
Mobility Types for Mobile AmbientsLuca CardelliMicrosoft Research Giorgio GhelliPisa UniversityAndrew D. GordonMicrosoft ResearchJune 2, 1999Technical ReportMSR-TR-99-32
Microsoft ResearchMicrosoft CorporationOne Microsoft WayRedmond, WA 98052

A shortened version of this paper appears in the proceedings of the Inter-national Conference on Automata, Languages, and Programming, Prague,Czech Republic, 11{15 July 1999. The proceedings is published by SpringerVerlag as a volume of the series Lecture Notes in Computer Science.

Mobility Types for Mobile AmbientsLuca CardelliMicrosoft Research Giorgio GhelliPisa UniversityAndrew D. GordonMicrosoft ResearchJune 2, 1999AbstractAn ambient is a named cluster of processes and subambients, whichmoves as a group. The untyped ambient calculus is a process calculusin which ambients model a variety of concepts such as network nodes,packets, channels, and software agents. In these models, some ambi-ents are intended to be mobile, some immobile; and some are intendedto be ephemeral, some persistent. We describe type systems able toformalize these intentions: they can guarantee that an ambient willremain immobile, and that an ambient will not be dissolved by its en-vironment. These guarantees could help establish security propertiesof models, for instance. A novel feature of our type systems is theirdistinction between mobile and immobile processes.

Contents1 Motivation 12 Mobility and Locking Annotations 22.1 An Example of Ambient Behavior (Review) 22.2 Syntax and Operational Semantics 32.3 The Type System . 52.4 Encoding Channels . 83 Objective moves 133.1 Subjective versus Objective Moves 133.2 Syntax and Operational Semantics 143.3 The Type System . 153.4 Encoding Channels, Again . 184 Encoding a Distributed Language 185 Conclusions and Related Work 25A Proof of Theorem 1 29B Proof of Theorem 2 35

1 MotivationThe ambient calculus [CG98] is a process calculus that focuses primarily onprocess mobility rather than process communication. An ambient is a namedlocation that may contain processes and subambients, and that can move asa unit inside or outside other ambients. Processes within an ambient maycause their enclosing ambient to move, and may communicate by anonymousasynchronous messages dropped into the local ether. Moreover, processesmay open subambients, meaning that they can dissolve an ambient boundaryand cause the contents of that ambient to spill into the parent ambient. Theability to move and open ambients is regulated by capabilities that processesmust possess by prior knowledge or acquire by communication.In earlier work [CG99] we studied type systems for the ambient calcu-lus that control the exchange of values during communication. Those typesystems are designed to match the communication primitives of the ambientcalculus, but are able to express familiar typings for processes and functions.They are therefore successful in showing that the typed ambient calculus isas expressive as typed process and function calculi. Still, those type systemssay nothing about process mobility: they guarantee that communication iswell-typed wherever it may happen, but do not constrain the movement ofambients.In this paper we study type systems that control the movement of am-bients through other ambients. Our general aim is to discover type systemsthat can be useful for constraining the mobility behavior of agents and otherentities that migrate over networks. Guarantees provided by a type systemfor mobility could then be used for security purposes, in the sense exempli-�ed by Java bytecode veri�cation [LY97]. The idea of using a type system toconstrain dynamic behavior is certainly not new, but this paper makes twomain contributions. First, we exhibit type systems that constrain whetheror not an ambient is mobile, and whether or not an ambient may be opened.Although previous authors [AP94, RH98, Sew98] use syntactic constraints todetermine whether or not a process or location can move, the use of typing todraw this distinction appears to be new. Second, we propose a new mobilityprimitive as a solution to a problem of unwanted propagation of mobilitye�ects from mobile ambients to those intended to be immobile.Section 2 describes our system of mobility and locking annotations, andillustrates it using the example of encoding communication channels. Thetype system of [CG99] is included in the one presented here, and we survey it1

in passing. In Section 3 we discuss the mobility primitive mentioned above;it is derivable in the untyped calculus, but not in the system of Section 2, andhence needs to be typed specially. Section 4 examines typed encodings of adistributed language that supports thread migration between hosts. Section 5concludes and surveys related work.2 Mobility and Locking AnnotationsThis section explains our basic type system for mobility, which directly ex-tends our previous untyped and typed calculi.2.1 An Example of Ambient Behavior (Review)Although we assume in this paper some familiarity with the untyped ambientcalculus [CG98], we begin by reviewing its main features by example.The process a[p[out a:in b:hMi]] j b[open p:(x):Q]models the movement of a packet p, which contains a message M , fromlocation a to location b. The process p[out a:in b:hMi] is an ambient namedp that contains a single process out a:in b:hMi. It is the only subambientof the ambient named a, which itself has a sibling ambient b[open p:(x):Q].The terms out a, in b, and open p are capabilities, which processes exerciseto cause ambients to move or to be opened.In this example, the process out a:in b:hMi exercises the capability out a,which causes its enclosing ambient, the one named p, to exit its own parent,the one named a, so that p[in b:hMi] now runs in parallel with the ambientsa and b. Next, the process in b:hMi causes the ambient p to enter b, so thatp[hMi] becomes a subambient of b. Up to this point, the process open p:(x):Qwas blocked, but now open p can dissolve the boundary p. Finally, the input(x):Q consumes the output hMi, to leave the residue a[] j b[Qfx Mg], whereQfx Mg is the outcome of replacing each occurrence of x in Q with theexpression M .Two additional primitives of our calculus are replication and restriction.Just as in the �-calculus [Mil91], a replication !P behaves the same as anin�nite array of replicas of P running in parallel, and a restriction (�n)Pmeans: pick a completely fresh name, call it n, then run P .2

2.2 Syntax and Operational SemanticsWe recall the syntax of the typed ambient calculus from [CG99]. This is thesame syntax as the original untyped ambient calculus [CG98], except thattype annotations are added to the � and input constructs, and that inputand output are polyadic. We explain the types that appear in the syntax inthe next section.Expressions and Processes:M ::= expressionn namein M enter into Mout M exit out of Mopen M open M� nullM:M 0 pathP;Q;R ::= process(�n:W)P restriction0 inactivityP j Q composition!P replicationM [P] ambientM:P action(x1:W1; : : : ; xk:Wk):P input actionhM1; : : : ;Mki async output actionWe identify processes up to the consistent renaming of bound names. Wewrite Pfn Mg for the substitution of the termM for each free occurrence ofthe name n in process P . We often use the notationsM and n[] as shorthandsfor the processes M:0 and n[0], respectively.A structural equivalence relation P � Q identi�es certain processes Pand Q whose behavior ought always to be equivalent:Structural congruence:P � P (Struct Re
)Q � P) P � Q (Struct Symm)3

P � Q;Q � R) P � R (Struct Trans)P � Q) (�n:W)P � (�n:W)Q (Struct Res)P � Q) P j R � Q j R (Struct Par)P � Q) !P � !Q (Struct Repl)P � Q)M [P] � M [Q] (Struct Amb)P � Q)M:P �M:Q (Struct Action)P � Q)(x1:W1; : : : ; xk:Wk):P � (x1:W1; : : : ; xk:Wk):Q (Struct Input)P j Q � Q j P (Struct Par Comm)(P j Q) j R � P j (Q j R) (Struct Par Assoc)!P � P j !P (Struct Repl Par)n1 6= n2)(�n1:W1)(�n2:W2)P � (�n2:W2)(�n1:W1)P (Struct Res Res)n =2 fn(P))(�n:W)(P j Q) � P j (�n:W)Q (Struct Res Par)n 6= m) (�n:W)m[P] � m[(�n:W)P] (Struct Res Amb)P j 0 � P (Struct Zero Par)(�n:AmbY [ZT])0 � 0 (Struct Zero Res)!0 � 0 (Struct Zero Repl)�:P � P (Struct �)(M:M 0):P � M:M 0:P (Struct :)We specify process behavior via a reduction relation, P ! Q. The �rstfour rules describe the e�ects of, respectively, in, out , open, and communi-cation.Reduction:n[in m:P j Q] j m[R] ! m[n[P j Q] j R] (Red In)m[n[out m:P j Q] j R] ! n[P j Q] j m[R] (Red Out)open n:P j n[Q] ! P j Q (Red Open)hM1; : : : ;Mki j (x1:W1; : : : ; xk:Wk):P! Pfx1 M1; : : : ; xk Mkg (Red I/O)P ! Q) P j R! Q j R (Red Par)P ! Q) (�n:W)P ! (�n:W)Q (Red Res)P ! Q) n[P]! n[Q] (Red Amb)P 0 � P; P ! Q;Q � Q0) P 0 ! Q0 (Red �)4

2.3 The Type SystemThe basic type constructions from [CG99] are the ambient types Amb[T] andthe capability types Cap[T]. A type of the form Amb[T] describes names thatname ambients that allow the exchange of T information within. A type ofthe form Cap[T] is used to track the opening of ambients: it describes capa-bilities that may cause the unleashing of T exchanges by means of openingsubambients into the current one. An exchange is the interaction of an inputand an output operation within the local ether of an ambient. The exchangetypes, T , can be either Shh (no exchange allowed) or a tuple type where eachcomponent describes either a name or a capability.In this paper, we enrich these types with two attributes indicating whetheran ambient can move at all, and whether it can be opened. These attributesare intended as two of the simplest properties one can imagine that areconnected with mobility. (In another paper [CGG99] we investigate moreexpressive and potentially more useful generalizations of these attributes.)We �rst describe the locking attributes, Y . An ambient can be declaredto be either locked (�) or unlocked (�). Locked ambients can never be opened,while unlocked ambients can be opened via an appropriate capability. Thelocking attributes are attached to the Amb[T] types, which now acquire theform AmbY [T]. This means that any ambient whose name has type AmbY [T]may (or may not) be opened, and if opened may unleash T exchanges.We next describe the mobility attributes, Z. In general, a process canproduce a number of e�ects that may be tracked by a type system. Previ-ously we tracked only communication e�ects, T . We now plan to track bothmobility and communication e�ects by pairs of the form ZT , where Z is a
ag indicating that a process executes movement operations (y) or does not(Y), and T is as before. A process with e�ects ZT should be allowed to runonly within a compatible ambient, whose type will therefore have the formAmb [ZT]. A capability, when used, may now cause communication e�ects ormobility e�ects, and its type will have the form Cap[ZT]. An in or an outcapability directly causes a mobility e�ect, whereas an open capability mayindirectly cause both communication and mobility e�ects.The following table describes the syntax of our types. An ambient typeAmbY [ZT] describes the name of an ambient whose locking and mobilityattributes are Y and Z, respectively, and which allows T exchanges.
5

Types:Y ::= locking annotation� locked� unlockedZ ::= mobility annotationy mobileY immobileW ::= message typeAmbY [ZT] ambient nameCap[ZT] capabilityT ::= exchange typeShh no exchangeW1 � � � � �Wk tuple exchangeThe type rules are formally described in the next tables. There are threetyping judgments: the �rst constructs well-formed environments, the secondtracks the types of messages, and the third tracks the e�ects of processes.The rules for in and out introduce mobility e�ects, and the rule for openrequires unlocked ambients. The handling of communication e�ects, T , isexactly as in [CG99].Judgments:E ` � good environmentE `M :W good expression of message type WE ` P : ZT good process with mobility Z exchanging TGood environment:(Env ?)? ` � (Env n)E ` � n =2 dom(E)E; n:W ` �Good expression of type W :(Exp n)E 0; n:W;E 00 ` �E 0; n:W;E 00 ` n : W 6

(Exp �)E ` �E ` � : Cap[ZT] (Exp :)E `M : Cap[ZT] E `M 0 : Cap[ZT]E `M:M 0 : Cap[ZT](Exp In)E ` n : AmbY [ZT]E ` in n : Cap[yT 0] (Exp Out)E ` n : AmbY [ZT]E ` out n : Cap[yT 0] (Exp Open)E ` n : Amb�[ZT]E ` open n : Cap[ZT]Good process with mobility Z exchanging T :(Proc Action)E `M : Cap[ZT] E ` P : ZTE `M:P : ZT (Proc Amb)E `M : AmbY [ZT] E ` P : ZTE `M [P] : Z0T 0(Proc Res)E; n:AmbY [ZT] ` P : Z0T 0E ` (�n:AmbY [ZT])P : Z0T 0 (Proc Par)E ` P : ZT E ` Q : ZTE ` P j Q : ZT(Proc Repl)E ` P : ZTE ` !P : ZT (Proc Input)E; n1:W1; : : : ; nk:Wk ` P : ZW1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : ZW1 � � � � �Wk(Proc Output)E `M1 : W1 � � � E `Mk : WkE ` hM1; : : : ;Mki : ZW1 � � � � �Wk (Proc Zero)E ` �E ` 0 : ZTFor example, consider the untyped process discussed in Section 2.1:a[p[out a:in b:hMi]] j b[open p:(x):Q]Suppose that the messageM has typeW . We can type the process under theassumption that a is a locked, immobile ambient (Amb�[YShh]), that p is anunlocked, mobile ambient (Amb�[yW]), and that b is a locked, mobile ambi-ent (Amb�[yW]). More formally, under the assumptions E ` a : Amb�[YShh],E ` p : Amb�[yW], E ` b : Amb�[yW], E ` M : W , and E; x:W ` P : yWwe can derive that E ` a[p[out a:in b:hMi]] j b[open p:(x:W):P] : YShh. Notethat the ambient b cannot be annotated as immobile, because within it, themobile ambient p is opened. 7

Moreover, here are four examples of processes that are not typable. Pro-cesses (1) and (2) violate a mobility assumption. Process (3) violates alocking assumption, while process (4) violates a communication assumption.(1) (x:AmbY [YT]):x[out m](2) (�n:AmbY [YT])(n[open m] j m[in n:out p])(3) (�n:Amb�[ZT])(n[] j hni j (x:Amb�[ZT]):open x)(4) (�n:Amb�[ZT])(n[] j hni j (x:Amb�[ZT]):open x)As customary, we can prove a subject reduction theorem asserting thesoundness of the typing rules. It can be interpreted as stating that everycommunication is well-typed, that no locked ambient will ever be opened,and that no in or out will ever act on an immobile ambient. As in earlierwork [CG99], the proof is by induction on derivations.Theorem 1 If E ` P : ZT and P ! Q then E ` Q : ZT .Proof See Appendix A. 2Remark 1 The type system of [CG99] can be embedded in the current typesystem by taking Amb[T] = Amb�[yT] and Cap[T] = Cap[yT].2.4 Encoding ChannelsCommunication in the basic ambient calculus happens in the local ether ofan ambient. Messages are simply dropped into the ether, without specifyinga recipient other than any process that does or will exist in the currentambient. Even within the ambient calculus, though, one often feels the needof additional communication operations, whether primitive or derived.The familiar mechanism of communication over named channels, used bymost process calculi, can be expressed fairly easily in the untyped ambientcalculus. We should think, though, of a channel as a new entity that mayreside within an ambient. In particular, communications executed on thesame channel name but in separate ambients will not interact, at least untilthose ambients are somehow merged.The basic idea for representing channels is as follows; see [CG98, CG99]for details. If c is the name of a channel we want to represent, then we use8

a name cb to name an ambient that acts as a communication bu�er for c.We also use a name cp to name ambients that act as communication packetsdirected at c. The bu�er ambient opens all the incoming packet ambientsand lets their contents interact. So, an output on channel c is represented asa cp packet that enters cb (where it is opened up) and that contains an outputoperation. Similarly, an input on channel c is represented as a cp packet thatenters cb (where it is opened up) and that contains an input operation; afterthe input is performed, the rest of the process exits the bu�er appropriatelyto continue execution. The creation of a channel name c is represented asthe creation of the two names cb and cp. Similarly, the communication of achannel name c is represented as the communication of the two names cb andcp. This encoding of channels can be typed within the type system of [CG99].Let Ch[T] denote the type of a channel c exchanging messages of type T . Thistype can be represented as Amb[T]�Amb[T], which is the type of the pair ofnames cb; cp. Packets named cp have exchange type T by virtue of performingcorresponding inputs and outputs. Bu�ers named cp have exchange type Tby virtue of opening cp packets, and unleashing their exchanges.The natural question now is whether we can type this encoding of channelsin the type system given earlier. This can be done trivially by Remark 1,by making all the ambients movable and openable. But this solution is notvery satisfactory. In particular, now that we have a type system for mobility,we would like to declare the communication bu�ers to be both immobile andlocked, so that channel communication cannot be disrupted by accidentalor malicious activities. Note, for example, that a malicious packet couldcontain instructions that would cause the bu�er to move when the packetis opened. Such a packet should be ruled out as untypable if we made thebu�er immobile.The di�culty with protecting bu�ers from malicious packets does notarise if we use a systematic translation of a high-level channel abstractioninto the lower-level ambient calculus. However, in a situation where code isuntrusted (for example, mobile code received from the network), we cannotassume that the ambient-level code interacting with the channel bu�ers isthe image of a high-level abstraction. Thus, we would like to typecheck theuntrusted code to make sure that it satis�es the mobility constraints of thetrusted environment.We now encounter a fundamental di�culty that will haunt us for the restof this section and all of the next. In the type system given earlier, we cannot9

declare bu�ers to be immobile, because bu�ers open packets that are mobile;therefore, bu�ers are themselves potentially mobile. Packets must, of course,be mobile because they must enter bu�ers.We have explored several possible solutions to this problem. In the restof this section we present a di�erent (more complex) encoding of channelsthat satis�es several of our wishes. In the next section we add a typed prim-itive that allows us to use an encoding similar to the original one; this newprimitive has other applications as well. In addition, one could investigatemore complex type systems that attempt to capture the fact that a well-behaved packet moves once and then becomes immobile, or some suitablegeneralization of this notion.The idea for the encoding shown below comes from [CG99], where analternative encoding of channels is presented. In that encoding there areno bu�ers; the packets, though, are self-coalescing, so that each packet canact as an exchange bu�er for another packet. Here we combine the idea ofself-coalescing packets with an immobile bu�er that contains them. Sincenothing is opened directly within the bu�er, the di�culty with constrainingthe mobility of bu�ers, described above, disappears. A trace of the di�culty,though, remains in that a process performing an input must be given a mobiletype, even when it performs only channel communications.We formalize our encoding of channels by considering a calculus obtainedfrom the system given earlier by adding operations for creating typed chan-nels ((�c:Ch[C1; : : : ; Ck])P where the Ci's are channel types) and for typedinputs and outputs over them (chn1; : : : ; nki and c(x1:C1; : : : ; xk:Ck):P , wherec is the channel name, the ni's are other channel names that are communi-cated over it, and the Ci's are channel types).We assemble the extended calculus by adding a new syntactic categoryof channel types, C, and by extending the syntactic category of processes:An ambient calculus with channels:C ::= channel typeCh[C1; : : : ; Ck] channel carrying tuples of channelsP;Q;R ::= process: : : as in Section 2.2(�c:C)P new channelchn1; : : : ; nki output on a channel(x1:C1; : : : ; xk:Ck):P input o� a channel10

The syntax of locking and mobility annotations, and message and exchangetypes is unchanged.We write the three judgments of the type system of the extended calculusas E c̀h �, E c̀h M : W , and E c̀h P : ZT . We write c̀h instead of `to distinguish these judgments from those of the original calculus. The newjudgments are de�ned by the same rules as before together with the following:Channel I/O:(Env c)E c̀h � c =2 dom(E)E; c:C c̀h � (Ch Res)E; n:C c̀h P : ZTE c̀h (�n:C)P : ZT(Ch Input)E c̀h c : Ch[C1; : : : ; Ck] E; x1:C1; : : : ; xk:Ck c̀h P : ZT Z =yE c̀h c(x1:C1; : : : ; xk:Ck):P : ZT(Ch Output)E c̀h c : W E c̀h M1 : C1 � � � E c̀h Mk : CkE c̀h chM1; : : : ;Mki : ZTSince the syntaxes of message and channel types are independent, etherI/O can only communicate ambient names and capabilities, and channel I/Ocan only communicate channel names. There is a more liberal variant ofthe extended calculus in which the syntax of message and channel typesare combined, and both kinds of I/O can communicate all three kinds ofdata. We prefer the version above to the more liberal variant, because thetranslation of the liberal variant into the ambient calculus without channelsis more complicated than the translation of the version above, but no moreinformative.The following tables describe a translation of the extended calculus intothe one without channels. In the translation, a packet sent or received ona channel c is encoded by an ambient named cp whose type is mobile andunlocked, but the channel itself is encoded by an ambient named cb whosetype is immobile and locked. Therefore, the type system guarantees that thechannel cannot be tampered with by rogue processes.
11

Translation of the extended calculus:[[E]] environment obtained from E[[C]]b type for bu�ers representing channels of type C[[C]]p type for packets on channels of type C[[P]] process obtained from PTranslation of environments:[[?]] �= ?[[E; n:W]] �= [[E]]; n:W[[E; c:C]] �= [[E]]; cb:[[C]]b; cp:[[C]]pTranslation of channel types:[[Ch[C1; : : : ; Ck]]]b �= Amb�[YShh][[Ch[C1; : : : ; Ck]]]p �= Amb�[y[[C1]]b � [[C1]]p � � � � � [[Ck]]b � [[Ck]]p]Translation of processes:[[(�n:W)P]] �= (�n:W)[[P]][[0]] �= 0[[P j Q]] �= [[P]] j [[Q]][[!P]] �= ![[P]][[M [P]]] �= M [[[P]]][[M:P]] �=M:[[P]][[(x1:W1; : : : ; xk:Wk):P]] �= (x1:W1; : : : ; xk:Wk):[[P]][[hM1; : : : ;Mki]] �= hM1; : : : ;Mki[[(�c:C)P]] �= (�cb:[[C]]b)(�cp:[[C]]p)(cb[] j [[P]])[[chn1; : : : ; nki]] �= cp[in cb:(!open cp j in cp j hnb1; np1; : : : ; nbk; npki)][[c(x1:C1; : : : ; xk:Ck):PyT]] �=(�s:Amb�[yT])(open s j cp[in cb:(!open cp j in cp j(xb1:[[C1]]b; xp1:[[C1]]p; : : : ; xbk:[[Ck]]b; xpk:[[Ck]]p):s[!out cp j out cb:[[P]]])])for s =2 fcb; cp; g [fn([[P]]) 12

(The translation [[c(x1:C1; : : : ; xk:Ck):PyT]] depends on the type of the pro-cess P , which we indicate by the subscript yT .)Proposition 1(1) If E c̀h � then [[E]] ` �.(2) If E c̀h M : W then [[E]] `M :W .(3) If E c̀h c : C then [[E]] ` cb : [[C]]b and [[E]] ` cp : [[C]]p.(4) If E c̀h P :Z T then [[E]] ` [[P]] :Z T .Proof By inductions on the derivations. 2In summary, this translation demonstrates a typing of channels in whichchannels are immobile ambients. However, a feature of this typing is that inan input c(x1:W1; : : : ; xk:Wk):P , the process P is obliged to be mobile. Thenext section provides a type system that removes this obligation.3 Objective moves3.1 Subjective versus Objective MovesThe movement operations of the standard ambient calculus are called \sub-jective" because they have the
avor of \I (ambient) wish to move there".Other movement operations are called \objective" when they have the
avorof \you (ambient) should move there". Objective moves can be adequatelyemulated with subjective moves [CG98]: the latter were chosen as primitiveon the grounds of expressive power and simplicity.Certain objective moves, however, can acquire additional interpretationswith regard to the typing of mobility. In this section we introduce objec-tive moves, and we distinguish between subjective-mobility annotations (theones of Section 2) and objective-mobility annotations. It is perhaps not toosurprising that the introduction of typing constructs requires the introduc-tion of new primitives. For example, in both the �-calculus and the ambientcalculus, the introduction of simple types requires a switch from monadic topolyadic I/O.We consider an objective move operation that moves to a di�erent loca-tion an ambient that has not yet started. It has the form goN:M [P] and has13

the e�ect of starting the ambient M [P] in the location reached by following,if possible, the path N . Note that P does not become active until after themovement is completed.Unlike in and out, this go operation does not move the ambient enclosingthe operation. Possible interpretations of this operation are to install a pieceof code at a given location and then run it, or to move the continuation of aprocess to a given location.When assigning a mobility type to the go operation, we can now make asubtle distinction. The ambient M [P] is moved, objectively, from one placeto another. But after it gets there, maybe the process P never executessubjective moves, and therefore M can be declared subjectively immobile.Moreover, the go operation itself does not cause its surrounding ambient tomove, so it may also be possible to declare the surrounding ambient subjec-tively immobile.Therefore, we can move an ambient from one place to another withoutnoticing any subjective-mobility e�ects. Still, something got moved, and wewould like to be able to track this fact in the type system. For this purpose,we introduce objective-mobility annotations, attached to ambients that maybe objectively moved. In particular, an ambient may be objectively mobile,but subjectively immobile.In conclusion, we achieve the task, impossible in the type system of Sec-tion 2, of moving an immobile ambient, once. (More precisely, the possibleencodings of the go operation in terms of subjective moves are not typable inthe type system of Section 2 if we set M to be immobile.) The additional ex-pressive power can be used to give a better typing to communication channels,by causing a communication packet to move into a bu�er without requiringthe packet to be itself subjectively mobile, and therefore without having torequire the bu�er that opens the packet to be subjectively mobile.3.2 Syntax and Operational SemanticsTo formalize these ideas, we make the following changes to the system ofSection 2. Using objective moves we can type an encoding of channels whicheliminates the immobility obligation noted at the end of the previous section.Moreover, in Section 4, objective moves are essential for encoding an examplelanguage, in which mobile threads migrate between immobile hosts.14

Processes:P;Q;R ::= process: : : as in Section 2.2go N:M [P] objective moveStructural congruence:P � Q) go N:M [P] � go N:M [Q] (Struct Go)(�n:AmbY Z0[ZT])0 � 0 (Struct Zero Res)go �:M [P] �M [P] (Struct Go �)Reduction:go (in m:N):n[P] j m[Q] ! m[go N:n[P] j Q] (Red Go In)m[go (out m:N):n[P] j Q] ! go N:n[P] j m[Q] (Red Go Out)Objective moves can be mimicked in the untyped ambient calculus by tak-ing goN:M [P] to be a shorthand for the untyped process (�k)k[N:M [outk:P]]for k not free in N:M [P]. This encoding is typable in the type system of theprevious section, but only under the restriction that the process P is subjec-tively mobile. We propose primitive typing rules for objective moves so thatP may be subjectively immobile.3.3 The Type SystemThe types of the system extended with objective moves are the same as thetypes in Section 2, except that the types of ambient names are AmbY Z0[ZT],where Y is a locking annotation, T is an exchange type, and Z 0 and Zare an objective-mobility annotation and a subjective-mobility annotation,respectively.Types:Y ::= ambient locking� locked� unlockedZ ::= mobility e�ects15

y mobileY immobileW ::= message typesAmbY Z0[ZT] ambient nameCap[ZT] capabilityT ::= exchange typesShh no exchangeW1 � � � � �Wk tuple exchangeThe typing rules of the extended system are similar to the rules fromSection 2. The only interesting use of the objective-mobility annotations isin the one new rule, (Proc Go), which types objective moves: (Proc Go)constrains the objective-mobility annotation, Z 0, of the ambient to be thesame as the mobility e�ect of the capability, N . So, if N is in n or out n, say,Z 0 must be y, the mobility e�ect of N . On the other hand, (Proc Go) doesnot constrain the subjective-mobility annotation, Z, of the ambient. So theprocess P within the ambient may be either mobile or immobile.Judgments:E ` � good environmentE `M :W good expression of message type WE ` P : ZT process with mobility Z exchanging TGood expressions:(Exp n)E 0; n:W;E 00 ` �E 0; n:W;E 00 ` n : W(Exp �)E ` �E ` � : Cap[ZT] (Exp :)E `M : Cap[ZT] E `M 0 : Cap[ZT]E `M:M 0 : Cap[ZT](Exp In)E ` n : AmbY Z0[ZT]E ` in n : Cap[yT 0] (Exp Out)E ` n : AmbY Z0[ZT]E ` out n : Cap[yT 0] (Exp Open)E ` n : Amb�Z0[ZT]E ` open n : Cap[ZT]16

Good processes:(Proc Action)E `M : Cap[ZT] E ` P : ZTE `M:P : ZT (Proc Amb)E `M : AmbY Z00 [ZT] E ` P : ZTE `M [P] : Z0T 0(Proc Res)E; n:AmbY Z00[ZT] ` P : Z0T 0E ` (�n:AmbY Z00[ZT])P : Z0T 0 (Proc Zero)E ` �E ` 0 : ZT(Proc Par)E ` P : ZT E ` Q : ZTE ` P j Q : ZT (Proc Repl)E ` P : ZTE ` !P : ZT(Proc Input)E; n1:W1; : : : ; nk:Wk ` P : ZW1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : ZW1 � � � � �Wk(Proc Output)E `M1 : W1 � � � E `Mk : WkE ` hM1; : : : ;Mki : ZW1 � � � � �Wk(Proc Go)E ` N : Cap[Z0S] E `M : AmbY Z0[ZT] E ` P : ZTE ` go N:M [P] : Z00T 00Theorem 2 If E ` P : ZT and P ! Q then E ` Q : ZT .Proof See Appendix B. 2Objective moves allow us to type the example of sending a packet fromambient a to ambient b more
exibly than in the previous section. We rewritethe example to use object moves:a[go (out a:in b):p[hMi]] j b[open p:(x:W):P]Then, if we assume E `M : W , E ` a : Amb�Y[YShh], E ` p : Amb�y[YW],E ` b : Amb�Y[YW], E; x:W ` P : YW we get the typing:E ` a[go (out a:in b):p[hMi]] j b[open p:(x:W):P] : YShh17

Unlike the situation in Section 2.3, ambients a and b can be annotated asboth objectively and subjectively immobile. This is desirable if a and b areintended to represent immobile hosts on a network.3.4 Encoding Channels, AgainNow, recall the extension of our previous system with channel-based commu-nication. We can extend our new system with channels in a similar way. Thenew rules for channels are exactly as in Section 2, except that this time wecan drop the side-condition Z =y in the typing rule for channel input, (ChInput). We can adapt our translation from Section 2.4 to exploit objectivemoves; here are the clauses that change:Expressing channels with ambients, using objective moves:[[Ch[C1; : : : ; Ck]]]b �= Amb�[y[[C1]]� : : :� [[Ck]]][[Ch[C1; : : : ; Ck]]]p �= Amb�[y[[C1]]� : : :� [[Ck]]][[(�c:C)P]] �= (�cb:[[C]]b)(�cp:[[C]]p)(cb[!open cp] j [[P]])[[chn1; : : : ; nki]] �= go in cb:cp[hnb1; np1; : : : ; nbk; npki][[c(x1:C1; : : : ; xk:Ck):PZT]] �=(�s:Amb�y[ZT])(open s jgo in cb:cp[(xb1:[[C1]]b; xp1:[[C1]]p; : : : ; xbk:[[Ck]]b; xpk:[[Ck]]p):go out cb:s[[[P]]]])for s =2 fcb; cp; g [fn([[P]])Exactly as before, we can show that the translation from the calculuswith channels to the one without preserves typing derivations. This time,however, the translation does not constrain the mobility of processes per-forming inputs: the mobility e�ect Z of the process P in a channel inputc(x1:C1; : : : ; xk:Ck):P may be either mobile or immobile.4 Encoding a Distributed LanguageIn this section, we consider a fragment of a typed, distributed language inwhich mobile threads can migrate between immobile network nodes. Weobtain a semantics for this form of thread mobility via a translation intothe ambient calculus. In the translation, ambients model both threads and18

nodes. The translation illustrates the extended type system of Section 3. Inparticular, the typing of the translation guarantees that an ambient modelinga node moves neither subjectively nor objectively. On the other hand, anambient modeling a thread is free to move subjectively, but is guaranteednot to move objectively.The computational model is that there is an unstructured collection ofnamed network nodes, each of which hosts a collection of named communica-tion channels and anonymous threads. This is similar to the computationalmodels underlying various distributed variants of the �-calculus, such asthose proposed by Amadio and Prasad [AP94], Riely and Hennessy [RH98],and Sewell [Sew98]. In an earlier paper [CG99], we showed how to mimicTelescript's computational model by translation into the ambient calculus.In the language fragment we describe here, communication is based on namedcommunication channels (as in the �-calculus) rather than by direct agent-to-agent communication (as in our stripped down version of Telescript). Asin our previous paper, we focus on language constructs for mobility, syn-chronization, and communication. We omit standard constructs for dataprocessing and control
ow. They could easily be added.To introduce the syntax of our language fragment, here is a simple exam-ple: node a [channel ac j thread [achb; bci]] j node b [channel bc] jnode c [thread [go a:ac(x:Node; y:Ch[Node]):go x:yhai]This program describes a network consisting of three network nodes,named a, b, and c. Node a hosts a channel ac and a thread running thecode achb; bci, which simply sends the pair hb; bci on the channel ac. Node bhosts a channel bc. Finally, node c hosts a single thread, running the code:go a:ac(x:Node; y:Ch[Node]):go x:yhaiThe e�ect of this is to move the thread from node c to node a. There itawaits a message sent on the communication channel ac. We may assumethat it receives the message hb; bci being sent by the thread already at a. (Ifthere were another thread at node a sending another message, the receiverthread would end up receiving one or other of the messages.) The threadthen migrates to node b, where it transmits a message a on the channel bc.Messages on communication channels are assigned types, ranged overby W . The type Node is the type of names of network nodes. The type19

Ch[W1; : : : ;Wk] is the type of a polyadic communication channel. The mes-sages communicated on such a channel are k-tuples whose components havetypes W1, . . . , Wk. In the setting of the example above, channel ac has typeCh[Node;Ch[Node]], and channel bc has type Ch[Node].Next, we describe the formal grammar of our language fragment. Anetwork, Net , is a collection of nodes, built up using composition Net jNet and restrictions (�n:W)Net . A crowd, Cro, is the group of threadsand channels hosted by a node. Like networks, crowds are built up usingcomposition Cro j Cro and restriction (�n:W)Cro. A thread, Th, is a mobilethread of control. As well as the constructs illustrated above, a thread mayinclude the contructs fork(Cro):Th and spawn n [Cro]:Th. The �rst forks anew crowd Cro inside the current node, and continues with Th. The secondspawns a new node node n [Cro] outside the current node, at the networklevel, and continues with Th.A fragment of a typed, distributed programming language:W ::= typeNode name of a nodeCh[W1; : : : ;Wk] name of a channelNet ::= network(�n:W)Net restrictionNet j Net network compositionnode n [Cro] nodeCro ::= crowd of channels and threads(�n:W)Cro restrictionCro j Cro crowd compositionchannel c channelthread [Th] threadTh ::= threadgo n:Th migrationchn1; : : : ; nki output to a channelc(x1:W1; : : : ; xk:Wk):Th input from a channelfork(Cro):Th fork a crowdspawn n [Cro]:Th spawn a new nodeIn the phrases (�n:W)Net and (�n:W)Cro, the name n is bound; itsscope is Net and Cro, respectively. In the phrase c(x1:W1; : : : ; xk:Wk):Th,20

the names x1, . . . , xk are bound; their scope is the phrase Th.The type system of our language controls the typing of messages on com-munication channels, much as in previous schemes for the �-calculus [Mil91].We formalize the type system using the following �ve judgments:Judgments:E ` � good environmentE ` n : W name n has type WE ` Net good networkE ` Cro good crowdE ` Th good threadThese judgments are de�ned by the fairly standard rules in the followingtables.Good environment:? ` � E ` � n =2 dom(E)E; n:W ` �Name has type:E; n:W;E 0 ` �E; n:W;E 0 ` n : WGood network:E; n:W ` NetE ` (�n:W)Net E ` Net E ` Net 0E ` Net j Net 0 E ` n : Node E ` CroE ` node n [Cro]Good crowd:E; n:W ` CroE ` (�n:W)Cro E ` Cro E ` Cro0E ` Cro j Cro 0E ` c : Ch[W1; : : : ;Wk]E ` channel c E ` ThE ` thread [Th]21

Good thread:E ` n : Node E ` ThE ` go n:ThE ` c : Ch[W1; : : : ;Wk] E ` ni : Wi 8i 2 1::kE ` chn1; : : : ; nkiE ` c : Ch[W1; : : : ;Wk] E; x1:W1; : : : ; xk:Wk ` ThE ` c(x1:W1; : : : ; xk:Wk):ThE ` Cro E ` ThE ` fork(Cro):Th E ` n : Node E ` Cro E ` ThE ` spawn n [Cro]:ThWe give a semantics to this language fragment via a translation into theambient calculus. In the semantics, we use ambients to model the threenotions of node, thread, and channel.We model a node named n by a box ambient named nb, that is, nb is a boxholding the contents of the node. We assign n the type Amb�y[YShh], that is,it is locked, subjectively immobile, but objectively mobile. In our semantics,we never need to open up or subjectively move such an ambient, but we needto use an objective move to model a thread spawning a new node. To assistin the translation of threads that fork crowds and spawn nodes, we situate areplicated process open np within each ambient that models a node n. Theauxiliary name np, which is derived from the name n, is assigned the typeAmb�y[YShh].Much as in Section 3, we model a channel named c by a bu�er ambientnamed cb, and we model a packet sent on the channel by a packet ambientnamed cp. We assign the types Amb�Y[YT] and Amb�y[YT], respectively, tothese ambients, where T is the type of tuples carried by the channel.We model a thread by an ambient. We assign ambients modeling threadsthe type Amb�Y[yShh]. We use subjective moves to model thread migration.We never dissolve threads nor use objective moves on a thread.Given these explanations, we now present the translation of the languagefragment into our calculus. We begin by translating the type W of a nodeor a channel into an ambient type [[W]].22

Translation of a type:[[Node]]b �= Amb�y[YShh][[Node]]p �= Amb�y[YShh][[Ch[W1; : : : ;Wk]]]b �= Amb�Y[Y[[W1]]b � [[W1]]p � � � � � [[Wk]]b � [[Wk]]p][[Ch[W1; : : : ;Wk]]]p �= Amb�y[Y[[W1]]b � [[W1]]p � � � � � [[Wk]]b � [[Wk]]p]Now, we translate a network Net , a crowd Grp within a node n, and athread Th within a node n and assigned a name t, to the ambient processes[[Net]], [[Grp]]n, and [[Th]]tn, respectively.Translation of a network:[[(�n:W)Net]] �= (�nb:[[W]]b)(�np:[[W]]p)[[Net]][[Net j Net]] �= [[Net]] j [[Net]][[node n [Cro]]] �= nb[!open np j [[Cro]]n]Translation of a crowd Cro located at n:[[(�c:W)Cro]]n �= (�cb:[[W]]b)(�cp:[[W]]p)[[Cro]]n[[Cro j Cro]]n �= [[Cro]]n j [[Cro]]n[[channel c]]n �= cb[!open cp][[thread Th]]n �= (�t:Amb�Y[yShh])t[[[Th]]tn] for t =2 fn([[Th]]tn)Translation of a thread Th named t located at n:[[go m:Th]]tn �= out n:in m:[[Th]]tm[[chn1; : : : ; nki]]tn �= go (out t:in cb):cp[hn1; np1; : : : ; nk; npki][[c(x1:W1; : : : ; xk:Wk):Th]]tn �=(�s:Amb�y[yShh])(go (out t:in cb):cp[(xb1:[[W1]]b; xp1:[[W1]]p; : : : ; xbk:[[Wk]]b; xpk:[[Wk]]p):go (out cb:in t):s[open s:[[Th]]tn]] jopen s:s[])for s =2 ft; cb; cpg [fn([[Th]]tn) 23

[[fork(Cro):Th]]tn �=(�s:Amb�y[yShh])(go out t:np[go (in t):s[] j [[Cro]]n] jopen s:[[Th]]tn)for s =2 ft; npg [[[Cro]]n [[[Th]]tn[[spawn m [Cro]:Th]]tn �=(�s:Amb�y[yShh])(go out t:np[go in t:s[] jgo out nb:mb[!open mp j [[Cro]]m]] jopen s:[[Th]]tn)for s =2 ft; nb; np; mb; mpg [fn([[Cro]]m) [fn([[Th]]tn)We translate an input operation c(x1:W1; :::; xk:Wk):Th as a packet cpwhich exits the enclosing t ambient and then enters the channel cb. There itis opened, and its input operation awaits a message. After the input receivesa message, the continuation s[open s:[[Th]]tn] exits the channel and re-entersthe thread t. Here it encounters the process open s:s[]. The open s capabilitydissolves the �rst s ambient, the one used to move the continuation back,but unleashes a second s ambient. At this point, the open s which has beenguarding the [[Th]]tn process can open the second s ambient, and the [[Th]]tncan proceed. We need to guard the [[Th]]tn process to prevent a subjectivemove within [[Th]]tn from acting on the �rst s ambient instead of the t ambient.We translate a fork operation as a packet np which carries the new crowdCro out of its enclosing thread to become a child of the enclosing node nb.Once the packet np is a child of n, it is opened, the translation [[Cro]]n ofthe crowd Cro can run, and the synchronization packet s[] re-enters the tambient where it is opened by the opens lock which was guarding [[Th]]tn. Thissynchronization is needed to avoid the process [[Th]]tn moving the ambient tto another node before the new crowd has exited from t. The translation ofthe spawn operation is similar.In order to state Proposition 2, which asserts that our translation pre-serves typing judgments, we use the following translation of an environmentE of the language fragment to an environment [[E]] of the ambient calculus.Translation of an environment:[[?]] �= ?[[E; n:W]] �= [[E]]; nb:[[W]]b; np:[[W]]p 24

Proposition 2(1) If E ` Net then [[E]] ` [[Net]] : YShh.(2) If E ` Cro and E ` n : Node then [[E]] ` [[Cro]]n : YShh.(3) If E ` Th, E ` n : Node, t =2 dom(E) then[[E]]; t:Amb� Y[yShh] ` [[Th]]tn : yShh.Proof By induction on derivations. 2This example shows that the ambient calculus serves as a semantic meta-language for describing distributed computation. Ambients model severaldi�erent entities, including nodes, channels, and threads. The di�erent typ-ings for these entities re
ect their di�erent behavior. Of the three kinds ofambients, only nodes allow objective moves, only channels allow message ex-change, and only threads allow subjective moves. The example shows thatour mobility and locking annotations are useful for the mobile programmingtask underlying this translation.5 Conclusions and Related WorkWe have argued [CG98, Car99, CG99, GC99] that the idea of an ambient isa useful and general abstraction for expressing and reasoning about mobilecomputation. In this paper, we quali�ed the ambient idea by introducingtype systems that distinguish between mobile and immobile, and locked andunlocked ambients. Thus quali�ed, ambients better describe the structure ofmobile computations.The type systems presented in this paper derive from our earlier work onexchange types for ambients [CG99]. That type system tracks the types ofmessages that may be input or output within each ambient; it is analogousto Milner's sort system for the �-calculus [Mil91], which tracks the types ofmessages that may be input or output on each channel.Our mobility annotations govern the ways in which an ambient can bemoved. The data movement types of the mobile �-calculus of Sekiguchi andYonezawa [SY97] also govern movement, the movement of variables referredto by mobile processes. Their data movement types are checked dynamically,rather than statically. In the setting of the �-calculus, various type systems25

have been proposed to track the distinction between local and remote refer-ences to channels [Ama97, Sew98, SWP98], but none of these systems tracksprocess mobility.Our locking annotations allow static checking of a simple security prop-erty: that nobody will attempt to open a locked ambient. More complex typesystems than ours demonstrate that more sophisticated security propertiesof concurrent systems can be checked statically: access control [DFPV98,HR98b], allocation of permissions [RH98], and secrecy and integrity prop-erties [Aba97, HR98a, SV98]. Ideas from some of these systems may beapplicable to ambients.Moreover, for the sake of programming convenience, our type systemscould be extended in standard directions, just as Milner's sort system for the�-calculus has been extended with subtyping [PS96] and parametric poly-morphism [Tur95]. More experimental extensions to the �-calculus, such asa�ne or linear types [KPT96] and graph types [Yos96], may also be usefulextensions to the type systems of this paper. In earlier work [CG99], we stud-ied the addition of a�ne capability types to our basic system of exchangetypes.AcknowledgementGiorgio Ghelli acknowledges the support of Microsoft Research during thewriting of this paper. This work has also been partially supported by EspritWorking Groups 26142 - Applied Semantics and 22552 - PASTEL, and byItalian MURST, project InterData.References[Aba97] M. Abadi. Secrecy by typing in security protocols. In ProceedingsTACS'97, volume 1281 of Lecture Notes in Computer Science,pages 611{638. Springer, 1997.[Ama97] R. M. Amadio. An asynchronous model of locality, failure, andprocess mobility. In Proceedings COORDINATION 97, volume1282 of Lecture Notes in Computer Science. Springer, 1997.
26

[AP94] R. M. Amadio and S. Prasad. Localities and failures. In Pro-ceedings FST&TCS'94, volume 880 of Lecture Notes in ComputerScience, pages 205{216. Springer, 1994.[Car99] L. Cardelli. Abstractions for mobile computation. In C. Jensenand J. Vitek, editors, Secure Internet Programming: Issues inDistributed and Mobile Object Systems, volume 1603 of LectureNotes in Computer Science. Springer, 1999.[CG98] L. Cardelli and A. D. Gordon. Mobile ambients. In ProceedingsFoSSaCS'98, volume 1378 of Lecture Notes in Computer Science,pages 140{155. Springer, 1998.[CG99] L. Cardelli and A. D. Gordon. Types for mobile ambients. InProceedings POPL'99, pages 79{92. ACM, January 1999.[CGG99] L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups andmobility types. Unpublished, 1999.[DFPV98] R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types foraccess control. Available from the authors, 1998.[GC99] A. D. Gordon and L. Cardelli. Equational properties of mobileambients. In Proceedings FoSSaCS'99, volume 1578 of LectureNotes in Computer Science, pages 212{226. Springer, 1999. Anextended version appears as Microsoft Research Technical ReportMSR{TR{99{11, April 1999.[HR98a] N. Heintz and J. Riecke. The SLam calculus: programming withsecrecy and integrity. In Proceedings POPL'98, pages 365{377.ACM, 1998.[HR98b] M. Hennessy and J. Riely. Resource access control in systems ofmobile agents. In Proceedings HLCL'98, volume 16(3) of Elec-tronic Notes in Theoretical Computer Science. Elsevier, 1998.[KPT96] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and thepi-calculus. In Proceedings POPL'96, pages 358{371. ACM, 1996.[LY97] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�ca-tion. Addison-Wesley, 1997.27

[Mil91] R. Milner. The polyadic �-calculus: A tutorial. Technical ReportECS{LFCS{91{180, University of Edinburgh, October 1991.[PS96] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-cesses. Mathematical Structures in Computer Science, 6(5):409{454, 1996.[RH98] J. Riely and M. Hennessy. A typed language for distributed mo-bile processes. In Proceedings POPL'98, pages 378{390. ACM,1998.[Sew98] P. Sewell. Global/local subtyping and capability inference for adistributed �-calculus. In Proceedings ICALP'98, volume 1443of Lecture Notes in Computer Science, pages 695{706. Springer,1998.[SV98] G. Smith and D. Volpano. Secure information
ow in a multi-threaded imperative language. In Proceedings POPL'98, pages355{364. ACM, 1998.[SWP98] P. Sewell, P. T. Wojciechowski, and B.C. Pierce. Location inde-pendence for mobile agents. In Workshop on Internet Program-ming Languages, 1998.[SY97] T. Sekiguchi and A. Yonezawa. A calculus with code mobility. InProceedings FMOODS'97, pages 21{36. IFIP, 1997.[Tur95] D. N. Turner. The polymorphic pi-calculus: theory and imple-mentation. PhD thesis, University of Edinburgh, 1995.[Yos96] N. Yoshida. Graph types for monadic mobile processes. In Pro-ceeings FST&TCS, volume 1180 of Lecture Notes in ComputerScience, pages 371{386. Springer, 1996.
28

A Proof of Theorem 1Lemma 3 (Derived Judgment) If E ` J then E ` �.Lemma 4 If E 0; n:W;E 00 ` J then n =2 dom(E 0; E 00).Lemma 5 If E ` n : W and E ` n : W 0 then W =W 0.Lemma 6 (Exchange)If E 0; n:W 0; m:W 00; E 00 ` J then E 0; m:W 00; n:W 0; E 00 ` J .Lemma 7 (Strengthening)If E 0; n:W;E 00 ` J and n =2 fn(J) then E 0; E 00 ` J .Lemma 8 (Weakening)If E 0; E 00 ` J and n =2 dom(E 0; E 00) then E 0; n:W;E 00 ` J .Lemma 9 (Substitution)If E 0; n:W;E 00 ` J and E 0 `M : W then E 0; E 00 ` J fn Mg.Proposition 10 If E ` P : ZT and P � Q then E ` Q : ZT .Proof The proposition follows by showing that P � Q implies:(1) If E ` P : ZT then E ` Q : ZT .(2) If E ` Q : ZT then E ` P : ZT .We proceed by induction on the derivation of P � Q.(Struct Re
) Trivial.(Struct Symm) Then Q � P . For (1), assume E ` P : ZT . By inductionhypothesis (2), Q � P implies E ` Q : ZT . Part (2) is symmetric.(Struct Trans) Then P � R, R � Q for some R. For (1), assume E `P : ZT . By induction hypothesis (1), E ` R : ZT . Again by inductionhypothesis (1), E ` Q : ZT . Part (2) is symmetric.(Struct Res) Then P = (�n:W)P 0 and Q = (�n:W)Q0, with P 0 � Q0. For(1), assume E ` P : ZT . This must have been derived from (ProcRes), with E; n:AmbY 0[Z0T 0] ` P 0 : ZT , where W = AmbY 0 [Z0T 0]. Byinduction hypothesis (1), E; n:AmbY 0 [Z0T 0] ` Q0 : ZT . By (Proc Res),E ` (�n:W)Q0 : ZT . Part (2) is symmetric.29

(Struct Par) Then P = P 0 j R, Q = Q0 j R, and P 0 � Q0. For (1), assumeE ` P 0 j R : ZT . This must have been derived from (Proc Par), withE ` P 0 : ZT , E ` R : ZT . By induction hypothesis (1), E ` Q0 : ZT .By (Proc Par), E ` Q0 j R : ZT . Part (2) is symmetric.(Struct Repl) Then P = !P 0, Q = !Q0, and P 0 � Q0. For (1), assumeE ` P : ZT . This must have been derived from (Proc Repl), withE ` P 0 : ZT . By induction hypothesis (1), E ` Q0 : ZT . By (ProcRepl), E ` !Q0 : ZT . Part (2) is symmetric.(Struct Amb) Then P =M [P 0], Q = M [Q0], and P 0 � Q0. For (1), assumeE ` P : ZT . This must have been derived from (Proc Amb), with E `M : AmbY 0 [Z0T 0] and E ` P 0 : Z0T 0, for some Y 0, Z 0, T 0. By inductionhypothesis (1), E ` Q0 : Z0T 0. By (Proc Amb), E ` M [Q0] : ZT . Part(2) is symmetric.(Struct Action) Then P = M:P 0, Q = M:Q0, and P 0 � Q0. For (1),assume E ` P : ZT . This must have been derived from (Proc Action),with E ` M : Cap[ZT], E ` P 0 : ZT . By induction hypothesis (1),E ` Q0 : ZT . By (Proc Action), E `M:Q0 : ZT . Part (2) is symmetric.(Struct Input) In this case, P = (n1:W1; : : : ; nk:Wk):P 0, P 0 � Q0, andQ = (n1:W1; : : : ; nk:Wk):Q0. For (1), assume E ` P : ZT . Thismust have been derived from (Proc Input), with E; n1:W1; : : : ; nk:Wk `P 0 : ZT , where T = W1 � � � � � Wk. By induction hypothesis, wehave E; n1:W1; : : : ; nk:Wk ` Q0 : ZT . By (Proc Input), we haveE ` (n1:W1; : : : ; nk:Wk):Q0 : ZT . Part (2) is symmetric.(Struct Par Comm) Then P = P 0 j P 00 and Q = P 00 j P 0.For (1), assume E ` P 0 j P 00 : ZT . This must have been derived from(Proc Par), with E ` P 0 : ZT and E ` P 00 : ZT . By (Proc Par),E ` P 00 j P 0 : ZT . Hence, E ` Q : ZT .Part (2) is symmetric.(Struct Par Assoc) Then P = (P 0 j P 00) j P 000 and Q = P 0 j (P 00 j P 000).For (1), assume E ` (P 0 j P 00) j P 000 : ZT . This must have beenderived from (Proc Par) twice, with E ` P 0 : ZT , E ` P 00 : ZT , andE ` P 000 : ZT . By (Proc Par) twice, E ` P 0 j (P 00 j P 000) : ZT . HenceE ` Q : ZT . 30

Part (2) is symmetric.(Struct Repl Par) Then P = !P 0 and Q = P 0 j !P 0.For (1), assume E ` !P 0 : ZT . This must have been derived from (ProcRepl), with E ` P 0 : ZT . By (Proc Par), E ` P 0 j !P 0 : ZT . Hence,E ` Q : ZT .For (2), assume E ` P 0 j !P 0 : ZT . This must have been derived from(Proc Par), with E ` P 0 : ZT and E ` !P 0 : ZT . Hence, E ` P : ZT .(Struct Res Res) In this case, we have P = (�n1:W1)(�n2:W2)P 0 and Q =(�n2:W2)(�n1:W1)P 0 with n1 6= n2.For (1), assume E ` (�n1:W1)(�n2:W2)P 0 : ZT . This must have beenderived from (Proc Res), with E; n1:AmbY1 [Z1T1]; n2:AmbY2 [Z2T2] ` P 0 :ZT , where W1 = AmbY1 [Z1T1] and W2 = AmbY2[Z2T2]. By Lemma 6,we have E; n2:AmbY2 [Z2T2]; n1:AmbY1 [Z1T1] ` P 0 : ZT . By (Proc Res)twice we have E ` (�n2:W2)(�n1:W1)P 0 : ZT . Part (2) is symmetric.(Struct Res Par) Then P = (�n:W)(P 0 j P 00) and Q = P 0 j (�n:W)P 00,with n =2 fn(P 0).For (1), assume E ` P : ZT . This must have been derived from (ProcRes), with E; n:AmbY 0[Z0T 0] ` P 0 j P 00 : ZT and W = AmbY 0[Z0T 0], and(Proc Par), with E; n:AmbY 0[Z0T 0] ` P 0 : ZT and E; n:AmbY 0[Z0T 0] `P 00 : ZT . By Lemma 7, since n =2 fn(P 0), we have E ` P 0 : ZT . By(Proc Res) we have E ` (�n:AmbY 0 [Z0T 0])P 00 : ZT . By (Proc Par) wehave E ` P 0 j (�n:AmbY 0 [Z0T 0])P 00 : ZT , that is, E ` Q : ZT .For (2), assume E ` Q : ZT . This must have been derived from (ProcPar), with E ` P 0 : ZT and E ` (�n:W)P 00 : ZT , and from (ProcRes), with E; n:AmbY 0 [Z0T 0] ` P 00 : ZT and W = AmbY 0[Z0T 0]. ByLemma 4, n =2 dom(E). By Lemma 8, E; n:AmbY 0[Z0T 0] ` P 0 : ZT .By (Proc Par), E; n:AmbY 0 [Z0T 0] ` P 0 j P 00 : ZT . By (Proc Res),E ` (�n:AmbY 0[Z0T 0])(P 0 j P 00) : ZT , that is, E ` P : ZT .(Struct Res Amb) Then P = (�n:W)m[P 0] and Q = m[(�n:W)P 0], withn 6= m.For (1), assume E ` P : ZT . This must have been derived from (ProcRes) with E; n:AmbY 0 [Z0T 0] ` m[P 0] : ZT with W = AmbY 0[Z0T 0],and from (Proc Amb) with E; n:AmbY 0 [Z0T 0] ` m : AmbYm [ZmTm] and31

E; n:AmbY 0[Z0T 0] ` P 0 : ZmTm for some Ym, Zm, Tm. By (Proc Res)we have E ` (�n:AmbY 0 [Z0T 0])P 0 : ZmTm. By Lemma 7, n 6= m impliesE ` m : AmbYm[ZmTm]. By (Proc Amb), E ` m[(�n:AmbY 0[Z0T 0])P 0] :ZT , that is, E ` Q : ZT .For (2), assume E ` Q : ZT . This must have been derived from(Proc Amb) with E ` m : AmbYm[ZmTm] and E ` (�n:W)P 0 : ZmTm,and from (Proc Res), with E; n:AmbY 0[Z0T 0] ` P 0 : ZmTm and W =AmbY 0[Z0T 0], for some Ym, Zm, and Tm. By Lemma 4, n =2 dom(E).By Lemma 8, E; n:AmbY 0 [Z0T 0] ` m : AmbYm [ZmTm]. By (Proc Amb),E; n:AmbY 0[Z0T 0] ` m[P 0] : ZT . By (Proc Res), we can derive thatE ` (�n:AmbY 0[Z0T 0])m[P 0] : ZT , that is, E ` P : ZT .(Struct Zero Par) Then P = P 0 j 0 and Q = P 0.For (1), assume E ` P : ZT . This must have been derived from (ProcPar) with E ` P 0 : ZT and E ` 0 : ZT . Hence, E ` Q : ZT .For (2), assume E ` P 0 : ZT . By Lemma 3, E ` �. By (Proc Zero),E ` 0 : ZT . By (Proc Par), E ` P 0 j 0 : ZT , that is, E ` P : ZT .(Struct Zero Res) Then P = (�n:AmbY 0 [Z0T 0])0 and Q = 0.For (1), assume E ` P : ZT . This must have been derived from (ProcRes) with E; n:AmbY 0[Z0T 0] ` 0 : ZT . By Lemma 7, E ` 0 : ZT , thatis, E ` Q : ZT .For (2), assume E ` 0 : ZT . We may assume that the bound name ndoes not occur in dom(E). By Lemma 8, E; n:AmbY 0 [Z0T 0] ` 0 : ZT .By (Proc Res), E ` (�n:AmbY 0[Z0T 0])0 : ZT , that is, E ` P : ZT .(Struct Zero Repl) Then P = !0 and Q = 0.For (1), assume E ` P : ZT . By Lemma 3, E ` �. By (Proc Zero),E ` 0 : ZT , that is, E ` Q : ZT .For (2), assume E ` 0 : ZT . By (Proc Repl), E ` !0 : ZT , that is,E ` P : ZT .(Struct �) Then P = �:P 0 and Q = P 0.For (1), assume E ` P : ZT . This must have been derived from (ProcAction) with E ` � : Cap[ZT] and E ` P 0 : ZT , that is, E ` Q : ZT .For (2), assume E ` P 0 : ZT . By Lemma 3, E ` �. By (Exp �),E ` � : Cap[ZT]. By (Proc Action), E ` �:P 0 : ZT , that is, E ` P : ZT .32

(Struct :) Then P = (M:M 0):P 0 and Q = M:M 0:P 0.For (1), assume E ` P : ZT . This must have been derived from (ProcAction) with E ` P 0 : ZT , E `M:M 0 : Cap[ZT]. The latter must havecome from (Exp :) with E ` M : Cap[ZT] and E ` M 0 : Cap[ZT], By(Proc Action) twice, E `M:(M 0:P 0) : ZT , that is, E ` Q : ZT .For (2), assume E ` Q : ZT . This must have been derived from(Proc Action), twice, with E ` M : Cap[ZT], E ` M 0 : Cap[ZT], andE ` P 0 : ZT . By (Exp :), E ` M:M 0 : Cap[ZT]. By (Proc Action),E ` (M:M 0):P 0 : ZT , that is, E ` P : ZT . 2Proof of Theorem 1 If E ` P : ZT and P ! Q then E ` Q : ZT .Proof By induction on the derivation of P ! Q.(Red In) Then P = n[in m:P 0 j P 00] j m[P 000] and Q = m[n[P 0 j P 00] j P 000].Assume E ` P : ZT . This must have been derived from (Proc Par),with E ` n[in m:P 0 j P 00] : ZT and E ` m[P 000] : ZT . The former musthave been derived from (Proc Amb), with E ` n : AmbYn[ZnTn] andE ` inm:P 0 j P 00 : ZnTn, for some Yn, Zn, and Tn, while the latter musthave been derived from (Proc Amb) with E ` m : AmbYm [ZmTm] andE ` P 000 : ZmTm, for some Ym, Zm, and Tm. Moreover, E ` inm:P 0 j P 00 :ZnTn must come from (Proc Par) with E ` inm:P 0 : ZnTn and E ` P 00 :ZnTn. Finally, E ` inm:P 0 : ZnTn must come from E ` inm : Cap[ZnTn]and E ` P 0 : ZnTn. (Hence Zn =y, since the former judgment can onlybe derived using (Exp In).) By (Proc Par), we have E ` P 0 j P 00 : ZnTn,and by (Proc Amb) we can derive E ` n[P 0 j P 00] : ZmTm. Then, by(Proc Par), we have E ` n[P 0 j P 00] j P 000 : ZmTm. By (Proc Amb) wecan derive E ` m[n[P 0 j P 00] j P 000] : ZT , that is, E ` Q : ZT .(Red Out) Then P = m[n[out m:P 0 j P 00] j P 000] and Q = n[P 0 j P 00] jm[P 000]. Assume E ` P : ZT . This must have been derived from(Proc Amb) using E ` m : AmbYm [ZmTm] and E ` n[out m:P 0 j P 00] jP 000 : ZmTm for some Ym, Zm, and Tm, and from (Proc Par) usingE ` n[out m:P 0 j P 00] : ZmTm and E ` P 000 : ZmTm. The former musthave been derived using (Proc Amb) from E ` n : AmbYn[ZnTn] andE ` out m:P 0 j P 00 : ZnTn for some Yn, Zn, and Tn, and using (ProcPar) from E ` out m:P 0 : ZnTn and E ` P 00 : ZnTn. The former musthave been derived using (Proc Action) from E ` out m : Cap[ZnTn]33

and E ` P 0 : ZnTn (Hence Zn =y, since the former judgment can onlybe derived using (Exp Out).) By (Proc Par), E ` P 0 j P 00 : ZnTn. By(Proc Amb), E ` n[P 0 j P 00] : ZT . By (Proc Amb), E ` m[P 000] : ZnTn.By (Proc Par), E ` n[P 0 j P 00] j m[P 000] : ZT , that is, E ` Q : ZT .(Red Open) Then P = open n:P 0 j n[P 00] and Q = P 0 j P 00. AssumeE ` P : ZT . This must have been derived using (Proc Par) fromE ` open n:P 0 : ZT and E ` n[P 00] : ZT . The former must havebeen derived using (Proc Action) with E ` open n : Cap[ZT] andE ` P 0 : ZT , while the latter must have been derived using (ProcAmb) with E ` n : AmbY 0[Z0T 0] and E ` P 00 : Z0T 0 for some Y 0,Z 0, and T 0. The judgment E ` open n : Cap[ZT] must have beenderived using (Exp Open) from E ` n : Amb�[ZT]. By Lemma 5,AmbY 0[Z0T 0] = Amb�[ZT], and so Y 0 = �, Z 0 = Z and T 0 = T . Hence,E ` P 00 : ZT , and, by (Proc Par), E ` P 0 j P 00 : ZT , that is, E ` Q : ZT .(Red Comm) Then P = (n1:W1; : : : ; nk:Wk):P 0 j hM1; : : : ;Mki and Q =P 0fn1 M1; : : : ; nk Mkg. Assume E ` P : ZT . This must havebeen derived from (Proc Par) with E ` (n1:W1; : : : ; nk:Wk):P 0 : ZTand E ` hM1; : : : ;Mki : ZT . The former must have been derived from(Proc Input) with E; n1:W1; : : : ; nk:Wk ` P 0 : ZT and T =W1�� � �Wk.The latter judgment E ` hM1; : : : ;Mki : ZT must have been derivedfrom (Proc Output) with E ` Mi : W 0i for each i 2 1::k, and T =W 01 � � � � �W 0k. Hence W 0i = Wi for each i 2 1::k. By k applications ofLemma 9, we get E ` P 0fn1 M1; : : : ; nk Mkg : ZT .(Red Res) Here P = (�n:W)P 0 and Q = (�n:W)Q0 with P 0 ! Q0. As-sume E ` P : ZT . This must have been derived using (Proc Res)from E; n:AmbY 0[Z0T 0] ` P 0 : ZT with W = AmbY 0[Z0T 0]. By in-duction hypothesis, E; n:AmbY 0[Z0T 0] ` Q0 : ZT . By (Proc Res),E ` (�n:AmbY 0[Z0T 0])Q0 : ZT , that is, E ` Q : ZT .(Red Amb) Here P = n[P 0] and Q = n[Q0] with P 0 ! Q0. Assume E `P : ZT . This must have been derived using (Proc Amb) from E ` n :AmbY 0[Z0T 0] and E ` P 0 : Z0T 0. By induction hypothesis, E ` Q0 : Z0T 0.By (Proc Amb), E ` n[Q0] : ZT , that is, E ` Q : ZT .(Red Par) Here P = P 0 j R and Q = Q0 j R with P 0 ! Q0. AssumeE ` P : ZT . This must have been derived using (Proc Par) from34

E ` P 0 : ZT and E ` R : ZT . By induction hypothesis, E ` Q0 : ZT .By (Proc Par), E ` Q0 j R : ZT , that is, E ` Q : ZT .(Red �) Here P � P 0, P 0 ! Q0, and Q0 � Q. Assume E ` P : ZT . ByProposition 10, E ` P 0 : ZT . By induction hypothesis, E ` Q0 : ZT .By Proposition 10, E ` Q : ZT . 2B Proof of Theorem 2Lemma 11 (Derived Judgment) If E ` J then E ` �.Lemma 12 If E 0; n:W;E 00 ` J then n =2 dom(E 0; E 00).Lemma 13 If E ` n : W and E ` n : W 0 then W =W 0.Lemma 14 (Exchange)If E 0; n:W 0; m:W 00; E 00 ` J then E 0; m:W 00; n:W 0; E 00 ` J .Lemma 15 (Strengthening)If E 0; n:W;E 00 ` J and n =2 fn(J) then E 0; E 00 ` J .Lemma 16 (Weakening)If E 0; E 00 ` J and n =2 dom(E 0; E 00) then E 0; n:W;E 00 ` J .Lemma 17 (Substitution)If E 0; n:W;E 00 ` J and E 0 `M : W then E 0; E 00 ` J fn Mg.Proposition 18 If E ` P : ZT and P � Q then E ` Q : ZT .Proof The proposition follows by showing that P � Q implies:(1) If E ` P : ZT then E ` Q : ZT .(2) If E ` Q : ZT then E ` P : ZT .We proceed by induction on the derivation of P � Q.(Struct Re
) Trivial.(Struct Symm) Then Q � P . For (1), assume E ` P : ZT . By inductionhypothesis (2), Q � P implies E ` Q : ZT . Part (2) is symmetric.35

(Struct Trans) Then P � R, R � Q for some R. For (1), assume E `P : ZT . By induction hypothesis (1), E ` R : ZT . Again by inductionhypothesis (1), E ` Q : ZT . Part (2) is symmetric.(Struct Res) Then P = (�n:W)P 0 and Q = (�n:W)Q0, with P 0 � Q0. For(1), assume E ` P : ZT . This must have been derived from (ProcRes), with E; n:AmbY 0 Z00[Z0T 0] ` P 0 : ZT , where W = AmbY 0 Z00[Z0T 0].By induction hypothesis (1), E; n:AmbY 0 Z00 [Z0T 0] ` Q0 : ZT . By (ProcRes), E ` (�n:W)Q0 : ZT . Part (2) is symmetric.(Struct Par) Then P = P 0 j R, Q = Q0 j R, and P 0 � Q0. For (1), assumeE ` P 0 j R : ZT . This must have been derived from (Proc Par), withE ` P 0 : ZT , E ` R : ZT . By induction hypothesis (1), E ` Q0 : ZT .By (Proc Par), E ` Q0 j R : ZT . Part (2) is symmetric.(Struct Repl) Then P = !P 0, Q = !Q0, and P 0 � Q0. For (1), assumeE ` P : ZT . This must have been derived from (Proc Repl), withE ` P 0 : ZT . By induction hypothesis (1), E ` Q0 : ZT . By (ProcRepl), E ` !Q0 : ZT . Part (2) is symmetric.(Struct Amb) Then P = M [P 0], Q = M [Q0], and P 0 � Q0. For (1),assume E ` P : ZT . This must have been derived from (Proc Amb),with E ` M : AmbY 0 Z00[Z0T 0] and E ` P 0 : Z0T 0, for some Y 0, Z 0,Z 00, T 0. By induction hypothesis (1), E ` Q0 : Z0T 0. By (Proc Amb),E `M [Q0] : ZT . Part (2) is symmetric.(Struct Action) Then P = M:P 0, Q = M:Q0, and P 0 � Q0. For (1),assume E ` P : ZT . This must have been derived from (Proc Action),with E ` M : Cap[ZT], E ` P 0 : ZT . By induction hypothesis (1),E ` Q0 : ZT . By (Proc Action), E `M:Q0 : ZT . Part (2) is symmetric.(Struct Input) In this case, P = (n1:W1; : : : ; nk:Wk):P 0, P 0 � Q0, andQ = (n1:W1; : : : ; nk:Wk):Q0. For (1), assume E ` P : ZT . Thismust have been derived from (Proc Input), with E; n1:W1; : : : ; nk:Wk `P 0 : ZT , where T = W1 � � � � � Wk. By induction hypothesis, wehave E; n1:W1; : : : ; nk:Wk ` Q0 : ZT . By (Proc Input), we haveE ` (n1:W1; : : : ; nk:Wk):Q0 : ZT . Part (2) is symmetric.(Struct Go) Then P = go N:M [P 0], Q = go N:M [Q0], and P 0 � Q0. For(1), assume E ` P : ZT . This must have been derived from (Proc Go),36

with E ` N : Cap[Z00S], E `M : AmbY 0 Z00[Z0T 0] and E ` P 0 : Z0T 0, forsome S, Y 0, Z 0, Z 00, and T 0. By induction hypothesis (1), E ` Q0 : Z0T 0.By (Proc Go), E ` go N:M [Q0] : ZT . Part (2) is symmetric.(Struct Par Comm) Then P = P 0 j P 00 and Q = P 00 j P 0.For (1), assume E ` P 0 j P 00 : ZT . This must have been derived fromE ` P 0 : ZT and E ` P 00 : ZT . By (Proc Par), E ` P 00 j P 0 : ZT .Hence, E ` Q : ZT .Part (2) is symmetric.(Struct Par Assoc) Then P = (P 0 j P 00) j P 000 and Q = P 0 j (P 00 j P 000).For (1), assume E ` (P 0 j P 00) j P 000 : ZT . This must have beenderived from (Proc Par) twice, with E ` P 0 : ZT , E ` P 00 : ZT , andE ` P 000 : ZT . By (Proc Par) twice, E ` P 0 j (P 00 j P 000) : ZT . HenceE ` Q : ZT .Part (2) is symmetric.(Struct Repl Par) Then P = !P 0 and Q = P 0 j !P 0.For (1), assume E ` !P 0 : ZT . This must have been derived from (ProcRepl), with E ` P 0 : ZT . By (Proc Par), E ` P 0 j !P 0 : ZT . Hence,E ` Q : ZT .For (2), assume E ` P 0 j !P 0 : ZT . This must have been derived from(Proc Par), with E ` P 0 : ZT and E ` !P 0 : ZT . Hence, E ` P : ZT .(Struct Res Res) In this case, we have P = (�n1:W1)(�n2:W2)P 0 and Q =(�n2:W2)(�n1:W1)P 0 with n1 6= n2.For (1), assume E ` (�n1:W1)(�n2:W2)P 0 : ZT . This must have beenderived from (Proc Res), with E; n1:AmbY1 Z01 [Z1T1]; n2:AmbY2 Z02 [Z2T2] `P 0 : ZT , where W1 = AmbY1 Z01 [Z1T1] and W2 = AmbY2 Z02 [Z2T2]. ByLemma 14, we have E; n2:AmbY2 Z02 [Z2T2]; n1:AmbY1 Z01 [Z1T1] ` P 0 : ZT .By (Proc Res) twice we have E ` (�n2:W2)(�n1:W1)P 0 : ZT . Part (2)is symmetric.(Struct Res Par) Then P = (�n:W)(P 0 j P 00) and Q = P 0 j (�n:W)P 00,with n =2 fn(P 0).For (1), assume E ` P : ZT . This must have been derived from(Proc Res), with E; n:AmbY 0 Z00[Z0T 0] ` P 0 j P 00 : ZT and W =37

AmbY 0 Z00[Z0T 0], and from (Proc Par), with E; n:AmbY 0 Z00[Z0T 0] ` P 0 :ZT and E; n:AmbY 0 Z00 [Z0T 0] ` P 00 : ZT . By Lemma 15, since n =2 fn(P 0),we have E ` P 0 : ZT . By (Proc Res), E ` (�n:AmbY 0 Z00[Z0T 0])P 00 : ZT .By (Proc Par) we have E ` P 0 j (�n:AmbY 0 Z00[Z0T 0])P 00 : ZT , that is,E ` Q : ZT .For (2), assume E ` Q : ZT . This must have been derived from (ProcPar), with E ` P 0 : ZT and E ` (�n:W)P 00 : ZT , and from (ProcRes), with E; n:AmbY 0 Z00[Z0T 0] ` P 00 : ZT and W = AmbY 0 Z00[Z0T 0]. ByLemma 12, n =2 dom(E). By Lemma 16, E; n:AmbY 0 Z00[Z0T 0] ` P 0 : ZT .By (Proc Par), E; n:AmbY 0 Z00[Z0T 0] ` P 0 j P 00 : ZT . By (Proc Res),E ` (�n:AmbY 0 Z00[Z0T 0])(P 0 j P 00) : ZT , that is, E ` P : ZT .(Struct Res Amb) Then P = (�n:W)m[P 0] and Q = m[(�n:W)P 0], withn 6= m.For (1), assume E ` P : ZT . This must have been derived from (ProcRes) with E; n:AmbY 0 Z00[Z0T 0] ` m[P 0] : ZT with W = AmbY 0 Z00[Z0T 0],and from (Proc Amb) with E; n:AmbY 0 Z00[Z0T 0] ` m : AmbYm Z0m [ZmTm]and E; n:AmbY 0 Z00[Z0T 0] ` P 0 : ZmTm for some Ym, Zm, Z 0m, Tm. By(Proc Res) we have E ` (�n:AmbY 0 Z00[Z0T 0])P 0 : ZmTm. By Lemma 15,n 6= m implies E ` m : AmbYm Z0m [ZmTm]. By (Proc Amb), E `m[(�n:AmbY 0 Z00[Z0T 0])P 0] : ZT , that is, E ` Q : ZT .For (2), assume E ` Q : ZT . This must have been derived from(Proc Amb) with E ` m : AmbYm Z0m[ZmTm] and E ` (�n:W)P 0 :ZmTm, and from (Proc Res), with E; n:AmbY 0 Z00 [Z0T 0] ` P 0 : ZmTm andW = AmbY 0 Z00[Z0T 0]. By Lemma 12, n =2 dom(E). By Lemma 16,E; n:AmbY 0 Z00[Z0T 0] ` m : AmbYm Z0m[ZmTm]. By (Proc Amb), we canderive E; n:AmbY 0 Z00[Z0T 0] ` m[P 0] : ZT . By (Proc Res), we can deriveE ` (�n:AmbY 0 Z00[Z0T 0])m[P 0] : ZT , that is, E ` P : ZT .(Struct Zero Par) Then P = P 0 j 0 and Q = P 0.For (1), assume E ` P : ZT . This must have been derived from (ProcPar) with E ` P 0 : ZT and E ` 0 : ZT . Hence, E ` Q : ZT .For (2), assume E ` P 0 : ZT . By Lemma 11, E ` �. By (Proc Zero),E ` 0 : ZT . By (Proc Par), E ` P 0 j 0 : ZT , that is, E ` P : ZT .(Struct Zero Res) Then P = (�n:AmbY 0 Z00[Z0T 0])0 and Q = 0.38

For (1), assume E ` P : ZT . This must have been derived from (ProcRes) with E; n:AmbY 0 Z00[Z0T 0] ` 0 : ZT . By Lemma 15, E ` 0 : ZT ,that is, E ` Q : ZT .For (2), assume E ` 0 : ZT . We may assume that the bound name ndoes not occur in dom(E). By Lemma 16, E; n:AmbY 0 Z00[Z0T 0] ` 0 : ZT .By (Proc Res), E ` (�n:AmbY 0 Z00[Z0T 0])0 : ZT , that is, E ` P : ZT .(Struct Zero Repl) Then P = !0 and Q = 0.For (1), assume E ` P : ZT . By Lemma 11, E ` �. By (Proc Zero),E ` 0 : ZT , that is, E ` Q : ZT .For (2), assume E ` 0 : ZT . By (Proc Repl), E ` !0 : ZT , that is,E ` P : ZT .(Struct �) Then P = �:P 0 and Q = P 0.For (1), assume E ` P : ZT . This must have been derived from (ProcAction) with E ` � : Cap[ZT] and E ` P 0 : ZT , that is, E ` Q : ZT .For (2), assume E ` P 0 : ZT . By Lemma 11, E ` �. By (Exp �),E ` � : Cap[ZT]. By (Proc Action), E ` �:P 0 : ZT , that is, E ` P : ZT .(Struct :) Then P = (M:M 0):P 0 and Q = M:M 0:P 0.For (1), assume E ` P : ZT . This must have been derived from (ProcAction) with E ` P 0 : ZT , E `M:M 0 : Cap[ZT]. The latter must havecome from (Exp :) with E ` M : Cap[ZT] and E ` M 0 : Cap[ZT], By(Proc Action) twice, E `M:(M 0:P 0) : ZT , that is, E ` Q : ZT .For (2), assume E ` Q : ZT . This must have been derived from(Proc Action), twice, with E ` M : Cap[ZT], E ` M 0 : Cap[ZT], andE ` P 0 : ZT . By (Exp :), E ` M:M 0 : Cap[ZT]. By (Proc Action),E ` (M:M 0):P 0 : ZT , that is, E ` P : ZT .(Struct Go �) Then P = go �:M [P 0] and Q =M [P 0].For (1), assume E ` P : ZT . This must have been derived using (ProcGo), with E ` � : Cap[Z00S], E `M : AmbY 0 Z00[Z0T 0], and E ` P 0 : Z0T 0.By (Proc Amb), E `M [P 0] : ZT , that is, E ` Q : ZT .For (2), assume E ` Q : ZT . This must have been derived using (ProcAmb), with E `M : AmbY 0 Z00 [Z0T 0] and E ` P 0 : Z0T 0. By Lemma 11,E ` �. By (Exp �), E ` � : Cap[Z00S], for some S. By (Proc Go),E ` go �:n[P 0] : ZT , that is, E ` P : ZT . 239

Proof of Theorem 2 If E ` P : ZT and P ! Q then E ` Q : ZT .Proof By induction on the derivation of P ! Q.(Red In) Then P = n[in m:P 0 j P 00] j m[P 000] and Q = m[n[P 0 j P 00] j P 000].Assume E ` P : ZT . This must have been derived from (Proc Par),with E ` n[in m:P 0 j P 00] : ZT and E ` m[P 000] : ZT . The former musthave been derived from (Proc Amb), with E ` n : AmbYn Z0n [ZnTn]and E ` in m:P 0 j P 00 : ZnTn, for some Yn, Zn, Z 0n, and Tn, whilethe latter must have been derived from (Proc Amb) with E ` m :AmbYm Z0m[ZmTm] and E ` P 000 : ZmTm, for some Ym, Zm, Z 0m, and Tm.Moreover, E ` in m:P 0 j P 00 : ZnTn must come from (Proc Par) withE ` in m:P 0 : ZnTn and E ` P 00 : ZnTn. Finally, E ` in m:P 0 : ZnTnmust come from E ` in m : Cap[ZnTn] and E ` P 0 : ZnTn. (HenceZn =y, since the former judgment can only be derived using (ExpIn).) By (Proc Par), we have E ` P 0 j P 00 : ZnTn, and by (ProcAmb) we can derive E ` n[P 0 j P 00] : ZmTm. Then, by (Proc Par),we have E ` n[P 0 j P 00] j P 000 : ZmTm. By (Proc Amb) we can deriveE ` m[n[P 0 j P 00] j P 000] : ZT , that is, E ` Q : ZT .(Red Out) Then P = m[n[out m:P 0 j P 00] j P 000] and Q = n[P 0 j P 00] jm[P 000]. Assume E ` P : ZT . This must have been derived from (ProcAmb) using E ` m : AmbYm Z0m [ZmTm] and E ` n[out m:P 0 j P 00] jP 000 : ZmTm for some Ym, Zm, Z 0m, and Tm, and from (Proc Par) usingE ` n[out m:P 0 j P 00] : ZmTm and E ` P 000 : ZmTm. The former musthave been derived using (Proc Amb) from E ` n : AmbYn Z0n[ZnTn] andE ` out m:P 0 j P 00 : ZnTn for some Yn, Zn, Z 0n, and Tn, and using (ProcPar) from E ` out m:P 0 : ZnTn and E ` P 00 : ZnTn. The former musthave been derived using (Proc Action) from E ` out m : Cap[ZnTn]and E ` P 0 : ZnTn (Hence Zn =y, since the former judgment can onlybe derived using (Exp Out).) By (Proc Par), E ` P 0 j P 00 : ZnTn. By(Proc Amb), E ` n[P 0 j P 00] : ZT . By (Proc Amb), E ` m[P 000] : ZnTn.By (Proc Par), E ` n[P 0 j P 00] j m[P 000] : ZT , that is, E ` Q : ZT .(Red Open) Then P = open n:P 0 j n[P 00] and Q = P 0 j P 00. AssumeE ` P : ZT . This must have been derived using (Proc Par) fromE ` open n:P 0 : ZT and E ` n[P 00] : ZT . The former must havebeen derived using (Proc Action) with E ` open n : Cap[ZT] andE ` P 0 : ZT , while the latter must have been derived using (Proc40

Amb) with E ` n : AmbY 0 Z00[Z0T 0] and E ` P 00 : Z0T 0 for some Y 0,Z 0, Z 00, and T 0. The judgment E ` open n : Cap[ZT] must have beenderived using (Exp Open) from E ` n : Amb�Z000[ZT] By Lemma 13,AmbY 0 Z00[Z0T 0] = Amb�Z000 [ZT], and so Y 0 = �, Z 00 = Z 000, Z 0 = Z, andT 0 = T . Hence, by (Proc Par), E ` P 0 j P 00 : ZT , that is, E ` Q : ZT .(Red Comm) Then P = (n1:W1; : : : ; nk:Wk):P 0 j hM1; : : : ;Mki and Q =P 0fn1 M1; : : : ; nk Mkg. Assume E ` P : ZT . This must havebeen derived from (Proc Par) with E ` (n1:W1; : : : ; nk:Wk):P 0 : ZTand E ` hM1; : : : ;Mki : ZT . The former must have been derived from(Proc Input) with E; n1:W1; : : : ; nk:Wk ` P 0 : ZT and T =W1�� � �Wk.The latter judgment E ` hM1; : : : ;Mki : ZT must have been derivedfrom (Proc Output) with E ` Mi : W 0i for each i 2 1::k, and T =W 01 � � � � �W 0k. Hence W 0i = Wi for each i 2 1::k. By k applications ofLemma 17, we get E ` P 0fn1 M1; : : : ; nk Mkg : ZT .(Red Go In) Here P = go (inm:N):n[Pn] j m[Pm] and Q = m[goN:n[Pn] jPm]. Assume E ` P : ZT . This must have been derived using (ProcPar) from E ` go (inm:N):n[Pn] : ZT and E ` m[Pm] : ZT . The formermust have been derived using (Proc Go) with E ` in m:N : Cap[yS],E ` n : AmbYny[ZnTn], and E ` Pn : ZnTn, for some S, Yn, Zn, andTn, and the latter must have been derived using (Proc Amb) with E `m : AmbYm Z0m[ZmTm] and E ` Pm : ZmTm for some Ym, Zm, Z 0m, andTm. Moreover, the judgment E ` in m:N : Cap[yS] must have beenderived using (Exp .) from E ` in m : Cap[yS] and E ` N : Cap[yS].By (Proc Go) and (Proc Par), E ` go N:n[Pn] j Pm : Zm;Tm . By (ProcAmb), we get E ` m[go N:n[Pn] j Pm] : ZT , that is, E ` Q : ZT .(Red Go Out) Here P = m[go (outm:N):n[Pn] j Pm] and Q = goN:n[Pn] jm[Pm]. Assume E ` P : ZT . This must have been derived using (ProcAmb) from E ` m : AmbYm Z0m [ZmTm] and E ` go (out m:N):n[Pn] jPm : ZmTm for some Ym, Zm, Z 0m, and Tm, and from (Proc Par) withE ` go (out m:N):n[Pn] : ZmTm and E ` Pm : ZmTm. The formermust have been derived using (Proc Go) from E ` outm:N : Cap[yS],E ` n : AmbYny[ZnTn], and E ` Pn : ZnTn for some S, Yn, Zn, and Tn.The judgment E ` out m:N : Cap[yS] must have been derived using(Proc :) using E ` out m : Cap[yS] and E ` N : Cap[yS]. By (ProcGo), E ` go N:n[Pn] : ZT . By (Proc Amb), E ` m[Pm] : ZT . By (ProcPar), E ` go N:n[Pn] j m[Pm] : ZT , that is, E ` Q : ZT .41

(Red Res) Here P = (�n:W)P 0 and Q = (�n:W)Q0 with P 0 ! Q0. As-sume E ` P : ZT . This must have been derived using (Proc Res)from E; n:AmbY 0 Z00[Z0T 0] ` P 0 : ZT with W = AmbY 0 Z00[Z0T 0]. Byinduction hypothesis, E; n:AmbY 0 Z00[Z0T 0] ` Q0 : ZT . By (Proc Res),E ` (�n:AmbY 0 Z00[Z0T 0])Q0 : ZT , that is, E ` Q : ZT .(Red Amb) Here P = n[P 0] and Q = n[Q0] with P 0 ! Q0. Assume E `P : ZT . This must have been derived using (Proc Amb) from E ` n :AmbY 0 Z00[Z0T 0] and E ` P 0 : Z0T 0. By induction hypothesis, E ` Q0 :Z0T 0. By (Proc Amb), E ` n[Q0] : ZT , that is, E ` Q : ZT .(Red Par) Here P = P 0 j R and Q = Q0 j R with P 0 ! Q0. AssumeE ` P : ZT . This must have been derived using (Proc Par) fromE ` P 0 : ZT and E ` R : ZT . By induction hypothesis, E ` Q0 : ZT .By (Proc Par), E ` Q0 j R : ZT , that is, E ` Q : ZT .(Red �) Here P � P 0, P 0 ! Q0, and Q0 � Q. Assume E ` P : ZT . ByProposition 18, E ` P 0 : ZT . By induction hypothesis, E ` Q0 : ZT .By Proposition 18, E ` Q : ZT . 2

42

