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In a recent paper, Nobel laureate Paul Nurse calls for a better understanding of living organisms 

through “both the development of the appropriate languages to describe information 

processing in biological systems and the generation of more effective methods to translate 

biochemical descriptions into the functioning of the logic circuits that underpin biological 

phenomena.” [1] 

 

The language that Nurse wishes to see is a formal language that can be automatically translated 

into machine executable code and that enables simulation and analysis techniques for proving 

properties of biological systems. Although there are many approaches to the formal modeling 

of living systems, only a few provide executable descriptions that highlight the mechanistic 

steps that make a system move from one state to another [2]. Almost all the techniques related 

to mathematical modeling abstract from these individual steps to produce global behavior, 

usually averaged over time. 

 

Computer science provides the key elements to describe mechanistic steps: algorithms and 

programming languages [3]. Following the metaphor of molecules as processes introduced in 

[4], process calculi have been identified as a promising tool to model biological systems that are 

inherently complex, concurrent, and driven by the interactions of their subsystems. 

 

Causality is a key difference between language-based modeling approaches and other 

techniques. In fact, causality in concurrent languages is strictly related to the notion of 

concurrency or independence of events, which makes causality substantially different from 

temporal ordering. An activity A causes an activity B if A is a necessary condition for B to 

happen and A influences the activity of B—i.e., there is a flow of information from A to B. The 

second part of the condition defining causality makes clear the distinction between precedence 

(related only to temporal ordering) and causality (a subset of the temporal ordering in which 

the flow of information is also considered) [5]. As a consequence, the list of the reactions 

performed by a system does not provide causal information but only temporal information. It is 

therefore mandatory to devise new modeling and analysis tools to address causality. 

 

Causality is a key issue in the analysis of complex interacting systems because it helps in 

dissecting independent components and simplifying models while also allowing us to clearly 

identify cross-talks between different signaling cascades. Once the experimentalist observes an 



interesting event in a simulation, it is possible to compact the previous history of the system, 

exposing only the preceding events that caused the interesting one. This can give precise hints 

about the causes of a disease, the interaction of a drug with a living system (identifying its 

efficacy and its side effects), and the regulatory mechanisms of oscillating behaviors. 

 

Causality is a relationship between events, and as such it is most naturally studied within 

discrete models, which are in turn described via algorithmic modeling languages. Although 

many modeling languages have been defined in computer science to model concurrent 

systems, many challenges remain to building algorithmic models for the system-level 

understanding of biological processes. These challenges include the relationship between low-

level local interactions and emergent high-level global behavior; the incomplete knowledge of 

the systems under investigation; the multi-level and multi-scale representations in time, space, 

and size; and the causal relations between interactions and the context awareness of the inner 

components. Therefore, the modeling formalisms that are candidates to propel algorithmic 

systems biology should be complementary to and interoperable with mathematical modeling. 

They should address parallelism and complexity, be algorithmic and quantitative, express 

causality, and be interaction driven, composable, scalable, and modular. 

Language Visualization 

A fundamental issue in the adoption of formal languages in biology is their usability. A modeling 

language must be understandable by biologists so they can relate it to their own informal 

models and to experiments.  

 

One attempt by biologists to connect formal languages and informal descriptions of systems 

involved the use of a constrained natural language organized in the form of tables that collect 

all the information related to the structure and dynamic of a system. This narrative 

representation is informative and structured enough to be compiled into formal description 

that is amenable to simulation and analysis [6, 7]. Although the narrative modeling style is not 

yet visual, it is certainly more readable and corresponds better to the intuition of biologists 

than a formal (programming) language.  

  

The best way to make a language understandable to scientists while also helping to manage 

complexity is to visualize the language. This is harder than visualizing data or visualizing the 

results of simulations because a language implicitly describes the full kinetics of a system, 

including the dynamic relationships between events. Therefore, language visualization must be 

dynamic, and possibly reactive [8], which means that a scientist should be able to detect and 

insert events in a running simulation by direct intervention. This requires a one-to-one 

correspondence between the internal execution of a formal language and its visualization, so 

that the kinetics of the language can be fully reflected in the kinetics of the visualization and 

vice-versa. 

 



one can edit either the diagrams or the models. The nodes represent molecular states (the node icons 

are just for illustration), and the labeled arcs represent interactions with other molecules in the 

environment. The models use a biochemical variant of pi

with +/- for binding and unbinding.

 

 

This ability to fully match the kinetics of a general 

(Turing-complete) modeling language to visual 

representations has been demonstrated

for pi-calculus [10], but many practical challenges 

remain to adapting such general methods to specific 

visualization requirements. (See Figure 1
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Figure 1. This diagram can be placed in 1:1 correspondence 

with formal stochastic pi-calculus models [9, 10, 11] so that 

one can edit either the diagrams or the models. The nodes represent molecular states (the node icons 

illustration), and the labeled arcs represent interactions with other molecules in the 

environment. The models use a biochemical variant of pi-calculus with rate weight as superscripts and 

for binding and unbinding. 

the kinetics of a general 

complete) modeling language to visual 

representations has been demonstrated, for example, 

], but many practical challenges 

such general methods to specific 

Figure 1.) One such 

requirement, for example, is the visualization and 

tracking of molecular complexes; to this end, the BlenX 

] and its support tools permit explicit 

complexes of biological elements and 

their evolution in time [13]. (See Figure 

) The graphical representation of complexes is also 

useful in studying morphogenesis processes to unravel 

the mechanistic steps of pattern formation. (See Figure 

can be placed in 1:1 correspondence 

calculus models [9, 10, 11] so that 

one can edit either the diagrams or the models. The nodes represent molecular states (the node icons 

illustration), and the labeled arcs represent interactions with other molecules in the 

calculus with rate weight as superscripts and 

 



Figure 2. The green S boxes in the diagram represent entities populating the biological system 

consideration. The light blue rectangles attached to the green boxes represent the active 

interfaces/domains available for complexation and decomplexation. The diagram shows how the 

simulation of the BlenX specification formed a ring complex and provides the position and the 

connections between boxes for inspection.

 

Figure 3. The green, red and blue 

biological system under consideration

the active interfaces/domains available for complexation and decomplexation. The diagram

how patterns are formed in morphogenesis processes simulated by BlenX specifications.

Analysis 

Model construction is one step in the scientific cycle, and appropriate modeling languages 

(along with their execution and visualization capabilities
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mathematical framework, such as the analysis 

nets generated from the model. Other techniques

(the language in which the model is written). For example, we may want to know whether two 

different model descriptions actually represent the same behavior, by some measure of 

behavior equivalence. This kind of model correspondence can arise

apparently different biological systems that work by the same fundamental principles. A similar 

question is whether we can simplify (abstract) a model description and still preserve its 

behavior, again by some measure of behavior equivalence that may mask some unimportant 
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Figure 3. The green, red and blue S boxes in the diagram represent different species populating the 

under consideration. The light blue rectangles attached to the green boxes represent 

the active interfaces/domains available for complexation and decomplexation. The diagram

how patterns are formed in morphogenesis processes simulated by BlenX specifications.
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how patterns are formed in morphogenesis processes simulated by BlenX specifications. 
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detail.  

 

Behavioral equivalences are in fact a primary tool in computer science for verifying computing 

systems. For instance, we can use equivalences to ensure that an implementation is in 

agreement with a specification, abstracting as much as possible from syntactic descriptions and 

instead focusing on the semantics (dynamic) of specifications and implementations. So far, 

biology has focused on syntactic relationships between genes, genomes, and proteins. An 

entirely new avenue of research is the investigation of the semantic equivalences of biological 

entities populating complex networks of interactions. This approach could lead to new visions 

of systems and reinforce the need for computer science to enhance systems biology. 

 

Biology is a data-intensive science. Biological systems are huge collections of interacting 

components. The last decade of research has contributed to identifying and classifying those 

components, especially at the molecular level (gene, metabolites, proteins). To make sense of 

the large amount of data available, we need to implicitly represent them in compact and 

executable models so that executions can recover the available data as needed. This approach 

would merge syntax and semantics in unifying representations and would create the need for 

different ways of storing, retrieving, and comparing data. A model repository that represents 

the dynamics of biological processes in a compact and mechanistic manner would therefore be 

extremely valuable and could heighten the understanding of biological data and the basic 

biological principles governing life. This would facilitate predictions and the optimal design of 

further experiments to move from data collection to knowledge production.  

Analysis Visualization 

Executable models need visualization to make their execution interactive (to dynamically focus 

on specific features) and reactive (to influence their execution on the fly). Execution is one form 

of analysis; other analysis methods will need visualization as well. For complex systems, the 

normal method of “batch” analysis, consisting of running a complex analysis on the model and 

then mining the output for clues, needs to be replaced with a more interactive, explorative 

approach. 

 

Model abstraction is an important tool for managing complexity, and we can envision 

performing this activity interactively—for example, by lumping components together or by 

hiding components. The notion of lumping will then need an appropriate visualization and an 

appropriate way of relating the behavior of the original components to the behavior of the 

lumped components. This doesn’t mean visualizing the modeling language, but rather 

visualizing an abstraction function between models. We therefore suggest visualizing the 

execution of programs/models in such a way that the output is linked to the source code/model 

specification and the graphical abstraction performed by the end user is transformed into a 

formal program/model transformation. The supporting tool would then check what properties 

the transformation is preserving or not preserving and warn the user accordingly. 

 

All the above reinforces the need for a formal and executable language to model biology as the 



core feature of an in silico laboratory for biologists that could be the next-generation high-

throughput tool for biology. 
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