Mobility Types for Mobile Ambients

Luca Cardelli Giorgio Ghelli
Microsoft Research Pisa University

Andrew D. Gordon
Microsoft Research

June 2, 1999

Technical Report
MSR-TR-99-32

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

A shortened version of this paper appears in the proceedings of the Inter-
national Conference on Automata, Languages, and Programming, Prague,
Czech Republic, 11-15 July 1999. The proceedings is published by Springer
Verlag as a volume of the series Lecture Notes in Computer Science.

Mobility Types for Mobile Ambients

Luca Cardelli Giorgio Ghelli
Microsoft Research Pisa University

Andrew D. Gordon
Microsoft Research

June 2, 1999

Abstract

An ambient is a named cluster of processes and subambients, which
moves as a group. The untyped ambient calculus is a process calculus
in which ambients model a variety of concepts such as network nodes,
packets, channels, and software agents. In these models, some ambi-
ents are intended to be mobile, some immobile; and some are intended
to be ephemeral, some persistent. We describe type systems able to
formalize these intentions: they can guarantee that an ambient will
remain immobile, and that an ambient will not be dissolved by its en-
vironment. These guarantees could help establish security properties
of models, for instance. A novel feature of our type systems is their
distinction between mobile and immobile processes.

Contents
1 Motivation

2 Mobility and Locking Annotations
2.1 An Example of Ambient Behavior (Review)
2.2 Syntax and Operational Semantics
2.3 The Type System
2.4 Encoding Channels,

3 Objective moves
3.1 Subjective versus Objective Moves
3.2 Syntax and Operational Semantics
3.3 The Type System
3.4 Encoding Channels, Again

4 Encoding a Distributed Language
5 Conclusions and Related Work
A Proof of Theorem 1

B Proof of Theorem 2

13
13
14
15
18

18

25

29

35

1 Motivation

The ambient calculus [CG98] is a process calculus that focuses primarily on
process mobility rather than process communication. An ambient is a named
location that may contain processes and subambients, and that can move as
a unit inside or outside other ambients. Processes within an ambient may
cause their enclosing ambient to move, and may communicate by anonymous
asynchronous messages dropped into the local ether. Moreover, processes
may open subambients, meaning that they can dissolve an ambient boundary
and cause the contents of that ambient to spill into the parent ambient. The
ability to move and open ambients is regulated by capabilities that processes
must possess by prior knowledge or acquire by communication.

In earlier work [CG99] we studied type systems for the ambient calcu-
lus that control the exchange of values during communication. Those type
systems are designed to match the communication primitives of the ambient
calculus, but are able to express familiar typings for processes and functions.
They are therefore successful in showing that the typed ambient calculus is
as expressive as typed process and function calculi. Still, those type systems
say nothing about process mobility: they guarantee that communication is
well-typed wherever it may happen, but do not constrain the movement of
ambients.

In this paper we study type systems that control the movement of am-
bients through other ambients. Our general aim is to discover type systems
that can be useful for constraining the mobility behavior of agents and other
entities that migrate over networks. Guarantees provided by a type system
for mobility could then be used for security purposes, in the sense exempli-
fied by Java bytecode verification [LY97]. The idea of using a type system to
constrain dynamic behavior is certainly not new, but this paper makes two
main contributions. First, we exhibit type systems that constrain whether
or not an ambient is mobile, and whether or not an ambient may be opened.
Although previous authors [AP94, RH98, Sew98| use syntactic constraints to
determine whether or not a process or location can move, the use of typing to
draw this distinction appears to be new. Second, we propose a new mobility
primitive as a solution to a problem of unwanted propagation of mobility
effects from mobile ambients to those intended to be immobile.

Section 2 describes our system of mobility and locking annotations, and
illustrates it using the example of encoding communication channels. The
type system of [CG99] is included in the one presented here, and we survey it

in passing. In Section 3 we discuss the mobility primitive mentioned above;
it is derivable in the untyped calculus, but not in the system of Section 2, and
hence needs to be typed specially. Section 4 examines typed encodings of a
distributed language that supports thread migration between hosts. Section 5
concludes and surveys related work.

2 Mobility and Locking Annotations

This section explains our basic type system for mobility, which directly ex-
tends our previous untyped and typed calculi.

2.1 An Example of Ambient Behavior (Review)

Although we assume in this paper some familiarity with the untyped ambient
calculus [CG98|, we begin by reviewing its main features by example.
The process

a[plout a.in b.(M)]] | blopen p.(z).Q)]

models the movement of a packet p, which contains a message M, from
location a to location b. The process plout a.in b.(M)] is an ambient named
p that contains a single process out a.in b.(M). It is the only subambient
of the ambient named a, which itself has a sibling ambient b[open p.(x).Q).
The terms out a, in b, and open p are capabilities, which processes exercise
to cause ambients to move or to be opened.

In this example, the process out a.in b.(M) exercises the capability out a,
which causes its enclosing ambient, the one named p, to exit its own parent,
the one named a, so that p[in b.(M)] now runs in parallel with the ambients
a and b. Next, the process in b.(M) causes the ambient p to enter b, so that
p[(M)] becomes a subambient of b. Up to this point, the process openp.(x).Q
was blocked, but now open p can dissolve the boundary p. Finally, the input
(x).Q) consumes the output (M), to leave the residue al] | b[Q{x<M}], where
Q{x< M} is the outcome of replacing each occurrence of x in) with the
expression M.

Two additional primitives of our calculus are replication and restriction.
Just as in the m-calculus [Mil91], a replication !P behaves the same as an
infinite array of replicas of P running in parallel, and a restriction (vn)P
means: pick a completely fresh name, call it n, then run P.

2.2 Syntax and Operational Semantics

We recall the syntax of the typed ambient calculus from [CG99]. This is the
same syntax as the original untyped ambient calculus [CG98], except that
type annotations are added to the v and input constructs, and that input
and output are polyadic. We explain the types that appear in the syntax in
the next section.

Expressions and Processes:

M = expression
n name
wn M enter into M
out M exit out of M
open M open M
€ null
M.M' path

P,Q,R = process
(vn:W)P restriction
0 inactivity
P|Q composition
'P replication
M|[P] ambient
M.P action
(x:Wh, ..oz Wy). P input action
(M, ..., M) async output action

We identify processes up to the consistent renaming of bound names. We
write P{n<—M} for the substitution of the term M for each free occurrence of
the name n in process P. We often use the notations M and n[] as shorthands
for the processes M.0 and n[0], respectively.

A structural equivalence relation P = () identifies certain processes P
and) whose behavior ought always to be equivalent:

Structural congruence:

P=P (Struct Refl)
Q=P=P=Q (Struct Symm)

=R=P=R
(vn:W)P = (vn:W)Q
PIR=Q|R

TTUYTT Y
[T TR T
QOO OD
Lo

S

I

é

oF
=
8
=
5
|
=
=
8
=
2

N
SO

I
AT

G

! 'P

ny # ng =
(vny:W1) (vng:Wa) P = (vng:Ws) (vny:Wh) P
(vn:W)(P|1Q)=P| (vn:W)Q

n#m = (vn:W)m[P] = m[(vn:W)P]

pPlo=rP

(vn:Amb* [?T])0 = 0

'0=0

eP=P

(M.M').P = M.M'.P

(Struct Trans)
(Struct Res)
(Struct Par)
(Struct Repl)
(Struct Amb)
(Struct Action)
(Struct Input)

(Struct Par Comm)
(Struct Par Assoc)
(Struct Repl Par)
(Struct Res Res)

(Struct Res Par)

(Struct Res Amb)
(Struct Zero Par)

(Struct Zero Res)

(Struct Zero Repl)
(Struct €)

(Struct .)

We specify process behavior via a reduction relation, P — (). The first
four rules describe the effects of, respectively, in, out, open, and communi-

cation.

Reduction:

nlinm.P | Q] [m[R] — —mn[P| Q]|]
m[nlout m.P | Q][R] = n[P | Q][m[R]
open n.P | n[Q)] - P|Q

<M1, ceey Mk> | (QZ'l:Wl, c ,l‘ka)P

— P{ay« DM, ... oM}

P—Q =P|R—Q|R
P—qQ = (vn:W)P — (vn:W)Q
P—Q = n[P] — n|Q)]

PP=PP—QQ=Q" =P —Q

(Red In)
(Red Out)
(Red Open)

Red 1/0)

(

(Red Par)
(Red Res)
(Red Amb)
(Red =)

2.3 The Type System

The basic type constructions from [CG99] are the ambient types Amb[T] and
the capability types Cap[T]. A type of the form Amb[T] describes names that
name ambients that allow the exchange of 1" information within. A type of
the form Cap[T] is used to track the opening of ambients: it describes capa-
bilities that may cause the unleashing of 7" exchanges by means of opening
subambients into the current one. An exchange is the interaction of an input
and an output operation within the local ether of an ambient. The exchange
types, T', can be either Shh (no exchange allowed) or a tuple type where each
component describes either a name or a capability.

In this paper, we enrich these types with two attributes indicating whether
an ambient can move at all, and whether it can be opened. These attributes
are intended as two of the simplest properties one can imagine that are
connected with mobility. (In another paper [CGG99] we investigate more
expressive and potentially more useful generalizations of these attributes.)

We first describe the locking attributes, Y. An ambient can be declared
to be either locked (*) or unlocked (°). Locked ambients can never be opened,
while unlocked ambients can be opened via an appropriate capability. The
locking attributes are attached to the Amb[T] types, which now acquire the
form AmbY [T]. This means that any ambient whose name has type Amb* [T]
may (or may not) be opened, and if opened may unleash 7" exchanges.

We next describe the mobility attributes, Z. In general, a process can
produce a number of effects that may be tracked by a type system. Previ-
ously we tracked only communication effects, 7. We now plan to track both
mobility and communication effects by pairs of the form 47, where Z is a
flag indicating that a process executes movement operations (™) or does not
(), and T is as before. A process with effects #T" should be allowed to run
only within a compatible ambient, whose type will therefore have the form
Amb[?T). A capability, when used, may now cause communication effects or
mobility effects, and its type will have the form Cap[?T]. An in or an out
capability directly causes a mobility effect, whereas an open capability may
indirectly cause both communication and mobility effects.

The following table describes the syntax of our types. An ambient type
AmbY [?T) describes the name of an ambient whose locking and mobility
attributes are Y and Z, respectively, and which allows 71" exchanges.

Types:

locking annotation
locked
unlocked

mobility annotation
mobile
immobile

= message type
AmbY [T ambient name
Cap[?T)| capability

T .= exchange type
Shh no exchange
Wi x---x W, tuple exchange

i<y lioe i

The type rules are formally described in the next tables. There are three
typing judgments: the first constructs well-formed environments, the second
tracks the types of messages, and the third tracks the effects of processes.
The rules for in and out introduce mobility effects, and the rule for open
requires unlocked ambients. The handling of communication effects, 7', is
exactly as in [CG99].

Judgments:

Etro good environment

E-M:W good expression of message type W
EFP:2T good process with mobility Z exchanging T’

Good environment:
I 1

(Env @) (Env n)
EtFo n¢dom(E)

o EnWWiko

Good expression of type W:

(Bxp n)
E' nW,E"F o

E'nW,E"Fn:W

(Exp €) (Exp .)

Eko EvEM: Capl?T] Et M': Capl?T]
Ete: Capl?T) E+ M.M'": Cap|?T]
(Exp In) (Exp Out) (Exp Open)
Etn: AmbY[?T)| Etn: AmbY[?T)| Etn: Amb°[?T)|
Etinn: Cap[™T'| Et outn: Cap[™T'] E & open n : Capl?T)

Good process with mobility Z exchanging 7"

(Proc Action) (Proc Amb)

EvFM: Capl?T] EvP:7T E+M:Amb¥[?T) EFP:*T

E+M.P:2T E+ M[P]: 7T

(Proc Res) (Proc Par)

E,n:AmbY [T - P . 2T E-P:2T ERQ:%T
EF (vn:AmbY [?T))P - Z'T" E-P|Q:%T
(Proc Repl) (Proc Input)

EFP:2T E,niWi,...,ngWyEP:Z2Wy x oo x W,
Er'P:%T EF (ny:Wy, ... ngWy).P:2Wy X -+ - x W,
(Proc Output) (Proc Zero)

E-M Wy - EF M, :W,; ElFo

EF (My,..., M) :ZWy x - x W, EFO0:7T

For example, consider the untyped process discussed in Section 2.1:

a[plout a.in b.(M)]] | blopen p.(z).Q)]

Suppose that the message M has type W. We can type the process under the
assumption that a is a locked, immobile ambient (Amb®[*Shh]), that p is an
unlocked, mobile ambient (Amb°[~ W), and that b is a locked, mobile ambi-
ent (Amb*[™W]). More formally, under the assumptions E = a : Amb®[*Shh],
EbFp: Amb°’["W]|, EFb: Amb* W], EF- M : W, and E,c:W = P: "W
we can derive that E a[p[out a.in b.(M)]] | blopen p.(x:W).P] : *Shh. Note
that the ambient b cannot be annotated as immobile, because within it, the
mobile ambient p is opened.

Moreover, here are four examples of processes that are not typable. Pro-
cesses (1) and (2) violate a mobility assumption. Process (3) violates a
locking assumption, while process (4) violates a communication assumption.

1) (2:AmbY [“T)).x[out m]

2) (vn:AmbY [*T))(n[open m] | m[in n.out p))

3

(
(
(
(4

)
) (

) (vn:Amb*[?T1)(n]] | (n) | (: Amb®[“T]).open x)
) (vn:Amb*[*T1)(n[] | (n) | (z: Amb°[“T]).open x)

As customary, we can prove a subject reduction theorem asserting the
soundness of the typing rules. It can be interpreted as stating that every
communication is well-typed, that no locked ambient will ever be opened,
and that no in or out will ever act on an immobile ambient. As in earlier
work [CG99], the proof is by induction on derivations.

Theorem 1 IfEF-P:?T and P — Q then EF Q : “T.
Proof See Appendix A. O

Remark 1 The type system of [CG99] can be embedded in the current type
system by taking Amb|T) = Amb°[™T)] and Cap[T]| = Cap|™T].

2.4 Encoding Channels

Communication in the basic ambient calculus happens in the local ether of
an ambient. Messages are simply dropped into the ether, without specifying
a recipient other than any process that does or will exist in the current
ambient. Even within the ambient calculus, though, one often feels the need
of additional communication operations, whether primitive or derived.

The familiar mechanism of communication over named channels, used by
most process calculi, can be expressed fairly easily in the untyped ambient
calculus. We should think, though, of a channel as a new entity that may
reside within an ambient. In particular, communications executed on the
same channel name but in separate ambients will not interact, at least until
those ambients are somehow merged.

The basic idea for representing channels is as follows; see [CG98, CG99]
for details. If ¢ is the name of a channel we want to represent, then we use

a name ¢” to name an ambient that acts as a communication buffer for c.
We also use a name c? to name ambients that act as communication packets
directed at ¢. The buffer ambient opens all the incoming packet ambients
and lets their contents interact. So, an output on channel c is represented as
a c? packet that enters ¢’ (where it is opened up) and that contains an output
operation. Similarly, an input on channel c¢ is represented as a ¢ packet that
enters ¢ (where it is opened up) and that contains an input operation; after
the input is performed, the rest of the process exits the buffer appropriately
to continue execution. The creation of a channel name c is represented as
the creation of the two names ¢’ and ¢?. Similarly, the communication of a
channel name c is represented as the communication of the two names ¢” and
cP.

This encoding of channels can be typed within the type system of [CG99].
Let Ch[T] denote the type of a channel ¢ exchanging messages of type 7". This
type can be represented as Amb[T] x Amb[T], which is the type of the pair of
names c’, ¢?. Packets named ¢? have exchange type T by virtue of performing
corresponding inputs and outputs. Buffers named ¢ have exchange type T'
by virtue of opening ¢ packets, and unleashing their exchanges.

The natural question now is whether we can type this encoding of channels
in the type system given earlier. This can be done trivially by Remark 1,
by making all the ambients movable and openable. But this solution is not
very satisfactory. In particular, now that we have a type system for mobility,
we would like to declare the communication buffers to be both immobile and
locked, so that channel communication cannot be disrupted by accidental
or malicious activities. Note, for example, that a malicious packet could
contain instructions that would cause the buffer to move when the packet
is opened. Such a packet should be ruled out as untypable if we made the
buffer immobile.

The difficulty with protecting buffers from malicious packets does not
arise if we use a systematic translation of a high-level channel abstraction
into the lower-level ambient calculus. However, in a situation where code is
untrusted (for example, mobile code received from the network), we cannot
assume that the ambient-level code interacting with the channel buffers is
the image of a high-level abstraction. Thus, we would like to typecheck the
untrusted code to make sure that it satisfies the mobility constraints of the
trusted environment.

We now encounter a fundamental difficulty that will haunt us for the rest
of this section and all of the next. In the type system given earlier, we cannot

declare buffers to be immobile, because buffers open packets that are mobile;
therefore, buffers are themselves potentially mobile. Packets must, of course,
be mobile because they must enter buffers.

We have explored several possible solutions to this problem. In the rest
of this section we present a different (more complex) encoding of channels
that satisfies several of our wishes. In the next section we add a typed prim-
itive that allows us to use an encoding similar to the original one; this new
primitive has other applications as well. In addition, one could investigate
more complex type systems that attempt to capture the fact that a well-
behaved packet moves once and then becomes immobile, or some suitable
generalization of this notion.

The idea for the encoding shown below comes from [CG99|, where an
alternative encoding of channels is presented. In that encoding there are
no buffers; the packets, though, are self-coalescing, so that each packet can
act as an exchange buffer for another packet. Here we combine the idea of
self-coalescing packets with an immobile buffer that contains them. Since
nothing is opened directly within the buffer, the difficulty with constraining
the mobility of buffers, described above, disappears. A trace of the difficulty,
though, remains in that a process performing an input must be given a mobile
type, even when it performs only channel communications.

We formalize our encoding of channels by considering a calculus obtained
from the system given earlier by adding operations for creating typed chan-
nels ((ve:Ch[CY, ..., Cg])P where the C;’s are channel types) and for typed
inputs and outputs over them (c¢(ny, ..., ng) and ¢(z1:Cy, .. ., 25:Cy).P, where
¢ is the channel name, the n;’s are other channel names that are communi-
cated over it, and the C;’s are channel types).

We assemble the extended calculus by adding a new syntactic category
of channel types, C', and by extending the syntactic category of processes:

An ambient calculus with channels:

C = channel type

Ch[Ch, ..., C] channel carrying tuples of channels
P,Q.R::= process

. as in Section 2.2

(ve:C)P new channel

Ny, ... ng) output on a channel

(x1:C, ..., 2:Cy).P input off a channel

10

The syntax of locking and mobility annotations, and message and exchange
types is unchanged.

We write the three judgments of the type system of the extended calculus
as B oy 0, E by M : W, and E Fy, P : T. We write F, instead of I
to distinguish these judgments from those of the original calculus. The new
judgments are defined by the same rules as before together with the following:

Channel I/0:

(Env c) (Ch Res)

Etg o c¢ dom(E) E n:Cry P:%T
E,c.cClty o Ety (vn:C)P 2T

(Ch Input)

Etg c: ChlCy,...,Ckl E,2::Cy,...,05:Cx by P: 2T Z =
FE l_ch c(xl:C'l, .. ,ka’k)P : ZT

(Ch Output)
El_chC§W EI—ChMl:C'l El—cth:C’k

E l_ch C<M1,...,Mk> . ZT

Since the syntaxes of message and channel types are independent, ether
I/O can only communicate ambient names and capabilities, and channel I/O
can only communicate channel names. There is a more liberal variant of
the extended calculus in which the syntax of message and channel types
are combined, and both kinds of I/O can communicate all three kinds of
data. We prefer the version above to the more liberal variant, because the
translation of the liberal variant into the ambient calculus without channels
is more complicated than the translation of the version above, but no more
informative.

The following tables describe a translation of the extended calculus into
the one without channels. In the translation, a packet sent or received on
a channel ¢ is encoded by an ambient named ¢’ whose type is mobile and
unlocked, but the channel itself is encoded by an ambient named ¢ whose
type is immobile and locked. Therefore, the type system guarantees that the
channel cannot be tampered with by rogue processes.

11

Translation of the extended calculus:

[E] environment obtained from E

[C]° type for buffers representing channels of type C
[C]P type for packets on channels of type C

[P] process obtained from P

Translation of environments:

I
A

[9] =@
[E,n:W] = [E], n:-W
[E, ¢:C] = [E], &:[C]°, ¢*:[C]

Translation of channel types:

I[[C’h[Cl, ., Cy]]P = Amb®[*Shh)
[CRICY,...,CLl]F = Amb°[~[C1]° % [Ch]? x - - x [Ck]? x [Ck]?]

Translation of processes:

| vn:W)P] = (vn:W)[P]

—

ay: W, e W) Pl = (W, 2 W) [P]
, ..,J\fkﬂ] = (My,..., M)
ve:0)P] = (v [OP) (e [CP) (] | [P])
c(nyy...,ng)] = Plin P.(lopen # | in | (nb,nf, ... ,nk nh))]
(xl:Cl, PN ,.ZCkZC’k).PmT]] é
(vs:Amb°[™T])
(open s | Plin .(lopen cP | in cP |
(25:[Ch]°, ab:[ChlP, . . ., 2l Cr]®, 2h: [Cr]P).
s[lout c? | out .[P]])])
for s ¢ {c, c?, } U fn([P])

12

(The translation [c¢(z1:CY, . .., x,:Ck).P~7] depends on the type of the pro-
cess P, which we indicate by the subscript ™7'.)

Proposition 1
(1) If E by, © then [E] F <.
(2) If EFyy M 2 W then [E] - M : W.
(3) If Etyyc: C then [E] ¢ : [C]° and [E] F ¢? : [C]P.
(4) If Etey P2 T then [E] - [P] 7 T.
Proof By inductions on the derivations.]

In summary, this translation demonstrates a typing of channels in which
channels are immobile ambients. However, a feature of this typing is that in
an input c(x1:Wy, ..., x:Wy).P, the process P is obliged to be mobile. The
next section provides a type system that removes this obligation.

3 Objective moves

3.1 Subjective versus Objective Moves

The movement operations of the standard ambient calculus are called “sub-
jective” because they have the flavor of “I (ambient) wish to move there”.
Other movement operations are called “objective” when they have the flavor
of “you (ambient) should move there”. Objective moves can be adequately
emulated with subjective moves [CG98]: the latter were chosen as primitive
on the grounds of expressive power and simplicity.

Certain objective moves, however, can acquire additional interpretations
with regard to the typing of mobility. In this section we introduce objec-
tive moves, and we distinguish between subjective-mobility annotations (the
ones of Section 2) and objective-mobility annotations. It is perhaps not too
surprising that the introduction of typing constructs requires the introduc-
tion of new primitives. For example, in both the m-calculus and the ambient
calculus, the introduction of simple types requires a switch from monadic to
polyadic I/O.

We consider an objective move operation that moves to a different loca-
tion an ambient that has not yet started. It has the form go N.M[P] and has

13

the effect of starting the ambient M[P] in the location reached by following,
if possible, the path N. Note that P does not become active until after the
movement is completed.

Unlike in and out, this go operation does not move the ambient enclosing
the operation. Possible interpretations of this operation are to install a piece
of code at a given location and then run it, or to move the continuation of a
process to a given location.

When assigning a mobility type to the go operation, we can now make a
subtle distinction. The ambient M|[P] is moved, objectively, from one place
to another. But after it gets there, maybe the process P never executes
subjective moves, and therefore M can be declared subjectively immobile.
Moreover, the go operation itself does not cause its surrounding ambient to
move, so it may also be possible to declare the surrounding ambient subjec-
tively immobile.

Therefore, we can move an ambient from one place to another without
noticing any subjective-mobility effects. Still, something got moved, and we
would like to be able to track this fact in the type system. For this purpose,
we introduce objective-mobility annotations, attached to ambients that may
be objectively moved. In particular, an ambient may be objectively mobile,
but subjectively immobile.

In conclusion, we achieve the task, impossible in the type system of Sec-
tion 2, of moving an immobile ambient, once. (More precisely, the possible
encodings of the go operation in terms of subjective moves are not typable in
the type system of Section 2 if we set M to be immobile.) The additional ex-
pressive power can be used to give a better typing to communication channels,
by causing a communication packet to move into a buffer without requiring
the packet to be itself subjectively mobile, and therefore without having to
require the buffer that opens the packet to be subjectively mobile.

3.2 Syntax and Operational Semantics

To formalize these ideas, we make the following changes to the system of
Section 2. Using objective moves we can type an encoding of channels which
eliminates the immobility obligation noted at the end of the previous section.
Moreover, in Section 4, objective moves are essential for encoding an example
language, in which mobile threads migrate between immobile hosts.

14

Processes:

P,Q.R = process
. as in Section 2.2
go N.M|P)| objective move

Structural congruence:

P=0Q= go N.M[P] = go N.M[Q)]
(vn:AmbY 2" [2T))0 = 0
g0 e.M[P] = M|P]

(Struct Go)
(Struct Zero Res)
(Struct Go e)

Reduction:

go (in m.N).n[P] | m[Q] — mlgo Nn[P]| Q]
mlgo (out m.N).n[P] | Q] — go N.n[P] | m[Q)]

(Red Go In)
(Red Go Out)

Objective moves can be mimicked in the untyped ambient calculus by tak-
ing goN.M|[P] to be a shorthand for the untyped process (vk)k[N.M[outk.P]|
for k£ not free in N.M[P]. This encoding is typable in the type system of the
previous section, but only under the restriction that the process P is subjec-
tively mobile. We propose primitive typing rules for objective moves so that

P may be subjectively immobile.

3.3 The Type System

The types of the system extended with objective moves are the same as the
types in Section 2, except that the types of ambient names are Amb¥? 12T,
where Y is a locking annotation, 7" is an exchange type, and Z' and Z
are an objective-mobility annotation and a subjective-mobility annotation,

respectively.

Types:

Y = ambient locking
° locked
o unlocked

Z = mobility effects

15

~ mobile
v immobile

W = message types
AmbY 27T ambient name
Cap|?T)| capability

T .= exchange types
Shh no exchange
Wiy x---x W, tuple exchange

The typing rules of the extended system are similar to the rules from
Section 2. The only interesting use of the objective-mobility annotations is
in the one new rule, (Proc Go), which types objective moves: (Proc Go)
constrains the objective-mobility annotation, Z’, of the ambient to be the
same as the mobility effect of the capability, N. So, if N is inn or out n, say,
Z" must be ~, the mobility effect of N. On the other hand, (Proc Go) does
not constrain the subjective-mobility annotation, Z, of the ambient. So the
process P within the ambient may be either mobile or immobile.

Judgments:

EFo good environment

E-M:W good expression of message type W
E-P:2T process with mobility Z exchanging T'

Good expressions:

(Bxp n)
E' nW, E"F o
E'nW,E"Fn:W
(Exp) (Exp .)
EFo EvEM: Capl?T] Et M': Cap[”T]
Ete: Cap[?T] E+ MM : Cap[?T)]
(Exp In) (Exp Out) (Exp Open)
EFn:AmbY 22T EFn: AmbY Z'[2T] EFn:Amb°Z[2T]
Etrinn: Cap[™T'] EF outn: Cap[™T'] E + openn : Cap[?T)|

16

Good processes:

(Proc Action) (Proc Amb)
EFM: Cap[?T] EFP:4T EFM:AmbY 2" [?T) ErP 7T
E+-MP:?T Er+ M[P]:Z'T
(Proc Res) (Proc Zero)
E,n:Amb" 2" [T P - 2T Ero
E v (vn:AmbY 2" [#T))P : 7'T’ EFO0:7T
(Proc Par) (Proc Repl)
E-P:?’T EFQ:’T EvFP:7T
EFP|Q:?T EF!P:7T

(Proc Input)
E,m:Wl,...,nk:Wk "PIZW1 X X Wk

E+ (TL12W1, ce ,nka)P . ZW1 XX Wk

(Proc Output)
E-M Wy -+ EFM,:Wg

E|_<M1,...,Mk>§ZW1X"'XWk

(Proc Go)
EvFN:Capl?S] E+-M:Amb¥?[?T| E+P:7T
Et+ go N.M[P]: Z"T"

Theorem 2 IfE-P: 4T and P — Q then EF Q : #T.

Proof See Appendix B.

O

Objective moves allow us to type the example of sending a packet from
ambient a to ambient b more flexibly than in the previous section. We rewrite

the example to use object moves:

a[go (out a.in b).p[(M)]] | blopen p.(x:W).P]

Then, if we assume E = M : W, E Fa : Amb*“[*Shh], B+ p: Amb° ~[*W],

E+-b: Ambol[zw]) E,acWEP: ‘W we get the typing:
E = algo (out a.in 0)p[(M)]] | open p.(z:17).P] : *Shh

17

Unlike the situation in Section 2.3, ambients a and b can be annotated as
both objectively and subjectively immobile. This is desirable if @ and b are
intended to represent immobile hosts on a network.

3.4 Encoding Channels, Again

Now, recall the extension of our previous system with channel-based commu-
nication. We can extend our new system with channels in a similar way. The
new rules for channels are exactly as in Section 2, except that this time we
can drop the side-condition Z = ~ in the typing rule for channel input, (Ch
Input). We can adapt our translation from Section 2.4 to exploit objective
moves; here are the clauses that change:

Expressing channels with ambients, using objective moves:
[[Ch[Cl,...,(J 1P = Amb°[~[Ch] % ... x [Ck]]

[CR[Cy,...,CLl]P = Amb®[~[C1] X ... x [Cy]]

[(ve:C)P]]é (v [CT°) (ver:[CTP) ("[Lopen ¢] | [P])

[

[

el omi)] 2 go in . [(nd ..,k)

<7’L1, o n
c(z1:Cy, ..., x1:Cy).Pep] =
(l/s.Ambom[ZT])
(open s |
go in &.cP[(2b:[C1]°, b [CL]P, . . ., 2b:[Ck]’, 2R :[Ck]P). go out .s[[P]]])
for s ¢ {c®, ¢, } U fn([P])

Exactly as before, we can show that the translation from the calculus
with channels to the one without preserves typing derivations. This time,
however, the translation does not constrain the mobility of processes per-
forming inputs: the mobility effect Z of the process P in a channel input
c(x1:CY, ..., 25:Ck).P may be either mobile or immobile.

4 Encoding a Distributed Language

In this section, we consider a fragment of a typed, distributed language in
which mobile threads can migrate between immobile network nodes. We
obtain a semantics for this form of thread mobility via a translation into
the ambient calculus. In the translation, ambients model both threads and

18

nodes. The translation illustrates the extended type system of Section 3. In
particular, the typing of the translation guarantees that an ambient modeling
a node moves neither subjectively nor objectively. On the other hand, an
ambient modeling a thread is free to move subjectively, but is guaranteed
not to move objectively.

The computational model is that there is an unstructured collection of
named network nodes, each of which hosts a collection of named communica-
tion channels and anonymous threads. This is similar to the computational
models underlying various distributed variants of the m-calculus, such as
those proposed by Amadio and Prasad [AP94], Riely and Hennessy [RH98|,
and Sewell [Sew98]. In an earlier paper [CG99], we showed how to mimic
Telescript’s computational model by translation into the ambient calculus.
In the language fragment we describe here, communication is based on named
communication channels (as in the m-calculus) rather than by direct agent-
to-agent communication (as in our stripped down version of Telescript). As
in our previous paper, we focus on language constructs for mobility, syn-
chronization, and communication. We omit standard constructs for data
processing and control flow. They could easily be added.

To introduce the syntax of our language fragment, here is a simple exam-
ple:

node a [channel a. | thread[a.(b,b.)]] | node b [channel b,] |
node ¢ [thread|go a.a.(x:Node,y: Ch[Nodel).go z.7{a)]

This program describes a network consisting of three network nodes,
named a, b, and c. Node a hosts a channel a. and a thread running the
code @.(b, b.), which simply sends the pair (b, b.) on the channel a.. Node b
hosts a channel b.. Finally, node ¢ hosts a single thread, running the code:

go a.a.(z:Node, y: Ch[Node]).go x.y{a)

The effect of this is to move the thread from node ¢ to node a. There it
awaits a message sent on the communication channel a.. We may assume
that it receives the message (b, b.) being sent by the thread already at a. (If
there were another thread at node a sending another message, the receiver
thread would end up receiving one or other of the messages.) The thread
then migrates to node b, where it transmits a message a on the channel b,.
Messages on communication channels are assigned types, ranged over
by W. The type Node is the type of names of network nodes. The type

19

Ch[W7i, ..., W] is the type of a polyadic communication channel. The mes-
sages communicated on such a channel are k-tuples whose components have
types Wy, ..., Wg. In the setting of the example above, channel a. has type
Ch[Node, Ch[Node]], and channel b, has type Ch[Node].

Next, we describe the formal grammar of our language fragment. A
network, Net, is a collection of nodes, built up using composition Net |
Net and restrictions (vn:W)Net. A crowd, Cro, is the group of threads
and channels hosted by a node. Like networks, crowds are built up using
composition Cro | Cro and restriction (vn:W)Cro. A thread, Th, is a mobile
thread of control. As well as the constructs illustrated above, a thread may
include the contructs fork(Cro).Th and spawn n [Cro|.Th. The first forks a
new crowd Cro inside the current node, and continues with 7h. The second
spawns a new node node n [Cro] outside the current node, at the network
level, and continues with Th.

A fragment of a typed, distributed programming language:

W = type
Node name of a node
Ch[Wy, ..., W] name of a channel
Net ::= network
(vn:W)Net restriction
Net | Net network composition
node n [Cro] node
Cro ::= crowd of channels and threads
(vn:W)Cro restriction
Cro | Cro crowd composition
channel c channel
thread| Th] thread
Th = thread
gon.Th migration
c(ny, ..., ng) output to a channel
c(xy: Wi, ..., x:W). Th input from a channel
fork(Cro).Th fork a crowd
spawn n [Cro].Th spawn a new node

In the phrases (vn:W)Net and (vn:W)Cro, the name n is bound; its
scope is Net and Cro, respectively. In the phrase c(x:Wh,. .., xp:Wy).Th,

20

the names x4, ..., xy are bound; their scope is the phrase Th.

The type system of our language controls the typing of messages on com-
munication channels, much as in previous schemes for the m-calculus [Mil91].
We formalize the type system using the following five judgments:

Judgments:

IE Fo good environment |
Er-n:W name n has type W

E + Net good network

E+= Cro good crowd

EETh good thread

These judgments are defined by the fairly standard rules in the following
tables.

Good environment:

EFo n¢dom(E)
TFo EnWito

Name has type:

E,n:W,E' + o
EnW EFn: W

Good network:

E,n:W I Net E+ Net Et+ Net' EtFn:Node EF Cro
E t (vn:W)Net E F Net | Net' E + node n [Cro]

Good crowd:

E,n:W F Cro Er Cro EF Cro

E+ (vn:W)Cro E+ Cro | Cro’
Etc: Ch[Wy, ..., W] EFTh
E = channel ¢ E = thread|Th]

21

Good thread:

Etrn:Node EFTh
EtFgon.Th

Etc:ChWy,....W,] Ebn;:W; Viel.k
EFe(ng, ... ,ng)

Ebc: ChWy,..., Wi E,a1:Wi,...,zp:Wy - Th
EtFce(xy:Wy, ... 2 Wy). Th

E-Cro EFTh EFn:Node EFCro EFTh
E + fork(Cro).Th E + spawn n [Cro].Th

We give a semantics to this language fragment via a translation into the
ambient calculus. In the semantics, we use ambients to model the three
notions of node, thread, and channel.

We model a node named n by a box ambient named n®, that is, n’ is a box
holding the contents of the node. We assign n the type Amb*~[*Shh], that is,
it is locked, subjectively immobile, but objectively mobile. In our semantics,
we never need to open up or subjectively move such an ambient, but we need
to use an objective move to model a thread spawning a new node. To assist
in the translation of threads that fork crowds and spawn nodes, we situate a
replicated process open nP within each ambient that models a node n. The
auxiliary name n”; which is derived from the name n, is assigned the type
Amb°™[* Shh).

Much as in Section 3, we model a channel named ¢ by a buffer ambient
named ¢, and we model a packet sent on the channel by a packet ambient
named ¢?. We assign the types Amb**[*T] and Amb°~[*T], respectively, to
these ambients, where 1" is the type of tuples carried by the channel.

We model a thread by an ambient. We assign ambients modeling threads
the type Amb**[™Shh]. We use subjective moves to model thread migration.
We never dissolve threads nor use objective moves on a thread.

Given these explanations, we now present the translation of the language
fragment into our calculus. We begin by translating the type W of a node
or a channel into an ambient type [W].

22

Translation of a type:
[[Node]]b = Amb® [Shh]

[Node]? = Amb°~[* Shh]
[Ch[Wy, ..., Wi]]P = Amb* [[W1]> x [WA]? x - - x [Wi]? x [Wi]?]
I[[C’h[Wl, WP E Ambe W] X [WATE X - - x [Wi]? x [Wi]?]

Now, we translate a network Net, a crowd Grp within a node n, and a
thread Th within a node n and assigned a name ¢, to the ambient processes
[Net], [Grp],, and [Th]E, respectively.

Translation of a network:

I[[(Vn:I/V)Net]] (vnb: W) (vnP:[W]P)[Net] |
[Net | Net] = [Net] | [Net]
[node n [Cro]] = nt[lopen n? | [Cro],)

Translation of a crowd Cro located at n:

I[[(VC:VV) Crol, = (v [W]°) (veP:[W]P)[Cro]n |
[Cro | Cro], = [Cro], | [Cro]n

[channel c], 3 [lopen cP]
[[

thread Th], (Vt Amb'v[“Shh]) t[[Th]:] fort ¢ fn([Th]:)

Translation of a thread 7h named ¢ located at n:

[go m.Th]!, = out n.in m.[Th]!,
[E(ny,....,n)]E = go (out tin ¢).cP[(ny, nk, ... ng,nb)]
[e(zy: W, ..., 2 We). Th], =

(vs:Amb° ™[Shh))

(go (out t.in cb).
P[(b:[W], [WhlP, . .., ab:[Wik]®, ab:[Wi]P).
go (out c®.in t).s[open s.[Th]!]] |
open s.s|])

for s ¢ {t,c, &} U fu([Th],)

23

[fork(Cro). Th]t =
(vs:Amb° [Shh))
(go out t.nP[go (int).s[] | [Cro],] |
open s.[Th]L)
for s ¢ {t,n?} U [Cro], U[Th],
[spawn m [Cro]. Th], =
(vs:Amb° ™[Shh))
(go out t.nP[go in t.s[] |
go out n®.mP[lopen mP | [Cro]]| |
open s.[Th]L)
for s ¢ {t,n", n?,m", m?} U fn([Cro],.) U fn([Th]},)

We translate an input operation c(xy:Wi, ..., zx:Wy).Th as a packet ¢?
which exits the enclosing ¢ ambient and then enters the channel c®. There it
is opened, and its input operation awaits a message. After the input receives
a message, the continuation s[open s.[Th]!] exits the channel and re-enters
the thread t. Here it encounters the process open s.s[]. The open s capability
dissolves the first s ambient, the one used to move the continuation back,
but unleashes a second s ambient. At this point, the open s which has been
guarding the [Th]! process can open the second s ambient, and the [Th]},
can proceed. We need to guard the [Th]! process to prevent a subjective
move within [Th], from acting on the first s ambient instead of the ¢ ambient.
We translate a fork operation as a packet n? which carries the new crowd
Cro out of its enclosing thread to become a child of the enclosing node n®.
Once the packet n? is a child of n, it is opened, the translation [Cro],, of
the crowd Cro can run, and the synchronization packet s[] re-enters the ¢
ambient where it is opened by the opens lock which was guarding [Th]’,. This
synchronization is needed to avoid the process [Th]! moving the ambient ¢
to another node before the new crowd has exited from ¢. The translation of
the spawn operation is similar.

In order to state Proposition 2, which asserts that our translation pre-
serves typing judgments, we use the following translation of an environment
E of the language fragment to an environment [E] of the ambient calculus.

Translation of an environment:
[e] =@
[E, n:W] = [E], nb:[W]°, nt:[W]

24

Proposition 2
(1) If E = Net then [E] t [Net] : *Shh.
(2) If EF Cro and E & n: Node then [E] & [Cro], : *Shh.

(3) If EF- Th, Et+n: Node, t ¢ dom(E) then
[E], t:Amb® [~ Shh] = [Th]L : ~Shh.

Proof By induction on derivations. O

This example shows that the ambient calculus serves as a semantic meta-
language for describing distributed computation. Ambients model several
different entities, including nodes, channels, and threads. The different typ-
ings for these entities reflect their different behavior. Of the three kinds of
ambients, only nodes allow objective moves, only channels allow message ex-
change, and only threads allow subjective moves. The example shows that
our mobility and locking annotations are useful for the mobile programming
task underlying this translation.

5 Conclusions and Related Work

We have argued [CG98, Car99, CG99, GCI9| that the idea of an ambient is
a useful and general abstraction for expressing and reasoning about mobile
computation. In this paper, we qualified the ambient idea by introducing
type systems that distinguish between mobile and immobile, and locked and
unlocked ambients. Thus qualified, ambients better describe the structure of
mobile computations.

The type systems presented in this paper derive from our earlier work on
exchange types for ambients [CG99]. That type system tracks the types of
messages that may be input or output within each ambient; it is analogous
to Milner’s sort system for the m-calculus [Mil91], which tracks the types of
messages that may be input or output on each channel.

Our mobility annotations govern the ways in which an ambient can be
moved. The data movement types of the mobile A-calculus of Sekiguchi and
Yonezawa [SY97] also govern movement, the movement of variables referred
to by mobile processes. Their data movement types are checked dynamically,
rather than statically. In the setting of the m-calculus, various type systems

25

have been proposed to track the distinction between local and remote refer-
ences to channels [Ama97, Sew98, SWP98|, but none of these systems tracks
process mobility.

Our locking annotations allow static checking of a simple security prop-
erty: that nobody will attempt to open a locked ambient. More complex type
systems than ours demonstrate that more sophisticated security properties
of concurrent systems can be checked statically: access control [DFPV98,
HR98b], allocation of permissions [RH98|, and secrecy and integrity prop-
erties [Aba97, HR98a, SV98]. Ideas from some of these systems may be
applicable to ambients.

Moreover, for the sake of programming convenience, our type systems
could be extended in standard directions, just as Milner’s sort system for the
m-calculus has been extended with subtyping [PS96] and parametric poly-
morphism [Tur95]. More experimental extensions to the m-calculus, such as
affine or linear types [KPT96] and graph types [Yos96], may also be useful
extensions to the type systems of this paper. In earlier work [CG99], we stud-
ied the addition of affine capability types to our basic system of exchange

types.

Acknowledgement

Giorgio Ghelli acknowledges the support of Microsoft Research during the
writing of this paper. This work has also been partially supported by Esprit
Working Groups 26142 - Applied Semantics and 22552 - PASTEL, and by
[talian MURST, project InterData.

References

[Aba97] M. Abadi. Secrecy by typing in security protocols. In Proceedings
TACS’97, volume 1281 of Lecture Notes in Computer Science,
pages 611-638. Springer, 1997.

[Ama97] R. M. Amadio. An asynchronous model of locality, failure, and
process mobility. In Proceedings COORDINATION 97, volume
1282 of Lecture Notes in Computer Science. Springer, 1997.

26

[APY4]

[Car99|

[CGOS]

[CGYY]

[CGGY9)

[DFPV9g]

[GCY9]

[HR98a]

[HR9SD]

[KPT96]

[LY97]

R. M. Amadio and S. Prasad. Localities and failures. In Pro-
ceedings FSTETCS’ 94, volume 880 of Lecture Notes in Computer
Science, pages 205-216. Springer, 1994.

L. Cardelli. Abstractions for mobile computation. In C. Jensen
and J. Vitek, editors, Secure Internet Programming: Issues in
Distributed and Mobile Object Systems, volume 1603 of Lecture
Notes in Computer Science. Springer, 1999.

L. Cardelli and A. D. Gordon. Mobile ambients. In Proceedings
FoS5S5aCS’98, volume 1378 of Lecture Notes in Computer Science,
pages 140-155. Springer, 1998.

L. Cardelli and A. D. Gordon. Types for mobile ambients. In
Proceedings POPL’99, pages 79-92. ACM, January 1999.

L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and
mobility types. Unpublished, 1999.

R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for
access control. Available from the authors, 1998.

A. D. Gordon and L. Cardelli. Equational properties of mobile
ambients. In Proceedings FoSSaCS’99, volume 1578 of Lecture
Notes in Computer Science, pages 212-226. Springer, 1999. An
extended version appears as Microsoft Research Technical Report
MSR-TR-99-11, April 1999.

N. Heintz and J. Riecke. The SLam calculus: programming with
secrecy and integrity. In Proceedings POPL’98, pages 365-377.
ACM, 1998.

M. Hennessy and J. Riely. Resource access control in systems of
mobile agents. In Proceedings HLCL’98, volume 16(3) of FElec-
tronic Notes in Theoretical Computer Science. Elsevier, 1998.

N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the
pi-calculus. In Proceedings POPL’96, pages 358-371. ACM, 1996.

T. Lindholm and F. Yellin. The Java Virtual Machine Specifica-
tion. Addison-Wesley, 1997.

27

[Mil91]

[PS96]

[RH9S]

[Sew98|

[SV98]

[SWPOS]

[SY97]

[Tur95]

[Y0s96]

R. Milner. The polyadic w-calculus: A tutorial. Technical Report
ECS-LFCS-91-180, University of Edinburgh, October 1991.

B. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-
cesses. Mathematical Structures in Computer Science, 6(5):409—
454, 1996.

J. Riely and M. Hennessy. A typed language for distributed mo-
bile processes. In Proceedings POPL’98, pages 378-390. ACM,
1998.

P. Sewell. Global/local subtyping and capability inference for a
distributed m-calculus. In Proceedings ICALP’98, volume 1443
of Lecture Notes in Computer Science, pages 695-706. Springer,
1998.

G. Smith and D. Volpano. Secure information flow in a multi-
threaded imperative language. In Proceedings POPL’98, pages
355—-364. ACM, 1998.

P. Sewell, P. T. Wojciechowski, and B.C. Pierce. Location inde-
pendence for mobile agents. In Workshop on Internet Program-
ming Languages, 1998.

T. Sekiguchi and A. Yonezawa. A calculus with code mobility. In
Proceedings FMOODS’97, pages 21-36. IFIP, 1997.

D. N. Turner. The polymorphic pi-calculus: theory and imple-
mentation. PhD thesis, University of Edinburgh, 1995.

N. Yoshida. Graph types for monadic mobile processes. In Pro-
ceeings FSTETCS, volume 1180 of Lecture Notes in Computer
Science, pages 371-386. Springer, 1996.

28

A Proof of Theorem 1

Lemma 3 (Derived Judgment) If E+ J then E+ o.
Lemma 4 If E',n:W,E" = J then n ¢ dom(E', E").
Lemma 5 I[fEFn:W and E+Fn: W' then W = W',

Lemma 6 (Exchange)
If E'.n: W' mW" E"- T then E', mW" nW' . E"+ J.

Lemma 7 (Strengthening)
IfE'n:W, E" =T and n ¢ fn(J) then E', E" + J.

Lemma 8 (Weakening)
IfE'E"+ J and n ¢ dom(E', E") then E',n:W,E" + J.

Lemma 9 (Substitution)
IfE'nW,E" =T and E'+= M : W then E',E" = J{n«<M}.

Proposition 10 If EF P :?T and P = Q then E+- Q : “T.

Proof The proposition follows by showing that P = () implies:
(1) f E-P:ZT then E+ Q : “T.

(2) fEFQ:?T then E- P : ?T.
We proceed by induction on the derivation of P = Q.
(Struct Refl) Trivial.

(Struct Symm) Then @@ = P. For (1), assume E = P : “T. By induction
hypothesis (2), @ = P implies E - @ : “T. Part (2) is symmetric.

(Struct Trans) Then P = R, R = () for some R. For (1), assume E +
P :ZT. By induction hypothesis (1), E = R : ?T. Again by induction
hypothesis (1), E = Q : 2T. Part (2) is symmetric.

(Struct Res) Then P = (vn:W)P" and Q = (vn:W)Q', with P’ = Q'. For
(1), assume E + P : #T. This must have been derived from (Proc
Res), with E,n:Amb" [Z'T'] = P’ : 2T, where W = Amb" [?'T"]. By
induction hypothesis (1), E, n:Amb" [#'T'| - Q' : “T. By (Proc Res),
EF (vn:W)Q': “T. Part (2) is symmetric.

29

(Struct Par) Then P=P' | R, Q@ = Q' | R, and P' = @'. For (1), assume
E = P'| R:?T. This must have been derived from (Proc Par), with
Er P 2T, EF R:ZT. By induction hypothesis (1), B+ Q" : T.
By (Proc Par), EF Q' | R: #T. Part (2) is symmetric.

(Struct Repl) Then P = !P', @Q = !Q', and P’ = @'. For (1), assume
E F P : ?T. This must have been derived from (Proc Repl), with
E = P': ?T. By induction hypothesis (1), £ + Q' : #T. By (Proc
Repl), E+1Q": ZT. Part (2) is symmetric.

(Struct Amb) Then P = M[P'], Q = M[Q'], and P' = Q'. For (1), assume
E b P:“T. This must have been derived from (Proc Amb), with E
M : AmbY’ [#T') and E + P': T, for some Y', Z', T'. By induction
hypothesis (1), E + Q' : 2T". By (Proc Amb), E + M[Q'] : T. Part
(2) is symmetric.

(Struct Action) Then P = M.P', Q = M.Q', and P' = @'. For (1),
assume E = P : “T. This must have been derived from (Proc Action),
with £ = M : Cap[?T], E + P’ : ?T. By induction hypothesis (1),
EF Q' :%T. By (Proc Action), E = M.Q" : #T. Part (2) is symmetric.

(Struct Input) In this case, P = (ny:Wi,...,ngWg).P', P' = @', and
Q = (nu:Wy,...,ngWy).Q". For (1), assume E = P : #T. This
must have been derived from (Proc Input), with E, ni:Wi, ... ngWy -
P 2T, where T = W; x --- x Wj. By induction hypothesis, we
have E,ny:Wi,...,ngWy = Q' : #T. By (Proc Input), we have
EF (ng:Wi, ... neWe).Q' : ZT. Part (2) is symmetric.

(Struct Par Comm) Then P = P' | P" and Q = P" | P'.

For (1), assume E F P’ | P" : #T. This must have been derived from
(Proc Par), with £ = P': 2T and E - P" : ?T. By (Proc Par),
EFP"| P :%T. Hence, E-Q : ?T.

Part (2) is symmetric.

(Struct Par Assoc) Then P = (P'|P") | P" and Q = P'| (P" | P").

For (1), assume E = (P' | P") | P” : #T. This must have been
derived from (Proc Par) twice, with £ = P' : 2T, E + P" : 2T, and
E = P" :ZT. By (Proc Par) twice, E -+ P' | (P" | P") : ?T. Hence
EFQ:“T.

30

Part (2) is symmetric.

(Struct Repl Par) Then P =!P' and Q = P’ |!P".

For (1), assume E + !P’: ZT. This must have been derived from (Proc
Repl), with E + P': 2T. By (Proc Par), E + P’ | \P': T. Hence,
EFQ:T.

For (2), assume E + P’ | !P': #T. This must have been derived from
(Proc Par), with E+ P’ : “T and E+ !P': “T. Hence, E+ P : “T.

(Struct Res Res) In this case, we have P = (vny:W7)(vng:Wsy) P and @ =
(vng:Wy)(vny:W1) P" with ny # ns.

For (1), assume E = (vng:Wi)(vng:Wo)P' : #T. This must have been
derived from (Proc Res), with E, ny: Amb* [T1], ng: Amb ™[22 Ty] - P’
2T, where W, = Amb™ [2Ty] and Wy, = Amb**[#2T;]. By Lemma 6,
we have E,ny:Amb™[?2T5], nyj: Amb™ [T = P : #T. By (Proc Res)
twice we have E = (vng:Ws)(vn:Wy)P': ZT. Part (2) is symmetric.

(Struct Res Par) Then P = (vn:W)(P' | P") and Q = P' | (vn:W)P",
with n ¢ fn(P').

For (1), assume E = P : ZT. This must have been derived from (Proc
Res), with E, n:AmbY [ZT'| - P' | P" : 2T and W = Amb" [?'T"], and
(Proc Par), with E,n:Amb" [#'T') - P’ : “T and E,n:Amb¥ [#'T'] -
P" : “T. By Lemma 7, since n ¢ fn(P'), we have E = P': ?T. By
(Proc Res) we have E F (vn:AmbY [ZT'))P" : 2T. By (Proc Par) we
have E + P' | (vn:AmbY [Z'T'))P" : 2T, that is, E + Q : ZT.

For (2), assume £ - @Q : #T. This must have been derived from (Proc
Par), with £ = P' : 2T and E + (vn:W)P" : 2T, and from (Proc
Res), with E,n:AmbY [T'] = P" : 2T and W = Amb* ['T']. By
Lemma 4, n ¢ dom(E). By Lemma 8, E,n:Amb¥ [#'T'] - P' : “T.
By (Proc Par), E,n:Amb" [#T'| = P' | P" : “T. By (Proc Res),
EF (vn:AmbY [Z'T'))(P'| P") : T, that is, E+ P : 2T.

(Struct Res Amb) Then P = (vn:W)m[P'] and @ = m[(vn:W)P'], with
n # m.

For (1), assume £ = P : “T. This must have been derived from (Proc
Res) with B, n:Amb" [ZT'] & m[P"] : 2T with W = Amb" [T,
and from (Proc Amb) with E,n:AmbdY [Z'T' F m : Amb*™[4~T,,] and

31

E,n:AmbY [Z'T'] = P' . #»T,, for some Yy, Zp, Tjn. By (Proc Res)
we have E + (vn:AmbY [?'T'))P' : »T,,. By Lemma 7, n # m implies
EFm: Amb"™[?~T,]. By (Proc Amb), E F m[(vn:Amb¥ [Z'T"))P'] :
2T thatis, EF Q : ?T.

For (2), assume E F @ : #T. This must have been derived from
(Proc Amb) with £ F m : Amb*[%»T,,] and E = (vn:W)P" : %nT,,,
and from (Proc Res), with E,n:AmbY [#'T'] = P’ : ?»T,, and W =
AmbY'[#'T", for some Y,,, Zy, and T,,. By Lemma 4, n ¢ dom(E).
By Lemma 8, E,n:Amb" [#'T'| - m : Amb*"[?»T,,]. By (Proc Amb),
E,n:AmbY [Z'T') & m[P'] : #T. By (Proc Res), we can derive that
EF (vn:AmbY [ZT"))ym[P'] : 2T, that is, E + P : ZT.

(Struct Zero Par) Then P =P |0 and Q = P'.

For (1), assume E P : “T. This must have been derived from (Proc
Par) with E+ P':?T and E+0:7T. Hence, E+Q : “T.

For (2), assume F + P': ?T. By Lemma 3, F F o. By (Proc Zero),
EF0:4T. By (Proc Par), E-P'|0: 4T, that is, E -~ P : T.
(Struct Zero Res) Then P = (vn:Amb” ['T'])0 and Q = 0.

For (1), assume E P : “T. This must have been derived from (Proc
Res) with E,n:Amb” [T'| - 0: #T. By Lemma 7, E - 0 : T, that
is, EF Q:“T.

For (2), assume F - 0 : ?T. We may assume that the bound name n

does not occur in dom(FE). By Lemma 8, E,n:Amb* [#'T"] - 0 : T.

By (Proc Res), E + (vn:Amb" [Z'T'))0 : T, that is, E+ P : ZT.
(Struct Zero Repl) Then P =10 and () = 0.

For (1), assume E = P : “T. By Lemma 3, E o. By (Proc Zero),
EF0:7T, that is, E - Q : “T.

For (2), assume F = 0 : “T. By (Proc Repl), E - 10 : “T, that is,
EFP:?T.
(Struct €) Then P =¢.P' and Q = P'.

For (1), assume E = P : ?T. This must have been derived from (Proc
Action) with E & ¢ : Cap[?T| and E+ P': “T, that is, E+ Q : “T.

For (2), assume E + P’ : “T. By Lemma 3, E F o. By (Exp),
EF ¢: Cap[?T]. By (Proc Action), E - €.P': “T, that is, E -+ P : “T.

32

(Struct .) Then P = (M.M').P" and QQ = M.M'.P".

For (1), assume E t P : “T. This must have been derived from (Proc
Action) with E+ P': 2T, E+ M.M' : Cap|[?T]. The latter must have
come from (Exp .) with E = M : Cap[?T] and E = M' : Cap[?T], By
(Proc Action) twice, E = M.(M'.P') : T, that is, E - Q : “T.

For (2), assume E F @ : #T. This must have been derived from
(Proc Action), twice, with E = M : Cap[?T), E = M' : Cap|?T), and
E+ P :?T. By (Exp.), E+ M.M": Cap[?T]. By (Proc Action),
E+ (M.M').P': “T, that is, E - P : *T. 0

Proof of Theorem 1 IfE+ P: 4T and P — Q then E+ Q : #T.

Proof By induction on the derivation of P — Q.

(Red In) Then P = nlin m.P' | P"| | m[P"] and Q = m[n[P' | P"] | P"].
Assume E = P : #T. This must have been derived from (Proc Par),
with E = n[in m.P' | P"] : 2T and E & m[P"] : 2T. The former must
have been derived from (Proc Amb), with E - n : Amb™[%"T,] and
Etinm.P"| P":%T,, for some Y, Z,, and Ty, while the latter must
have been derived from (Proc Amb) with E F m : Amb*™ [~T,,] and
E+ P" :ZmT, for someY,,, Z,,, and T;,. Moreover, E - inm.P' | P" :
ZnT, must come from (Proc Par) with E = inm.P' : T, and E + P" :
ZnT,. Finally, E + inm.P' : Z»T, must come from E = inm : Cap[?"T},]
and E = P': %T,. (Hence Z, =, since the former judgment can only
be derived using (Exp In).) By (Proc Par), we have E = P' | P" : “»T,,
and by (Proc Amb) we can derive E = n[P' | P"] : #=T,,. Then, by
(Proc Par), we have E = n[P' | P"] | P" : #T,,. By (Proc Amb) we
can derive E = m[n[P"| P"] | P"]: T, that is, EF Q : #T.

(Red Out) Then P = m[n[out m.P" | P"] | P"] and Q = n[P" | P"] |
m[P"]. Assume E + P : #T. This must have been derived from
(Proc Amb) using E + m : Amb*[?=T,,] and E F n[out m.P' | P"] |
P" . ZnT, for some Y,,, Z,, and T,,, and from (Proc Par) using
E + nlout m.P" | P"] : “~T,, and E + P" : “nT,,. The former must
have been derived using (Proc Amb) from E - n : Amb*"[%"T,] and
E + out m.P'" | P" : %»7T, for some Y,, Z,, and T, and using (Proc
Par) from E + out m.P': T, and E + P" : #~T,. The former must
have been derived using (Proc Action) from E + out m : Cap[?"T,]

33

and E+ P': 7T, (Hence Z, =, since the former judgment can only
be derived using (Exp Out).) By (Proc Par), E+ P' | P": “T,. By
(Proc Amb), E = n[P' | P"]: 2T. By (Proc Amb), E &= m[P"] : %~T,.
By (Proc Par), E = n[P'"| P"] | m[P"] : T, that is, E+ Q : #T.

(Red Open) Then P = open n.P' | n[P"] and @ = P' | P". Assume
E + P : ZT. This must have been derived using (Proc Par) from
E + openn.P' : 2T and E + n[P"] : #T. The former must have
been derived using (Proc Action) with E + open n : Cap[?T] and
E + P' : 7T, while the latter must have been derived using (Proc
Amb) with E + n : AmbY'[#T') and E + P" : #'T" for some Y,
Z' and T'. The judgment E + open n : Cap[?T] must have been
derived using (Exp Open) from E F n : Amb°[?T]. By Lemma 5,
AmbY [Z'T'] = Amb°[?T), and so Y' = o, Z' = Z and T" = T. Hence,
EF P":7T,and, by (Proc Par), E+ P'| P": T, thatis, E+ Q : “T.

(Red Comm) Then P = (ng:Wi,...,ngWg).P' | (My,...,Mg) and Q =
P'{ni«My,...,ng<M}. Assume E + P : #T. This must have
been derived from (Proc Par) with E = (ny:Wy, ..., ngWy).P' : ?T
and B+ (My,..., M) : “T. The former must have been derived from
(Proc Input) with E,ny:Wy, ngWy = P 2T and T = Wy x - - - W,
The latter judgment E = (My,..., M) : T must have been derived
from (Proc Output) with £ = M; : W/ for each i € 1.k, and T =
Wi x---x W/. Hence W] = W, for each ¢ € 1..k. By k applications of
Lemma 9, we get E = P'{ni< M, ... ,ng<M}:?T.

(Red Res) Here P = (vn:W)P' and Q = (vn:W)Q" with P' — @Q'. As-
sume E + P : ZT. This must have been derived using (Proc Res)
from E,n:AmbY [#T'] = P' : ?T with W = Amb" [#'T']. By in-
duction hypothesis, E,n:Amb¥' [?T'] + Q' : ZT. By (Proc Res),
EF (vn:AmbY [ZT')Q' : 2T, that is, E + Q : 2T.

(Red Amb) Here P = n[P'] and @ = n[Q’'] with P' — @'. Assume E F
P : ZT. This must have been derived using (Proc Amb) from E F n :
AmbY'[Z'T") and E + P’ : Z'T". By induction hypothesis, E + Q' : Z'T".
By (Proc Amb), E+ n[Q'] : “T, that is, E = Q : “T.

(Red Par) Here P = P' | R and @Q = @' | R with P' — @'. Assume
E + P : “T. This must have been derived using (Proc Par) from

34

EFP :%T and E+ R: ?T. By induction hypothesis, E - Q' : 4T
By (Proc Par), E- Q' | R: 7T, thatis, E - Q : “T.

(Red =) Here P = P', P! — @', and Q' = Q. Assume E + P : ?T. By
Proposition 10, E = P’ : #T. By induction hypothesis, E + Q' : 4T
By Proposition 10, E - Q : #T. O

B Proof of Theorem 2

Lemma 11 (Derived Judgment) If E+ J then E F o.

Lemma 12 If E',n:W,E" = J then n ¢ dom(E', E").

Lemma 13 If EFn:W and EFn: W' then W = W',

Lemma 14 (Exchange)
If E',n-W' m:W" E"+ J then E',m:W" n:W' E"F J.

Lemma 15 (Strengthening)
IfE'n:W, E"=TJ and n ¢ fn(J) then E', E" + J.

Lemma 16 (Weakening)
IfE'E"+ J and n ¢ dom(E', E") then E',n:W,E" + J.

Lemma 17 (Substitution)
I[FE mW,E" =7 and B'+ M : W then E', E" - J{n<M}.

Proposition 18 If E- P :?T and P=Q then E+ Q : ?T.
Proof The proposition follows by showing that P = () implies:
(1) f E-P: 2T then E+ Q : ?T.
(2) fEFQ:?T then EF- P : ”T.
We proceed by induction on the derivation of P = Q.
(Struct Refl) Trivial.

(Struct Symm) Then @@ = P. For (1), assume E = P : “T. By induction
hypothesis (2), @ = P implies E - @ : “T. Part (2) is symmetric.

35

(Struct Trans) Then P = R, R = () for some R. For (1), assume E +
P :ZT. By induction hypothesis (1), E = R : ?T. Again by induction
hypothesis (1), E = Q : 2T. Part (2) is symmetric.

(Struct Res) Then P = (vn:W)P" and Q = (vn:W)Q', with P' = Q'. For
(1), assume E + P : #T. This must have been derived from (Proc
Res), with E,n:Amb"" %" [2'T'| = P’ : 2T, where W = Amb*" #"[Z'T"].
By induction hypothesis (1), E,n:Amb" 2" [T - Q' : 2T. By (Proc
Res), B+ (vn:W)Q' : ZT. Part (2) is symmetric.

(Struct Par) Then P=P' | R, Q= Q' | R, and P' =). For (1), assume
E+ P'| R:Z4T. This must have been derived from (Proc Par), with
Er P :?T, EF R:ZT. By induction hypothesis (1), E + Q" : “T.
By (Proc Par), EF Q' | R: “T. Part (2) is symmetric.

(Struct Repl) Then P = P', Q = !Q', and P’ = @'. For (1), assume
E F P : #T. This must have been derived from (Proc Repl), with
E = P': ?T. By induction hypothesis (1), £ + Q' : “T. By (Proc
Repl), E +1Q": ZT. Part (2) is symmetric.

(Struct Amb) Then P = M[P'], Q@ = M[Q'], and P' = Q'. For (1),
assume E = P : #T. This must have been derived from (Proc Amb),
with E - M : Amb" Z"[ZT') and E + P' : Z'T’, for some Y', Z,
Z", T'. By induction hypothesis (1), E F @' : 2'T". By (Proc Amb),
EF M[Q']:#“T. Part (2) is symmetric.

(Struct Action) Then P = M.P', Q = M.Q', and P' = @Q'. For (1),
assume F = P : ZT. This must have been derived from (Proc Action),
with £ = M : Cap[?T], E + P’ : ?T. By induction hypothesis (1),
EF Q' :“T. By (Proc Action), E = M.Q" : “T. Part (2) is symmetric.

(Struct Input) In this case, P = (ny:Wi,...,ngWy).P', P' = @', and
Q = (n:Wy,...,ngWy).Q". For (1), assume E = P : #T. This
must have been derived from (Proc Input), with E, ni:Wi, ... ngWy -
P 2T, where T = W; x --- x Wj. By induction hypothesis, we
have E,ny:Wi,...,ngWy = Q" : #T. By (Proc Input), we have
EF (ny:Wi, ... neWe).Q' : ZT. Part (2) is symmetric.

(Struct Go) Then P = go N.M[P'], Q = go N.M[Q'], and P' = @Q'. For
(1), assume E = P : ZT. This must have been derived from (Proc Go),

36

with EF N : Cap[?"S), E+ M : Amb¥ 2" [T'] and E + P’ : Z'T", for
some S, Y', Z', Z", and T'. By induction hypothesis (1), B+ Q" : 7' T".
By (Proc Go), E - go N.M|[Q'] : ?T. Part (2) is symmetric.

(Struct Par Comm) Then P=P' | P" and Q = P" | P'.

For (1), assume E F P’ | P" : #T. This must have been derived from
E+ P :?Tand E+ P":?T. By (Proc Par), E+ P" | P': “T.
Hence, E-Q : *T.

Part (2) is symmetric.

(Struct Par Assoc) Then P = (P'|P") | P" and Q = P'| (P" | P").

For (1), assume E = (P' | P") | P" : ?T. This must have been
derived from (Proc Par) twice, with £ = P' : 2T, E+ P" : 2T, and
EF P":2T. By (Proc Par) twice, £ = P' | (P" | P") : T. Hence
EFQ:?T.

Part (2) is symmetric.

(Struct Repl Par) Then P =!P' and Q = P’ | !P".

For (1), assume E + P’ : ZT. This must have been derived from (Proc
Repl), with E + P': #T. By (Proc Par), E + P’ | \P': #T. Hence,
EFQ:2T.

For (2), assume E = P’ | !P': “T. This must have been derived from
(Proc Par), with £+ P’ : 2T and E+ !P': ?T. Hence, E+ P : %T.

(Struct Res Res) In this case, we have P = (vny:W7)(vng:Wa)P' and Q =

(vng:Wy)(vny:W1) P" with ny # ns.

For (1), assume E F (vn:W1)(vng:Wo)P' - #T. This must have been
derived from (Proc Res), with E, ny:Amb* Z1[A1T1), ng: Amb¥? 2 [2 T, +
P': 2T, where Wy = Amb"* “1[2T)] and Wy, = Amb™2%[%T). By
Lemma 14, we have E,ny:Amb2 %[22 Ty ny:Amb¥ (24 - P2 2T
By (Proc Res) twice we have E = (vny:Ws)(vny:Wy)P' : “T. Part (2)
is symmetric.

(Struct Res Par) Then P = (vn:W)(P' | P") and Q = P' | (vn:W)P",

with n ¢ fn(P').

For (1), assume F + P : #T. This must have been derived from
(Proc Res), with E,n:Amb*” Z'[T') = P' | P" : ?T and W =

37

AmbY Z"[7'T"], and from (Proc Par), with E,n:Amb* 2"['T'| + P’ .
T and E,n:Amb¥" 2" ['T'| - P" :”T. By Lemma 15, since n ¢ fn(P'),
we have E F P': ZT. By (Proc Res), E t (vn:AmbY 2" [Z'T"))P" : 2T
By (Proc Par) we have E = P’ | (vn:Amb” 2" [Z'T'))P" : 2T, that is,
EFQ:?T.

For (2), assume £+ Q : #T. This must have been derived from (Proc
Par), with E = P' : ?T and E + (vn:W)P" : “T, and from (Proc
Res), with E,n:Amb¥ 2" [2'T'| - P" : 2T and W = Amb* 2" [#'T"]. By
Lemma 12, n ¢ dom(E). By Lemma 16, E, n:Amb¥ 2" [/'T"| - P' : T
By (Proc Par), E,n:Amb" ?"[T' = P' | P" : 2T. By (Proc Res),
EF (vn:AmbY 2" [T (P | P") : 2T, that is, E + P : 2T.

(Struct Res Amb) Then P = (vn:W)m[P'] and Q = m[(vn:W)P'], with

n # m.

For (1), assume E = P : ZT. This must have been derived from (Proc
Res) with E, n:Amb" #"[Z'T'] = m[P'] : T with W = Amb*" #"[Z'T"),
and from (Proc Amb) with E,n:Amb* 2" [7'T'| - m : Amb¥mZm [/ T,,]
and E,n:Amb¥ 2" [?'T'| = P' : »T,, for some Y, Zp, Z', T,. By
(Proc Res) we have E + (vn:AmbY 2" [#'T'))P' : »T,,. By Lemma 15,
n # m implies E = m : Amb*#»[=T.]. By (Proc Amb), E +
m[(vn:AmbY 2" [ZT')P'] : 2T, that is, E - Q : “T.

For (2), assume E F @ : #T. This must have been derived from
(Proc Amb) with E = m : Amb¥Zm[ZnT | and E F (vn:W)P' :
ZnT.,, and from (Proc Res), with E, n:Amb¥" %" [#'T"| - P’ : #»T,, and
W = AmbY Z"[#'T"]. By Lemma 12, n ¢ dom(E). By Lemma 16,
E,n:AmbY 2" [T F m o AmbYmZm[ZnT,,]. By (Proc Amb), we can
derive E,n:Amb¥" ?"[2'T"| - m[P'] : #T. By (Proc Res), we can derive
EF (vn:AmbY 2" [ZTYm[P'] : 2T, that is, E + P : T

(Struct Zero Par) Then P =P’ |0 and Q = P'.

For (1), assume E = P : ZT. This must have been derived from (Proc
Par) with E+ P': 2T and E+0:4T. Hence, E+Q : ?T.

For (2), assume E = P’ : #T. By Lemma 11, E - o. By (Proc Zero),
EF0:%T. By (Proc Par), E+-P'|0: 4T, that is, E -~ P : T.

(Struct Zero Res) Then P = (vn:Amb* Z"[#'T"])0 and Q = 0.

38

For (1), assume E P : “T. This must have been derived from (Proc
Res) with E,n:Amb* 2 [#'T'| - 0 : “T. By Lemma 15, E 0 : /T,
thatis, EF Q : ?T.

For (2), assume F - 0 : ?T. We may assume that the bound name n

does not occur in dom (E). By Lemma 16, E, n:Amb" %" [2'T"| - 0 : ZT.
By (Proc Res), E + (vn:Amb”" ?"['T")0 : 2T, that is, E - P : 2T.

(Struct Zero Repl) Then P =10 and () = 0.

For (1), assume E = P : “T. By Lemma 11, F + o. By (Proc Zero),
EFO0:7T, thatis, EFQ: ?T.

For (2), assume F + 0 : “T. By (Proc Repl), E - !0 : “T, that is,
EFP:ZT.

(Struct €) Then P =¢.P' and Q = P".

For (1), assume E P : “T. This must have been derived from (Proc
Action) with E & ¢: Cap[?T| and E+ P': “T, that is, E+ Q : “T.

For (2), assume E = P’ : ?T. By Lemma 11, E - o. By (Exp),
EF ¢: Cap[?T]. By (Proc Action), E - €.P": “T, that is, E = P : “T.

(Struct .) Then P = (M.M').P" and QQ = M.M'.P".

For (1), assume E = P : #T. This must have been derived from (Proc
Action) with E+ P': ?T, E+ M.M' : Cap|[?T]. The latter must have
come from (Exp .) with E = M : Cap[?T) and E = M' : Cap|*T], By
(Proc Action) twice, E = M.(M'.P") : “T, that is, E = Q : “T.

For (2), assume E F @ : #T. This must have been derived from
(Proc Action), twice, with E = M : Cap[?T], E = M' : Cap[*T), and
Er P :2T. By (Exp .), E+ M.M' : Cap[?T]. By (Proc Action),
EF (M.M').P :?T, that is, E - P : “T.

(Struct Go €¢) Then P = go e.M[P'] and Q = M[P'].

For (1), assume E = P : #T. This must have been derived using (Proc
Go), with E' e : Cap[?"S], Et= M : Amb” 7" [#'T"],and E - P' : Z'T".
By (Proc Amb), E + M[P']: T, that is, E + Q : #T.

For (2), assume E = @ : ?T. This must have been derived using (Proc
Amb), with E = M : Amb¥" Z"[ZT"] and E + P': Z'T'. By Lemma 11,
E F o. By (Exp €), E F € : Cap[?"S], for some S. By (Proc Go),
EtF goen[P']:?T, that is, E+ P : “T. O

39

Proof of Theorem 2 IfE+ P : 4T and P — Q then E+ Q : #T.

Proof By induction on the derivation of P — Q.

(Red In) Then P = nlin m.P' | P"| | m[P"] and Q = m[n[P" | P"] | P"].
Assume E = P : #T. This must have been derived from (Proc Par),
with E = n[in m.P' | P"]| : ?T and E + m[P"] : #T. The former must
have been derived from (Proc Amb), with E F n : Amb¥» %%,
and E + inm.P' | P" : ?7T,, for some Y,, Z,, Z and T,, while
the latter must have been derived from (Proc Amb) with E F m :
Amb¥mZm[ZnT] and E + P" : ZnT,,. for some Yy, Zp, Z' , and T),.
Moreover, E = in m.P' | P" : “»T, must come from (Proc Par) with
Etinm.P :%7T,and E+ P":?%7T,. Finally, E - in m.P': T,
must come from E & inm : Cap[?T,] and E + P' : ?T,. (Hence
Zn =, since the former judgment can only be derived using (Exp
In).) By (Proc Par), we have E + P' | P" : “»T,, and by (Proc
Amb) we can derive E + n[P' | P"] : #mT,,. Then, by (Proc Par),
we have E = n[P" | P"] | P" : “mT,,. By (Proc Amb) we can derive
ErFmn[P | P"|| P"]:%T, that is, E - Q : ?T.

(Red Out) Then P = m[n[out m.P" | P"] | P"] and Q = n[P" | P"] |
m[P"]. Assume E + P : ZT. This must have been derived from (Proc
Amb) using E + m : Amb*Z»[ZT] and E + n[out m.P' | P"] |
P" ;. ZnT, for some Y,,, Z,,, Z! , and T,,, and from (Proc Par) using
E + nlout m.P" | P"] : “~T,, and E + P" : “nT,,. The former must
have been derived using (Proc Amb) from E - n : Amb¥" %2 [%»T,] and
EF outm.P'| P":%T, for some Y,, Z,, Z!, and T),, and using (Proc
Par) from E + out m.P': T, and E + P" : #~T,. The former must
have been derived using (Proc Action) from E + out m : Cap[?"T,]
and E+ P': 7T, (Hence Z, =, since the former judgment can only
be derived using (Exp Out).) By (Proc Par), E+ P' | P": “T,. By
(Proc Amb), E = n[P' | P"]: “T. By (Proc Amb), E &= m[P"] : “»T,.
By (Proc Par), E = n[P'"| P"] | m[P"] : #T, that is, E+ Q : #T.

(Red Open) Then P = open n.P' | n[P"] and @ = P' | P". Assume
E + P : ZT. This must have been derived using (Proc Par) from
E + openn.P' : 2T and E + n[P"] : #T. The former must have
been derived using (Proc Action) with E + open n : Cap[?T] and
E + P' : 7T, while the latter must have been derived using (Proc

40

Amb) with E - n : AmbY Z"[#'T'| and E - P" : #'T' for some Y,
Z'. Z" and T'. The judgment E t open n : Cap[?T] must have been
derived using (Exp Open) from E - n : Amb°?" [?T] By Lemma 13,
AmbY 22T = Amb°Z" [2T), and so Y' = o, Z" = 2", Z' = Z, and
T' = T. Hence, by (Proc Par), E+ P'| P": #T, that is, E+ Q : T.

(Red Comm) Then P = (ng:Wy,...,ngWg).P' | (My,..., M) and @ =
P'{ni«My,...,ng<M}. Assume E = P : #T. This must have
been derived from (Proc Par) with E & (ni:Wy, ... ,ngWy).P' : 2T
and B+ (My,..., M) : #T. The former must have been derived from
(Proc Input) with B, ny:Wi,...,ngW, = P : 2T and T = Wy x - - - W.
The latter judgment E = (My,..., M) : T must have been derived
from (Proc Output) with £ = M; : W/ for each i € 1.k, and T =
Wi x ... x W,. Hence W/ = W, for each i € 1..k. By k applications of
Lemma 17, we get £+ P'{ni< M, ... ng<M} : ?T.

(Red Go In) Here P = go (inm.N).n[P,] | m[P,,] and Q = m[go N.n[P,] |
P,]. Assume E + P : “T. This must have been derived using (Proc
Par) from E + go (inm.N).n[P,] : T and E + m[P,,] : ?T. The former
must have been derived using (Proc Go) with E = in m.N : Cap[™95],
Etn: Amb™"[%T,], and E - P, : %»T,,, for some S, Y,, Z,, and
T, and the latter must have been derived using (Proc Amb) with E I
m : Amb¥™ Z’m[ZMTm] and E + P, : “~T,, for some Y,,, Z,, Z' , and
T,,. Moreover, the judgment E - in m.N : Cap[™S]| must have been
derived using (Exp .) from E - inm : Cap[™S] and E - N : Cap[™S].
By (Proc Go) and (Proc Par), E go N.n[P,] | P,, : =T By (Proc
Amb), we get E'Fm[go N.n[P,] | Py] : 2T, that is, E+ Q : #T.

(Red Go Out) Here P = m[go (outm.N).n[P,] | P,] and Q = goN.n[P,] |
m[P,]. Assume E F P :#T. This must have been derived using (Proc
Amb) from E F m : Amb¥ % [ZnT,] and E F go (out m.N).n[P,] |
Py, : #nT,, for some Y,,, Zy,, Z! , and T, and from (Proc Par) with
E + go (out m.N).n[P,] : #T,, and E -+ P, : “~T,,. The former
must have been derived using (Proc Go) from E = out m.N : Cap[™S],
Ern:Amb™~[%T,], and E + P, : T, for some S, Y,, Z,, and T}.
The judgment E + out m.N : Cap[™S] must have been derived using
(Proc .) using E + out m : Cap[™S] and E - N : Cap[™S]. By (Proc
Go), E+ go N.n[P,] : “T. By (Proc Amb), E - m[P,,] : “T. By (Proc
Par), E+F go Nn[P,) | m[P,] : T, that is, E+ Q : “T.

41

(Red Res) Here P = (vn:W)P" and Q = (vn:W)Q" with P' — @Q'. As-
sume E + P : ZT. This must have been derived using (Proc Res)
from E,n:Amb" Z'[ZT'| v P' : 2T with W = Amb" #"[?'T"]. By
induction hypothesis, E, n:Amb* 2" [2'T'] + Q' : 2T. By (Proc Res),
EF (vn:AmbY Z"[ZTNQ" - 2T, that is, E+ Q : ZT.

(Red Amb) Here P = n[P'] and @ = n[Q’'] with P' — @'. Assume E F
P : ZT. This must have been derived using (Proc Amb) from E F n :
AmbY' 7" [#T'] and E + P': #T'". By induction hypothesis, E + Q' :
Z'T'. By (Proc Amb), E F n[Q'] : #T, that is, E - Q : “T.

(Red Par) Here P = P' | R and @ = @' | R with P' — @'. Assume
E + P : “T. This must have been derived using (Proc Par) from
EFP 2T and E+ R: ?T. By induction hypothesis, E - Q' : 2T,
By (Proc Par), E- Q' | R: 7T, thatis, E - Q : “T.

(Red =) Here P=P', P! - @', and Q' = Q. Assume E+ P : ?T. By
Proposition 18, E + P’ : #T. By induction hypothesis, E + Q' : 4T
By Proposition 18, E - Q : ?T. O

42

