/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 1

Last modified on Sun Mar 8 1:01:58 PST 1987 by luca

VBT Toolkit

Luca Cardelli

1.Introduction

The VBT toolkit is a set of modules and programs for building certain classes
of user interfaces. The general approach is to provide a set of ready-to-use
interaction primitives, generically called "interactors" (buttons, menus, text
areas, etc.). Interactors are the basic building blocks for user interfaces.

One way of assembling basic interactors into more complex objects is provided
at the VBT level through the notion of "split", which provides for splitting
one VBT into sub-VBTs, each containing other splits or VBTs (e.g.
interactors). Another way of composing interactors is provided by the toolkit
through the notion of “"dialog boxes" (or "dialogs"), which present a standard
simplified interface to client programs.

To put this into context, let me contrast the toolkit approach with other
approaches. The obvious one is to let users build their own interfaces from
scratch, using the bare VBT interface. This has many disadvantages, both in
terms of discouraging people from building user interfaces, wasting people’s
time, generating bad interfaces and producing inconsistent interaction styles.
Some of this will still be required, because the toolkit cannot cover all
possible applications, but the hope is that specialized interactors will be
created only when really needed, and they will be combined with the standard
ones whenever possible.

Another approach is to provide high-level tools (e.g. libraries, languages or
editors) for specifying the appearance and behavior of interactors (the VBT
interface is a low-level example of this). This gives more flexibility and
coherence in building libraries of interactors, but is very hard to do in a
clean and effective way; note that ordinary sequential languages are ill
suited, because of the complex non-deterministic and concurrent activities
present in user interfaces. The approach taken by the VBT toolkit is to provide
a fixed set of basic interactors known to be useful for most interfaces, and to
structure the environment so that new interactors can be easily added. For
example, dialog boxes do not care (or know) what kind of interactors they
contain.

Finally, one could have a "user interface specification language™ of some kind.
This is extremely ambitious and I don’t know whether it could be done. In any
case, languages tend to be very messy when trying to specify two-dimensional
information. Hence I believe that user interfaces should not be described by
languages, but instead built by editors. An integral part of the toolkit is a
"dialog editor" for assembling dialogs. At a lower level, one could imagine an
"interactor editor" for assembling interactors; such things have been done, but
are harder.

This document attempts to provide general information and background about
the toolkit. It must be complemented by reading the comments in the def
files of the various interfaces.

2. Interactors

An interactor is a "user interface primitive"; something which is seen as a

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 2

functional unit. It can be used to present some internal state, to operate a
mechanism, or to modify a structure. Normally, an interactor has a well defined
geometrical extent. Some interactors are not quite primitive (several have
embedded scroll bars, which are also interactors). This is admissible when
there is a very tight coupling between the embedded interactor and the rest of
the parent interactor, otherwise separate interactors should be used.

Interactors have a given "reactivity" at any point in time, i.e. they can be
functioning at various levels of activation or sleepiness. Here are the
standard meanings for the reactivities currently in use:

Active: Functions normally.

ReadOnly: Functions but cannot be modified (to some degree) .
Protected: Needs special action to become temporarily active.
Passive: Does not function, but looks normal.

Dormant: Does not function and looks "dim".

Interactors have one or more "looks" specifying their appearance. There is a
common "looks" data structure used by all interactors.

Tookit interactors have two interfaces, in a sense. One is a standard Modula?2+
interface, providing routines to create interactors, activate them, set and
inspect their properties and appearance. This interface is suitable for using
interactors in isolation, independently of the rest of the toolkit, and is not
described here in detail; see the def files.

The second interface is intended for interactors which are embedded in dialog
boxes. It is based on the multiple-inheritance subclassing provided by VBTs.
All interactors must be subclasses of the "Interactor" class (see
InteractorVBT.def), which is defined as any VBT which provides the following
four methods: (1) GetProperty: get the current value of a property of an
interactor; (2) SetProperty: set the value of a property of an interactor; (3)
GetDescription: produce a standard data structure which completely describes an
interactor; (4) SetDescription: make an interactor conform to a given
description. Moreover, two routines for creating and deleting interactors of a
given class must be provided; such routines have the same type for all
interactor classes.

To implement a new interactor class, one can take any existing VBT performing
some function and supply the above four methods and two procedures. This will
allow the new interactor to be inserted in dialog boxes and to be manipulated
by the dialog editor.

The data structure returned by GetDescription (called a "description™) is
suitable to be pickled; it is a list of name-value pairs, where the name is a
Text.T and the value is a REFANY.

One detail about the Modula2+ interface. Client procedures are supplied to
interactors to be called when something interesting (called an “event") happens
to that interactor. Since user interaction is event-based, much interactor
activity is achieved by passing procedures around. Modula2+ only supports this
in a restricted way, so you should be familiar with standard "closure"
techniques; here is a small tutorial.

A "first-class"™ procedure is a procedure which can be passed as an argument or
returned as a result of another procedure, in and out of arbitrary scoping
levels. Such procedures may refer to non-local variables. Statically scoped
languages (such as the Algol family and Scheme, unlike the Lisp family and APL)
define the meaning of such non-local variables to be determined by the
procedure definition scope (i.e. statically), not by the procedure invocation
scope (i.e. dynamically). In Modula2+, a first-class procedure can be simulated
by a top-level procedure which takes a record as a parameter (passed as a
REFANY) defining the values of what would be its non-local variables in inner
scopes. Such record is called a "closure", because it closes the procedure with
respect to its non-local variables.

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 3

The rest of this section describes the interactors currently available.
2.1 Passive Areas
A passive area constantly show one "looks". Passive areas are mostly used to

provide backgrounds and borders, for text labels, and for bitmap icons. As
interactors, they have the following description:

"Kind" = "PassiveArea"

"Reactivity" = "Active" or "Dormant"
"NormalLooks"™ : IconLooks.T
"DormantLooks™ : IconLooks.T

Where "Kind" is a property of all interactors; a constant string describing the
kind of interactor.

2.2 Trill Buttons

A trill button generates events on mouse down-transitions, and then generates
more events (auto-repeat) while the mouse cursor is on top of the button, up to
the corresponding up-transition. As an interactor, it has the following
description:

"Kind" = "TrillButton"

"Event" : Text.T

"Reactivity" = "Active" or "Dormant"
"NormalLooks"™ : IconLooks.T
"ExcitedLooks" : IconLooks.T
"DormantLooks" : IconLooks.T

The excited looks are shown while the button is generating events. The "Event"
string is passed to the dialog box containing this interactor, whenever an
event is generated.

2.3 Trigger Buttons

Trigger buttons are stateless buttons which generate events on mouse
transitions. There are both down-triggered and up-triggered flavors. If
"protected", one has to click twice to activate them. As interactors, they have
the following description:

"Kind" = "TriggerButton"

"Event" : Text.T

"Transition™ = "Up" or "Down"

"Reactivity"™ = "Active", "Dormant" or "Protected"
"NormalLooks"™ : IconLooks.T

"ExcitedLooks™ : IconLooks.T

"DormantLooks"™ : IconLooks.T

"ProtectedLooks™ : IconLooks.T

2.4 Radio Buttons

An individual radio button has one bit of state; when used in isolation it is
also called an on/off button, since it can be put into an "on" or "off" state,
and toggled by mouse clicks. Events are generated on state changes.

Radio buttons can be logically "grouped" (while remaining physically
separated) . If there are n buttons in the same group, only one of them can be
"on", (they can all be "off"). Clicking one button in a group will switch off
the other button (if any) in the "on" state. There is no way to set them all
off by using the mouse.

An individual radio button is an interactor with the following description:

/proij/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 4

"Kind"™ = "RadioButton"

"Group" : Text.T (shared by the button in the same group)
"Event" : Text.T

"StateOnName" : Text.T

"Transition™ = "Up" or "Down"

"Reactivity"™ = "Active", "Dormant" or "Protected"
"OffLooks" : IconLooks.T

"ExcitedOffLooks" : IconLooks.T

"OnLooks"™ : IconLooks.T

"ExcitedOnLooks"™ : IconLooks.T

"DormantLooks"™ : IconLooks.T

"ProtectedLooks"™ : IconLooks.T

A radio button group is also an interactor, but it is never visible. It
maintains the global state of the group, and has the following description:

"Kind" = "RadioButtonGroup"

"Group" = "Group" (meaning this is a group interactor)
"State" : Text.T

"StateOffName" : Text.T

where "State"™ is equal to "StateOffName", or to the "StateOnName" of one of
the radio buttons.

2.5 PullDown Menus

A pulldown menu is a button which pops up a list of selections when the mouse
is pressed on it. As an interactor, it has the description:

"Kind" = "PullDown"

"State" : Text.T

"Reactivity"™ = "Active" or "Dormant"
"NormalLooks"™ : Text.T
"ExcitedLooks"™ : Text.T
"DormantLooks"™ : Text.T

where "State" is a list of menu items terminated by ’\n’, each with format:
"event ’\t’ looks", where "event" is the event when that item is selected, and
"looks" is the string which appears in the menu. The other properties apply to
the pulldown button, not the menu items.

Pulldowns can be "grouped". Menus in the same group can be pulled down by
rolling the mouse over them, after the first down-click on any one of them.
A pulldown group interactor has the following description:

"Kind" = "PullDownGroup"
2.6 Scroll Bars

A scroll bar maintains four numeric quantities; a low and high bound, and a low
and high range, in the relation lowBound <= lowRange <= highRange <= highBound.
The relative size of the ranges with respect to the bounds determines the size
of a visible cursor which the user can "thumb" along a bar. The user can also
click on the bar on either side of the cursor to "page", click two buttons on
either side of the bar to "scroll", and click two buttons on either side of the
scroll buttons to move the cursor to the "top" and "bottom"™ of the admissible
range. Although a standard interpretation has just been given for the
admissible user actions, the events generated by those actions are
uninterpreted, and can be defined to have different meaning. A scroll bar has
the following description:

"Kind" = "ScrollBar"
"ToLowEvent" : Text.T

/proj/doc/vbttoolkit .txt Sun Mar 8 01:04:15 1987 5

"StepDownEvent" : Text.T
"SlideDownEvent" : Text.T
"ThumbEvent"™ : Text.T

"SlideUpEvent"™ : Text.T
"StepUpEvent" : Text.T
"ToHighEvent"™ : Text.T

"Reactivity"™ = "Active", "Dormant"™ or "Passive"
"Axis" = "Hor" or "Ver"

"LowBound" : Text.T (an integer)
"LowRange" : Text.T (an integer)
"HighRange" : Text.T (an integer)
"HighBound" : Text.T (an integer)
"ScrollBgLooks" : IconLooks.T
"SliderSlotLooks" : IconLooks.T
"SliderThumbLooks™ : IconLooks.T
"ScrollJumpOffLooks™ : IconLooks.T
"ScrollJumpOnLooks™ : IconLooks.T
"ScrollStepOffLooks™ : IconLooks.T
"ScrollStepOnLooks™ : IconLooks.T

where the "Jump" and "Step" looks describe the bitmaps used for the "jump to
bottom"™ and “"step down" buttons in their north-pointing orientation.

2.7 Browsers

A browser is used to select from a variable size (possibly very large) set of
items. Only a subset of the items is visible, and a scroll bar is used to
access the rest of them. In "Single Selection" mode, items are selected by
clicking and possibly dragging; the up-transition determines the selected item.
In "Multiple Selection" mode, items are toggled between the selected and
unselected state by clicking on them or sweeping over them. An option-click
"between" two items, inserts all the currently selected items between those
items, rearranging the list. A browser has the following description:

"Kind" = "Browser"

"State"™ : Text.T

"SelectionMode" = "Single" or "Multiple"
"Reactivity"™ = "Active", "Dormant", "ReadOnly" or "Passive"
"TextLooks" : IconLooks.T
"ScrollBgLooks"™ : IconLooks.T;
"SliderSkidLooks™ : IconLooks.T;
"SliderSlotLooks"™ : IconLooks.T;
"SliderThumbLooks"™ : IconLooks.T;
"ScrollStepOffLooks"™ : IconLooks.T;
"ScrollStepOnLooks™ : IconLooks.T;
"ScrollJumpOffLooks"™ : IconLooks.T;
"ScrollJumpOnLooks™ : IconLooks.T;

where "State is a list of menu items terminated by ’‘\n’, each with format:
"[7+7 | '='] looks ’'\t’ upevent ’\t’ dnevent". If the first character is a '+’
the item is selected; if it is a ‘-’ the item is non-selected; if it is
something else it is considered part of "looks" and the item is non-selected.
"looks™ is the string which appears in the browser, "upevent"™ is the event
generated when that items is deselected, and "dnevent is the event generated
when that item is selected.

The following property is defined for the GetProperty method:
"Selection™ : Text.T

this is a list of looks fields, separated by '"\n’, one for each currently
selected item (at most one in single selection mode) .

2.8 Fatbits

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 6

A fatbits interactor maintains a magnified display of bits. The bits themselves
are not maintained by fatbits, so that this interface can be used for textures,
cursors, bitmaps, etc. Here is the description:

"Kind" = "Fatbits"

"HorSize" : Text.T (a cardinal)

"VerSize"™ : Text.T (a cardinal)
"ClickEvent" : Text.T

"DragEvent" : Text.T

"Reactivity" = "Active", "Dormant" or "Passive"
"BackgroundLooks"™ : IconLooks.T

"BgTintLooks™ : IconLooks.T

"FgTintLooks"™ : IconLooks.T

where "ClickEvent" is generated when one fatbit is activated by clicking
and "DragEvent" is generated when one fatbit is activated by dragging; the
coordinate of the fatbits is passed as the "eventValue" (an
InteractorVBT.PointRef) to the registered DialogVBT.EventProc’s for those
events.

The following properties are defined for InteractorVBT.SetProperty:

"Bitmap" : InteractorVBT.RefBitmap
(paint a fatbits from a bitmap, using the fg and bg tints)
"Fg" : InteractorVBT.RefPoint
(set a fatbits point to the foreground tint)
"Bg" : InteractorVBT.RefPoint
(set a fatbits point to the background tint)
"Paint" = "Fg" or "Bg"
(paint the entire fatbits in fg or bg tint)
"Transform” = "TumbleW", "TumbleE", "TumbleN", "TumbleS",

"RotateCW", "RotateCCW", "FlipH" or "Flipv"
(perform a transformation)

2.9 Text Areas

A text area is an editable region of text. See a later section for a
description of the user interface. As an interactor it has the following
description:

"Kind" = "TextArea"

"Event" : Text.T

"State" : Text.T

"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
"TextLooks"™ : IconLooks.T

Where "Event" is generated (if non NIL) when the text is changed in any way,
and "State"™ is the entire text in the text area.

2.10 Text Ports

A text port is a text area with a scroll bar. As an interactor it has the
following description (see Text Areas and Scroll Bars) :

"Kind" = "TextPort"

"Event" : Text.T ("something changed" event)
"State" : Text.T (the entire text in the text port)
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
"TextLooks"™ : IconLooks.T

"ScrollBgLooks"™ : IconLooks.T;

"SliderSlotLooks" : IconLooks.T;

"SliderThumbLooks"™ : IconLooks.T;

"ScrollStepOffLooks™ : IconLooks.T;

/proij/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 7

"ScrollStepOnLooks™ : IconLooks.T;
"ScrollJumpOffLooks™ : IconLooks.T;
"ScrollJumpOnLooks" : IconLooks.T;

2.11 Text Lines

A text line is a text area showing a single line of text. When the text
overflows, buttons for horizontal scrolling become visible. A text line
intercepts carriage returns so that they are not inserted in the text, and are
interpreted as "completion events" (meaning "do it"). As an interactor it has
the following description:

"Kind" = "TextLine"

"Event" : Text.T ("something changed" event)
"CompletionEvent" : Text.T (on carriage return)

"State™ : Text.T (the entire text in the text line)
"Reactivity" = "Active", "Dormant", "ReadOnly" or “"Passive"
"TextLooks" : IconLooks.T

"LftArrowHeadLooks" : IconLooks.T

"LftArrowTailLooks"™ : IconLooks.T

The "Arrow"™ looks are the bitmaps used for scroll buttons in their
left-pointing versions.

2.12 Numeric Areas

A numeric area is a text line maintaining a numeric quantity between two
bounds. The numeric value can be modified by editing, or by clicking
"increment" and “"decrement" buttons. Legal strings are numeric strings,
"infinity", "+infinity" and "-infinity". Unrecognized strings are ignored, and
the numeric value is unchanged. The strings are parsed and checked for legality
and in-boundness when typing carriage return, or when clicking the increment
and decrement buttons. This is the description:

"Kind" = "NumericArea"

"Event" : Text.T ("something changed" event)
"CompletionEvent" : Text.T (on carriage return)
"State" : Text.T (the integer)

"LowBound" : Text.T (the lower integer bound)
"HighBound" : Text.T (the upper integer bound)
"Reactivity" = "Active", "Dormant", "ReadOnly" or "Passive"
"IncDecButtons"™ = "Yes" or "No" (increment/decrement butt. visible)
"TextLooks" : IconLooks.T

"PrimarySelectionLooks"™ : IconLooks.T
"SecondarySelectionLooks™ : IconLooks.T

"LftArrowHeadLooks" : IconLooks.T

"LftArrowTailLooks" : IconLooks.T

"NumIncOffLooks"™ : IconLooks.T

"NumIncOnLooks"™ : IconLooks.T

"NumDecOffLooks"™ : IconLooks.T

"NumDecOnLooks" : IconLooks.T

2.13 Transeripts

A text line (input) and a text port (output) packaged to provide
a typescript with editable history. As an interactor it has the
following description (see Text Areas and Scroll Bars):

"Kind" = "Transcript"

"Event" : Text.T (input area modified)
"CompletionEvent"™ : Text.T (cr in the input area)

"InState" : Text.T (the entire text in the input area)
"OutState" : Text.T (the entire text in the output area)

"Reactivity"™ = "Active", "Dormant", "ReadOnly" or "Passive"

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 8

"TextLooks" : IconLooks.T
"ScrollBgLooks" : IconLooks.T;
"SliderSkidLooks" : IconLooks.T;
"SliderSlotLooks™ : IconLooks.T;
"SliderThumbLooks"™ : IconLooks.T;
"ScrollStepOffLooks™ : IconLooks.T;
"ScrollStepOnLooks™ : IconLooks.T;
"ScrollJumpOffLooks" : IconLooks.T;
"ScrollJumpOnLooks™ : IconLooks.T;
"LftArrowHeadLooks"™ : IconLooks.T
"LftArrowTailLooks"™ : IconLooks.T

GetProperty recognizes the following property, extracting the contents of the
input area and resetting it to empty.

"State"™ : Text.T

SetProperty recognizes the following property, appending a text to the end of
the output area.

"State™ : Text.T
3. Dialogs
A dialog is "user interface subroutine"; in first approximation it is just a

collection of interactors. However, a simple collection of interactors would be
hard to handle because one would have to know the peculiar interface and
properties of each interactor. Client programs using the dialog would have
this information wired in, and would then be difficult to maintain.

Hence a dialog is, visually, just a collection of interactors, but from the
client point of view is a more abstract object. Dialogs maintain (1) a list of
named interactors, and (2) an association of client procedures with abstract
"events" (text strings) generated by the interactors.

Interactors in a dialog are setup to generate such events in response to user

actions; the dialog then takes those events and calls the corresponding client
procedures. The client procedures can then inspect and modify the state of the
dialog and its interactors.

The "events" are abstract because the same event can be generated by different
interactors, and single interactors can generate many events. Hence, the dialog
can be restructured to some degree without changing its event behavior.

The state of a dialog consists mostly of the state of its interactors, and this
is accessible only by knowing the name of a particular interactor and operating
on it by "GetProperty" and "SetProperty" methods. Hence it would seem that
again we are fully dependent on the inner structure of the dialog. However,
some simple conventions help here in operating in an abstract way. For example,
the "main" property of each interactor is normally called "State". This can
have very different meanings depending on the interactors (a number, a menu
selection, a large piece of text), but it helps in operating uniformly on some
classes of interactors.

Dialogs also provide a notion of "interactor groups". Each interactor is
optionally associated to a "group" interactor (no groups of groups). Groups are
useful for dealing with interactors which are geometrically unconnected but
logically related, like a mutually exclusive set of radio buttons, or a set of
pulldown menus in a menu bar.

Dialogs have a minimum size; when placed in a window smaller than their minimum
size they are incompletely shown. Dialog elements have stretching information,

/proj/doc/vbttoolkit .txt Sun Mar 8 01:04:15 1987 9

which determines what happens to them when the dialog changes sizes beyond its
minimum size.

The stretching model, intuitively, is as follows. A dialog is a rectangular
piece of rubber (cartesian rubber, which can only be stretched uniformly and
orthogonally). The dialog elements are similar rectangular pieces of rubber,
placed on top of it, with each edge "stapled" to the underlying dialog. A
"staple" connects one point on the edge of an element to one point of the
dialog (for vertical edges, the vertical coordinates of such points are
irrelevant, similarly for horizontal edges). The length of the "staples" does
not change under stretching.

Suppose that the edges are stapled "in place" to the underlying dialog. If we
now stretch the dialog, the elements will stretch proportionally, as if they
were painted on the dialog.

But we can also staple edges to some other point. For example, we can staple
all four edges of an elements to the corresponding edges of the dialog. When we
stretch the dialog, the element will stretch so that the distance of its edges
from the edges of the dialog remains unchanged, i.e. the element becomes "as
big as possible" while maintaining its borders.

Another common situation is to staple both vertical edges of an element to the
west edge of the dialog, and both horizontal edges to the north of the dialog.
Under stretching, the element will preserve its size, and will "stick"™ to the

north-west corner of the dialog.

4. Chassis

A "window chassis" makes it easier to turn an application into a legal Trestle
window. All applications should be implemented as VBTs with specialized
behavior. This allows applications to be embedded in other applications, if
needed, and to be composed with other VBTs by the use of "splits".

A chassis takes any VBT and installs it in a split structure which handles
icons, title bars, borders, dragging, iconization, reshaping, etc. It also
maintains a pulldown menu bar, and a place where menus and dialogs can be
popped up.

5. Root Dialogs and standard popup dialogs

N N N N N N N N N N N N N N Nt s N I e A e e e

Dialogs were not conceived, and are not suitable, for implementing arbitrarily
complex user interfaces. The range of applications which can be implemented
this way depends a great deal on the range of interactors one provides, but
even then there are limitations.

However, many simple and not-so-simple applications can be built entirely out
of dialogs. For people who do not see user interfaces as the central part of
their application-building work, this can be quite useful.

For these situation, a single dialog taking over the application window can be
"the" user interface (often with the help of additional popup dialogs). This
principal dialog is called a "root"™ dialog.

The main dialog interface (DialogVBT.def) is very general; it is the same used
by the dialog editor, and hence supports arbitrary manipulations. For simpler
usages such as root dialogs, a simplified interface (RootDialog.def) can be
used. A root dialog is essentially a dialog sitting in a chassis, and hence
provides all the facilities needed to be hooked into Trestle.

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 10

Other common needs of simple applications include (1) give warning messages,
(2) ask simple questions to the user, and (3) open and close files. The first
two cases are covered by MessageDialogVBT.def, and the third by
FileDialogVBT.def.

6. Tints, Frames and Looks

N s e e e e e N e A A e

"Looks" are a pervasive data structure in the toolkit. They are used to display
textures, bitmaps and text. In principle, it should be possible to have an
arbitrary image as the looks of, say, a button. For various practical reasons,
looks are a somewhat more specialized data structures.

Looks are composed of a "frame" and an "image" to be shown in the frame.

Just like a physical picture frame has a back board, a border and a piece of
glass, a "frame"™ has a background, a border and an "overlay" to achieve special
translucence effects. The image can be either a uniform tint, a texture, a
bitmap, or text in some font. An important piece of information missing from
looks is their size: looks stretch to cover the available space (nonetheless,
they have a minimum bounding rectangle) .

A "tint"™ is a function from colors to colors which is applied to the background
during painting. Only some such functions are actually supported. Basically,
there are three classes: (1) “constant" tints opaquely paint a given color over

the background (black or white for monochrome, RGB for color); (2) "swap"™ tints
swap two given colors and have unpredictable effects on other colors (in
monochrome, the unique swap tint inverts black and white); (3) the

"transparent" tint leaves the background unaffected. Color tints are specified
by RGB values (24 bits), and painted in the "closest"™ color found in the color
map (8 bits). Color tints can also be set to "high quality", in which case the
given RGB value is approximated by four color map colors painted in 2x2 squares.

A "tint pair"™ is a pair of tints, used to paint background/foreground images.

A "texture" consist of two 16x16 bit patterns (normally also called textures),
one for painting in monochrome and one for painting in color, plus a tint pair
to specify the coloring (background tint for the "white" pixels, and foreground
tint for the "black" pixels of the pattern).

A "bitmap" consists of an arbitrary-size bit pattern with a tintpair for
painting. Optionally, one can specify an additional bit pattern of the same
size (the "mask") and an additional tint pair. This allows one to paint bitmaps
in three colors, normally the background, the borders and the inside of an
image.

A "font" consists of a screen font and a tint pair for coloring.

A "frame" consists of (a) border thicknesses for the four edges, (b) a border
tint, (c) an overlay texture (d) an image which is either a tint, a texture, a
font or a bitmap.

Finally, a "looks"™ specifies: (a) a frame; (b) for font frames, a piece of text;
(c) for font and bitmap frames, horizontal and vertical alignments and margins.
The alignments are left, center and right, horizontally, and top, middle and
bottom, vertically. Margins determine distances between the edge of the looks,
and the corresponding edge of non-centered text or bitmaps.

7. Dialog Editor

The toolkit provides a library of functions which could be used to build dialogs
and user interfaces by brute force programming. However, this becomes an

/proj/doc/vbttoolkit .txt Sun Mar 8 01:04:15 1987 11

unmanageable task even for simple user interfaces, because of all the boring
details involved in describing geometric layouts. This makes experimentation
very difficult, and results in uglier and less effective user interfaces.

To obviate this problem, a dialog editor is provided as an integral (and
probably the most interesting) part of the toolkit. In judging some of the
peculiar properties of the toolkit, one should keep in mind that it has been
structured with the primary goal of making the dialog editor work smoothly.

Using the dialog editor, one can assemble dialogs very quickly by direct
manipulation. This involves (a) fixing the geometric layout (b) specifying the
looks of the interactors and of the whole dialog (c) specifying the events
generated by the interactors (d) fixing the initial state and properties of the
interactors (e) specifying the behavior of the dialog under stretching.

Dialogs are saved to disk as pickles (in fact, as pickled "descriptions™). To
use them, client programs have to (a) load them from disk (b) register
procedures to respond to events (c) pop them up and take them down.

New interactors can be introduced in a dialog from a "Create"™ menu. Interactor
properties can be inspected and changed from a "Change" menu, which also has a
command for extending groups of interactors, if applicable ("Create" always
creates new groups).

The geometric layout is defined (in the dialog editor "Edit" mode) by creating
interactors, reshaping them and dragging them around. The interface is
MacDraw-like; one can select many items, move them around in groups, cut and
paste groups, and change the shape of all the elements of a group in a single
operation. A single selections is done by clicking on an item (which highlights
8 control points for reshaping that item). A multiple selection is done by
shift clicking on other items, or by sweeping a rectangle with the mouse (all
the elements intersecting the rectangle will be selected). Moving is done by
dragging items, and reshaping by dragging control points.

In "Stretch" mode one can define the stretching parameters of the elements.
Group selections and operations are available here too. Four control points
("staples") are available for each element; they are originally on the edge,
and can be dragged to other locations. Double clicking a control point projects
it to the closest dialog edge. Double clicking an item projects all its control
points. A good way to start is to select all items and double click one of them
so that all control points will be projected to some dialog edge. Often this
does most of the work, by making some items (close to corners) stick to
corners, and other items (close to the center) expand under stretching. Note:
moving an item in "Edit" mode resets its stretching control points.

The dialog editor has no knowledge of the kind of interactors it is dealing
with; how can it then change their properties and looks? It works this way.
When a new interactor (I) is added to the dialog editor, a new "matching"
dialog (D) must be supplied with it. This dialog has one field for each
property of the interactor (i.e. for each property P of I, D has has one
interactor whose name in the dialog is P, and whose "State" property represents
the value of P).

When the user selects "Change Attributes™ in the dialog editor, the interactor
is asked to supply a "description" of itself (a list of <name,value> pairs).
This description is transformed, in uniform way, into a "dialog setting™ (which
is also a description consisting of <name, <"State", value>> triples). The
dialog is than told to assume this setting and is popped up, hence showing the
current state of the interactor. The user can then modify the dialog; when
done, the dialog is asked to supply its dialog setting, which is converted
back into a description. The description is then forced upon the interactor,
which assumes the new state. In all this process, the dialog editor has no idea
of what the interactor does, what the dialog contains, or what the properties
mean.

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 12

Some of the properties which are defined this way are the "events" generated by
the interactors. These events are just strings, and must match the event
strings which are used by the client program to attach event procedures to a
dialog.

The dialog editor has a "Test™ mode, in which a dialog behaves like it would
when running in an application (except that no procedures are attached to its
events) . There is also a "Test+Debug" mode; this is like test mode with an
additional "Debug" dialog. This dialog reports all the events generated by a
dialog, and can be used to set and inspect the "State™ of its interactors.

The looks of an interactor are Jjust some of its properties, hence they can be
modified as described above (the "matching" dialog of an interactor may contain
some special buttons, called "EditLooks"™ buttons, which pop up dialogs for
defining looks properties).

8. Dialog Resources

While the looks of an interactor are local to it, the tints, tintpairs,
textures, bitmaps, fonts and frames which define such looks are shared among
all the interactors of a dialog. This allows one to change the looks of many
interactors at once (e.g. their color).

The above shared quantities are called "dialog resources"; a menu in the dialog
editor gives access to them. Each resource is identified by a resource name (a
string) within another resource or a looks.

For example, a looks L will have a frame called e.g. "FrameDefault" which can
be shared by many other looks. To change the appearance of L, one replaces the
string "FrameDefault" by, e.g. "FrameSpecial". If "FrameSpecial" already exists
in the list of dialog resources, the looks L will change accordingly,

otherwise a new "blank" frame is created. To change the appearance of all the
looks which mention "FrameDefault" one selects "FrameDefault"™ from the

resources menus, and modifies it (which involves modifying more resource names) .

New dialogs have a predefined collection of resources, which are used for the
default looks of the available interactors. The following conventions are being
used for the names of such resources. The name of frame resources begin with
"Frame", similarly for tints, etc. Frames beginning with "FrameItem" defined
neutral button-like looks (e.g. a white rectangle with a black border, when the
button is in normal state). Frames beginning with "FrameText" define text
frames with a border. Frames beginning with "FrameLabel" define text frames
without border.

Unused dialog resources are garbage collected when saving to disk. The standard
resources are made available again when loading a dialog in the dialog editor,
unless there are already different resources with the same name.

9. Resource Paths

An application using the vbt toolkit will normally have a number of privated
resources (pickled textures, bitmaps and dialogs) which are loaded when the
application is started. This gives flexibility in customizing applications,
since each site and even each user can modify and replace resources without
changing the program source, recompiling, or relinking.

The problem is to make sure that these resources are located correctly by the
application, and that when the application executable is moved, its resources
are moved with it.

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 13

This is the solution currently adopted. An application is a directory (as
opposed to a simple executable binary). The directory contains executables
(normally called "Mainz" for topaz and "Mainx" for ultrix), an optional pickled
bitmap for the icon (normally called "Icon") and all other pickled resources
the application may need.

A resource path is a list of directories separated by ":", to be searched in
sequence from left to right. Many routines in the vbt toolkit take a resource
path as an argument. This argument can have the format described above, but the
normal default is the string "$1", indicating that the resource path is to be
taken from the first program argument, as defined by Params.GetParameter (1) .

An application (e.g.: "Chickens") is normally invoked as follows (assuming it
has been placed in /proj/topaz/lib) :

/proj/topaz/lib/Chickens/Mainz /proj/topaz/lib/Chickens

i.e. the first argument to the program is the directory (or directories)
where the resources are to be found.

10. How to build a RootDialog application

The principal dialog of an application is called the "root" dialog, since it
takes over the application window. The RootDialog interface is sufficient for
applications which only need a root dialog.

You will probably also need MessageDialogVBT (for simple messages and Yes/No
questions) and FileDialogVBT (for opening and closing files from a popup
dialog) . If your application needs additional customized dialogs to be popped
on top of the root dialog, see DialogVBT.

To make a RootDialog application:

0) Look at /proj/packages/nullapplication as an example. Create a package
called "myapplication" (if your application is to be called
"MyApplication") .

1) Do "man DialogEditor™. Enter the dialog editor and read the Help
information from the "File" menu. Create a dialog with the dialog editor
and write a pickled version of it on disk. Some components of the dialog
will be able to generate "events," and each event will be given a string
name.

2) Look at NullApplication.mod; this is a trivial example. Look at
FileApplication.mod; this is a more interesting example. Write a handler
procedure for each named event that your dialog can generate. Write a
program which reads a root dialog (from your pickled dialog), registers the
handler procedures, and then calls RootDialog.Interact to get things
started.

3) Look at Makefile.NullApplication. Modify it to create a makefile for
your application.

4) Look at the directory NullApplicationDir/. Create a directory called
"myapplication/MyApplicationDir"™. It should contain (A) the program
executables, called "Mainz" and "Mainx" by convention, generated by the
standard makefile; (B) the pickled bitmap for the icon, called "Icon" by
convention (use the BitmapEditor to create it; you can omit in test phase) .
(C) the root dialog, called "Dialog" by convention, (D) any other pickled
resources your application needs. (E) a shell script called
"MyApplicationz"™ containing the line

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 14

11

"/proj/topaz/lib/MyApplicationDir/Mainz
/proj/topaz/lib/MyApplicationDir:/proj/topaz/lib/ToolkitResources S$* &",
and another shell script called "MyApplicationx" containing the line
"/proj/ultrix/lib/MyApplicationDir/Mainx
/proj/ultrix/lib/MyApplicationDir:/proj/ultrix/lib/ToolkitResources $* &".
Make the scripts executable ("chmod +x MyApplicationz MyApplicationx™).
(the standard makefile will install MyApplicationDir into /usr/topaz/lib,
MyApplicationDir/MyApplicationz as /proj/topaz/bin/MyApplication, and
MyApplicationDir/MyApplicationx as /proj/ultrix/bin/MyApplication).

5) To test your program (on a firefly), cd to "myapplication"™ and type (or
prepare a script containing) "MyApplicationDir/Mainz
MyApplicationDir:/proj/topaz/lib/ToolkitResources $* &". All this works
assuming you have given the default "$1" parameter to RootDialog.New; see
ResourcePath.def for more details.

6) Write a man page file called "MyApplication.manpage".

Text Editing

This is the text editing interface for text-like interactors. Note that
even the smallest ones (like text lines and numeric areas) support
search, popup menus, and cross-address-space cuté&paste.

A text area is an area of the screen where text can be presented
and edited. It supports mouse positionings and selections, and
menu-driven (as well as function-key-driven) editing operations.

The interface is carefully split into two levels. The first level

is functionally complete, supports a single text selection, requires
only one hand (and no function keys) for editing operations and very
little to memorize.

The second level supports two selections, requires two hands to
operate and has several function-key shortcuts. (You may have trouble
with this when coming back from vacations.)

.1 Vocabulary

A "position" is an integer denoting the location between two characters;
position 0 is before the first character of a text.

A "selection" is determined by two positions n,m (n<=m).
An "empty selection" is a selection with n=m.

Text areas support (and highlight) two selections, called the
"primary selection"™ and the "secondary selection". There are only at most
one primary and one secondary selection in the universe, at any given time.

The text area with the primary selection (if any) is called the “primary
area", the one with the secondary selection (if any) is called the
"secondary area". Primary and secondary areas may coincide.

The primary area is said to have "input focus"; characters typed on the
keyboard go to the primary area, i.e. to the area with input focus.

To set the focus of an area "on" means to make it the primary area, i.e.
to create a primary selection in it. To set the focus of an area "off"
means to move the primary selection to a different area, or to go in a
state with no primary selection.

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 15

"Press" means to push a mouse button down and keep it there.

"Release" means to pop a mouse button up from the press state.

"Drag" means moving the mouse with a button pressed.

"Click"™ is a quick Press-Release action on the same button.
"Click-Press" is a quick Press-Release-Press action on the same button.
"Double-Click"™ is a quick Click-Click action on the same button.

11.2 User Interface

11.2.1 Level A (Naive users... single selection, free left hand)

Generalities:

Left

Left Button is for positioning and making selections.
Middle Button is for extending selections.
Right Button is for the cut&paste pop-up menu.

Button:

Press: begin selection at the nearest character boundary.
Drag: extend selection by characters.

Release: end selection at the nearest character boundary.

Click-press: select word; begin selection at the nearest word boundary.
Drag: extend selection by words
Release: end selection by words at the nearest word boundary.

Middle Button:

Press: begin adjust selection for the closest selection boundary.
Drag: continue adjust selection by characters.
Release: end adjust selection.

Click-press: begin adjust selection for the closest selection boundary.
Drag: continue adjust selection by words.
Release: end adjust selection.

Right Button:

Menu:
Cut: cut selection to cut-buffer [F3+F4]
Paste: paste cut-buffer to selection [F5]
Copy: copy selection to cut-buffer [F4]
Erase: delete selection [F3]
Type-in:
Printable characters: Delete selection, insert character.
<X]: delete character backwards if selection is empty;
delete selection otherwise.
Option-<X]: delete character forward if selection is empty;
delete selection otherwise.
11.2.2 Level B (advanced users... two selections, two hands)
Generalities:
Secondary selections are enabled by holding the shift key down,
and disappear when the shift key is released. While the shift
key is down one can (in any order and repeatedly) make secondary
selections and select actions off the menu. When the shift key
is released, the latest action has effect on the latest selection.
Shifted Left Button: for positioning and making secondary selections
Shifted Middle Button: for extending secondary selections
Shifted Right Button: for the move&stuff pop-up menu
Left Button:

(like Level A)
with Shift key: like Level A, operating on secondary selection.

/proj/doc/vbttoolkit .txt Sun Mar 8 01:04:15 1987 16

i1 %

11.

1.

Middle Button:
(like Level A)
with Shift key: like Level A, operating on secondary selection.

Right Button:
Menu (with Shift key):
(here 1 and 2 are the primary and secondary selections) :

Move: replace 1 by a copy of 2, and delete 2 [F3+F4]
Stuff: replace 1 by a copy of 2 [F4]
Swap: swap 1 and 2, if disjoint [F5]
Wipe: delete 2 [F3]
(cancel) cancel operation

Type-in:

(like Level 1)

2.3 Shortcuts

Modifiers:
Holding down the escape key is another way of making word and
word-boundary selections, equivalent to double clicking.

Function keys:
As described in the menus. The actions happen on up-transitions.
While holding a function key down, the secondary selection menu
is available on the right button. Performing a selection from
the menu overrides the function key.

Instant action:
The following actions:
"with shift key pressed perform secondary
selection (by left and middle buttons) and
select action marked Fn in the menu, then
release shift key"
may be abbreviated by:
"with function key Fn pressed perform secondary selection
(by left and middle buttons), then release Fn"
An instant action may be cancelled by releasing the function key
before releasing the mouse button, or by selecting " (cancel)™
from the menu.

2.4 Search (experimental feature)

Hold down the left control key and type: the string you are typing will be
forward-searched incrementally as you type. Backspace allows you to
backtrack on the search string, but does not backtrack the search.

Release the left control key when done.

Click (press-release) the left control key. If the primary selection is
empty, the last string which was searched for will be forward-searched.
If instead the primary selection is non-empty, the contents of the
selection will be forward-searched.

Backward search is done the same way, but with the right control key.
All searches are case-insensitive.

3 Notes

This interface works best when a different finger is used for each
mouse button. An alternative (slightly slower) is to use one finger

for the left and middle button, and another finger for the right button.
Using the same finger for the three buttons in not advised.

/proj/doc/vbttoolkit.txt Sun Mar 8 01:04:15 1987 17

Menus display the name of the function key that is equivalent to a menu
command.

Left click followed by middle click can be used to select in two steps,

instead of draw-through. Left click followed by middle click in the same
position selects a single character.

The cut buffer contains the last text that was either "cut"™ or selected as
a secondary selection involved in some action. For example: after a "stuff"
or a "move" the cut buffer contains what was the (now empty) secondary

selection; repeated "paste" will keep pasting it into new primary
selections.

"paste", "move" and "stuff" change the primary selection into an insertion
point at the right edge of the selection.

"swap" of two overlapping selections is a no-op.

Button clicks set the input focus if they set the primary selection.

