
Sunday, February 9, 2003, 3:00 am 1

Wide Area Computation
Luca Cardelli

Microsoft Research

Abstract. The last decades have seen the emergence of the sea of objects para-
digm for structuring complex distributed systems on workstations and local area
networks. In this approach, applications and system services are composed of and
communicate among themselves through reliable and transparently accessible
object interfaces, leading to the interaction of hundred or thousands of unstruc-
tured objects.

This approach has lead to major progress in software composability and re-
liability. Unfortunately, it is based on a number of assumptions that do not hold
on wide area networks. There, access to resources is intrinsically unreliable (be-
cause of failure, congestion, voluntary disconnected operation, etc.) and not
transparent (because of variations in latency and bandwidth, hardware and soft-
ware mobility, and the presence of firewalls). These characteristics are so radical-
ly different from the current computational norm that they amount to a new
model of computation.

We discuss the challenges of computation on wide area networks. Our ap-
proach reflects the intuition that, to function satisfactorily on a wide area net-
work, the sea of objects must be partitioned and made hierarchical, internally
mobile, and secure. This paper is an abridged version of [3].

1 Introduction
The Internet and the World-Wide-Web provide a computational infrastructure that
spans the planet. It is appealing to imagine writing programs that exploit this global in-
frastructure. Unfortunately, the Web violates many familiar assumptions about the be-
havior of distributed systems, and demands novel and specialized programming
techniques. In particular, three phenomena that remain largely hidden in local area net-
work architectures become readily observable on the Web:

• (A) Virtual locations. Because of the presence of potential attackers, barriers are
erected between mutually distrustful administrative domains. Therefore, a pro-
gram must be aware of where it is, and of how to move or communicate between
different domains. The existence of separate administrative domains induces a
notion of virtual locations and of virtual distance between locations.

• (B) Physical locations. On a planet-size structure, the speed of light becomes
tangible. For example, a procedure call to the antipodes requires at least 1/10 of
a second, independently of future improvements in networking technology. This
absolute lower bound to latency induces a notion of physical locations and phys-
ical distance between locations.

2 Sunday, February 9, 2003, 3:00 am

• (C) Bandwidth fluctuations. A global network is susceptible to unpredictable con-
gestion and partitioning, which result in fluctuations or temporary interruptions of
bandwidth. Moreover, mobile devices may perceive bandwidth changes as a conse-
quence of physical movement. Programs need to be able to observe and react to
these fluctuations.

These features may interact among themselves. For example, bandwidth fluctuations may
be related to physical location because of different patterns of day and night network utili-
zation, and to virtual location because of authentication and encryption across domain
boundaries. Virtual and physical locations are often related, but need not coincide.

In addition, another phenomenon becomes unobservable on the Web:

• (D) Failures. On the Web, there is no practical upper bound to communication de-
lays. In particular, failures become indistinguishable from long delays, and thus un-
detectable. Failure recovery becomes indistinguishable from intermittent
connectivity. Furthermore, delays (and, implicitly, failures) are frequent and unpre-
dictable.

These four phenomena determine the set of observables of the Web: the events or
states that can be in principle detected. Observables, in turn, influence the basic building
blocks of computation. In moving from local area networks to wide area networks, the set
of observables changes, and so does the computational model, the programming constructs,
and the kind of programs one can write. The question of how to “program the Web” reduces
to the question of how to program with the new set of observables provided by the Web.

At least one general technique has emerged to cope with the observables characteristic
of a wide area network such as the Web. Mobile computation is the notion that running pro-
grams need not be forever tied to a single network node. Mobile computation can deal in
original ways with the phenomena described above:

• (A) Virtual locations. Given adequate trust mechanisms, mobile computations can
cross barriers and move between virtual locations. Barriers are designed to impede
access, but when code is allowed to cross them, it can access local resources without
the impediment of the barriers.

• (B) Physical locations. Mobile computations can move between physical locations,
turning remote calls into local calls, and thus avoiding the latency limit.

• (C) Bandwidth fluctuations. Mobile computations can react to bandwidth fluctua-
tions, either by moving to a better-placed location, or by transferring code that es-
tablishes a customized protocol over a connection.

• (D) Failures. Mobile computations can run away from anticipated failures, and can
move around presumed failures.

Mobile computation is also strongly related to recent hardware advances, since com-
putations move implicitly when carried on portable devices. In this sense, we cannot avoid

Sunday, February 9, 2003, 3:00 am 3

the issues raised by mobile computation: more than an avant-garde software technique, it
is an existing hardware reality.

2 Three Mental Images
We begin by comparing and contrasting three mental images; that is, three abstracted views
of distributed computation. From the differences between these mental images we derive
the need for new approaches to global computation.

2.1 Local Area Networks
The first mental image corresponds to the now standard, and quickly becoming obsolete,
model of computation over local area networks.

When workstations and PCs started replacing mainframes, local networks were invent-
ed to connect autonomous computers for the purpose of resource sharing. A typical local
area network consists of a collection of computers of about the same power (within a couple
of hardware generations) and of network links of about the same bandwidth and latency.
This environment is not always completely uniform: specialized machines may operate as
servers or as engineering workstations, and specialized subnetworks may offer special ser-
vices. Still, by and large, the structure of a LAN can be depicted as the uniform network of
nodes (computers) and links (connections) in Mental Image 1:

A main property of such a network is its predictability. Communication delays are
bounded, and processor response times can be estimated. Therefore, link and process fail-
ures can be detected by time-outs and by “pinging” nodes.

Another important property of local area networks is that they are usually well-admin-
istered and, in recent times, protected against attack. Network administrators have the task
of keeping the network running and protect it against infiltration. In the picture, the bound-

Administrative Domain

Mental Image 1: Local Area Network

4 Sunday, February 9, 2003, 3:00 am

ary line represents an administrative domain, and the flames represent the protection pro-
vided by a firewall. Protection is necessary because local area networks are rarely
completely disconnected: they usually have slower links to the outside world, which are
however enough to make administrators nervous about infiltration.

The architecture of local area networks is very different from the older, highly central-
ized, mainframe architecture. This difference, and the difficulties implied by it, resulted in
the emergence of novel distributed computing techniques, such as remote-procedure-call,
client-server architecture, and distributed object-oriented programming. The combined aim
and effect of these techniques is to make the programming and application environment sta-
ble and uniform (as in mainframes). In particular, the network topology is carefully hidden
so that any two computers can be considered as lying one logical step apart. Moreover,
computers can be considered immobile; for example, they usually preserve their network
address when physically moved.

Even in this relatively static environment, the notion of mobility has gradually ac-
quired prominence, in a variety of forms. Control mobility, found in RPC (Remote Proce-
dure Call) and RMI (Remote Method Invocation) mechanisms, is the notion that a thread
of control moves (in principle) from one machine to another and back. Data mobility is
achieved in RPC/RMI by linearizing, transporting, and reconstructing data across ma-
chines. Link mobility is the ability to transmit the end-points of network channels, or re-
mote object proxies. Object mobility is the ability to move objects between different
servers, for example for load balancing purposes. Finally, in Remote Execution, a compu-
tations can be shipped for execution to a server (this is an early version of code mobility,
proposed as an extension of RPC [13]).

In recent years, distributed computing has been endowed with greater mobility prop-
erties and easier network programming. Techniques such as Object Request Brokers have
emerged to abstract over the location of objects providing certain services. Code mobility
has emerged in Tcl and other scripting languages to control network applications. Agent
mobility has been pioneered in Telescript [14], aimed towards a uniform (although wide
area) network of services. Closure mobility (the mobility of active and connected entities)
has been investigated in Obliq [4].

In due time, local area network techniques would have smoothly and gradually evolved
towards deployment on wide area networks, e.g. as was explicitly attempted by the COR-
BA effort. But, suddenly, a particular wide area network came along that radically changed
the fundamental assumptions of distributed computing and its pace of progress: the Web.

2.2 Wide Area Networks
Global computing evolved over the span of a few decades in the form of the Internet. But
it was not until the emergence of the Web that the peculiar characteristics of the Internet
were exposed in a way that anybody could verify with just a few mouse clicks. For clarity
and simplicity we will refer to the Web as the primary global information infrastructure,
although it was certainly not the first one.

Sunday, February 9, 2003, 3:00 am 5

We should remember that the notions of a global address space and of a global file sys-
tem have been popular at times as extensions of the mainframe architecture to wide area
networks. The first obvious feature of the Web is that, although it forms a global computa-
tional resource, it is nothing like a global mainframe, nor an extension of it. The Web does
not support a global (updatable) file system and, although it supports a global addressing
mechanism, it does not guarantee the integrity of addressing. The Web has no single reli-
able component, but it also has no single failure point; it is definitely not the centralized all-
powerful mainframe of 1950’s science fiction novels that could be shut off by attacking its
single “brain”.

The fact that the Web is not a mainframe is not a big concern; we have already suc-
cessfully tackled distributed computing based on LANs. More distressing is the fact that
the Web does not behave like a LAN either. Many proposals have emerged along the lines
of extending LAN concepts to a global environment; that is, in turning the Internet into a
distributed address space, or a distributed file system. However, since the global environ-
ment does not have the stability properties of a LAN, this can be achieved only by intro-
ducing redundancy (for reliability), replication (for quality of service), and scalability (for
management) at many different levels. Things might have evolved in this direction, but this
is not the way the Web came to be. The Web is, almost by definition, unreliable, unpredict-
able, and unmanageable as a whole, and was not designed with LAN-like guarantees of ser-
vice.

Therefore, the main problem with the Web is that it is not just a big LAN, otherwise,
modulo issues of scale, we would already know how to deal with it. There are several ways
in which the Web is not a big LAN, and we will describe them shortly. But the fundamental
reason is that, unlike a LAN, the Web is not centrally administered. Instead, it is a dynamic

Mental Image 2: Wide Area Network (for example, the Web)

6 Sunday, February 9, 2003, 3:00 am

collection of countless independent administrative domains, all widely different and mutu-
ally distrustful. This is represented in Mental Image 2.

In that picture, computers differ greatly in power and availability, while network links
differ greatly in capacity and reliability. Large physical distances have visible effects, and
so do time zones. The architecture of a wide area network is yet again fundamentally dif-
ferent from that of a local area network. Most prominently, the network topology is dynam-
ic and non-trivial. Computers become intrinsically mobile: they require different
addressing when physically moved across administrative boundaries. Techniques based on
mobility become more important and sometimes essential. For example, mobile Java ap-
plets provided the first disciplined mechanism for running code able to (and allowed to)
systematically penetrate other people’s firewalls. Countless projects have emerged in the
last few years with the aim of supporting mobile computation over wide areas, and are be-
ginning to be consolidated.

At this point, our architectural goal might be to devise techniques for managing com-
putation over an unreliable collection of far-flung computers. However, this is not yet the
full picture. Not only are network links and nodes widely dispersed and unreliable; they are
not even liable to stay put, as we discuss next.

2.3 Mobile Computing
A different global computing paradigm has been evolving independently of the Web. In-
stead of connecting together all the LANs in the world, another way of extending the reach
of a LAN is to move individual computers and other gadgets from one LAN to another, dy-
namically.

We discussed in the Introduction how the main characteristics of the Web point to-
wards mobile computation. However, that is meant as mobile computation over a fixed (al-
though possibly flaky) network. A more interesting picture emerges when the very
components of the network can move about. This is the field of mobile computing. Today,
laptops and personal organizers routinely move about; in the future entire networks will go
mobile (as in IBM’s Personal Area Network). Existing examples of this kind of mobility
include: a smart card entering a network computer slot; an active badge entering a room; a
wireless PDA or laptop entering a building; a mobile phone entering a phone cell.

We could draw a picture similar to Mental Image 1, but with mobile devices moving
within the confines of a single LAN. This notion of a dynamic LAN is a fairly minor ex-
tension of the basic LAN concepts, and presents few conceptual problems (wireless LANs
are already common). A much more interesting picture emerges when we think of mobile
gadgets over a WAN, because administrative boundaries and multiple access pathways
then interact in complex ways, as anybody who travels with a laptop knows all too well.

Mental Image 3 focuses on two domains: the United States and the European Union,
each enclosed by a political boundary that regulates the movement of people and comput-
ers. Within a political boundary, private companies and public agencies may further regu-
late the flow of people and devices across their doors. Over the Atlantic we see a third

Sunday, February 9, 2003, 3:00 am 7

domain, representing Air France flight 81 travelling from San Francisco to Paris. AF81 is
a very active mobile computational environment: it is full of people working with their lap-
tops and possibly connecting to the Internet through airphones. (Not to mention the hun-
dreds of computers that control the airplane and let it communicate with a varying stream
of ground stations.)

Abstracting a bit from people and computation devices, we see here a hierarchy of
boundaries that enforce controls and require permissions for crossing. Passports are re-
quired to cross political boundaries, tickets are required for airplanes, and special clearanc-
es are required to enter (and exit!) agencies such as the NSA. Sometimes, whole mobile
boundaries cross in and out of other boundaries and similarly need permissions, as the mo-
bile environment of AF81 needs permission to enter an airspace. On the other hand, once
an entity has been allowed across a boundary, it is fairly free to roam within the confines
of the boundary, until another boundary needs to be crossed.

2.4 General Mobility
We have described two different notions of mobility. The first, mobile computation, has to
do with virtual mobility (mobile software). The second, mobile computing, has to do with
physical mobility (mobile hardware). These two fields are today almost disconnected, the
first dominated by a software community, and the second dominated by a hardware com-
munity. However, the borders between virtual and physical mobility are fuzzy, and even-
tually we will have to treat all kinds of mobility in a uniform way. Here are two examples
where the different forms of mobility interact.

The first example is one of virtual mobility achieved by physical means. Consider a
software agent in a laptop. The agent can move by propagating over the network, but can
also move by being physically transported with the laptop from one location to another. In
the first case, the agent may have to undergo security checks (e.g., bytecode verification)
when it crosses administrative domains. In the second case the agent may have to undergo
security checks (e.g., virus detection) when the laptop is physically allowed inside a new
administrative domain. Do we need two completely separate security infrastructures for

US

NSASFO

AF 81

EU
CDG

Mental Image 3: Mobile Computing

8 Sunday, February 9, 2003, 3:00 am

these two cases, or can we somehow find a common principle? A plausible security policy
for a given domain would be that a physical barrier (a building door) should provide the
same security guarantees as a virtual barrier (a firewall).

The second example is one of physical mobility achieved by virtual means. Software
exists that allows remote control of a computer, by bringing the screen of a remote comput-
er on a local screen. The providers of such software may claim that this is just as good as
moving the computer physically, e.g. to access its local data. Moreover, if the remote com-
puter has a network connection, this is also equivalent to “stringing wire” from the remote
location, since the remote network is now locally accessible. For example, using remote
control over a phone line to connect from home to work where a high-bandwidth Internet
connection is available, is almost as good as having a high-bandwidth Internet connection
brought into the home.

The other side of the coin of being mobile is of becoming disconnected or intermittent-
ly connected. Even barring flaky networks, intermittent connectivity can be caused by
physical movement, for example when a wireless user moves into some form of Faraday
cage. More interestingly, intermittent connectivity may be caused by virtual movement, for
example when an agent moves in and out of an administrative domain that does not allow
communication. Neither case is really a failure of the infrastructure; in both cases, lack of
connectivity may in fact be a desirable security feature. Therefore, we have to assume that
intermittent connectivity, caused equivalently by physical or virtual means, is an essential
feature of mobility.

In the future we should be prepared to see increased interactions between virtual and
physical mobility, and we should develop frameworks where we can discuss and manipu-
late these interactions.

2.5 Barriers and Action-at-a-Distance
The unifying difficulty in both mobile computing and mobile computation is the prolifera-
tion of barriers, and the problems involved in crossing them. This central difficulty implies
that we must regard barriers as fundamental features of our computational models. This
seems contrary to the usual trend.

Access barriers have arisen many times in the history of computing, and one of the
main tasks of computer science has been to “abstract them away”, often by the proverbial
additional level of indirection. For example, physical memory boundaries are circumvented
by virtual memory; address space boundaries are circumvented by network proxies; fire-
wall boundaries are circumvented by secure tunnels and agent sandboxing. Unfortunately,
when barriers are not purely technological it is not possible to completely abstract them
away. The crossing of administrative barriers must be performed by bureaucratic opera-
tions, such as exhibiting equipment removal passes and export licences.

Therefore, administrative barriers constitute a fundamental change to the way we com-
pute. Let’s review some historical scenarios that, because of barriers, have now become un-
realizable computing utopias.

Sunday, February 9, 2003, 3:00 am 9

In the early days of the Internet, any computer could talk to any other computer by
knowing its IP number. We can now forget about flat IP addressing and transparent routing:
routers and firewalls effectively hide certain IP addresses from view and make them un-
reachable by direct means.

In the early days of programming languages, people envisioned a universal address
space in which all programs would live and share data, possibly with world-wide garbage-
collection, and possibly with strong typing to guarantee the integrity of pointers. We can
now forget about universal addressing: although pointers are allowed across machines on
a LAN (by network proxies), they are generally disallowed across firewalls. Similarly, we
can forget about transparent distributed object systems: some network objects will be kept
well hidden within certain domains, and reaching them will require effort.

In the early days of mobile agents, people envisioned agents moving freely across the
network on behalf of their owners. We can now forget about this kind of free-roaming. If
sites do not trust agents they will not allow them in. If agents do not trust sites to execute
them fairly, they will not want to visit them.

In general, we can forget about the notion of action-at-a-distance computing: the idea
that resources are available transparently at any time, no matter how far away. Instead, we
have to get used to the notion that movement and communication are step-by-step activi-
ties, and that they are visibly so: the multiple steps involved cannot be hidden, collapsed,
or rendered atomic.

The action-at-a-distance paradigm is still prevalent within LANs, and this is another
reason why LANs are different from WANs, where such an assumption cannot hold.

2.6 Why a WAN is not a big LAN
We have already discussed in the Introduction how a WAN exhibits a different set of ob-
servables than a LAN. But could one emulate a LAN on top of a WAN, restoring a more
familiar set of observables, and therefore a more familiar set of programming techniques?
If this were possible, we could then go on and program the Internet just like we now pro-
gram a LAN.

To turn a WAN into a LAN we would have to hide the new observables that a WAN
introduces, and we would have to reveal the observables that a WAN hides. These tasks
ranges from difficult, to intolerable, to impossible. Referring to the classification in the In-
troduction, we would have to achieve the following.

(A) Hiding virtual locations. We would have to devise a security infrastructure that
makes navigation across multiple administrative domains painless and transparent (when
legitimate). Although a great deal of cryptographic technology is available, there might be
impossibility results lurking in some corners. For example, it is far from clear whether one
can in principle guarantee the integrity of mobile computations against hostile or unfair
servers [12]. (This can be solved on a LAN by having all computers under physical super-
vision.)

10 Sunday, February 9, 2003, 3:00 am

(B) Hiding physical locations. One cannot “hide” the speed of light; techniques such
as caching and replication may help, but they cannot fool processes that attempt to perform
long-distance real-time control and interaction. In principle, one could make all delays uni-
form, so that programs would not behave differently in different places. Ultimately this can
be achieved only by slowing down the entire infrastructure, by embedding the maximal
propagation delay in all communications. (This would be about 1/10 of a second on the sur-
face, but would grow dramatically as the Web is extended to satellite communication, or-
bital stations, and further away.)

(C) Hiding bandwidth fluctuations. It is possible to introduce service guarantees in
the networking infrastructure, and therefore eliminate bandwidth fluctuations, or reduce
them below certain thresholds. However, in overload situations this has the only effect of
turning network congestion into access failures, which brings us to the next point.

(D) Revealing failures. We would have to make failures as observable as on a LAN.
This is where we run into fundamental trouble. A basic result in distributed systems states
that we cannot achieve distributed consensus (such as agreeing on which nodes have failed)
in a system consisting of a collection of asynchronous processes [10]. The Web is such a
system: we can make no assumption about the relative speed of processors (they may be
overloaded, or temporarily disconnected), about the speed of communication (the network
may be congested or partitioned), about the order of arrival of messages, or even about the
number of processes involved in a computation. In these circumstances, it is impossible to
detect the failure of processors or of network nodes or links: any consensus algorithm can
be delayed indefinitely. The common partial solutions for this unsolvable problem are to
dictate some degree of synchrony and failure detection. These solutions work well on a
LAN, but they seem unlikely to apply to WANs simply because individual users may arbi-
trarily decide to turn off their processors without warning, or take them into unreachable
places. Other partial solutions involve multiple-round broadcast-based probabilistic algo-
rithms [2] which might be expensive on a WAN in terms of communication load, and
would be subject to light-speed delays. Moreover, it is difficult to talk about the failure of
processors that are invisible because they are hidden behind firewalls, and yet take part in
computations. Therefore, it seems unlikely that techniques developed to deal with asyn-
chrony in operating systems and LANs can be successfully applied to a WAN such as the
Web in full generality. The Web is an inherently asynchronous system, and the impossibil-
ity result of [10] applies with full force.

In summary: task (A) may be unsolvable for mobile code; in any case, a non-zero
amount of bureaucracy will always be required; task (B) is only solvable (in full) by intro-
ducing unacceptable delays; task (C) can be solved in a way that reduces it to (D); task (D)
is unsolvable in principle, and probabilistic solutions run into tasks (A) and (B).

2.7 WAN Postulates
We summarize this section by a collection of postulates that capture the main properties of
the reality we are interested in modeling:

Sunday, February 9, 2003, 3:00 am 11

• Separate locations exist.

• Different locations have different properties, hence both people and programs will
want to move between them.

• Barriers to mobility will be erected to preserve the properties of certain locations.

• Some people and some programs will still need to cross those barriers.

The point of these postulates is to stress that mobility and barrier crossing are inevitable
requirements of our current and future computing infrastructure.

The observables that are characteristic of wide area networks have the following im-
plications:

• Distinct virtual locations are observed because of the existence of distinct adminis-
trative domains, which are produced by the inevitable existence of attackers. Dis-
tinct virtual locations preclude the unfettered execution of actions across domains,
and require a security model.

• Distinct physical locations are observed, over large distances, because of the inevi-
table latency limit given by the speed of light. Distinct physical locations preclude
instantaneous action at a distance, and require a mobility model.

• Bandwidth fluctuations (including hidden failures) are observed because of the in-
evitable exercise of free will by network users, both in terms of communication and
movement. Bandwidth fluctuations preclude reliance on response time, and require
an asynchronous communication model.

3 Modeling Wide Area Computation
Section 2 was dedicated to showing that the reality of mobile computation over a WAN
does not fall into familiar categories. Therefore, we need to invent a new model that can
help us in understanding and eventually in taking advantage of this reality.

3.1 Barriers
We believe that the most fundamental new notion is that of barriers; this is the most prom-
inent aspect of post-LAN computing environments.

Many of the basic features of WANs have to do with barriers: Locality (the existence
of different virtual or physical locations, and the notion of being in the same or different
locations) is induced by a topology of barriers. Mobility is barrier crossing. Security has to
do with the ability or inability to cross barriers. Communication is partitioned by barriers:
local communication happens within barriers, while long-distance communication is a
combination of local communication and movement across barriers. Action at a distance
(immediate interaction across many barriers) is forbidden.

We have chose barriers as the most important feature of an abstract model of compu-
tation for wide area networks, the Ambient Calculus [7], which we briefly outline.

12 Sunday, February 9, 2003, 3:00 am

3.2 Ambients
The current literature on wide area network languages can be broadly classified into agent-
based languages (e.g., Telescript [14]), and place-based languages (e.g., Linda [8]). An am-
bient is a generalization of both notions. Like an agent, an ambient can move across places
(also represented by ambients) where it can interact with other agents. Like a place, an am-
bient supports local undirected communication, and can receive messages (also represented
by ambients) from other places. Ambients can be arbitrarily nested, generalizing the limited
place-agent-data nesting of most agent languages, and the nesting of places allowed in
some Linda dialects.

Briefly, an ambient is a place that is delimited by a boundary and where multi-threaded
computation happens. Each ambient has a name, a collection of local processes, and a col-
lection of subambients. Ambients can move in and out of other ambients, subject to capa-
bilities that are associated with ambient names. Ambient names are unforgeable, this fact
being the most basic security property.

In further detail, an ambient has the following main characteristics.

• An ambient is a bounded place where computation happens.

If we want to move computations easily we must be able to determine what parts
should move. A boundary determines what is inside and what is outside an ambient,
and therefore determines what moves. A boundary implies some flexible addressing
scheme that can denote entities across the boundary; examples are symbolic links,
URLs (Uniform Resource Locators) and Remote Procedure Call proxies. Flexible
addressing is what enables, or at least facilitates, mobility. It is also, of course, a
cause of problems when the addressing links are “broken”.

• Ambients can be nested within other ambients, forming a tree structure.

As we discussed, administrative domains are (often) organized hierarchically. Mo-
bility is represented as navigation across a hierarchy of ambients. For example, if
we want to move a running application from work to home, the application must be
removed from an enclosing (work) ambient and inserted in a different enclosing
(home) ambient.

• Each ambient has a collection of local running processes.

A local process of an ambient is one that is contained in the ambient but not in any
of its subambients. These “top level” local processes have direct control of the am-
bient, and in particular they can instruct the ambient to move. In contrast, the local
processes of a subambient have no direct control on the parent ambient: this helps
guaranteeing the integrity of the parent.

• Each ambient moves as a whole with all its subcomponents.

The activity of a single local process may, by causing movement of its parent, influ-
ence the location, and therefore the activity, of other local processes and subambi-
ents. For example, if we move a laptop and reconnect it to a different network, then

Sunday, February 9, 2003, 3:00 am 13

all the threads, address spaces, and file systems within it move accordingly and au-
tomatically, and have to cope with their new surrounding. Agent mobility is a spe-
cial case of ambient mobility, since agents are usually single-threaded. Ambients,
like agents, automatically carry with them a collection of private data as they move.

• Each ambient has a name.

The name of an ambient is used to control access (entry, exit, communication, etc.).
In a realistic situation the true name of an ambient would be guarded very closely,
and only specific capabilities based on the name would be handed out.

3.3 Ideas for Wide Area Languages
Ambients represent our understanding of the fundamental properties of mobile computa-
tion over wide area networks. Our final goal, though, is to program the Internet in some
convenient high-level language. Therefore, we aim to find programming constructs that are
semantically compatible with the ambient principles, and consequently with wide area net-
works.

These compatibility requirements include (A) WAN-soundness: a wide area network
language cannot adopt primitives that entail action-at-a-distance, continued connectivity,
global consensus, or security bypasses, and (B) WAN-completeness: a wide area network
language must be able to express the behavior of web surfers and of mobile agents and us-
ers, and of any other entities that routinely roam those networks.

More specifically, we believe the following are necessary ingredients of wide area lan-
guages.

• Naming. Names are symbolic ways of referring to entities across a barrier. Names
are detached from their corresponding entities; one may possess a name without
having immediate access to any entity of that name. To enable mobility and discon-
nected operation, all entities across a barrier should be denoted by names, not by
“hard” pointers.

• Migration. Active hardware and software components should be able to migrate.
Migration of certain active hardware components is possible today, but the ability
to automatically disconnect and reconnect those components to surrounding (possi-
bly multiple) networks is not currently available. Migration of active software com-
ponents is even harder, typically for lack of system facilities for migrating live
individual threads and groups of threads.

• Dynamic connectivity. A wide area network cannot be started or stopped all at once.
Therefore, it is necessary to dynamically connect components. This is contrary to
the current prominence in programming languages of static binding, static module
composition, and static linking. The ambient calculus provides an example of a nov-
el mixture of ordinary static scoping of names (which enables typechecking) with
dynamic binding of operations to names (which enables dynamic linking).

14 Sunday, February 9, 2003, 3:00 am

• Communication. Communication on wide area networks must in general be asyn-
chronous. However, local communication (within or even across a single barrier)
can usefully be synchronous. Moreover, in the presence of mobility, it is necessary
to have some level of synchronization between communication and movement op-
erations. This remains an interesting design area for mobile languages.

• Security. Security abstractions should be provided at the programming-language
level, that is, above the fundamental cryptographic primitives. Programmers need to
operate with reliable high-level abstractions, otherwise subtle security loopholes
can creep in. We believe that barriers are one such high-level security abstraction,
which can be supported by programming constructs that can be mechanically ana-
lyzed (e.g., via type systems [6]).

Summary
The ambient semantics naturally suggests unusual programming constructs that are well-
suited for wide area computation. The combination of mobility, security, communication,
and dynamic binding issues has not been widely explored yet at the language-design level,
and certainly not within a unifying semantic paradigm. We hope our unifying foundation
will facilitate the design of such new languages.

3.4 Wide Area Challenge: A Conference Reviewing System
We conclude with the outline of an ambitious wide area application. The application de-
scribed here does not fit well with simple-minded Web-based technology because of the
complex flow of active code and stateful information between different sites, and because
of an essential requirement for disconnected operation. The application fits well within the
agent paradigm, but also involves the traversal of multiple administrative domains, and has
security and confidentiality requirements.

This is meant both as an example of an application that could be programmed in a wide
area language, and as a challenge for any such language to demonstrate its usability. We
hope that a language based on ambients or similar notions would cope well with this kind
of situation.
- Description of the problem. The problem consists in managing a virtual program commit-
tee meeting for a conference. The basic architecture was suggested to me by comments by
Richard Connors, as well as by my own experience with organizing program committee
meetings and with using Web-based reviewing software developed for ECOOP and other
conferences.

In the following scenario, the first occurrence of each of the principals involved is
shown in boldface.
- Announcement. A conference is announced, and an electronic submission form, signed
by the conference chair, is publicized.
- Submission. Each author fetches the submission form, checks the signature of the confer-
ence chair, and activates the form. Once activated, the form actively guides most of the re-
viewing process. Each author fills an instance of the form and attaches a paper. The form

Sunday, February 9, 2003, 3:00 am 15

checks that none of the required fields are left blank, electronically signs the paper with a
signature key provided by the author, encrypts the attached paper, and finds its way to the
program chair. The program chair collects the submissions forms, and gives them a de-
cryption key so that they can decrypt the attached papers and verify the signatures of the
authors. (All following communications are signed and encrypted; we omit most of these
details from now on.)
- Assignment. The program chair then assigns the submissions to the committee members,
by instructing each submission form to generate a review forms for each assigned member.
The review forms incorporate the paper (this time signed by the program chair) and find
their way to the appropriate committee members.
- Review. Each committee member is a reviewer, and may decide to review the paper di-
rectly, or to send it to another reviewer. The review form keeps tracks of the chain of re-
viewers so that it can find its way back when either completed or refused, and so that each
reviewer can check the work of the subreviewers. Eventually a review is filled. The form
performs various consistency checks, such as verifying that the assigned scores are in range
and that no required fields are left blank. Then it finds its way back to the program chair.
- Report generation. Once the review forms reach the program chair, they become report
forms. The various report forms for each paper merge with each other incrementally to
form a single report form that accumulates the scores and the reviews. The program chair
monitors the report form for each paper. If the reviews are in agreement, the program chair
declares the form an accepted paper report form, or a rejected paper review form.
- Conflict resolution. If the reports are in disagreement, the program chair declares the form
an unresolved review form. An unresolved review form circulates between the reviewers
and the program chair, accumulating further comments, until the program chair declares the
paper accepted or rejected.
- Notification. The report form for an accepted or rejected paper finds its way back to the
author (minus the confidential comments), with appropriate congratulations or regrets.
- Final versions. Once it reaches the author, an accepted paper report form spawns a final
submission form. In due time, the author attaches to it the final version of the paper and
signs the copyright release notice. The completed final submissions form finds its way back
to the program chair.
- Proceedings. The final submission forms, upon reaching the program chair, merge them-
selves into the proceedings. The program chair checks that all the final versions have ar-
rived, sorts them into a conference schedule, attaches a preface, and lets the proceedings
find their way to the conference chair.
- Publication. The conference chair files the copyright release forms, signs the proceedings,
and posts them to public sites.

In summary, in this example, interactions between various parts of the system happen
over a wide area network. The people involved may be physically moving during or be-
tween interaction. As they move, they may transport without warning active parts of the
system. At other times, active parts of the system move by their own initiative and must
find a route to the appropriate principals wherever they are.

16 Sunday, February 9, 2003, 3:00 am

4 Conclusions
The global computational infrastructure has evolved in fundamental ways beyond standard
notions of sequential, concurrent, and distributed computational models. The notion of am-
bients captures the structure and properties of wide area networks, of mobile computing,
and of mobile computation. The ambient calculus [7] formalizes these notions simply and
powerfully. It supports reasoning about mobility and security, and has an intuitive graphi-
cal presentation in terms of a folder calculus [3]. On this foundation, we can envision new
programming methodologies, libraries and languages for wide area computation.

5 Acknowledgments
Andrew D. Gordon is a coauthor of several related papers.

References
[1] Bharat, K. and L. Cardelli: Migratory applications, Proc. of the ACM Symposium on User In-

terface Software and Technology '95. 133-142. 1995.
[2] Bracha, G. and S. Toueg, Asynchronous consensus and broadcast protocols. J.ACM 32(4),

824-840. 1985.
[3] Cardelli, L., Abstractions for Mobile Computation, in Secure Internet Programming: Secu-

rity Issues for Distributed and Mobile Objects, Jan Vitek and Christian Jensen (Eds.). Springer.
1999. (To appear.)

[4] Cardelli, L., A language with distributed scope. Computing Systems, 8(1), 27-59. MIT Press.
1995.

[5] Cardelli, L. and R. Davies. Service combinators for web computing. Proc. of the First Usenix
Conference on Domain Specific Languages, Santa Barbara. 1997.

[6] Cardelli, L., G. Ghelli, and A.D. Gordon, Mobility Types for Mobile Ambients, Proc.
ICALP’99.

[7] Cardelli, L. and A.D. Gordon, Mobile ambients, in Foundations of Software Science and Com-
putational Structures, Maurice Nivat (Ed.), LNCS 1378, Springer, 140-155. 1998.

[8] Carriero, N. and D. Gelernter, Linda in Context. Communications of the ACM, 32(4), 444-458.
1989.

[9] Chandra, T.D., S.Toueg, Unreliable failure detectors for asynchronous systems. ACM Sym-
posium on Principles of Distributed Computing, 325-340. 1991.

[10] Fischer, M.J., N.A. Lynch, and M.S. Paterson, Impossibility of distributed consensus with
one faulty process. J.ACM 32(2), 374-382. 1985.

[11] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, Parts 1-2. Information
and Computation, 100(1), 1-77. 1992

[12] Sander, A. and C. F. Tschudin, Towards mobile cryptography, ICSI technical report 97-049,
November 1997. Proc. IEEE Symposium on Security and Privacy, Spring 1998.

[13] Stamos, J.W. and D.K. Gifford, Remote evaluation. ACM Transactions on Programming Lan-
guages and Systems 12(4), 537-565. 1990.

[14] White, J.E., Mobile agents. In Software Agents, J. Bradshaw, ed. The MIT Press. 1996.

