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- 1. INTRODUCTION

We propose an algebralc view of the hierarchical approach
to VLSI design developed by Mead, Conway and others (Mead
- and Conway, 1980). VLSI networks are described by expre551ons
~of a many-sorted nMOS algebra, and the algebraic operators
care designed to: support a structural methodology. The algebra
can be enbedded in a programmlng language as an abstract data
type (Goguen et al., 1978), and since the emphasis is on
‘expressions (they -denote networks) it is natural to use an
e appllcatlve 1anguage {Burge, 1975).

These ideas are really very general and should be useful

wherever a &tructural approach is needed for graphical or -

. geometrical information; in particular there is no difficulty
“with other technologies such as ¢MOS. The ideas largely
originate with Milner (1979) and the small differences in the
~choice of operators are motivated by programming convenience

. and - the fact that 1<1 connectién is more natural for VLSI
“than many*many connection.

Our nMOS expressions will have various dinterpretations
“whether ag graphs, geometrlc configurations, behaviours or
other networks; in- sectlon 2 we give an informal one asg-
‘pi¢tures composed of coloured lines (sticks) and their
intersections (stones). Each network will interface with
‘its environment via a set of named coloured ports which:

. determine its sort, The unary operators renaming and
-Pestrtctwon manlpulate the interface; -and the more
interesting binary operator eomposition joins smaller
networks together lnto larger ones.

By. adepting various abbreviations an extended notation is
ideveloped in séction 3 .which mergés naturally into an
applicative language. The control structures in the language




s prov1de conditional assemblies of networks and parameteriz-

. ations, and: a speclallzed iteration construct allows the
convenient expression of the most common VLSI subsystems.

“We thus obtain what might be best called a hlgh level chip
assembly : language.

The flexibility of parameterization of textual expressions
‘has ‘no graphical parallel and so we prefer the textual
... expression of networks.e However, graphical tools should be
“i used as much as possible especially for interactive visual
“feedback, and we believe that. an algebraic approach might
still be useful for hierarchical input and editing.

In conclusion, our algebraic notation can help the
~integration of the graphical and textual aspects of network
design, because it can ¥eflect the intended structure of
networks and keep the connectivity information local and
well-organlzed :

9. nMos NETWORK.ALGEBRAS

_Our algebras are many-sorted, the idea being that the sort

“of ‘a network determines its interface with its environment,
We view networké as interfacing through a set of named ports
{one name to each. port), each on some layer, Formally, let
{green,réd,bluel be the set of types and let PNames be an
infinite set of (port) names (and we use a,b to range over

~names and A;B,C to range over finite sets of names). Then a
sort is a map Sy A ->Types (and we put Is{ = A); s(a) shows
the layer of the ‘port (named) a. :

- The elementary network components form the set, I', of
gonstants of ‘ouxr’ algebra {(and are ranged over by c); every
,j”constant, ¢, has sort o{c). Here is one Yeasonable choice
'f“for P giving the sort in an evident notation; Fig.l pictures
some of “thage elementary Eomgonents,

';;Contacts

_ Green Geon: {gn,gs,ge,gw:green}
“Red . RCon: {rn,rs;re,rw:red}
Blue BCon: {bn,;bs,be,bw:blue}

~Green-Red . GRCon: {gn,gs:gréen; re,rw:red}
Red-Blue  RBCon: {rh,rs:red; be,bw:blue}
fBlue~Gxeen BGCon+ {bn bs:blue; ge,gw:green}

¥

Enhaﬁcéﬁent ETransy {source drain:green; gate,gate':red}
De'letiqn DTran- {source,drain: :green; gate,gate':red}
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.Fig.z Some elementary cqmpOneﬁts.

‘There are.two unary operators for manipulating port names
thereby changlng the interface. The restrtction operator,
&, removes the rname a from the sort of a network; we make it
~ ‘postfix and often abbreviate™a,..>a to™>a,,...,a .

- Fig.2 pictures DTran' .= DTran>gate'. ™ Forma: ly fornevery s

““and a we have a unary operator “a: s -> s' (where fs‘|’=

|sPMal and s'(a") = s(a') for a' in |s'|); thus if e is an
algebraic expre551on of isort ¢ then €~a is one of sort s'

The renaming ‘operator {r} (where r: A -> A' is a bijection)
renames the ports of a hetwork -dccording to r; we make it
postfix and often write {a™~b,,...,a™>b } for r when {a,} C
and b, = r(a,) and for a not iIn {a,} we have r(a) = a. 4
Pig. 2lpicturés a-power supply, groﬁnd and a butting-contact
denoted, respectlvely, by the expressions,

VDD = BGCoi~gw {gé-high,bs~vdde,bi~vddw} and

GND = BGCorge {gw-low, bigride, bg\gndw} and

BuCon* GRCor~gn,rw {gs-green,ré~red}.
They have respectlve types VDD: {high: green; vdde,vddws: sblue}
and GND: ‘{low:igreen; gnde,gndw:blue} and BuCon: {qreen green;
red:red}. Formally for every s and bijection r: Is\ “> %'
we have a unary operator {r}: s -> s' where s' =s o r .

source

N
gareg T
drain
DTran' VDD GND BuCon

bv Fzg 2 Some Duzldtng~blocks.

The binary composztmon operator, [r] (where r: A -> A' is
a bijection) composes two networks ‘together accordlng to r;

'  7Hfthe composition is allowed only if corresponding ports have




‘the same type and there are no two ports with the same name
-among those not joined via r. We make [r] an infix,
associating to- the 1eft and often write it as [a,~-b,,...,
‘@ ==b ] where {a,} # A and b, r(a,). Fig.3 shows how to
make % resistor. First campose DTran" = DTran' {sourceé~in}
b'with BuCon via [gate--red] obtaining DTran" [gate~-yed] BuCon
{in,drain,gréenzgresnt; then compose the result with

"fGCOH' GCor~ge {ggxout} via [drain--gn,green--gw] obtaining

““Res: {in,out:green} where
Res = DTran" [gate-~red] BuCon [drain--gn,green--gw] GCon'
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Fig.3 Building affeaistor.‘

- Formally for every &,s' and bljectlon r: A -> A' where
A Cs| and A'.g ls'| and s(a) = s'(x(a)) for every a in A
(type restriction) and stuch that B M B' = ¢ where B = |s
and - B' = ls f\A' (names refer to one port) we “have a binary
operator [r]: s,s' => s" where |s“f =B B' and s"(b) is
sib) if b is in B and s'(b) otherwise.

~ As another example, an inverter of sort {in:red; out:green;
vdde ,vddw;gnde , gndw:blue) can be built as
~Iny = (VDD[hlqh——ln]Res[outmmgn](GCoﬂ\gw)[gSwwsourcel
ETran{drain--lowlGND) {gate~in,gé~out)

'fComPOSltlon cells: An  the:sénse of Rowson (1980) can be

regarded ag repeated applications of our composition with
Isome restrlctlon, renamlng and constants.

o The pictures we ‘have used above will now be formalised as
appropriate kinds of graphs, they can be xegarded as stick
‘diagrams where connect1v1ty is the only topological

- dnformation retained. Algebraically, what we have done above

Lis to give the. szgnaﬁure of nMOS algebras and we now turn
to the most lmportant algebra.

Defin;tx@n Bn nMOS network is a quintuple N = <V,Y,A,7,E>
»where Vis a non—empty finite set and y: V -> I' (and we put
{<v,b>lb£€a(Y(v))}) and A is a finite set of names and




‘WA -> P is 1-1 and E C P X P subject to the following
conditions {(where type(v b) = o(y(v))(b)):
1. E is symmetric and a partial function.
2. If v b>E<v‘,b'> then type(v,b) = type(v',b') and v#v',
3. No <v,b> is both m(a) for some a and in the domain
of H.
The sort of N is & where lsi = A and s(a) = type(w(a)),.

Intuitively, V'is the set of vertices (or nodes) and vy (v)
is the the elementary companent at v.and A is the set of
'port names and P is the set of ports and w{(a) is the port
that a alone-namés.and E is the connection relation between
ports. The first condition ensures that connection is
~gymmetric and any port.’ 418 connected to at most one other,

- the second enstures type~con515tency and that there are no
 self-loops; the third ensures no port is both named and
connected. We identlfy isomorphlc networks when the
isomorphism is the 1dentity on ‘po¥t names.

. ~Now the carrters of the algebra are the networks of sort
i, for each s. Any constant, ¢, of sort s denotes the
network <{c} ck>c,]s[,a+><c a>,$>. The operations can be
given by simple definitions.

Restriction <V,y,A,m,E>a = <V,vy, A',a'+>ra',E> where A'=A~{a}.
“Renaming <V,Y,A;T, E>{r} = <V,Y,r(A) ,moxr = ,E>

Composition <V,Y,A,T JES{ZI<V! ,y? AT, T ,E'> =

CRVUVT )Y ,BKJB',W" EWVE' UE"S where we assume that
VAV' = @ and where £y ¢ &> C* and B = ANC and B' = A~C!

and 7(b) 18 w(b)-4if b is in B &nd ' (b) otherwise'and'where
E" = {<m(a),m'qx(a))>,<n' (x(a)) ,m(a)> | aec).

Tt can-easily be shown that every network is denoted by
“some algebralc expressxons, confirming the power of oux
s’hotation; -also it can be decided in polynomial time whether
- two expressions denote isomorphic networks, but we lack a

good upper - bound ‘We.can also axiomatise the equalities
between expre531ons by variants of Milner's laws of flow.
In-the follow1ng x,y-and z range over arbitrary expressions
such that- the equatlons are between well-sorted expréssions
.of'the same sort; we write o(x) for the sort of x and
id.: A ~> A is the identity on A.

A ,
ComEOSithn (xlid. Iyylid. , "]z = [1d , J(ylid ,1=z)
Caffarna 2'ArdA = arnab'VB Al
’ ' Cxlrtorly = x{rifld }[r }y
where B = [0(x)TA where r: A -> A'

x{riy = y[r Iz




Restriction x~a = x (if a¢|o(x)])

Eh = X Pra

(xlxly)~a = (¥a) [r](ya) (if ae|o(xlxly)])
Renaming x{id.} = x  (where A = |o(x)])

x{e} e} = x{r'or}

x{rPo = () {r~{<a,b>}} (where b = r(a))

(xlrly){r'VYe"} = x{r! Uid,Hrly{id,, Ur}

(where x: A -> A')

It can be shown that all these laws are true in the above
:j”netwOrk:algebra'(consistency) and that any true equation in
the algebra ¢an be proved from the laws (completeness), It
follows from this and the above remarks on the power of the
notation (definability) that our algebra is initial in the
.¢lass of algebras satisfying the laws. Any semantics for
./ nMOS networks should be such an algebra. .

‘3. ‘GHOMETRIC INTERPRETATION

‘. Net Algebras can be embedded in a programming language by
~adding an abstract data type picture together with some
special. syntax for constants and operators. We illustrate
~this process in the case of a geometric interpretation of
“INet Algebras,.obtaining-a language capable of directly
expressing gecmetric layouts. The host language considered
hére is Edinburgh ML (Gordon et al., 1979) and the resulting
‘language is called Sticks & Stones. An implementation has
been carried out on the ERCC DEC-10 at Edinburgh University
: (Cardelll, 1981) which makes interactive use of a colour
‘"graphlcs display and ‘algo complles pictures into CIF files.

' :Invtheﬂgeometrlc lnterpretatlon, a picture is a configu-
ration of céloured gesmetric figures (generally rectangles

or polygons) and ports which are now named vectors with a
glze land -an Qrientatlon ‘We use compaund port names like
Cgieast; aor a.b.l. Both figures and veéctors have a fixed
dlsplacement from & conventional origin which is local to
each plcture,_conflguratlons are identified up to translation
and rotation. The geometric- Lnterpretatlon can be made formal,
but ‘we concentrate here on other issueées.:

‘There is an infinite supply of constants, given by the
- syntax exempiifiéd in Fig.4. The elementary picture GCon
is'a-green box with lower left corner at 070 and upper right
corner at 272, It_has four ports. For example, s is a green
port which is a wector starting from the point 0°0 and going
in directioch 0 degrees counterclockwise from the x-axis for
-a length of 2.'Note that the names n (north), s (south) é&tc.




. Aike a.l.b. 7. repre
. ‘the pattern; ‘where 1

vare only conventional; pictures have no predefined
‘orientation. The definition of constants requires precise
geometric information, and we would prefer graphical input
_;to the system.”‘“

GCong= form_(n: green por {272, 18@ 21
g green ggrt [o-o, 2]

]

1

EI‘S

e: green port {270, 90 2

I
i
-
I
P,

mIi 

. W@ green Eort [0*2,270,2
L with green box [0°0,2°2].
Brran= form (n: red port [2°2,180,2]; n
- He ¥ »Q'Ortj"v_:[-O-“O, » Q,Z'}; P
e: green port (270, 90,2]; w :LI -
w: green port [0°2,270,2]) i :
thh green box 070,221 8
» ggg_ red box [0%0,272].
"DTran*’fbrm (n: red — port [3°4, 180,21;
T s: ved 'port‘ [1~0, 0,27; n
‘&1 green port [4"1, 90,2]; b

L Wiigreen Eort 10°3,270,21)
with green box EO 154731

and red box [170,3%4)

and yellow bos bok [070,474].

Fig.4 Some eZementary geometria components.

Restrlctxon and renamlng operate in the way described in
~gection 2, but some abbreviations are introduced. There is
& pattern matchtng feature on compound port names. A name
ts all the hames.in a sort which match

matches any. gingle atomic part and ?

'7fmatches a (pOSSlbly empty) llst of atomic parts of a
" idompound name. The use of '? is rest¥icted to the end of-a

Jpattern to av01d amblgultles, the pattern ? matchés all the
L perts. Hence Ni.east means forget all the east ports and
“greeni?~?} means rename all the greeén ports by dropping the
.jpreflx green: “Pattern matching is an abbreviation for the
appropriate enumeration of all-the ports matching the pattern.

TR -\ xenaming of the form {a~b move 2} is a case of geometric
'renamtng, the port.a is renamed b and it is moved by 2

'fﬁftowards the east of the port (the north being the tip of

Crits vector)i Du¥ing thig fiovement the port leaves a trail of
its passage, which is a polygon of the same colour as the
-pOrt. Geometric ¥enaming is af abbreviation for the
com9051tlon of. a-suitable "trail" form. It is possible to
move, rotate and change the size of ports, and to compose
_these actions.




A combination of pattern matching and geometric renaming
is shown in Fig.5.

out
out = GCom~e {?~? move 2} —
pos = ETrans {msctrl.n,s~ctrl.s,
&data.e,wdata.w} {7~ move 2} w l
neg = DTrans {m~ctrlin,ssctrl.s,

é&~data.e,w~data.w} {?~? move 1}

Fig.5 Some restrictions. and renamings.

'The T-shaped out is obtained from a green square GCon, first
" forgetting the € port, and then moving all the remaining
ports cutwards. The pictures pos and neg (not shown) have:

‘a cross shape. -

~Our flnal ‘example (Fig.6 and 7) is a function taking'a
'parameter n and. producmng a selectog with n control inputs,
n complemented control iniputs-and 27 ‘inputs. Some standard
programming 1anguage features are used without explanation,

e

et -8 el n o=
for i:dn: 1. exp(z,n)
iter (for 4. in mns:l
iter lf it{i-1,3-1) =0
, then ‘pos[data.e--data.wlneg{ctrl.™ctrl".?}
else ‘negldata.e--data.wlpos{ctrl, ’\ctrl' 7}
with Tdata.e~-data.w]) :
[data &. ! =~out .wl. out
w1th fekxls s.d==ctrlin.l,ctrl'.s. t--ctrl'.n. !,
“out. g==out.n]
10. where rec bit(i,3) =
11, if 3*0 then i mod: 2 else bit(i div 2,5-1)

'l‘ 1

O 0 N OY U1 W N e

Fig.8 4 selector generatoP,

. The circuit shown in Fig.7 is the result of the evaluation.
“ofisel 2 (selector with two control inputs). This selector

o program takes. advantage of a‘specialized iteration const¥uct :

for <vax1able> in <list> iter <picture> w1th <connection>
where the <connection> ig used between the <p1cture>'

L produced ag the Lteratlon <var;able> ranges through the
Ciielisty of values. Iteration also applies an automatic

-indexing appending the. number n-to all the ports. produced -
“at the n-th lteratlon (e.g. & becomes a.3); thus avoiding
hame clashes.




The selector is obtained by two nested iterations, first
building the rows and then joining them up into an array.
At the core of the double.loop (lines 4-6) we have to choose
between a palr pos~neg and a pair neg-pos' (where pos' and
neg' are pog and feg with thedir ctrl ports renamed to ctrl');
this is done using a functlon bit (defined in lines 10,11).,
- The inner loop (lines 3=7) connects all these pairs 1nto a
row, with the wariable. j ranging from n to 1 (line 3), A
the end of the inner 1loop,; an out element is added to the
_ right of the. row (%ine'S). In the outer loop ‘the variable i
- ranges from 1 to 2 (line 2) while all the rows are connected
“ifrom south to north (line 9). The exclamation marks in lines
8 and 9 take care of the indexes added to the ports during
the inner iterations.

ctrlt.n.2 ctrl'.n.l

_ctrlin.2 ctrl.n.l out.n
e hans SECHNS o, o ST v

data.w..l _. ’.”' v, ~Ji o 1
data.w.2 'zg 'r”’:' E’\\\\\\:

ctrl.s.2
eyl s

Fig.7 A selector.

N It should ‘be emphas;sed that the program in Fig.6 contains

’jno explLCLt geometrlc 1nformatlon, and this is to be expected

g,for many common VLSI subsystems. The double loop (array)

g pattern is also very common in structural design, and ‘many
othex.. lnterestlng examples can be produced by the use of

’Hparameterlzatlon and recursion.
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