description of the language

We assume given a denumerable collection of tuple
sorts, written m, 7', etc., and a sort Type. Then the

sorts are:
k=7 | Type atomic sorts
K:=k|k—K sorts

Types are:

T ::=Dynamic | A | T(T) | T—T types
Pa={A,..., AT patterns
Su=V(A1 Ky, . Ay Kp) T type schemes

In traditional ML style, we have left quantifiers implicit
in types and hence in patterns. The formation of types,
patterns, and contexts is controlled by judgements of
the form:

'cTeK type T is of sort K in T’
rEsek type schema S is of sort K in I’
IFPeK pattern P is of sort K in I’

where contexts are:

r:=40 empty context
T uple sort declaration
r tupl t declarati
K symbol declaration
I F:K symbol declarati

Formation rules ensure that type variables are always
bound in the proper context, with a sort consistent with
their uses. For instance, we have the rule:

IHT:k THT k=K
THT(T): K

(SORT-APP)

In examples only, we help the reader by using different
letters for variables of different sorts: type variables of
tuple sorts are written P and Q and type variables of
sort Type are written A, B, etc. We also use F, G, and H
for pattern variables.

Patterns are pairs of a set of pattern variables
{Vi,...,V} and a type T. They are well formed if
the signature of all V;’s if of the form = — K for the
same tuple sort m. The exact rule for pattern formation
is:

T,Ao,Al,...,An %F
LyeViir— Ky,...,Vypim— Ky,
Ag:m, Ay Type, ..., A, - Type =T € Type

Cabr{Vi:a—Ky,...,.Vh 7= Ko} T
EV(Ag:m, AL Type, ..., Ay : Type) T

In particular, there is exactly one pattern variable of
tuple sort per pattern.

Again, we would like to guarantee definiteness of
patterns, and we impose the sufficient condition that
patterns be ordered. Ordered patterns are those that
satisfy the conditions given in section 3.5, and in addi-
tion all non-pattern free variables of sort T'ype must ap-
pear at least once outside of all pattern variables in the
pattern. In the context of ML, our definiteness require-
ment is reminiscent of the type-explication restriction

imposed on signatures in Standard ML (see section 7.7
of [13]).

Pattern variables are bound at the beginning of the
typecase, and their scope i1s the typecase in which
they have been introduced. All other free variables are
bound at the beginning of the pattern and their scope
1s the pattern.

Expressions are:

ex=x|Mz) ele e
| dynamic(e)
| typecase ¢ of
Vi Ky,...,Vh: Kp} (#:P)e else e

Type inference Pattern variables behave as local
type symbolsin ML. Typechecking with local type sym-
bols implies an extension of judgement contexts in order
to control the scope of type symbols:

o= ..
|T,z:S variable type assignment
The typing judgements are I' e : T
The “instance” rule of ML becomes:

e:Se’l
T is an instance of S

I'FeeT

I'ET:Type

(INsT)

It says that instances have to be well formed in the cur-
rent context, which prevents us from using local sym-
bols out of their scope.

Since we do not want to carry types at run time, we
require that the types of values to become dynamic be
closed, and then tags can be statically compiled.

'-eesS S is closed
I' - dynamic(e) € Dynamic

(DYN-T)

This rule may destroy the principal typing property of
ML. If the principal type of an expression e is .S and
S is not closed, then typing dynamic(e) requires that
free variables of S are instantiated by ground types.
However, the set of closed instances of a principal type
that is not closed does not have a principal element.

We want to avoid such situations, since the nonex-
istence of a principal type corresponds to an ambiguity
concerning the tag that a dynamic value should carry.
Therefore, we say that a program is not well typed if it
has no principal typing derivation.

Type inference is realized by the same algorithm as
in ML but delaying tag-closure checking to the end of
typechecking (by gathering free variables of types of
dynamic values in a list, for instance). If one of these
variables is still free at the end of typechecking, then
there exists no principal derivation, and the program is
not well typed.

The rule for typecase is:

' d € Dynamic I'-eeBnB
Lab{Vi:Ky,...,V,: K,}T €S
e, Vi Ky,..,V,:Ky,2:SkFeeB

[P : 7t typecase d of
{Vi,...,Vo} (2:T) e else ¢ € B

The other rules of ML are unchanged.

6.3 Evaluation

Compilation is easily decomposed into two phases. The
first phase translates ML into a variant, called ML ,
where dynamics are explicitly typed; this translation
requires a bit of inference. ML differs form ML only
in its dynamic construct:

e :=...| dynamic(e : S)
and its typing rule:

'-aes S is closed
I' F dynamic(a : S) € Dynamic

(DYN-T)

The translation of an ML program e into ML is any
ML program M whose principal type derivation is
also a principal type derivation for e. This defines M
uniquely (types being equal up to alpha-conversion).
The type reconstruction algorithm is a trivial adapta-
tion of the usual type inference algorithm. The seman-
tics of an ML program e is the semantics of its transla-
tion into ML .

The evaluation rules are mostly standard. The only
interesting one is for typecase, as it involves new meth-
ods for matching and pattern-variable instantiation.

Matching is not quite as usual, since it allows tag in-
stantiation, and it also has to deal with tuple variables.
Its inputs are a pattern {Vi : Ky,...,V, : K,} T and
a tag, that is, a closed type V(ay,...,a,) 7. The pat-
tern variables are the V;’s, and the universal variables
are the remaining free variables of T". The set of vari-
ables that occur in the tag (the ;’s) can increase during
tag instantiation. The algorithm returns a substitution
¢ with domain the pattern variables, such that there
exists a substitution u’ with domain the tag variables,
and with p'(7) = p(T).

We describe the algorithm as transformations on
sets of unification constraints called unificands; the
transformations keep unchanged the set of substitutions
that satisfy the constraints. The substitutions that we
consider can instantiate both pattern and tag variables,
but not universal variables.

The metavariable T' still stands for any type, and 7
stands for a type that does not contain pattern vari-
ables. The atomic constraints are pairs, T = 7 or
7 = T. The pairs T' = 7 and 7 = T are considered
equal. A substitution g is a solution of an atomic con-
straint if 1t unifies both sides. In addition, the constant

10

1 1s used to represent failure; it is the atomic constraint
with no solution.

In general, a unificand U is an atomic constraint,
the conjunction of two unificands U’ A U”, or the ex-
istential unificand Ja.U’. The solution set of U’ A U”
is the intersection of the solution sets of U’ and U”.
The solution set of the existential unificand Ja.U’ is
the set of solutions of U’ restricted to variables distinct
from «. We identify unificands up to: commutativity
and associativity of conjunction, renaming of variables
bound by F’s, exchange of consecutive 3’s; and removal
of vacuous I’s.

Two unificands U and V are equivalent if they have
the same set of solutions. This obviously defines an
equivalence relation on unificands, and in fact a con-
gruence.

We reduce the original matching problem to that of
finding the solutions of the unificand IAFV(r).(T = 7).
In order to solve this problem, we now give a list of
equivalences between unificands—the unificand on top
is always equivalent to the one at the bottom. Tag
variables are written «; C' and C' are constant sym-
bols, and always occur fully applied; and X is either a
universal variable A or a pattern variable V. The set
of all variables is V.

e Decomposition
C(h) = C(n)
AT =) I

e Instantiation

C(TZ) =«
Elozi.(oz =Cla) ANN(T; = Oéi))
V(Ag;a1,...,an) =T
V =A(dg; a1, ..., ap).T
e Propagation
X=7AM

X =7A[r/X]M

— o g FV(r), 7 ¢V
e Universal-variable restriction
Ai=anA; =a A=r
n n ¢V
e LExistential simplifications
UA@@aU')
W a ¢ FV(U)
Ja(a=T1AU)
— 0 a g FV(r)UFV(U)

e Trivial constraints

-
N

a=aAU N

U L

These equivalences can be used as rewriting rules. All
rules are oriented from top to bottom; one step of
rewriting is the application of exactly one rule; apply-
ing the rules in any order always terminates. When
successful, this process produces canonical unificands
of the form:

Elozk.(/\(Ai =a;) A /\(V] = Tj))

A unificand that cannot be reduced and that is not yet
in canonical form is either L or contains a constraint
V(Ao;T1,...,T) = 7. The ordered condition on pat-
terns prevents the latter (as the second instantiation
rule would apply to one of the constraints). Hence,
for ordered patterns, rewriting always produces either
a canonical unificand or L.

Because of the form of the rules, the matching is
unitary, and all solutions are equal up to renaming of
the ap’s. The unique tuple variable that appears in
all the 7; can be bound to the tuple (o), and its size
bound to the tuple sort.

6.4 Related work

The work on dynamics most closely related to ours is
that of Leroy and Mauny [17]. Our system can be seen
as an extension of their system with “mixed quantifica-
tion.”

Instead of introducing a typecase statement, Leroy
and Mauny merge dynamic elimination with the usual
case statement of ML. If we ignore this difference, their
dynamic patterns have the form QA where A is a type
and @ a list of existentially or universally quantified
variables.

For instance,

V(A)I(F)V(B)I(G) (v:T(A,F,B,G))

is a pattern of their system. The existentially-quantified
variables play the role of our pattern variables. The
order of quantifiers determines the dependencies among
quantified variables. Thus, the pattern above can be
rephrased:

F(F)I(@V(AV(B) (v:T(4,F(4),B,G(A,B)))

Writing quantifiers in our patterns explicitly (for ease
of comparison), the equivalent pattern in our system is:

With the same approach, in fact, we can translate all
of their patterns into equivalent patterns in our system,
preserving the intended semantics.

11

On the other hand, there does not seem to be a
translation from our language to theirs. They have no
pattern equivalent to our pattern:

because the quantifiers in the prefix of their patterns
are in linear order, and hence it is not possible to have
the “parallel” dependencies of F on A and of G on B. We
can obtain a system intermediate between theirs and
ours by leaving tuple variables implicit, and there we
would rewrite the pattern above:

{F,G} (v:V(A,B)T(A,F(4),B,G(B)))

However, we believe that explicit tuple variables are
useful, since they allow examples like the applyTwice
function:

let applyTwice =
A(df) A(dxy)
typecase df of
{F,F’} (£:F(P)—F’(P))
typecase dxy of
{G,H} (x,y:F(G(Q)) x (FHQ))))
fx, fy
else ...
else ...

This cannot be expressed in our intermediate system,
nor in systems with just type quantifiers, such as Leroy
and Mauny’s.

References

[1] Martin Abadi, Luca Cardelli, Benjamin Pierce,
and Gordon Plotkin. Dynamic typing in a
statically-typed language. ACM Transactions on
Programming Languages and Systems, 13(2):237-
268, April 1991.

[2] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn
Myhrhaug, and Kristen Nygaard. Simula Begin.
Studentlitteratur (Lund, Sweden), Bratt Institute
Fuer Neues Lerned (Goch, FRG), Chartwell-Bratt
Ltd (Kent, England), 1979.

[3] Luca Cardelli. Amber. In Guy Cousineau, Pierre-
Louis Curien, and Bernard Robinet, editors, Com-
binators and Functional Programming Languages.
Springer-Verlag, 1986. Lecture Notes in Computer
Science No. 242.

[4] Luca Cardelli. Structural subtyping and the no-
tion of power type. In Proceedings of the 15th
ACM Symposium on Principles of Programming
Languages, pages 70-79, San Diego, CA, January
1988.

[5]

[18]

Luca Cardelli, Simone Martini, John C. Mitchell,
and Andre Scedrov. An extension of system F with
subtyping. In T. Ito and A. R. Meyer, editors,
Theoretical Aspects of Computer Software, number
526 in Lecture Notes in Computer Science, pages

750-770. Springer-Verlag, September 1991.

Luca Cardelli and Peter Wegner. On understand-
ing types, data abstraction, and polymorphism.
Computing Surveys, 17(4), December 1985.

Gilles Dowek. A second order pattern matching
algorithm in the cube of typed A-calculi. In Pro-
ceedings of Mathematical Foundation of Computer
Science, volume 520 of Lecture Notes in Computer
Science, pages 151-160. Springer Verlag, 1991.
Also Rapport de Recherche INRIA, 1992.

Gilles Dowek. Third order matching is decidable.
In Proceedings of the Seventh Annual IEEE Sym-
postum on Logic in Computer Science, 1992. To
appear.

Greg Nelson (ed.). Systems Programming in
Modula-3. Prentice Hall, 1991.

Giorgio Ghelli. Proof Theoretic Studies about a
Minimal Type System Integrating Inclusion and
Parametric Polymorphism. PhD thesis, Universita
di Pisa, March 1990. Technical report TD—-6/90,

Dipartimento di Informatica, Universita di Pisa.

Jean-Yves Girard. Interprétation fonctionelle et
élimination des coupures de Uarithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

Mike Gordon. Adding Eval to ML. Personal com-
munication, circa 1980.

Robert Harper, Robin Milner, and Mads Tofte.
Commentary of Standard ML. The MIT Press,
1991.

Fritz Henglein. Dynamic typing. In ESOP, 1992.

Gérard Huet and Bernard Lang. Proving and
applying program transformations expressed with
second-order patterns. Acta Informatica, 11:31-55,
1978.

Butler Lampson. A description of the Cedar lan-
guage. Technical Report CSL-83-15, Xerox Palo
Alto Research Center, 1983.

Xavier Leroy and Michel Mauny. Dynamics in ML.
In Proceedings of the ACM Conference on Func-
tional Programming Languages and Computer Ar-
chitecture, 1991.

B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C.
Schaffert, R. Scheifler, and A. Snyder. CLU Ref-
erence Manual. Springer-Verlag, 1981.

12

[19]

[25]

John Mitchell and Gordon Plotkin. Abstract types
have existential type. ACM Transactions on Pro-
gramming Languages and Systems, 10(3), July
1988.

Alan Mycroft. Dynamic types in ML. Draft article,
1983.

John Reynolds. Towards a theory of type struc-
ture. In Proc. Colloque sur la Programmation,
pages 408-425, New York, 1974. Springer-Verlag
Lecture Notes in Computer Science 19.

Paul Rovner. On extending Modula-2 to build
large, integrated systems. IEEFE Software, 3(6):46—-
57, November 1986.

Satish R. Thatte. Quasi-static typing (prelimi-
nary report). In Proceedings of the Seventeenth
ACM Symposium on Principles of Programming
Languages, pages 367-381, 1990.

Pierre Weis, Maria-Virginia Aponte, Alain Laville,
Michel Mauny, and Ascander Suarez. The CAML
reference manual. Research report 121, INRIA,
Rocquencourt, September 1990.

Niklaus Wirth. From Modula to Oberon and the
programming language Oberon. Technical Re-
port 82, Institut fur Informatik, ETH, Zurich,
1987.

