
Visualization in Process Algebra Models

of Biological Systems

Luca Cardelli, Microsoft Research Cambridge

Corrado Priami, Microsoft Research - University of Trento Centre for Computational and

Systems Biology and University of Trento

In a recent paper, Nobel laureate Paul Nurse calls for a better understanding of living organisms

through “both the development of the appropriate languages to describe information

processing in biological systems and the generation of more effective methods to translate

biochemical descriptions into the functioning of the logic circuits that underpin biological

phenomena.” [1]

The language that Nurse wishes to see is a formal language that can be automatically translated

into machine executable code and that enables simulation and analysis techniques for proving

properties of biological systems. Although there are many approaches to the formal modeling

of living systems, only a few provide executable descriptions that highlight the mechanistic

steps that make a system move from one state to another [2]. Almost all the techniques related

to mathematical modeling abstract from these individual steps to produce global behavior,

usually averaged over time.

Computer science provides the key elements to describe mechanistic steps: algorithms and

programming languages [3]. Following the metaphor of molecules as processes introduced in

[4], process calculi have been identified as a promising tool to model biological systems that are

inherently complex, concurrent, and driven by the interactions of their subsystems.

Causality is a key difference between language-based modeling approaches and other

techniques. In fact, causality in concurrent languages is strictly related to the notion of

concurrency or independence of events, which makes causality substantially different from

temporal ordering. An activity A causes an activity B if A is a necessary condition for B to

happen and A influences the activity of B—i.e., there is a flow of information from A to B. The

second part of the condition defining causality makes clear the distinction between precedence

(related only to temporal ordering) and causality (a subset of the temporal ordering in which

the flow of information is also considered) [5]. As a consequence, the list of the reactions

performed by a system does not provide causal information but only temporal information. It is

therefore mandatory to devise new modeling and analysis tools to address causality.

Causality is a key issue in the analysis of complex interacting systems because it helps in

dissecting independent components and simplifying models while also allowing us to clearly

identify cross-talks between different signaling cascades. Once the experimentalist observes an

interesting event in a simulation, it is possible to compact the previous history of the system,

exposing only the preceding events that caused the interesting one. This can give precise hints

about the causes of a disease, the interaction of a drug with a living system (identifying its

efficacy and its side effects), and the regulatory mechanisms of oscillating behaviors.

Causality is a relationship between events, and as such it is most naturally studied within

discrete models, which are in turn described via algorithmic modeling languages. Although

many modeling languages have been defined in computer science to model concurrent

systems, many challenges remain to building algorithmic models for the system-level

understanding of biological processes. These challenges include the relationship between low-

level local interactions and emergent high-level global behavior; the incomplete knowledge of

the systems under investigation; the multi-level and multi-scale representations in time, space,

and size; and the causal relations between interactions and the context awareness of the inner

components. Therefore, the modeling formalisms that are candidates to propel algorithmic

systems biology should be complementary to and interoperable with mathematical modeling.

They should address parallelism and complexity, be algorithmic and quantitative, express

causality, and be interaction driven, composable, scalable, and modular.

Language Visualization

A fundamental issue in the adoption of formal languages in biology is their usability. A modeling

language must be understandable by biologists so they can relate it to their own informal

models and to experiments.

One attempt by biologists to connect formal languages and informal descriptions of systems

involved the use of a constrained natural language organized in the form of tables that collect

all the information related to the structure and dynamic of a system. This narrative

representation is informative and structured enough to be compiled into formal description

that is amenable to simulation and analysis [6, 7]. Although the narrative modeling style is not

yet visual, it is certainly more readable and corresponds better to the intuition of biologists

than a formal (programming) language.

The best way to make a language understandable to scientists while also helping to manage

complexity is to visualize the language. This is harder than visualizing data or visualizing the

results of simulations because a language implicitly describes the full kinetics of a system,

including the dynamic relationships between events. Therefore, language visualization must be

dynamic, and possibly reactive [8], which means that a scientist should be able to detect and

insert events in a running simulation by direct intervention. This requires a one-to-one

correspondence between the internal execution of a formal language and its visualization, so

that the kinetics of the language can be fully reflected in the kinetics of the visualization and

vice-versa.

one can edit either the diagrams or the models. The nodes represent molecular states (the node icons

are just for illustration), and the labeled arcs represent interactions with other molecules in the

environment. The models use a biochemical variant of pi

with +/- for binding and unbinding.

This ability to fully match the kinetics of a general

(Turing-complete) modeling language to visual

representations has been demonstrated

for pi-calculus [10], but many practical challenges

remain to adapting such general methods to specific

visualization requirements. (See Figure 1

requirement, for example, is the visualization and

tracking of molecular complexes; to this end

language [12] and its support tools permit

representation of complexes of biological elements and

examination of their evolution in time [

2.) The graphical representation of complexes is also

useful in studying morphogenesis processes to unravel

the mechanistic steps of pattern formation

3.)

Figure 1. This diagram can be placed in 1:1 correspondence

with formal stochastic pi-calculus models [9, 10, 11] so that

one can edit either the diagrams or the models. The nodes represent molecular states (the node icons

illustration), and the labeled arcs represent interactions with other molecules in the

environment. The models use a biochemical variant of pi-calculus with rate weight as superscripts and

for binding and unbinding.

the kinetics of a general

complete) modeling language to visual

representations has been demonstrated, for example,

], but many practical challenges

such general methods to specific

Figure 1.) One such

requirement, for example, is the visualization and

tracking of molecular complexes; to this end, the BlenX

] and its support tools permit explicit

complexes of biological elements and

their evolution in time [13]. (See Figure

) The graphical representation of complexes is also

useful in studying morphogenesis processes to unravel

the mechanistic steps of pattern formation. (See Figure

can be placed in 1:1 correspondence

calculus models [9, 10, 11] so that

one can edit either the diagrams or the models. The nodes represent molecular states (the node icons

illustration), and the labeled arcs represent interactions with other molecules in the

calculus with rate weight as superscripts and

Figure 2. The green S boxes in the diagram represent entities populating the biological system

consideration. The light blue rectangles attached to the green boxes represent the active

interfaces/domains available for complexation and decomplexation. The diagram shows how the

simulation of the BlenX specification formed a ring complex and provides the position and the

connections between boxes for inspection.

Figure 3. The green, red and blue

biological system under consideration

the active interfaces/domains available for complexation and decomplexation. The diagram

how patterns are formed in morphogenesis processes simulated by BlenX specifications.

Analysis

Model construction is one step in the scientific cycle, and appropriate modeling languages

(along with their execution and visualization capabilities

modeling complex systems. Ultimately, however

large number of techniques. Some of these techniques may be centered on the underlying

mathematical framework, such as the analysis

nets generated from the model. Other techniques

(the language in which the model is written). For example, we may want to know whether two

different model descriptions actually represent the same behavior, by some measure of

behavior equivalence. This kind of model correspondence can arise

apparently different biological systems that work by the same fundamental principles. A similar

question is whether we can simplify (abstract) a model description and still preserve its

behavior, again by some measure of behavior equivalence that may mask some unimportant

in the diagram represent entities populating the biological system

. The light blue rectangles attached to the green boxes represent the active

interfaces/domains available for complexation and decomplexation. The diagram shows how the

simulation of the BlenX specification formed a ring complex and provides the position and the

connections between boxes for inspection.

Figure 3. The green, red and blue S boxes in the diagram represent different species populating the

under consideration. The light blue rectangles attached to the green boxes represent

the active interfaces/domains available for complexation and decomplexation. The diagram

how patterns are formed in morphogenesis processes simulated by BlenX specifications.

Model construction is one step in the scientific cycle, and appropriate modeling languages

(along with their execution and visualization capabilities) are important, particularly for

modeling complex systems. Ultimately, however, one will want to analyze the model

large number of techniques. Some of these techniques may be centered on the underlying

mathematical framework, such as the analysis of differential equations, Markov chains, or Petri

nets generated from the model. Other techniques may be centered on the model description

(the language in which the model is written). For example, we may want to know whether two

ons actually represent the same behavior, by some measure of

behavior equivalence. This kind of model correspondence can arise, for example

apparently different biological systems that work by the same fundamental principles. A similar

ether we can simplify (abstract) a model description and still preserve its

behavior, again by some measure of behavior equivalence that may mask some unimportant

in the diagram represent entities populating the biological system under

. The light blue rectangles attached to the green boxes represent the active

interfaces/domains available for complexation and decomplexation. The diagram shows how the

simulation of the BlenX specification formed a ring complex and provides the position and the

boxes in the diagram represent different species populating the

The light blue rectangles attached to the green boxes represent

the active interfaces/domains available for complexation and decomplexation. The diagram elucidates

how patterns are formed in morphogenesis processes simulated by BlenX specifications.

Model construction is one step in the scientific cycle, and appropriate modeling languages

) are important, particularly for

want to analyze the model using a

large number of techniques. Some of these techniques may be centered on the underlying

of differential equations, Markov chains, or Petri

may be centered on the model description

(the language in which the model is written). For example, we may want to know whether two

ons actually represent the same behavior, by some measure of

for example, from

apparently different biological systems that work by the same fundamental principles. A similar

ether we can simplify (abstract) a model description and still preserve its

behavior, again by some measure of behavior equivalence that may mask some unimportant

detail.

Behavioral equivalences are in fact a primary tool in computer science for verifying computing

systems. For instance, we can use equivalences to ensure that an implementation is in

agreement with a specification, abstracting as much as possible from syntactic descriptions and

instead focusing on the semantics (dynamic) of specifications and implementations. So far,

biology has focused on syntactic relationships between genes, genomes, and proteins. An

entirely new avenue of research is the investigation of the semantic equivalences of biological

entities populating complex networks of interactions. This approach could lead to new visions

of systems and reinforce the need for computer science to enhance systems biology.

Biology is a data-intensive science. Biological systems are huge collections of interacting

components. The last decade of research has contributed to identifying and classifying those

components, especially at the molecular level (gene, metabolites, proteins). To make sense of

the large amount of data available, we need to implicitly represent them in compact and

executable models so that executions can recover the available data as needed. This approach

would merge syntax and semantics in unifying representations and would create the need for

different ways of storing, retrieving, and comparing data. A model repository that represents

the dynamics of biological processes in a compact and mechanistic manner would therefore be

extremely valuable and could heighten the understanding of biological data and the basic

biological principles governing life. This would facilitate predictions and the optimal design of

further experiments to move from data collection to knowledge production.

Analysis Visualization

Executable models need visualization to make their execution interactive (to dynamically focus

on specific features) and reactive (to influence their execution on the fly). Execution is one form

of analysis; other analysis methods will need visualization as well. For complex systems, the

normal method of “batch” analysis, consisting of running a complex analysis on the model and

then mining the output for clues, needs to be replaced with a more interactive, explorative

approach.

Model abstraction is an important tool for managing complexity, and we can envision

performing this activity interactively—for example, by lumping components together or by

hiding components. The notion of lumping will then need an appropriate visualization and an

appropriate way of relating the behavior of the original components to the behavior of the

lumped components. This doesn’t mean visualizing the modeling language, but rather

visualizing an abstraction function between models. We therefore suggest visualizing the

execution of programs/models in such a way that the output is linked to the source code/model

specification and the graphical abstraction performed by the end user is transformed into a

formal program/model transformation. The supporting tool would then check what properties

the transformation is preserving or not preserving and warn the user accordingly.

All the above reinforces the need for a formal and executable language to model biology as the

core feature of an in silico laboratory for biologists that could be the next-generation high-

throughput tool for biology.

Acknowledgments

The authors thank Andrew Phillips and Lorenzo Dematté for preparing the figures.

References

[1] P. Nurse, “Life, Logic and Information,” Nature, vol. 454, pp. 424–426, 2008.

[2] J. Fisher and T. Henzinger, “Executable Cell Biology,” Nat. Biotechnol., vol. 25, pp. 1239–

1249, 2007.

[3] C. Priami, “Algorithmic Systems Biology: An opportunity for Computer Science,” Commun.

ACM, June 2009.

[4] A. Regev and E. Shapiro, “Cells as computation,” Nature, vol. 419, pp. 343, 2002.

[5] P. Degano and C. Priami, “Non-interleaving semantics of mobile processes,” Theor. Comp.

Sci., vol. 216, no. 1–2, pp. 237–270, 1999.

[6] M. L. Guerriero, J. Heath, and C. Priami, “An automated translation from a narrative

language for biological modelling into process algebra,” Proc. CMSB 2007, LNBI 4695, 2007, pp.

136–151.

[7] M. L. Guerriero, A. Dudka, N. Underhill-Day, J. Heath, and C. Priami, “Narrative-based

computational modelling of the Gp130/JAK/STAT signalling pathway,” BMC Syst. Biol.,3(1):40,

2009.

[8] S. Efroni, D. Harel, and I. R. Cohen, “Reactive Animation: Realistic Modeling of Complex

Dynamic Systems,” Computer, vol. 38, no. 1, pp. 38–47, Jan. 2005.

[9] C. Priami, “Stochastic pi-calculus,” Comp. J., vol. 38, no. 6, pp. 578–589, 1995.

[10] P. Phillips, L. Cardelli, and G. Castagna, “A Graphical Representation for Biological Processes

in the Stochastic Pi-calculus,” Trans. Comput. Syst. Biol., VII - LNCS 4230, 2006, pp. 123–152.

[11] A. Phillips and L. Cardelli, “Efficient, Correct Simulation of Biological Processes in Stochastic

Pi-calculus,” Proc. Comput. Meth. Syst. Biol., Edinburgh, 2007, pp. 184–199.

[12] L. Dematté, C. Priami, and A. Romanel, “The BlenX Language: a tutorial,” Formal Meth.

Comput. Syst. Biology, LNCS 5016, 2008, pp. 313–365.

[13] L. Dematté, C. Priami, and A. Romanel, “The Beta Workbench: a computational tool to

study the dynamics of biological systems,” Brief. Bioinf., vol. 9, no. 5, pp. 437–449, 2008.

