
Where membranes meet complexes

Luca Cardelli∗ and Sylvain Pradalier†

Abstract

We introduce a calculus handling complexation of molecules and
membranes. The approach is based on adding dynamic interfaces to
processes, which model bonds between molecules. The calculus is then
extended with a notion of hierarchy to handle membranes.

Introduction In biochemistry, proteins and other molecules have a com-
mon way of interacting among themselves by forming “complexes”. A com-
plex is a combinations of two or more molecules attached together along
complementary surfaces. Complexation is the formation of a complex and
decomplexation is the breaking up of a complex, both of which may be ac-
tively triggered, e.g., by other complexation and decomplexation interaction.

When modeling even the simplest biological systems, the issue immedi-
ately comes up of how to model complexation. Shapiro and Regev [8, 4]
proposed using a fresh private channel in π-calculus to represent complex-
ation, and a synchronization on that channel followed by discarding the
channel to represent decomplexation. This technique is flexible and allows
many interesting variations, and is available within a well understood calcu-
lus. However, this technique uses some high power features (private scopes,
name passing) to represent what is essentially a combinatorial operation
that, like parallel composition, ought to be expressible as a binary operator.

In this paper we explore using complexation as an operator; this turns
out not to be so trivial to implement. We base our approach on attaching
dynamic “interfaces” to processes to more easily track the “surfaces” along
which processes interact to form complexes. Our notion of dynamic inter-
faces is similar to the mechanisms explored in beta-binders[6, 7]. However,
we preserve binary complementary interactions as the fundamental mode of
interaction between processes.

Membranes are another fundamental feature in biology. They divide
the space within organisms into compartments, thus establishing different
biochemical conditions in separate regions. Brane Calculi[1] and Projective
Brane Calculus[3] are languages specifically dealing with membranes. They

∗Microsoft Research
†ENS Cachan

1

provide a strong framework for describing and modeling membrane systems
but they lack an elegant way of representing molecules and even more so,
complexation. This paper proposes a language that handles molecules and
membranes. Because membranes can stick to each other like molecules, we
represent membranes as molecules that have an inner content. This is the
same step that leads from π-calculus[5] to ambient-calculus[2].

Outline First we present the formalism for complexation. Then we show
examples to explain why we need the different operators. Next we extend
the calculus with a notion of hierarchy that represents the nesting of mem-
branes and we give a biologically-inspired example where both complexes
and membranes are needed. We finally discuss possible enhancements to
the syntax, and perspectives.

Acknowledgments A discussion with Tony Hoare provided the initial
direction for this work. Vincent Danos pointed out some mistakes and helped
to explain intuitions behind the calculus.

1 Complexation

In biochemistry, complementary sites (surface features) of molecules can
stick to each other, joining molecules into complexes. Hence, the possible
interactions of a molecule with its environment are determined by its set of
sites. We call the set of sites of a molecule its interface.

This observation, when reflected into process-calculus models, leads us
to endow processes with interfaces. Molecules can change their shape, and
hence their set of sites, in response to biochemical interactions; so we need
our interfaces to be dynamic. This is achieved by allowing processes to offer
and retract sites on their interfaces dynamically.

As we show by means of examples (Section 2), a number of process oper-
ators are needed to model even simple biological systems. Not surprisingly,
we use much of the power of π-calculus, including notions of synchronization
and scope restriction. Before presenting formally the syntax of our calculus,
we recall some basic notions about multisets.

1.1 Notation for multisets

We write⊆+,
⋂+, + and− for the inclusion, intersection, sum and difference

of multisets. Let Σ be a set of names n (representing sites in interfaces),
with Σ− = {n−|n ∈ Σ} and Σ+ = {n+|n ∈ Σ}, representing complementary
sites. We use S,T to denote multisets over Σ− ⋃

Σ+.
Let S = {a+|a− ∈ S}

⋃
{a−|a+ ∈ S} and S∗ = S

⋃
S. The “com-

plementary intersection” is: S2T = (S
⋂+ T)∗. We also note S q T for

2

S + T − S2T . As (a+ ∈ S2T) ⇔ (a− ∈ S2T), we write a ∈ S2T for
(a+ ∈ S2T ∧ a− ∈ S2T).

1.2 Syntax

• a, b, c, . . . ∈ Σ− ⋃
Σ+ and S, T, . . . ∈ Multisets(Σ− ⋃

Σ+)

• P,Q,R, . . . ::= AS | P&Q | (νa)P | X | recX .P

• A,B, C, . . . ::= 0 | A + B | A|B | α.A

• α ::= a±〈S〉 | a±(S) | offer(a) | retract(a) | fork(P)

Σ− ⋃
Σ+ is the set of sites. The second line defines the syntax for

molecules and complexes : it is either a sets of actions A with some in-
terface S, or two molecules put in parallel with the parallel operator & (also
used as the complexation operator), or a restriction on the name of a site,
or a recursion variable or a recursion on a molecule. Action sets are defined
in the third line: there is choice, parallel, and prefix. Finally we have basic
actions: polyadic output, polyadic input, offer of a site, retract of a site,
fork of a molecule. Further explanations will be given with the operational
semantics (1.6). We use round brackets and square brackets for precedence.

1.3 Complexation and Interfaces

The main difference with π-calculus is the complexation operator & that
behaves like a parallel, except for the handling of interfaces. It is this oper-
ator that makes bonds between molecules, by providing a new interface for
the complex that hides the internal connections of the complex from further
external interaction. Other differences are restrictions that can only occur
at the top-level (they cannot be prefixed, for instance), and the duality ± of
sites that represents complementarity of sites inependently of input/output
direction.

Next we define the interface I(P) of a molecule or complex :

I(AS) = S, I((νa)P) = I(P)− {a+, a−}, I(P&Q) = I(P)q I(Q)
I(X) = ∅, I(recX .P) = I(P)

For instance if I(P) = {a+, a+, b−} and I(Q) = {a−, c+} then I(P&Q) =
{a+, a+, b−}+{a−, c+}−{a+, a−} = {a+, b−, c+}. One can see that the effect
of the & operator on interfaces is to take the sum of I(P) and I(Q) and to
remove an a+ and an a−. Intuitively & hides an a+ on the left for each a−

on the right and vice-versa.
We have to distinguish between a+ and a− (that is, between two com-

plementary sites on two molecules), because sites on molecules correspond

3

to complementary shapes. Indeed, if molecule X can link with molecules Y
and Z on a site a we do not want Y to be able to link to Z on a.

1.4 Free names

The definition of free names is quite obvious. We just detail cases that are
not in the classical π-calculus:

• fn(AS) = fn(A)
⋃

Set(S) where Set(S) is the set-projection of the
multiset S.

• fn(a〈S〉.A) = {a}
⋃

fn(A)
⋃

S

• fn(a(X).A) = {a}
⋃

(fn(A) \X)

• fn(offer(a).A) = fn(retract(a).A) = fn(fork(P).A) = fn(A)
⋃
{a}

1.5 Structural Congruence

The structural congruence is derived from the one of the π-calculus.

P&Q ≡ Q&P, P&(Q&R) ≡ (P&Q)&R,

P&0 ≡ P,
P ≡ P ′

P&Q ≡ P ′&Q

(νx).(νy).P ≡ (νy).(νx).P, (νx).0 ≡ 0
(νx).P&Q ≡ (νx).(P&Q) if x /∈ fn(Q)

P ≡ Q

recX .P ≡ recX .Q
,

A ≡ B

AS ≡ BS

P ≡α Q

P ≡ Q
,

A ≡ A′

α.A ≡ α.A′ ,

A + B ≡ B + A, A + (B + C) ≡ (A + B) + C,

A + 0 ≡ A,
A ≡ A′

A + B ≡ A′ + B
A|B ≡ B|A, A|(B|C) ≡ (A|B)|C,

A|0 ≡ A,
A ≡ A′

A|B ≡ A′|B

1.6 Operational Semantics

Operational semantics of the π-calculus is often presented as a labeled tran-
sitions system. We do not need it here and thus prefer the simpler unlabeled
version.

• P≡P ′ , P ′→Q′ , Q′≡Q
P→Q : (Cong)

• (a±〈R〉.A)S & (a∓(X).B)T → AS & B{R/X}T

if a ∈ S2T : (Com)

4

• P → P ′

P&Q → P ′&Q : (&) , P → P ′

(νa)P → (νa)P ′ : (ν)

and P{recx.P/X} → Q
recX .P → Q : (Rec)

• AS&P → A′
S′&P ′

(A+B)S&P → A′
S′&P ′ if A 6= A′ : (Sum)

• AS&P → A′
S′&P ′

(A|B)S&P → (A′|B)S′&P ′ : (Par)

• (offer(a).A)S → AS+a : (Offer)

• (retract(a).A)S → AS−a if a ∈ S : (Retract)

• (fork(P).A)S → AS & P : (Fork)

Rules Cong, &, ν and Rec are classical rules. Sum and Par are structural
rules to handle choice and parallel operator on actions. Note that the & and
Par rules are similar : both operators are parallel operators. The difference
is that & is at the level of molecules and permits communication while | is
in a molecule and just permits shuffle of actions. This is because there is no
equivalent of the rule Com for the operator |.

Offer and Retract rules are basic modifications of interfaces. Fork is the
synthesis of a new molecule.

The Com rule is remarkable. We ask that a ∈ S2T because we want
to restrict communication to linked molecules. Only these molecules should
be able to exchange information. This implies that communication occurs
between an a+ and a−.

One can imagine fusing the two dualities input/output and a+/a− into
one, and saying that outputs always come from an a+, for instance. But
this will restrict communication on a bond to only one direction, which is
not acceptable.

2 Use of different connectors and examples

We present different examples of modeling basic biological systems in order
to show why the different operators of the syntax are needed and to illustrate
different mechanisms of the calculus.

2.1 Decomplexation : the graph structure of the complex
is not forgotten

In order to model decomplexation, remembering which molecules are part of
the complex is not sufficient. Indeed, if two parts of the complex are linked
by only one bond and if this bond is removed, one obtain two separate
complexes. Then, to determine which molecules are part of which complex
we need to know which molecule was linked with which other molecule within

5

the previous complex. We also have to prevent the decomplexation to add
bonds within the complex. Thus, we need to remember the graph structure
of the complex. The graph of a complex is built by taking molecules of the
complex as nodes and bonds between molecules within the complex as arcs.

Here is a basic example illustrating how communications permit us to
synchronyze the activity of molecules, and that we do not loose the graph
structure of a complex. Let:

• P = (offer(1+).1+〈〉.offer(2+).2+〈〉.2+〈〉.retract(1+)){}

• Q = (offer(1−).1−〈〉.offer(3+).3+〈〉){}

• R = ((offer(2−)|offer(3−)).(2−〈〉|3−〈〉).2−〈〉.retract(3−)){}

(P|Q).(P’|Q’) is an abbreviation for P.Q.(P’|Q’) + Q.P.(P’|Q’)).
First P and Q offer and link on 1, then they synchronized so that they know
they can try to link R. Then R offers 2 and 3 and synchronized with P and
Q. Thanks to these synchronizations all the three molecules know that they
are linked. P and R synchronize once again to agree on the release of Q.

P and R can release Q and stay connected. If they had not been con-
nected within the complex (i.e. before Q is released) they would not have
been connected after. This illustrates how the graph structure of a complex
is remembered.

2.2 Associativity and NaCl

Let:

• Na = (offer(e+).Na′){}

• Cl = (offer(e−).Cl′){}

• S = Na1 & Na2 & Cl1 & Cl2

We indexed molecules because we want to emphasize the variations permit-
ted by the associativity of the &.
S can evolve by linking Na and Cl molecules. This models the ionization
Na + Cl → Na+ + Cl−:

S →∗ ((Na′1)e+&(Na′2)e+) & ((Cl′1)e−&(Cl′2)e−)
≡ ((Na′1)e+&(Cl′1)e−) & ((Na′2)e+&(Cl′2)e−)
≡ ((Na′1)e+&(Cl′2)e−) & ((Na′2)e+&(Cl′1)e−)

The difference between the last two lines is the pairs of linked molecules.
In the last one we have (Na1, Cl2) and (Na2, Cl1) while in the other one we
have (Na1, Cl1) and (Na2, Cl2). This is permitted by the rule of associa-
tivity in the structural congruence. In the first line one do not detail which
Na+ is linked with which Cl−.

6

In theory these three systems are different, but in practice they are not
distinguishable. Such links as Na+ −Cl− are indeed always shifting from a
molecule to another one. All different configurations are actually coexisting.
Thus we do not want to distinguish them in our calculus.

2.3 Communication and strong links: Use of νa

Now we want to model stable links, corresponding to covalent bonds, for
instance. When such a link is made, no rearrangement with other molecules
is possible. The only way to remove such a link is to retract one of the linked
sites. Let:

• P = (νc)(offer(p−).p−〈c+〉.retract(p−).offer(c−).
Work.retract(c−).offer(p−)){}

• Q = (offer(p+).p+(x).retract(p+).offer(x).
Work′.retract(x).offer(p+)){}

• S = P&Q

Work and Work’ are some actions to perform when the strong link is estab-
lished. They begin and end by synchronization on the site c for P and x for
Q (which are actually the same).

S = (νc)[(offer(p−).p−〈c+〉.retract(p−).offer(c−).
Work.retract(c−).offer(p−)){}]

& (offer(p+).p+(x).retract(p+).offer(x).
Work′.retract(x).offer(p+)){}

τ,τ−−→ (νc)[(p−〈c+〉.retract(p−).offer(c−).
Work.retract(c−).offer(p−)){p−}]

&p+,p− (p+(x).retract(p+).offer(x).
Work′.retract(x).offer(p+)){p+}

τ−→ (νc)[(retract(p−).offer(c−).
Work.retract(c−).offer(p−)){p−}

&p+,p− (retract(p+).offer(x).
Work′.retract(x).offer(p+)){p+}]

τ,...−−→ (νc)[(Work.retract(c−).offer(p−)){c−}
&c+,c− (Work′.retract(x).offer(p+)){c+}]

The first step is achieved by offer of p+ and p−. The bond on site p is
automatically made. The second one is due to a communication on p. The

7

molecules exchange the new site c. Then they retract sites p+ and p− and
offer c+ and c−. Even if there is some associativity rearrangement between
the second and the third step, that is some P or Q link on site p with these
molecules, the privacy of c ensures that these two molecules will eventually
link. Indeed, they will eventually retract p+ and p− and offer c+ and c−.
As c is private, no other molecule can make a bond on c. Thus, this bond
on site c is strong and won’t be broken unless one of them retracts.

2.4 Synthesis of Transcription Factors: fork(P) and recX .P

When adding interfaces to processes to support complexation, we end up
with processes “inside” interfaces. How then can an inner process trigger
the creation of a new entity at the outer level ? This cannot be done by
simple parallel composition, as usual, because now we are at the wrong level.
Therefore we use a fork primitive to allow an “inner” process to create an
“outer” entity.

We use a very basic model of transcription factors synthesis showing
how fork(P) models synthesis to a new molecule and how recX .P models
infinite behavior of molecules. Let:

• dna1 = recX . (tf+
2 ().fork(TF1&X))tf+

2

• TFi = recY . (tf−i 〈〉.Y + 0)tf−i
for i = 1,2.

• and S = dna1&TF2

After dna1 has synchronized with TF2 on the site tf2, the fork action releases
a TF1 molecule which is the product of the reaction, and dna1 molecule (
because dna is not destroyed in the process).

3 Complexation of Membranes

We now want to represent membranes. The main step we take is to gen-
eralize molecules AS to membranes A[[P]]S,T where P is the contents inside
the membrane, A is the activity of the membrane, and S, T are two inter-
faces: S for the outside and T for the inside of the membrane. The idea
is that interactions can be offered to the outside (a↑) or to the inside (a↓)
of a membrane. As in the case of molecules, the complexation operator, &,
can create complexes of membranes by merging their (external) interfaces,
while hiding the internal connections from view.

We have to design an oriented version of the calculus as in [3] because
we do not want the shifting effects of the associativity congruence rule (see
part 2.2) to occur between two sides of a membrane. Such a case would
correspond to a receptor that keeps changing sides on its membrane and
this is not relevant for biology. Moreover [3] has shown how oriented actions
are better from both the biological and mathematical points of view.

8

3.1 Syntax

We take the notation of [3] for action of membranes: f stands for fuse (with
f and f⊥ as complementary actions) w for wrap and b for bubble. We use
al to stand for either a↑ or a↓.

• a, b, c, . . . ∈ Σ− ⋃
Σ+ and S, T, . . . ∈ Multisets(Σ− ⋃

Σ+)

• P,Q,R, . . . ::= A[[P]]S,T | P&P | (νa)P | X | recX .P

• A,B, C, . . . ::= 0 | A + B | A|B | α↑.A | α↓.A

• α ::= a〈S〉 | a(S) | offer(a) | retract(a) | [S]
| f | f⊥ | w | w(A[[]]S,T) | b(A[[]]S,T)

Arrows on actions give orientation to actions. [S] is the action corre-
sponding to Bind&Release of [1]: it permits molecules to cross membranes.
Here, however, we do not match on names of molecules but on interfaces.
A whole complex of molecules, for example, can be transported across the
membrane by an [S] action that recognizes its external interface. Actions f,
w and b are for membranes reactions. They are precisely described in [1, 3].
We no longer need the fork action because of the pino action that plays its
role. Interfaces are now defined by:

I(A[[P]]S,T) = S, I((νa)P) = I(P)− a, I(P&Q) = I(P)q I(Q)
I(X) = ∅, I(recX .P) = I(P)

3.2 Free names

We have to define free names for the new operators:

• fn(A[[P]]S,T) = fn(A)
⋃

fn(P)
⋃

Set(S)
⋃

Set(T)

• fn(fl.A) = fn(f⊥l.A) = fn(wl.A) = fn(A)

• fn(wl(B[[]]S).A) = fn(bl(B[[]]S).A) = fn(A)
⋃

fn(B)
⋃

Set(S)

• fn([S]l.A) = fn(A)
⋃

Set(S)

3.3 Structural Congruence

Some rules need to be added to or changed in the structural congruence:

• A≡B P≡Q
A[[P]]S≡B[[Q]]S

• A≡B α≡β
αl.A≡βl.B

• α ≡ α , A≡B
w(A[[]]S)≡w(B[[]]S) and A≡B

b(A[[]]S)≡b(B[[]]S)

9

3.4 Operational Semantics

The list of reactions is a bit long. This is partially because orientation
doubles reactions.

These are the two rules for communication. Com1 is just the extension
to the oriented case of the rule Com of the first calculus. Com2 is the case
of communication between nested membranes. Of course for Com2 there is
also the version where input and output are exchanged.

• (a±↑[[R]].A)[[P]]S,S′ & (a∓↑(X).B)[[Q]]T,T ′

→ A[[P]]S,S′ & B{R/X}[[Q]]T,T ′ if a ∈ S2T : (Com1)

• (a±↓〈R〉.A)[[(a∓↑(U).B)[[Q]]T,T ′ , Q′]]S,S′

→ A[[B{R/U}[[Q]]T,T ′ , Q′]]S,S′ if a ∈ S′2T : (Com2)

The following rules are just extensions to the oriented case of the Offer
and Retract rules.

• (offer(a)↑.A)[[P]]S,T → AS+a,T : (Off-Out)

• (offer(a)↓.A)[[P]]S,T → AS,T+a : (Off-In)

• (retract(a)↑.A)[[P]]S,T → AS−a,T if a ∈ S : (Retract-Out)

• (retract(a)↓.A)[[P]]S,T → AS,T−a if a ∈ T : (Retract-In)

The following rules just look for a molecule with the proper interface
and push it across the membrane. The content of A is empty because we
want it to be a molecule.

• A[[]]U,U ′&([S]↑.B)[[R]]T,T ′ → (B)[[A[[]]U,U ′&R]]T,T ′ if S = U :
(Through-out)

• ([S]↓.B)[[A[[]]U,U ′&R]]T,T ′ → A[[]]U,U ′&(B)[[R]]T,T ′ if S = U :
(Through-in)

Emission of a new membrane inside or outside. These are Drip and Pino
reactions.

• (b↑(A[[]]S,S′).B)[[P]]T,T ′ → B[[P]]T,T ′ & A[[]]S,S′ : (Drip)

• (b↓(A[[]]S,S′).B)[[P]]T,T ′ → B[[P & A[[]]S,S′]]T,T ′ : (Pino)

Reactions Phago, Bud and Swap. In each of them a membrane engulfs
itself in another membrane, wrapping itself in a piece of new membrane.
The Swap reaction could seem strange. Actually Swap is Phago or Bud
reaction seen from the point of view of P. See [3] for more details.

10

• (w↑.A)[[P]]S,S′ & (w↑(C[[]]T,T ′).B)[[Q]]U,U ′

→ B[[C[[A[[P]]S,S′]]T,T ′ & Q]]U,U ′ : (Phago)

• (w↓(C[[]]T,T ′).B)[[(w↑.A)[[P]]S,S′ & Q]]U,U ′

→ B[[Q]]U,U ′ & C[[A[[P]]S,S′]]T,T ′ : (Bud)

• (w↓.A)[[R & (w↑(C[[]]U,U ′).B)[[Q]]T,T ′]]S,S′

→ A[[C[[B[[R]]T,T ′ & Q]]U,U ′]]S,S′ : (Swap)

The following Exo and Mate reactions are both fusions of membranes ei-
ther vertical (Exo) or horizontal (Mate). Note that Exo reverses orientations
of actions in B and adds T’ to S and T to S’.

• (f⊥↓.A)[[(f↑.B)[[P]]T,T ′&Q]]S,S′ → P & (A|B)[[Q]]S+T ′,S′+T

where B just reverses orientations of actions in B : (Exo)

• (f⊥↑.A)[[P]]S,S′&(f↑.B)[[Q]]T,T ′ → (A|B)[[P&Q]]S+T,S′+T ′ :(Mate)

The structural rules Sum and Par extend to:

• A[[P]]S,S′ & R → A′[[P ′]]T,T ′ & R′

(A|C)[[P]]S,S′ & R → (A′|C)[[P ′]]T,T ′ & R′ : (Par)

• A[[P]]S,S′ & R → A′[[P ′]]T,T ′ & R′

(A+C)[[P]]S,S′ & R → A′[[P ′]]T,T ′ & R′ if A 6= A′ : (Sum)

3.5 Modeling of a molecule repaired in a Golgi apparatus

We next present a small example to illustrate interactions between mem-
branes and molecules. Let:

• M = (damaged+↑〈〉.retract(damaged+).
offer(undamaged+))[[]]damaged+,

• G = (golgi|[damaged+]↑|[undamaged+]↓)[[
(damaged−()↑)[[]]damaged−,]] ,

• S = M&G

M is a damaged molecule. G is a golgi apparatus containing a molecule,
which can repair M. So M has to go inside G to be repaired. Since M has
the interface damaged+, G can use its action [damaged]↑ to capture M and
put it into its content. The content of G is then:

(damaged+↑〈〉.retract(damaged+).offer(undamaged+))[[]]damaged+,

& (damaged−()↑)[[]]damaged−,

The synchronization on the site damaged, followed by the retracting of
damaged+ by M and the offering of undamaged+, represent the repairing
of M. The interface of M is now undamaged+ and it can be released outside
of G.

11

4 Possible extensions and Perspectives

4.1 Possible extensions

Different extensions are possible to enhance the syntax. A first interesting
feature consists of test actions ?(a) and ¬?(a) with theses rules:

• (?(a).A)[[P]]S,S′&Q → (A)[[P]]S,S′&Q : if a ∈ S2I(Q)

• (¬?(a).A)[[P]]S,S′&Q → (A)[[P]]S,S′&Q : if a 6∈ S2I(Q)

Tests can be useful because synchronization does not a molecule permit a
molecule to check if some site is not connected. It can also be a simpler
way to check if a site is connected without requiring one to “program” both
sides of the link.

Another extension would be to have molecules on membranes. In this
work, a molecule can only be between membranes. So we loose the pos-
sibility of representing transmembranal molecules. A simple solution is to
permit terms of the first calculus between membranes and on membranes.
To compute the interface of a membrane we then have to add all interfaces
of molecules sitting on this membrane.

4.2 Perspectives

An interesting perspective is to design a projective version of the calculus as
in [3]; this means building a “projective” equivalence relation that identifies
molecules representing the same system under different points of view. This
equivalence has to be compatible with reduction; this implies that each
reaction must have a “symmetric” reaction with respect to the projective
equivalence. This is almost achieved in the calculus we presented here. For
instance, the two communication rules are “symmetric” : they correspond
to the same system seen from two different points of view. The only problem
is the ν operator. Taking a point of view inside a ν requires a symmetric
operator for ν. If one thinks of ν as the beginning of a scope, its symmetrical
operator would end the scope.

Another perspective is to reduce the calculus to just what we need. For
instance, examples do not use the full power of name passing communi-
cations. Our conjecture is that bounded outputs are sufficient to express
biological interactions.

Finally a stochastic semantics is needed as a basis for simulations.

12

References

[1] Luca Cardelli. Brane calculi. Computational Methods in Systems Bi-
ology: Second International Workshop, CMSB’04, 3082:257–280, April
2004.

[2] Luca Cardelli and Andrew Gordon. Mobile ambients. Theoritical Com-
puter Science, 240/1:177–213, 2000.

[3] Vincent Danos and Sylvain Pradalier. Projective Brane-calculus. Com-
putational Methods in Systems Biology: Second International Workshop,
CMSB’04, 3082:134–148, April 2004.

[4] A.Regev W.Silverman E.Shapiro. Representation and simulation of bio-
chemical processes using the pi-calculus process algebra. 2001.

[5] Robin Milner. Communicating and Mobile Systems. Cambridge Univer-
sity Press.

[6] Corrado Priami and Paola Quaglia. Beta binders for biological interac-
tions. Computational Methods in Systems Biology: Second International
Workshop, CMSB’04, April 2004.

[7] Corrado Priami and Paola Quaglia. Operational patterns in beta binders.
2005.

[8] C.Priami A.Regev E.Shapiro W.Silverman. Application of a stochas-
tic name-passing calculus to representation and simulation of molecular
processes. 2001.

13

