
Types for the Ambient CalulusLua Cardelliy and Giorgio Ghelliz and Andrew D. GordonyyMirosoft Researh, 1 Guildhall Street, Cambridge, UKz Universit�a di Pisa, Dipartimento di Informatia, Corso Italia 40, Pisa, ItalyThe ambient alulus is a onurrent alulus where the unifying notionof `ambient' is used to model many di�erent onstruts for distributedand mobile omputation. We study a type system that desribes severalproperties of ambient behavior. The type system allows ambients to bepartitioned in disjoint sets (groups), aording to the intended design ofa system, in order to speify both the ommuniation and the mobilitybehavior of ambients. CONTENTS1. Introdution.2. The Polyadi Ambient Calulus (Review).3. Introdution to Exhange Types.4. Typed Ambient Calulus.5. Opening Control.6. Crossing Control.7. E�et Safety.8. Enoding a Distributed Language.9. Conlusions. 1. INTRODUCTIONThe ambient alulus [13℄ is a proess alulus whose basi abstration, the am-bient, represents mobile, nested, omputational environments, with loal ommuni-ations. Ambients an represent the standard omponents of distributed systems,suh as nodes, hannels, messages, and mobile ode. They an also represent situa-tions where entire ative omputational environments are moved, as happens withmobile omputing devies, and with multithreaded mobile agents.We de�ne here a set of type systems for the ambient alulus, whih are basedon the idea of partitioning ambients in progammer de�ned groups, and trakingommuniation and mobility properties.Type systems are, today, a widely applied tehnique allowing programmers todesribe the key properties of their ode, and to have these properties mehaniallyand eÆiently heked. Mobile ode makes types, and mahine-hekable propertiesin general, useful for seurity reasons too, as has been demonstrated by the hekingperformed on Java applets [26℄.



In standard languages, the key invariants that are maintained by type systemshave mainly to do with the ontents of variables and with the interfaes of funtions,proedures, or methods. In the ambient alulus, the basi properties of a pieeof ode are those related to its mobility, to the possibility of opening an ambientand exposing its ontent, and to the type of data whih may be exhanged insidean ambient. To understand how groups arise in this ontext, onsider a typialstati property we may want to express in a type system for the ambient alulus;informally: The ambient named n an enter the ambient named m.This ould be expressed as a typing n : CanEnter(m) stating that n is a mem-ber of the olletion CanEnter(m) of names that an enter m. However, thiswould bring us straight into the domain of dependent types [14℄, sine the typeCanEnter(m) depends on the name m. Instead, we introdue type-level groups ofnames, G, H , and restate our property as:The name m belongs to group G.The ambient named n an enter any ambient of group G.This idea leads to typings of the form: m : G, n : CanEnter(G) whih are akinto standard typings suh as x : Int , y : Channel(Int).To appreiate the relevane of groups in the desription of distributed systems,onsider a programmer oding a typial distributed system omposed of nodes andmobile threads moving from one node to another, and where threads ommuniateby sending input and output pakets through typed hannels. In this paper wede�ne a type system where a programmer an:� de�ne groups suh as Node, Thread, Channel, and Paket, whih math thesystem struture;� delare properties suh as: this ambient is a Thread and it may only rossambients whih are Nodes ; this ambient is a Paket and an enter Channels ; thisambient is a Channel of type T , and it annot move or be opened, and it may openPakets ontaining data of type T ; this ambient is a Node and it annot move orbe opened;� have the system statially verify all these properties.Our groups are similar to sorts used in typed versions of the �-alulus [27℄, butwe introdue an operation, (�G)P , for reating a new group G, whih an be usedwithin the proess P .The binders for new groups, (�G), an oat outward during redution as longas this adjustment (alled extrusion in the �-alulus) does not introdue namelashes. Beause of extrusion, group binders do not impede the mobility of ambientsthat are enlosed in the initial sope of fresh groups but later move away. On theother hand, even though extrusion enlarges sopes, simple soping restritions inthe typing rules prevent names belonging to a fresh group from ever being reeivedby a proess whih has been de�ned outside the initial sope of the group.Therefore, we obtain a exible way of proteting the propagation of names. Thisis to be ontrasted with the situation in the untyped �-alulus and ambient al-ulus, where names an (intentionally, aidentally, or maliiously) be extruded2



arbitrarily far, by the automati and unrestrited appliation of extrusion rules,and ommuniated to other parties.This paper reports the results of a researh e�ort some parts of whih are de-sribed in onferene papers. In [12℄ we investigate exhange types, whih subsumestandard type systems for proesses and funtions, but do not impose restritionson mobility; no groups were present in that system. In [9℄ we report on immobilityand loking annotations, whih are basi prediates about mobility, still with nonotion of groups. In [10℄ we introdue the notion of groups; that paper is essentiallyan extended abstrat of the present one.We organise the paper as follows. In Setion 2 we review the basi untypedambient alulus. In Setion 3 we informally introdue a group-based exhangetype system whih only traks ommuniations. In Setion 4 we give a preisede�nition of the same system, and a subjet redution result. Setion 5 enrihesthe system of Setion 4 to ontrol ambient opening. In Setion 6, we de�ne thefull system in whih both ambient opening and ambient movement are traked.Setion 7 formalizes safety properties guaranteed by typing. In Setion 8 we revisita typed enoding of a distributed programming language from our earlier work onloking and mobility annotations [9℄, in order to illustrate the expressiveness ofthe type system. In partiular, we show how groups help desribing the di�erentlasses of ambients and their properties. Setion 9 onludes and disusses relatedwork. Finally, appendixes ontain proofs of the subjet redution and e�et safetyproperties for the full type system.2. THE POLYADIC AMBIENT CALCULUS (REVIEW)We begin by reviewing and slightly extending the ambient alulus of [13℄. Inthat alulus, ommuniation is based on the exhange of single values. Here weextend the alulus with ommuniation based on tuples of values (polyadi om-muniation), sine this simple extension greatly failitates the task of providing anexpressive type system. We also add objetive moves, as in [9℄, and we annotatebound variables with type information.Four of our proess onstrutions (restrition, inativity, omposition, and repli-ation) are ommonly found in proess aluli. To these we add ambients, apabil-ities, and a simple form of ommuniation. We briey disuss these onstrutions;see [13℄ for a more detailed introdution.The restrition operator, (�n:W )P , reates a new (unique) name n of type Wwithin a sope P . The new name an be used to name ambients and to operate onambients by name. The inative proess, 0, does nothing. Parallel omposition isdenoted by a binary operator, P j Q, that is ommutative and assoiative. Repli-ation is a tehnially onvenient way of representing iteration and reursion: theproess !P denotes the unbounded repliation of the proess P and is equivalent toP j!P .An ambient is written M [P ℄, where M is the name of the ambient, and P is theproess running inside the ambient.The proess M:P exeutes an ation regulated by the apability M , and thenontinues as the proess P . We onsider three kinds of apabilities: one for enteringan ambient, one for exiting an ambient, and one for opening up an ambient. (Thelatter requires speial are in the type system.) Capabilities are obtained from3



names; given a name n, the apability in n allows entry into n, the apability out nallows exit out of n and the apability open n allows the opening of n. Impliitly, thepossession of one or all of these apabilities is insuÆient to reonstrut the originalname n from whih they were extrated. Capabilities an also be omposed intopaths, M:M 0, with � for the empty path.Communiation is asynhronous and loal to an ambient. It is similar to hannelommuniation in the asynhronous �-alulus [7, 21℄, exept that the hannel hasno name: the surrounding ambient provides the ontext where the ommuniationhappens. The proess hM1; : : : ;Mki represents the output of a tuple of values, withno ontinuation. The proess (x1:W1; : : : ; xk:Wk):P represents the input of a tupleof values, whose omponents are bound to x1; : : : ; xk, with ontinuation P .Communiation is used to exhange both names and apabilities, whih sharethe same syntati lass M of messages. The �rst task of our type system is todistinguish theMs that are names from theMs that are apabilities, so that eah isguaranteed to be used in an appropriate ontext. In general, the type system mightdistinguish other kinds of expressions, suh as integer and boolean expressions, butwe do not inlude those in our basi alulus.The proess goN:M [P ℄ moves the ambientM [P ℄ as spei�ed by the N apability,and has M [P ℄ as its ontinuation. It is alled an objetive move sine the ambientM [P ℄ is moved from the outside, while a movement aused by a proess N:P whihruns inside an ambient is alled a subjetive move. There are more powerful forms ofobjetive move, beyond what is expressible in the untyped alulus, that may haveundesirable properties [13℄. We adopt the form go N:M [P ℄ as primitive beause itusefully allows more re�ned typings than are possible with only subjetive moves|as we show in Setion 6.2|and beause it does not a�et the untyped operationalsemantis, sine it is derivable in the untyped alulus. We an de�ne an objetivemove go N:M [P ℄ to be short for (�k)k[N:M [out k:P ℄℄ where k is not free in P .Messages and Proesses:M;N ::= messagen namein M an enter into Mout M an exit out of Mopen M an open M� nullM:M 0 pathP;Q;R ::= proess(�n:W )P restrition0 inativityP j Q omposition!P repliationM [P ℄ ambientM:P ation(x1:W1; : : : ; xk:Wk):P input ationhM1; : : : ;Mki output ation4



go N:M [P ℄ objetive moveThe following table displays the main redution rules of the alulus (the full setis presented in Setion 4). The notation Pfx1 M1; : : : ; xk Mkg in rule (Red I/O)denotes the outome of a apture-avoiding simultaneous substitution of messageMifor eah free ourrene of the orresponding name xi in the proess P , for i 2 1::k.Redution:n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)open n:P j n[Q℄! P j Q (Red Open)hM1; : : : ;Mki j (x1:W1; : : : ; xk:Wk):P !Pfx1 M1; : : : ; xk Mkg (Red I/O)go(in m:N):n[P ℄ j m[Q℄! m[go N:n[P ℄ j Q℄ (Red Go In)m[go(out m:N):n[P ℄ j Q℄! go N:n[P ℄ j m[Q℄ (Red Go Out)We use the following syntati onventions:� parentheses may be used for preedene� (�n:W )P j Q is read ((�n:W )P ) j Q� !P j Q is read (!P ) j Q� M:P j Q is read (M:P ) j Q� M:M 0:P is read M:(M 0:P )� (n1:W1; : : : ; nk:Wk):P j Q is read ((n1:W1; : : : ; nk:Wk):P ) j Q� n[℄ �= n[0℄� M �=M:0 (where appropriate)As an example, onsider the following proess:a[p[out a:in b:hi℄℄ j b[open p:(x):x[℄℄Intuitively, this example represents a paket named p moving from a mahine ato a mahine b. The proess p[out a:in b:hi℄ represents the paket, as a subambientof ambient a. The name of the paket ambient is p, and its interior is the proessout a:in b:hi. This proess onsists of three sequential ations: exerise the apa-bility out a, exerise the apability in b, and then output the name . The e�etof the two apabilities on the enlosing ambient p is to move p out of a and into b(rules (Red Out), (Red In)), to reah the state:a[℄ j b[p[hi℄ j open p:(x):x[℄℄In this state, the interior of a is empty but the interior of b onsists of tworunning proesses, the subambient p[hi℄ and the proess openp:(x):x[℄. This proessis attempting to exerise the open p apability. This apability was previouslybloked, but now that the p ambient is present, the apability's e�et is to dissolvethe ambient's boundary; hene, the interior of b beomes the proess hi j (x):x[℄5



(Red Open). This is a omposition of an output hi with an input (x):x[℄. Theinput onsumes the output, leaving [℄ as the interior of b (Red I/O). Hene, the�nal state of the whole example is a[℄ j b[[℄℄.As an example for the objetive moves, onsider the following variation of theprevious one: a[go(out a:in b):p[hi℄℄ j b[open p:(x):x[℄℄In this ase, the ambient p[hi℄ is moved from the outside, out of a and into b(rules (Red Go Out), (Red Go In)), to reah the same state that was reahed inthe previous version after the (Red Out), (Red In) subjetive moves:a[℄ j b[go �:p[hi℄ j open p:(x):x[℄℄3. INTRODUCTION TO EXCHANGE TYPESAn ambient is a plae where proesses an exhange messages and where otherambients an enter and exit. We introdue here a type system whih regulatesommuniation, while mobility will be takled in the following setions. This systemgeneralizes the one presented in [12℄ by allowing the partitioning of ambients intogroups. 3.1. Topis of ConversationWithin an ambient, multiple proesses an freely exeute input and output a-tions. Sine the messages are undireted, it is easily possible for a proess to uttera message that is not appropriate for some reeiver. The main idea of the exhangetype system is to keep trak of the topi of onversation that is permitted within agiven ambient, so that talkers and listeners an be ertain of exhanging appropriatemessages.The range of topis is desribed in the following table by message types, W , andexhange types, T . The message types are G[T ℄, the type of names of ambientswhih belong to the group G and that allow exhanges of type T , and Cap [T ℄, thetype of apabilities that when used may ause the unleashing of T exhanges (as aonsequene of opening ambients that exhange T ). The exhange types are Shh ,the absene of exhanges, andW1�: : :�Wk, the exhange of tuples of messages withelements of the respetive message types. For k = 0, the empty tuple type is alled1; it allows the exhange of empty tuples, that is, it allows pure synhronization.The ase k = 1 allows any message type to be an exhange type.Types:W ::= message typeG[T ℄ name in group G for ambients allowing T exhangesCap[T ℄ apability unleashing T exhangesS; T ::= exhange typeShh no exhangeW1 � � � � �Wk tuple exhange (1 is the null produt)6



For example, in a sope where the Agent and Plae groups have been de�ned,we an express the following types:� An ambient of the Agent group where no exhange is allowed (a quiet Agent):Agent [Shh ℄� A harmless apability: Cap [Shh ℄� A Plae where names of quiet Agents may be exhanged:Plae [Agent [Shh ℄℄� A Plae where harmless apabilities may be exhanged:Plae [Cap[Shh ℄℄� A apability that may unleash the exhange of names of quiet Agents:Cap[Agent [Shh ℄℄3.2. IntuitionsBefore presenting the formal type rules (in Setion 4), we disuss the intuitionsthat lead to them.3.2.1. Typing of ProessesIf a message M has message type W , then hMi is a proess that outputs (ex-hanges) W messages. Therefore, we have a rule stating that:M : W implies hMi :WIf P is a proess that may exhange W messages, then (x:W ):P is also a proessthat may exhange W messages. Therefore:P :W implies (x:W ):P :WThe proess 0 exhanges nothing, so it naturally has exhange type Shh . How-ever, we may also onsider 0 as a proess that may exhange any type. This isuseful when we need to plae 0 in a ontext that is already expeted to exhangesome type: 0 : T for any TAlternatively, we may add a subtype relation among types, give 0 a minimal type,and add a rule whih allows proesses with a type to appear where proesses witha supertype are required [36℄. We rejet this approah here only beause we wantto explore the ideas of group-based exhange and mobility types in the simplestpossible setting.If P and Q are proesses that may exhange T , then P j Q is also suh a proess.Similarly for !P : 7



P : T;Q : T implies P j Q : TP : T implies !P : TTherefore, by keeping trak of the exhange type of a proess, T -inputs andT -outputs are traked so that they math orretly when plaed in parallel.3.2.2. Typing of AmbientsAn ambient n[P ℄ is a proess that exhanges nothing at the urrent level, so,like 0, it an be plaed in parallel with any proess, hene we allow it to have anyexhange type: n[P ℄ : T for any TThere needs to be, however, a onnetion between the type of n and the typeof P . We give to eah ambient name n a type G[T ℄, meaning that n belongs tothe group G and that only T exhanges are allowed in any ambient of that name.Hene, a proess P an be plaed inside an ambient with that name n only if thetype of P is T :n : G[T ℄; P : T implies n[P ℄ is well-formed (and an have any type)By tagging the name of an ambient with the type of exhanges, we know whatkind of exhanges to expet in any ambient we enter. Moreover, we an tell whathappens when we open an ambient of a given name.3.2.3. Typing of OpenTraking the type of I/O exhanges is not enough by itself. We also need toworry about open , whih might open an ambient and unleash its exhanges insidethe surrounding ambient.If ambients named n permit T exhanges, then the apability openn may unleashthose T exhanges. We then say that open n has a apability type Cap [T ℄, meaningthat it may unleash T exhanges when used:n : G[T ℄ implies open n : Cap [T ℄As a onsequene, any proess that uses a Cap [T ℄ must be a proess that isalready willing to partiipate in exhanges of type T , beause further T exhangesmay be unleashed: M : Cap[T ℄; P : T implies M:P : T3.2.4. Typing of In and OutThe exerise of an in or out apability annot ause any exhange, hene suhapabilities an be prepended to any proess. Following the same pattern we usedwith 0 and ambients, the silent nature of these apabilities is formalized by allowingthem to aquire any apability type: 8



in n : Cap[T ℄ for any Tout n : Cap[T ℄ for any T3.2.5. GroupsGroups are used in the exhange system to speify whih kinds of messages anbe exhanged inside an ambient. We add a proess onstrut to reate a new groupG with sope P : (�G)PThe type rule of this onstrut spei�es that the proess P should have an ex-hange type T that does not ontain G. Then, (�G)P an be given type T as well.That is, G is never allowed to \esape" out of the sope of (�G) into the type of(�G)P : P : T; G does not our in T implies (�G)P : T4. TYPED AMBIENT CALCULUSWe are now ready for a formal presentation of the typed alulus whih has beeninformally introdued in the previous setion. We �rst present its syntax, then itstyping rules, and �nally a subjet redution theorem, whih states that types arepreserved during omputation.4.1. Types and ProessesTypes are de�ned as in Setion 3.1; messages and proesses are de�ned as inSetion 2, but we add the operator (�G)P of Setion 3.2.5.Messages and Proesses:P;Q;R ::= proess(�G)P group reation: : : as in Setion 2We identify proesses up to onsistent renaming of bound names and groups. Inthe proesses (�G)P and (�n:W )P , the group G and the name n, respetively, arebound, with sope P . In the proess (x1:W1; : : : ; xk:Wk):P , the names x1, . . . , xkare bound, with sope P .The following table de�nes the free names of proesses and messages, and thefree groups of proesses and types.Free Names and Free Groups:fn((�G)P ) �= fn(P ) fn(n) �= fngfn((�n:W )P ) �= fn(P )� fng fn(inM) �= fn(M)fn(0) �= ? fn(outM) �= fn(M)fn(P j Q) �= fn(P ) [ fn(Q) fn(openM) �= fn(M)fn(!P ) �= fn(P ) fn(�) �= ?fn(M [P ℄) �= fn(M) [ fn(P ) fn(M:N) �= fn(M) [ fn(N)9



fn(M:P ) �= fn(M) [ fn(P )fn((x1:W1; : : : ; xk:Wk):P ) �= fn(P )� fx1; : : : ; xkgfn(hM1; : : : ;Mki) �= fn(M1) [ � � � [ fn(Mk)fn(go N:M [P ℄) �= fn(N) [ fn(M) [ fn(P )fg((�G)P ) �= fg(P )� fGg fg(G[T ℄) �= fGg [ fg(T )fg((�n:W )P ) �= fg(W ) [ fg(P ) fg(Cap [T ℄) �= fg(T )fg(0) �= ? fg(Shh) �= ?fg(P j Q) �= fg(P ) [ fg(Q) fg(W1 � � � � �Wk) �=fg(!P ) �= fg(P ) fg(W1) [ � � � [ fg(Wk)fg(M [P ℄) �= fg(P )fg(M:P ) �= fg(P )fg((x1:W1; : : : ; xk:Wk):P ) �= fg(W1) [ � � � [ fg(Wk) [ fg(P )fg(hM1; : : : ;Mki) �= ?fg(go N:M [P ℄) �= fg(P )The following tables desribe the operational semantis of the alulus. The typeannotations present in the syntax do not play a role in redution; they are simplyarried along by the redutions.Terms are identi�ed up to an equivalene relation, �, alled strutural ongru-ene. This relation provides a way of rearranging proesses so that interating partsan be brought together. Then, a redution relation, !, ats on the interatingparts to produe omputation steps. The ore of the alulus is given by the re-dution rules (Red In), (Red Out), (Red Go In), (Red Go Out), and (Red Open),for mobility, and (Red I/O), for ommuniation.The rules of strutural ongruene are the same as for the untyped ambientalulus [13℄, exept for the addition of type annotations, and new rules for objetivemoves and group restrition. The rules (Strut GRes . . . ) desribe the extrusionbehavior of the (�G) binders. Note that (�G) extrudes exatly as (�n) does, heneit does not pose any dynami restrition on the movement of ambients or messages.The rule (Strut Go �) allows empty objetive moves to be erased. The rules (StrutGo � :), (Strut Go : �), and (Strut Go : Asso) allow the apability expressionin an objetive move to be re-arranged to allow appliation of the redution rules(Red Go In) and (Red Go Out). (These three rules of strutural ongruene weremissing in an earlier version of this system [10℄.)Redution:n[in m:P j Q℄ j m[R℄! m[n[P j Q℄ j R℄ (Red In)m[n[out m:P j Q℄ j R℄! n[P j Q℄ j m[R℄ (Red Out)open n:P j n[Q℄! P j Q (Red Open)hM1; : : : ;Mki j (x1:W1; : : : ; xk:Wk):P !Pfx1 M1; : : : ; xk Mkg (Red I/O)go(in m:N):n[P ℄ j m[Q℄! m[go N:n[P ℄ j Q℄ (Red Go In)m[go(out m:N):n[P ℄ j Q℄! go N:n[P ℄ j m[Q℄ (Red Go Out)P ! Q) P j R! Q j R (Red Par)10



P ! Q) (�n:W )P ! (�n:W )Q (Red Res)P ! Q) (�G)P ! (�G)Q (Red GRes)P ! Q) n[P ℄! n[Q℄ (Red Amb)P 0 � P; P ! Q;Q � Q0 ) P 0 ! Q0 (Red �)Strutural Congruene:P � P (Strut Re)Q � P ) P � Q (Strut Symm)P � Q;Q � R) P � R (Strut Trans)P � Q) (�n:W )P � (�n:W )Q (Strut Res)P � Q) (�G)P � (�G)Q (Strut GRes)P � Q) P j R � Q j R (Strut Par)P � Q) !P � !Q (Strut Repl)P � Q)M [P ℄ �M [Q℄ (Strut Amb)P � Q)M:P �M:Q (Strut Ation)P � Q)(x1:W1; : : : ; xk :Wk):P � (x1:W1; : : : ; xk:Wk):Q (Strut Input)P � Q) go N:M [P ℄ � go N:M [Q℄ (Strut Go)P j Q � Q j P (Strut Par Comm)(P j Q) j R � P j (Q j R) (Strut Par Asso)!P � P j !P (Strut Repl Par)n1 6= n2 )(�n1:W1)(�n2:W2)P � (�n2:W2)(�n1:W1)P (Strut Res Res)n =2 fn(P )) (�n:W )(P j Q) � P j (�n:W )Q (Strut Res Par)n 6= m) (�n:W )m[P ℄ � m[(�n:W )P ℄ (Strut Res Amb)(�G1)(�G2)P � (�G2)(�G1)P (Strut GRes GRes)G =2 fg(W )) (�G)(�n:W )P � (�n:W )(�G)P (Strut GRes Res)G =2 fg(P )) (�G)(P j Q) � P j (�G)Q (Strut GRes Par)(�G)m[P ℄ � m[(�G)P ℄ (Strut GRes Amb)P j 0 � P (Strut Zero Par)(�n:W )0 � 0 (Strut Zero Res)(�G)0 � 0 (Strut Zero GRes)!0 � 0 (Strut Zero Repl)�:P � P (Strut �)(M:M 0):P �M:M 0:P (Strut :)go �:N [P ℄ � N [P ℄ (Strut Go �)go (�:M):N [P ℄ � go M:N [P ℄ (Strut Go � :)go (M:�):N [P ℄ � go M:N [P ℄ (Strut Go : �)go ((M:M 0):M 00):N [P ℄ � go (M:(M 0:M 00)):N [P ℄ (Strut Go : Asso)11



4.2. The Exhange TypesIn the tables below, we introdue typing environments, E, the �ve basi judg-ments, and the typing rules. By onvention, any anteedent of the form E ` J1,. . . , E ` Jn means E ` � when n = 0.Environments, E, and the Domain, dom(E), of an Environment:E ::= ? j E;G j E; n:W environmentdom(?) �= ?dom(E;G) �= dom(E) [ fGgdom(E; n:W ) �= dom(E) [ fngJudgments:E ` � good environmentE `W good message type WE ` T good exhange type TE `M :W good message M of message type WE ` P : T good proess P with exhange type TGood Environments:(Env ?)? ` � (Env n)E `W n =2 dom(E)E; n:W ` � (Env G)E ` � G =2 dom(E)E;G ` �Good Types:(Type Amb)G 2 dom(E) E ` TE ` G[T ℄ (Type Cap)E ` TE ` Cap[T ℄(Type Shh)E ` �E ` Shh (Type Prod)E `W1 � � � E `WkE `W1 � � � � �WkGood Messages:(Exp n)E0; n:W;E00 ` �E0; n:W;E00 ` n :W (Exp :)E `M : Cap [T ℄ E `M 0 : Cap [T ℄E `M:M 0 : Cap [T ℄ (Exp �)E ` Cap[T ℄E ` � : Cap [T ℄(Exp In)E ` n : G[S℄ E ` TE ` in n : Cap [T ℄ (Exp Out)E ` n : G[S℄ E ` TE ` out n : Cap [T ℄ (Exp Open)E ` n : G[T ℄E ` open n : Cap [T ℄12



Good Proesses:(Pro Ation)E `M : Cap[T ℄ E ` P : TE `M:P : T (Pro Amb)E `M : G[S℄ E ` P : S E ` TE `M [P ℄ : T(Pro Res)E; n:G[S℄ ` P : TE ` (�n:G[S℄)P : T (Pro GRes)E;G ` P : T G =2 fg(T )E ` (�G)P : T(Pro Zero)E ` TE ` 0 : T (Pro Par)E ` P : T E ` Q : TE ` P j Q : T (Pro Repl)E ` P : TE ` !P : T(Pro Input)E; n1:W1; : : : ; nk:Wk ` P :W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P :W1 � � � � �Wk(Pro Output)E `M1 :W1 � � � E `Mk :WkE ` hM1; : : : ;Mki :W1 � � � � �Wk(Pro Go)E ` N : Cap[Shh ℄ E `M : G[S℄ E ` P : S E ` TE ` go N:M [P ℄ : T4.3. Subjet RedutionWe obtain a standard subjet redution result. A subtle point, though, is theneed to aount for the appearane of new groups (G1, . . . , Gk, below) duringredution. This is beause redution is de�ned up to strutural ongruene, andstrutural ongruene does not preserve the set of free groups of a proess. Theulprit is the rule (�n:W )0 � 0, in whih groups free in W are not free in 0.Theorem 4.1 (Subjet Congruene). If E ` P : T and P � Q then there areG1, . . . , Gk suh that G1; : : : ; Gk; E ` Q : T .Proof. See Appendix A.Theorem 4.2 (Subjet Redution). If E ` P : T and P ! Q then there areG1, . . . , Gk suh that G1; : : : ; Gk; E ` Q : T .Proof. See Appendix A.Subjet redution spei�es that, if P is well-typed, it will only redue to well-typed terms. This fat has some pratial onsequenes:13



� P will never redue to meaningless proesses allowed by the syntax like (in n)[P ℄;� no proess deriving from P will ontain an ambient where a proess attemptsan input or output operation whih does not math the ambient type.Subjet redution has also interesting and subtle onnetions with serey ofnames.Consider a well-typed proess ((�G)P ) j O, where O is a type-heked \oppo-nent", and a name n is delared inside P with a type G[T ℄. Although (�G) anbe extruded arbitrarily far, aording to the extrusion rules, no proess whih de-rives from the opponent O will ever be able to read n through an input (x:W ):Q.Any proess hni j (x:W ):Q whih derives from ((�G)P ) j O is well-typed, heneW = G[T ℄, but the opponent was not, by assumption, in the initial sope of G,and therefore annot even mention the type G[T ℄. Therefore, we an guaranteethat names of group G an never be ommuniated to proesses outside the initialsope of G, simply beause those proesses annot name G to reeive the message.(Elsewhere [11℄ we extend this argument to the ase of untyped opponents.)This situation is in sharp ontrast with ordinary name restrition, where a namethat is initially held seret (e.g. a key) may aidentally be given away and misused(e.g. to derypt urrent or old messages). This is beause soping of names an beextruded too far, inadvertently. Soping of groups an be extruded as well, but stillo�ers protetion against aidental or even maliious leakage.Of ourse, we would have even stronger protetion if we did not allow (�G)binders to extrude at all. But this would be too rigid. Sine (�G) binders an beextruded, they do not impede the mobility of ambients that arry serets. Theyonly prevent those ambients from giving the serets away. Consider the followingexample of traveling agents sharing serets.a[(�G)(�k0 : G[Shh ℄)(�k00 : G[Shh ℄)(k0[out a:in b:out b:in ℄ jk00[out a:in :in k0℄)℄ j b[℄ j [℄Within an ambient a, two agents share a seret group G and two names k0 andk00 belonging to that group. The two agents adopt the names k0 and k00 as theirrespetive names, knowing that those names annot be leaked even by themselves.This way, as they travel, nobody else an interfere with them. If somebody interfereswith them, or demonstrates knowledge of the names k0 or k00, the agents know thatthe other party must be (a desendant of) the other agent. In this example, the�rst agent travels to ambient b and then to , and the seond agent goes to ambient diretly. The sope extrusion rules for groups and names allow this to happen.Inside , out of the intial sope of (�G), the seond agent then interats with the�rst by entering it. It an do so beause it still holds the shared seret k0.The proof that group extrusion preserves types an be found in the appendix, butwe omment here on the ruial ase: the preservation of typing by the extrusionrule (Strut GRes Amb).For a well-typed P , (�G)P is well-typed if and only if P does not ommuniate atuple whih names G in its type (rule (Pro GRes)): (�G) must not \see" G-typednames ommuniated at its own level. This intuition suggests that, referring to the14



following table, P 0 should be typeable ((�G) annot \see" the output hni) whileP 00 should be not (hni is at the same level as (�G)). However, the two proessesare equivalent, modulo extrusion of (�G) (rule (Strut GRes Amb)):P 0 = (�G)m[(�n:G[Shh ℄)hni℄P 00 = m[(�G)(�n:G[Shh ℄)hni℄We go through the example step by step, to solve the apparent paradox. Firstonsider the term (�G)(�n:G[Shh ℄)hniThis term annot be typed, beause G attempts to esape the sope of (�G) asthe type of the message n. An attempted typing derivation fails at the last stepbelow : : :) G;n:G[Shh ℄ ` n : G[Shh ℄) G;n:G[Shh ℄ ` hni : G[Shh ℄) G ` (�n:G[Shh ℄)hni : G[Shh ℄6) ` (�G)(�n:G[Shh ℄)hni : G[Shh ℄ (beause G 2 fg(G[Shh ℄))Similarly, the term (�m:W )m[(�G)(�n:G[Shh ℄)hni℄annot be typed, beause it ontains the previous untypeable term. But now on-sider the following term, whih is equivalent to the one above up to struturalongruene, by extrusion of (�G) aross an ambient boundary:(�m:W )(�G)m[(�n:G[Shh ℄)hni℄This term might appear typeable (ontraditing the subjet ongruene property)beause the message hni:G[Shh ℄ is on�ned to the ambient m, and m[: : :℄ an begiven an arbitrary type, e.g. Shh, whih does not ontain G. Therefore (�G) wouldnot \see" any ourrene of G esaping from its sope. However, onsider the typeof m in this term. It must have the form H [T ℄, where H is some group, and T isthe type of messages exhanged inside m. But that's G[Shh ℄. So we would have(�m:H [G[Shh ℄℄)(�G)m[(�n:G[Shh ℄)hni℄whih is not typeable beause the �rst ourrene of G is out of sope.This example tells us why (�G) intrusion (oating inwards) into ambients is notgoing to break good typing: (�G) annot enter the sope of the (�m:W ) restritionwhih reates the name m of an ambient where messages with a G-named type areexhanged. This prevents (�G) from entering suh ambients.Indeed, the following variation (not equivalent to the previous one) is typeable,but (�G) annot intrude any more:(�G)(�m:H [G[Shh ℄℄)m[(�n:G[Shh ℄)hni℄15



5. OPENING CONTROLAmbient opening is a prerequisite for any ommuniation to happen between pro-esses whih did not originate in the same ambient, as exempli�ed by any hannelenoding.On the other hand, opening is one of the most deliate operations in the ambientalulus, sine the ontents of the guest spill inside the host, with two di�erentlasses of possible onsequenes:� the ontent of the guest aquires the possibility of performing ommuniationsinside the hosts, and of moving the host around;� the host is now able to examine the ontent of the guest, mainly in termsof reeiving messages sent by the proesses inside the guest, and of opening itssub-ambients.For these reasons, a type system for ambients should support a areful ontrol ofthe usage of the open apability.5.1. The SystemIn this setion, we enrih the ambient types, G[T ℄, and the apability types,Cap [T ℄, of the previous type system to ontrol usage of the open apability.To ontrol the opening of ambients, we formalize the onstraint that the nameof any ambient opened by a proess is in one of the groups G1, . . . , Gk, but inno others. To do so, we add an attribute ÆfG1; : : : ; Gkg to ambient types, whihnow take the form G[ÆfG1; : : : ; Gkg; T ℄. A name of this type is in group G, andnames ambients within whih proesses may exhange messages of type T and mayonly open ambients in the groups G1, . . . , Gk . We need to add the same attributeto apability types, whih now take the form Cap[ÆfG1; : : : ; Gkg; T ℄. Exerising aapability of this type may unleash exhanges of type T and openings of ambients ingroups G1, . . . , Gk. The typing judgment for proesses aquires the form E ` P :ÆfG1; : : : ; Gkg; T . The pair ÆfG1; : : : ; Gkg; T onstrains both the opening e�ets(what ambients the proess opens) and the exhange e�ets (what messages theproess exhanges). We all suh a pair an e�et, and introdue the metavariableF to range over e�ets. It is also onvenient to introdue metavariables G, H torange over �nite sets of groups. The following tables summarize these metavariableonventions and our enhaned syntax for types:Group Sets:G;H ::= fG1; : : : ; Gkg �nite set of groupsTypes:W ::= message typeG[F ℄ name in group G for ambients whih ontain pro-esses with F e�etsCap[F ℄ apability (unleashes F e�ets)F ::= e�etÆH; T may open H, may exhange TS; T ::= exhange type16



Shh no exhangeW1 � � � � �Wk tuple exhangeThe de�nition of free groups is the same as in Setion 4 exept that we rede�nefg(W ) by the equations fg(G[F ℄) = fGg [ fg(F ) and fg(Cap [F ℄) = fg(F ), and wede�ne fg(F ) = H [ fg(T ) where F = ÆH; T .The following tables de�ne the type system in detail. There are �ve basi judg-ments as before. They have the same format exept that the judgment E ` F ,meaning that the e�et F is good given environment E, replaes the previous judg-ment E ` T . We omit the three rules for deriving good environments; they areexatly as in the previous setion. There are two main di�erenes between theother rules below and the rules of the previous setion. First, e�ets, F , replaeexhange types, T , throughout. Seond, in the rule (Exp Open), the onditionG 2 H onstrains the opening e�et H of a apability open n to inlude the groupG, the group of the name n.Judgments:E ` � good environmentE `W good message type WE ` F good e�et FE `M :W good message M of message type WE ` P : F good proess P with F e�etsGood Types:(Type Amb)G 2 dom(E) E ` FE ` G[F ℄ (Type Cap)E ` FE ` Cap[F ℄(E�et Shh)H � dom(E) E ` �E ` ÆH;Shh (E�et Prod)H � dom(E) E `W1 � � � E `WkE ` ÆH;W1 � � � � �WkGood Messages:(Exp n)E0; n:W;E00 ` �E0; n:W;E00 ` n :W (Exp �)E ` Cap [F ℄E ` � : Cap[F ℄(Exp :)E `M : Cap[F ℄ E `M 0 : Cap [F ℄E `M:M 0 : Cap[F ℄ (Exp In)E ` n : G[F ℄ E ` ÆH; TE ` in n : Cap[ÆH; T ℄17



(Exp Out)E ` n : G[F ℄ E ` ÆH; TE ` out n : Cap[ÆH; T ℄ (Exp Open)E ` n : G[ÆH; T ℄ G 2 HE ` open n : Cap [ÆH; T ℄Good Proesses:(Pro Ation)E `M : Cap[F ℄ E ` P : FE `M:P : F (Pro Amb)E `M : G[F ℄ E ` P : F E ` F 0E `M [P ℄ : F 0(Pro Res)E; n:G[F ℄ ` P : F 0E ` (�n:G[F ℄)P : F 0 (Pro GRes)E;G ` P : F G =2 fg(F )E ` (�G)P : F(Pro Zero)E ` FE ` 0 : F (Pro Par)E ` P : F E ` Q : FE ` P j Q : F (Pro Repl)E ` P : FE ` !P : F(Pro Input)E; n1:W1; : : : ; nk:Wk ` P : ÆH;W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : ÆH;W1 � � � � �Wk(Pro Output)E `M1 :W1 � � � E `Mk : Wk H � dom(E)E ` hM1; : : : ;Mki : ÆH;W1 � � � � �Wk(Pro Go)E ` N : Cap[Æfg;Shh℄ E `M : G[F ℄ E ` P : F E ` F 0E ` go N:M [P ℄ : F 05.2. Subjet RedutionWe obtain a subjet redution result.Theorem 5.1. If E ` P : F and P ! Q then there are G1, . . . , Gk suh thatG1; : : : ; Gk; E ` Q : F .Proof. See the appendix.Here is a simple example of a typing derivable in this system:G;n:G[ÆfGg;Shh℄ ` n[0℄ j open n:0 : ÆfGg;ShhThis asserts that the whole proess n[0℄ j open n:0 is well-typed and opens onlyambients in the group G. 18



On the other hand, one might expet the following variant to be derivable, butit is not: G;n:G[Æfg;Shh℄ ` n[0℄ j open n:0 : ÆfGg;ShhThis is beause the typing rule (Exp Open) requires the e�et unleashed by theopen n apability to be the same as the e�et ontained within the ambient n. Butthe opening e�et Æfg spei�ed by the type G[Æfg;Shh℄ of n annot be the same asthe e�et unleashed by open n, beause (Exp Open) also requires the latter to atleast inlude the group G of n.This feature of (Exp Open) has a positive side-e�et: the type G[ÆG; T ℄ of anambient name n not only tells whih opening e�ets may happen inside the ambient,but also tells whether n may be opened from outside: it is openable only if G 2 G,sine this is the only ase when open n:0 j n[P ℄ may be well-typed. Hene, thepresene of G in the set G may either mean that n is meant to be an ambientwithin whih other ambients in group G may be opened, or that it is meant to bean openable ambient.More generally, beause of the shape of the open rule, the opening e�ets in theambient type of n not only reord the openings that may take plae inside theambient, but also the opening e�ets of any ambient m whih is going to openn, and, reursively, of any ambient whih is going to open m as well. A similarphenomenon ours with exhange types and with the subjetive-rossing e�ets ofthe next setion.While this turns out to be unproblemati for the examples we onsider in thispaper, one may prefer to avoid this \inward propagation" of e�ets by replaing(Exp Open) with the following rule:E ` n : G[ÆH; T ℄E ` open n : Cap [Æ(fGg [H); T ℄With this rule, we ould derive that the example proess above, n[0℄ j open n:0,has e�et ÆfGg;Shh , with no need of attributing this e�et to proesses runninginside n itself, but unfortunately, subjet redution fails. To see this, onsider theproess open n j n[open m℄, whih an be assigned the e�et ÆfG;Hg;Shh:G;H;m:G[Æfg;Shh℄; n:H [ÆfGg;Shh ℄ ` open n jn[open m℄ : ÆfG;Hg;ShhThe proess redues in one step to open m, but we annot derive the following:G;H;m:G[Æfg;Shh℄; n:H [ÆfGg;Shh℄ ` open m : ÆfG;Hg;ShhTo obtain a subjet redution property in the presene of the rule displayed above,we should introdue a notion of subtyping, suh that if G � H and a proess hastype ÆG; T , then the proess has type ÆH; T too. This would ompliate the typesystem, as shown in [36℄. Moreover, we would lose the indiret way of delaringambient openability, so we prefer to stik to the basi approah.19



6. CROSSING CONTROLThis setion presents the third and �nal type system of the paper. We obtain itby enrihing the type system of Setion 5 with attributes to ontrol the mobility ofambients. 6.1. The SystemMovement operators enable an ambient n to ross the boundary of another am-bient m either by entering it via an in m apability or by exiting it via an out mapability. In the type system of this setion, the type of n lists those groups thatmay be rossed; the ambient n may only ross the boundary of another ambientm if the group of m is inluded in this list. In our typed alulus, there are twokinds of movement, subjetive moves and objetive moves, for reasons explainedin Setion 6.2. Therefore, we separately list those groups that may be rossed byobjetive moves and those groups that may be rossed by subjetive moves.We add new attributes to the syntax of ambient types, e�ets, and apabilitytypes. An ambient type aquires the form GyG0[yG;ÆH; T ℄. An ambient of thistype is in group G, may ross ambients in groups G0 by objetive moves, mayross ambients in groups G by subjetive moves, may open ambients in groups H,and may ontain exhanges of type T . An e�et, F , of a proess is now of theform yG;ÆH; T . It asserts that the proess may exerise in and out apabilitiesto aomplish subjetive moves aross ambients in groups G, that the proess mayopen ambients in groupsH, and that the proess may exhange messages of type T .Finally, a apability type retains the form Cap [F ℄, but with the new interpretationof F . Exerising a apability of this type may unleash F e�ets.Types:W ::= message typeGyG[F ℄ name in group G for ambients whih ross Gobjetively and ontain proesses with F e�etsCap[F ℄ apability (unleashes F e�ets)F ::= e�etyG;ÆH; T rosses G, opens H, exhanges TS; T ::= exhange typeShh no exhangeW1 � � � � �Wk tuple exhangeThe de�nition of free groups is the same as in Setion 4 exept that we rede�nefg(W ) by the equations fg(GyG[F ℄) = fGg [G [ fg(F ) and fg(Cap [F ℄) = fg(F ),and we de�ne fg(F ) = G [H [ fg(T ) where F = yG;ÆH; T .The format of the �ve judgments making up the system is the same as in Setion 5.We omit the three rules de�ning good environments; they are as in Setion 4. Thereare two main hanges to the previous system to ontrol mobility. First, (Exp In)and (Exp Out) hange to assign a type Cap [yG;ÆH; T ℄ to apabilities in n andout n only if G 2 G where G is the group of n. Seond, (Pro Go) hanges toallow an objetive move of an ambient of type GyG0[F ℄ by a apability of typeCap [yG;ÆH; T ℄ only if G = G0. 20



Good Types:(Type Amb)G 2 dom(E) G � dom(E) E ` FE ` GyG[F ℄ (Type Cap)E ` FE ` Cap [F ℄(E�et Shh)G � dom(E) H � dom(E) E ` �E ` yG;ÆH;Shh(E�et Prod)G � dom(E) H � dom(E) E `W1 � � � E `WkE ` yG;ÆH;W1 � � � � �WkGood Messages:(Exp n)E0; n:W;E00 ` �E0; n:W;E00 ` n :W (Exp �)E ` Cap [F ℄E ` � : Cap[F ℄ (Exp :)E `M : Cap [F ℄ E `M 0 : Cap[F ℄E `M:M 0 : Cap [F ℄(Exp In)E ` n : GyG0[F ℄ E ` yG;ÆH; T G 2 GE ` in n : Cap[yG;ÆH; T ℄(Exp Out)E ` n : GyG0[F ℄ E ` yG;ÆH; T G 2 GE ` out n : Cap[yG;ÆH; T ℄(Exp Open)E ` n : GyG0[yG;ÆH; T ℄ G 2 HE ` open n : Cap[yG;ÆH; T ℄Good Proesses:(Pro Ation)E `M : Cap[F ℄ E ` P : FE `M:P : F (Pro Amb)E `M : GyG[F ℄ E ` P : F E ` F 0E `M [P ℄ : F 0(Pro Res)E; n:GyG[F ℄ ` P : F 0E ` (�n:GyG[F ℄)P : F 0 (Pro GRes)E;G ` P : F G =2 fg(F )E ` (�G)P : F21



(Pro Zero)E ` FE ` 0 : F (Pro Par)E ` P : F E ` Q : FE ` P j Q : F (Pro Repl)E ` P : FE ` !P : F(Pro Input)E; n1:W1; : : : ; nk:Wk ` P : yG;ÆH;W1 � � � � �WkE ` (n1:W1; : : : ; nk:Wk):P : yG;ÆH;W1 � � � � �Wk(Pro Output)E `M1 :W1 � � � E `Mk : Wk G � dom(E) H � dom(E)E ` hM1; : : : ;Mki : yG;ÆH;W1 � � � � �Wk(Pro Go)E ` N : Cap[yG;Æfg;Shh ℄ E `M : GyG[F ℄ E ` P : F E ` F 0E ` go N:M [P ℄ : F 0Theorem 6.1. If E ` P : F and P ! Q then there are G1, . . . , Gk suh thatG1; : : : ; Gk; E ` Q : F .Proof. See the appendix.6.2. The Need for Objetive MovesWe an now show how primitive typing rules for objetive moves allow us toassign better types in some ruial situations. Reall the untyped example fromSetion 2. Suppose we have two groups Ch and Pk (for hannels and pakets). LetW be any well-formed type (where Ch and Pk may appear), and set P to be theexample proess: P = a[p[out a:in b:hi℄℄ j b[open p:(x:W ):x[℄℄Let E = Ch ;Pk ;a:Ch yfg[yfg;Æfg;Shh ℄;b:Ch yfg[yfChg;ÆfPkg;W ℄;:W;p:Pk yfg[yfChg;ÆfPkg;W ℄and we an derive the typings:E ` out a:in b:hi : yfChg;ÆfPkg;WE ` open p:(x:W ):x[℄ : yfChg;ÆfPkg;WE ` P : yfg;Æfg;ShhFrom the typing a : Ch yfg[yfg;Æfg;Shh ℄, we an tell that a is an immobileambient in whih nothing is exhanged and that annot be opened. From the typ-ings p:Pk yfg[yfChg;ÆfPkg;W ℄; b:Ch yfg[yfChg;ÆfPkg;W ℄, we an tell that the22



ambients b and p ross only Ch ambients, open only Pk ambients, and ontain Wexhanges; the typing of p also tells us it an be opened. This is not fully satisfa-tory, sine, if b were meant to be immobile, we would like to express this immobilityinvariant in its type. However, sine b opens a subjetively mobile ambient, then bmust be typed as if it were subjetively mobile itself. The problem is quite general,as it applies to any immobile ambient wishing to open a subjetively mobile one.This problem an be solved by replaing the subjetive moves by objetive moves,sine objetive moves are less expressive than subjetive moves, but they annot beinherited by opening another ambient. Let Q be the example proess with objetiveinstead of subjetive moves:Q = a[go(out a:in b):p[hi℄℄ j b[open p:(x:W ):x[℄℄Let E = Ch ;Pk ;a:Ch yfg[yfg;Æfg;Shh ℄;b:Ch yfg[yfg;ÆfPkg;W ℄;:W;p:Pk yfChg[yfg;ÆfPkg;W ℄and we an derive: E ` out a:in b : Cap[yfChg;Æfg;Shh℄E ` go(out a:in b):p[hi℄ : yfg;Æfg;ShhE ` open p:(x:W ):x[℄ : yfg;ÆfPkg;WE ` Q : yfg;Æfg;ShhThe typings of a and  are unhanged, but the new typings of p and b aremore informative. We an tell from the typing p:Pk yfChg[yfg;ÆfPkg;W ℄ thatmovement of p is due to objetive rather than subjetive moves. Moreover, asdesired, we an tell from the typing b:Ch yfg[yfg;ÆfPkg;W ℄ that the ambient b isimmobile.This example suggests that in some situations objetive moves lead to moreinformative typings than subjetive moves. Still, subjetive moves are essential formoving ambients ontaining running proesses. An extended example in Setion 8illustrates the type system of this setion; the treatment of thread mobility makesessential use of subjetive moves.6.3. Relationship to Binary AnnotationsThe system of this setion generalizes our previous system of binary lokingand mobility annotations [9℄. In that system, the type of a name takes the formAmbY Zo [ZsT ℄, where the loking annotation, Y , is either loked, �, or unloked, Æ,and the mobility annotations, Zo and Zs, are eah either mobile, y, or immobile,Y. An ambient of this type may be opened if and only if Y = Æ, it may be movedobjetively if and only if Zo =y, and it may be moved subjetively if and only ifZs =y.That system an be understood as a degenerate form of the urrent one, where weonly use two groups, L (for Loked) and U (for Unloked), so that any ambient name23



will belong to one of these two groups. Then we understand a type AmbY Zo [ZsT ℄as a type GyGo[yGs;ÆH; T 0℄ as follows:� If the objetive mobility annotation Zo is y (mobile), let Go = yfL;Ug (mayross any ambient). If the objetive mobility annotation Zo is Y (immobile), letGo = yfg (may ross nothing).� We translate the subjetive mobility annotation Zs to the e�etGs in the sameway.� If the loking annotation Y is � (loked), let G = L and H = fUg (loked, mayopen any unloked ambient). If the loking annotation Y is Æ (unloked), let G = Uand H = fUg (unloked, may be opened and may open any unloked ambient).It is then straightforward to show that ` P : T holds in the system of [9℄ i�L; U ` translate(P ) : translate(T ) holds in the system of this setion, wheretranslate translates T and the types in P as spei�ed above.7. EFFECT SAFETYLike most other type systems for onurrent aluli, ours does not guaranteeliveness properties, for example, the absene of deadloks. Still, we may regard thee�et assigned to a proess as a safety property: an upper bound on the apabilitiesthat may be exerised by the proess, and hene on its behavior. We formalize thisidea in the setting of our third type system, and explain some onsequenes.We say that a proess P exerises a apability M , one of in n or out n or open n,just if P #M may be derived by the following rules:Exerising a Capability: P #M where M 2 fin n; out n; open ng(Ex Cap)P �M:QP #M (Ex Par 1)P #MP j Q #M (Ex Par 2)Q #MP j Q #M (Ex Res)P #M n =2 fn(M)(�n:W )P #M (Ex ResG)P #M(�G)P #MThe following asserts that the group of the name ontained in any apabilityexerised by a well-typed proess is bounded by the e�et assigned to the proess.We give the proof in Appendix B.Proposition 7.1 (E�et Safety). Suppose that E ` P : yG;ÆH; T .(1)If P # in n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(2)If P # out n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(3)If P # open n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 H.To explain the intuitive signi�ane of this proposition, onsider a name m :H yH0[yG;ÆH; T ℄ and a well-typed ambient m[P ℄. Suppose that m[P ℄ is a sub-proess of some well-typed proess Q. We an make two onnetions between theapabilities exhibited by the proess P and the redutions immediately derivablefrom the whole proess Q. First, within Q, the ambientm[P ℄ an immediately ross(via subjetive moves) the boundary of another ambient named n of some group24



G only if either P # in n or P # out n. The typing rule for ambients implies thatP must have e�et yG;ÆH; T . Part (1) or (2) of the proposition implies that theset G ontains G. Seond, suppose that P inludes a top-level ambient named n.The boundary of n an be immediately dissolved only if P # open n. Sine P hase�et yG;ÆH; T , part (3) of the proposition implies that the set H ontains G. Sothe set G inludes the groups of all ambients that an be immediately rossed bym[P ℄, and the set H inludes the groups of all ambients that an be immediatelyopened within m[P ℄.A orollary of Theorem 6.1 is that these bounds on ambient behavior apply notjust to ambients ontained within Q, but to ambients ontained in any proessreahable by a series of redutions from Q.For the sake of simpliity and brevity, our disussion in this setion is fairlyinformal. In their reent work on a derivative of the ambient alulus, Bugliesi andCastagna [8℄ state a formal safety property indued by a type system for ambients.To do so, they introdue a preise notion of proess residuals.8. ENCODING A DISTRIBUTED LANGUAGESeveral typed and untyped distributed languages have been proposed [35, 22℄.They ome with notions of loations, agents, threads, mobility, and so on. Typedtranslations of proedural and objet-oriented programming languages into formaltype systems have been studied for several reasons inluding type soundness [2℄ andompilation optimisations [28℄. In the same way, we aim to redue the onstrutsof agent languages to appropriate type systems that apture their fundamentalharateristis.In this setion, we onsider a partiular example, a fragment of a typed, dis-tributed language in whih mobile threads an migrate between immobile networknodes. We obtain a semantis for this form of thread mobility via a translation intothe ambient alulus. In the translation, ambients model both threads and nodes.The enoding an be typed in all three of the systems presented in this paper; forthe sake of brevity we desribe the enoding only for the full system of Setion 6.The enoding illustrates how groups an be used to partition the set of ambientnames aording to their intended usage, and how opening and rossing ontrol al-lows the programmer to state interesting invariants. In partiular, the typing of thetranslation guarantees that an ambient modeling a node moves neither subjetivelynor objetively. On the other hand, an ambient modeling a thread is free to movesubjetively, but is guaranteed not to move objetively.8.1. The Distributed LanguageThe omputational model is that there is an unstrutured olletion of namednetwork nodes, eah of whih hosts a olletion of named ommuniation hannelsand anonymous threads. This is similar to the omputational models underlyingvarious distributed variants of the �-alulus, suh as those proposed by Amadioand Prasad [4℄, Riely and Hennessy [32℄, and Sewell [33℄. In an earlier paper [12℄,we showed how to mimi Telesript's omputational model by translation into theambient alulus. In the language fragment we desribe here, ommuniation isbased on named ommuniation hannels (as in the �-alulus) rather than by diretagent-to-agent ommuniation (as in our stripped down version of Telesript). As in25



our previous paper, we fous on language onstruts for mobility, synhronization,and ommuniation. We omit standard onstruts for data proessing and ontrolow. They ould easily be added.To introdue the syntax of our language fragment, here is a simple example:node a [hannel a j thread [ahb; bi℄℄ j node b [hannel b℄ jnode  [thread [go a:a(x:Node; y:Ch [Node ℄):go x:yhai℄This program desribes a network onsisting of three network nodes, named a,b, and . Node a hosts a hannel a and a thread running the ode ahb; bi, whihsimply sends the pair hb; bi on the hannel a. Node b hosts a hannel b. Finally,node  hosts a single thread, running the ode:go a:a(x:Node ; y:Ch [Node ℄):go x:yhaiThe e�et of this is to move the thread from node  to node a. There it awaits amessage sent on the ommuniation hannel a. We may assume that it reeives themessage hb; bi being sent by the thread already at a. (If there were another threadat node a sending another message, the reeiver thread would end up reeiving oneor other of the messages.) The thread then migrates to node b, where it transmitsa message a on the hannel b.Messages on ommuniation hannels are assigned types, ranged over by Ty . Thetype Node is the type of names of network nodes. The type Ch [Ty1; : : : ;Tyk℄ is thetype of a polyadi ommuniation hannel. The messages ommuniated on suha hannel are k-tuples whose omponents have types Ty1, . . . , Tyk. In the settingof the example above, hannel a has type Ch [Node ;Ch [Node ℄℄, and hannel b hastype Ch [Node ℄.Next, we desribe the formal grammar of our language fragment. A network,Net , is a olletion of nodes, built up using omposition Net j Net and restri-tions (�n:Ty)Net . A rowd, Cro, is the group of threads and hannels hosted bya node. Like networks, rowds are built up using omposition Cro j Cro and re-strition (�n:Ty)Cro. A thread, Th , is a mobile thread of ontrol. As well as theonstruts illustrated above, a thread may inlude the ontruts fork (Cro):Th andspawn n [Cro℄:Th . The �rst forks a new rowd Cro inside the urrent node, andontinues with Th . The seond spawns a new node node n [Cro℄ outside the urrentnode, at the network level, and ontinues with Th .A Fragment of a Typed, Distributed Programming Language:Ty ::= typeNode name of a nodeCh [Ty1; : : : ;Tyk℄ name of a hannelNet ::= network(�n:Ty)Net restritionNet j Net network ompositionnode n [Cro℄ nodeCro ::= rowd of hannels and threads(�n:Ty)Cro restritionCro j Cro rowd omposition26



hannel  hannelthread [Th ℄ threadTh ::= threadgo n:Th migrationhn1; : : : ; nki output to a hannel(x1:Ty1; : : : ; xk:Tyk):Th input from a hannelfork (Cro):Th fork a rowdspawn n [Cro℄:Th spawn a new nodeIn the phrases (�n:Ty)Net and (�n:Ty)Cro, the name n is bound; its sope isNet and Cro, respetively. In the phrase (x1:Ty1; : : : ; xk :Tyk):Th , the names x1,. . . , xk are bound; their sope is the phrase Th .The type system of our language ontrols the typing of messages on ommuni-ation hannels, muh as in previous shemes for the �-alulus [27℄. We formalizethe type system as �ve judgments de�ned by the following rules.Judgments:E ` � good environmentE ` n : Ty name n has type TyE ` Net good networkE ` Cro good rowdE ` Th good threadGood Environment:? ` � E ` � n =2 dom(E)E; n:Ty ` �Name has Type:E; n:Ty ; E0 ` �E; n:Ty ; E0 ` n : TyGood Network:E; n:Ty ` NetE ` (�n:Ty)Net E ` Net E ` Net 0E ` Net j Net 0 E ` n : Node E ` CroE ` node n [Cro℄Good Crowd:E; n:Ty ` CroE ` (�n:Ty)Cro E ` Cro E ` Cro 0E ` Cro j Cro 0E `  : Ch [Ty1; : : : ;Tyk℄E ` hannel  E ` ThE ` thread [Th ℄27



Good Thread:E ` n : Node E ` ThE ` go n:ThE `  : Ch [Ty1; : : : ;Tyk℄ E ` ni : Ty i 8i 2 1::kE ` hn1; : : : ; nkiE `  : Ch [Ty1; : : : ;Tyk℄ E; x1:Ty1; : : : ; xk:Tyk ` ThE ` (x1:Ty1; : : : ; xk:Tyk):ThE ` Cro E ` ThE ` fork (Cro):Th E ` n : Node E ` Cro E ` ThE ` spawn n [Cro℄:Th8.2. Typed Translation to the Ambient CalulusIn this setion, we translate our distributed language to the typed ambient al-ulus of Setion 6.The basi idea of the translation is that ambients model nodes, hannels, andthreads. For eah hannel, there is a name for a bu�er ambient, of group Chb, andthere is a seond name, of group Chp, for pakets exhanged within the hannelbu�er. Similarly, for eah node, there is a name, of group Nodeb, for the node itself,and a seond name, of group Nodep, for short-lived ambients that help fork rowdswithin the node, or to spawn other nodes. Finally, there is a group Thr to lassifythe names of ambients that model threads. The following table summarizes these�ve groups:Global Groups Used in the Translation:Nodeb ambients that model nodesNodep ambients to help fork rowds or spawn nodesChb ambients that model hannel bu�ersChp ambients that model pakets on a hannelThr ambients that model threadsWe begin the translation by giving types in the ambient alulus orrespondingto types in the distributed language. Eah type Ty gets translated to a pair [[Ty ℄℄b,[[Ty ℄℄p of ambient alulus types. Throughout this setion, we omit the urly braeswhen writing singleton group sets; for example, we write yNodeb as a shorthandfor yfNodebg.First, if Ty is a node type, [[Ty ℄℄b is the type of an ambient (of group Nodeb)modeling a node, and [[Ty ℄℄p is the type of helper ambients (of groupNodep). Seond,if Ty is a hannel type, [[Ty ℄℄b is the type of an ambient (of group Chb) modeling ahannel bu�er, and [[Ty ℄℄p is the type of a paket ambient (of group Chp).28



Translations [[Ty ℄℄b, [[Ty ℄℄p of a Type Ty:[[Node ℄℄b �= NodebyNodeb[yfg;ÆNodep;Shh℄[[Node ℄℄p �= NodepyThr [yfg;ÆNodep;Shh ℄[[Ch [Ty1; : : : ;Tyk℄℄℄b �=Chbyfg[yfg;ÆChp; [[Ty1℄℄b � [[Ty1℄℄p � � � � � [[Tyk℄℄b � [[Tyk℄℄p℄[[Ch [Ty1; : : : ;Tyk℄℄℄p �=ChpyfThr ;Chbg[yfg;ÆChp; [[Ty1℄℄b � [[Ty1℄℄p � � � � � [[Tyk℄℄b � [[Tyk℄℄p℄These typings say a lot about the rest of the translation, beause of the preseneof �ve di�erent groups. Nodes and helpers are silent ambients, whereas tuples ofambient names are exhanged within both hannel bu�ers and pakets. None ofthese ambients is subjetively mobile. On the other hand, nodes may objetivelyross nodes, helpers may objetively ross threads, bu�ers are objetively immobile,and pakets objetively ross both threads and bu�ers. Finally, both nodes andhelpers may open only helpers, and both bu�ers and pakets may open only pakets.(Atually, as disussed in Setion 5.2, the ÆChp annotation inside the type of apaket p of group Chp means that p an be opened, and similarly for helpers.)Next, we translate networks to typed proesses. A restrition of a single name ismapped to restritions of a ouple of names: either names for a node and helpers, ifthe name is a node, or names for a bu�er and pakets, if the name is a hannel. Aomposition is simply translated to a omposition. A network node n is translatedto an ambient named nb representing the node, ontaining a repliated open np,where np is the name of helper ambients for that node.Translation [[Net ℄℄ of a Network Net:[[(�n:Ty)Net ℄℄ �= (�nb:[[Ty ℄℄b)(�np:[[Ty ℄℄p)[[Net ℄℄[[Net j Net ℄℄ �= [[Net ℄℄ j [[Net ℄℄[[node n [Cro℄℄℄ �= nb[!open np j [[Cro℄℄n℄The translation [[Cro℄℄n of a rowd is indexed by the name n of the node in whihthe rowd is loated. Restritions and ompositions in rowds are translated liketheir ounterparts at the network level. A hannel  is represented by a bu�erambient b of group Chb. It is initially empty but for a repliated open p, where pis the name, of group Chp, of pakets on the hannel. The repliation allows inputsand outputs on the hannel to meet and exhange messages.An ambient of the following type models eah thread:Thr yfg[yNodeb;ÆSyn;Shh℄From the type, we know that a thread ambient is silent, that it rosses node bound-aries by subjetive moves but rosses nothing by objetive moves, and that it mayonly open ambients in the Syn group. Suh ambients help synhronize paral-lel proesses in thread onstruts suh as reeiving on a hannel. A fresh groupnamed Syn is reated by a (�Syn) in the translation of eah thread. The exis-tene of a separate lexial sope for Syn in eah thread implies there an be no29



aidental transmission between threads of the names of private synhronizationambients.Translation [[Cro℄℄n of a Crowd Cro Loated at Node n:[[(�m:Ty)Cro℄℄n �= (�mb:[[Ty ℄℄b)(�mp:[[Ty ℄℄p)[[Cro ℄℄n[[Cro j Cro℄℄n �= [[Cro℄℄n j [[Cro℄℄n[[hannel ℄℄n �= b[!open p℄[[thread Th ℄℄n �= (�Syn)(�t:Thr yfg[yNodeb;ÆSyn;Shh℄)t[[[Th ℄℄tn℄for t =2 fng [ fmp;mb j m free in ThgThe translation [[Th ℄℄tn of a thread is indexed by the name t of the thread and bythe name n of the node in whih the thread is enlosed. Eah thread t is given adi�erent name (this onstraint an be formalized in many di�erent ways).A migration go m:Th is translated to subjetive moves taking the thread t outof the urrent node n and into the target node m.An output hn1; : : : ; nki is translated to a paket ambient p that travels to thehannel bu�er b, where it is opened, and outputs a tuple of names.An input (x1:Ty1; : : : ; xk:Tyk):Th is translated to a paket ambient p thattravels to the hannel bu�er b, where it is opened, and inputs a tuple of names;the tuple is returned to the host thread t by way of a synhronization ambient s,that exits the bu�er and then returns to the thread.A fork fork (Cro):Th is translated to a helper ambient np that exits the threadt and gets opened within the enlosing node n. This unleashes the rowd Cro andallows a synhronization ambient s to return to the thread t, where it triggers theontinuation Th .A spawn spawn m [Cro℄:Th is translated to a helper ambient np that exits thethread t and gets opened within the enlosing node nb. This unleashes an obje-tive move go(out nb):mb[!open mp j [[Cro ℄℄m℄℄ that travels out of the node to thetop, network level, where it starts the fresh node mb[!open mp j [[Cro℄℄m℄℄. Conur-rently, a synhronization ambient s returns to the thread t, where it triggers theontinuation Th .Translation [[Th ℄℄tn of a Thread Th Named t Loated at Node n:[[go m:Th ℄℄tn �= out nb:in mb:[[Th ℄℄tm[[hn1; : : : ; nki℄℄tn �= go(out t:in b):p[hnb1; np1; : : : ; nbk; npki℄[[(x1:Ty1; : : : ; xk:Tyk):Th ℄℄tn �=(�s:SynyfThr ;Chbg[yNodeb;ÆSyn;Shh ℄)(go(out t:in b):p[(xb1:[[Ty1℄℄b; xp1:[[Ty1℄℄p; : : : ; xbk:[[Tyk℄℄b; xpk:[[Tyk℄℄p):go(out b:in t):s[open s:[[Th ℄℄tn℄℄ jopen s:s[℄)for s =2 ft; b; pg [ fn([[Th ℄℄tn)[[fork (Cro):Th ℄℄tn �=(�s:SynyThr [yNodeb;ÆSyn;Shh ℄)(go out t:np[go in t:s[℄ j [[Cro ℄℄n℄ jopen s:[[Th ℄℄tn)for s =2 ft; npg [ [[Cro℄℄n [ [[Th ℄℄tn 30



[[spawn m [Cro℄:Th ℄℄tn �=(�s:SynyThr [yNodeb;ÆSyn;Shh ℄)(go out t:np[go in t:s[℄ j go out nb:mb[!open mp j [[Cro℄℄m℄℄ jopen s:[[Th ℄℄tn)for s =2 ft; nb; np;mb;mpg [ fn([[Cro℄℄m) [ fn([[Th ℄℄tn)Finally, we translate typing environments as follows.Translation [[E℄℄ of an Environment E:[[?℄℄ �= Nodeb;Nodep;Chb;Chp;Thr[[E; :Ty ℄℄ �= [[E℄℄; b:[[Ty ℄℄b; p:[[Ty ℄℄pOur translation preserves typing judgments:Proposition 8.1.(1)If E ` Net then [[E℄℄ ` [[Net ℄℄ : yfg;Æfg;Shh.(2)If E ` Cro and E ` n : Node then [[E℄℄ ` [[Cro℄℄n : yfg;Æfg;Shh.(3)If E ` Th, E ` n : Node, t =2 dom(E) then[[E℄℄;Syn; t:Thr yfg[yNodeb;ÆSyn;Shh ℄ ` [[Th ℄℄tn : yNodeb;ÆSyn;Shh :Proof. By indutions on derivations.Apart from having more re�ned types, this translation is the same as a translationto the type system with binary annotations of [9℄. (We disussed the same binarysystem in Setion 6.3.) The translation shows that ambients an model a varietyof onepts arising in mobile omputation: nodes, threads, ommuniation paketsand bu�ers. Groups admit more preise typings for this translation than werepossible in the system with binary annotations. For example, here we an tell thata thread ambient subjetively rosses only node ambients, but never rosses helpers,bu�ers, or pakets, and that it is objetively immobile; in the binary system, all wean say is that a thread ambient was subjetively mobile and objetively immobile.9. CONCLUSIONSOur ontribution is a type system for traking the behavior of mobile ompu-tations. The system traks the ommuniation, mobility, and opening behavior ofambients, whih are lassi�ed by groups. A group represents a olletion of ambientnames; ambient names belong to groups in the same sense that values belong totypes. We studied the properties of a new proess operator (�G)P that lexiallysopes groups. Using groups, our type system an impose behavioral onstraintslike \this ambient rosses only ambients in one set of groups, and only dissolvesambients in another set of groups". Although we have not implemented our typesystem, we assessed its expressiveness by enoding a distributed language featuringmobility of threads between network nodes. The enoding shows the usefulness ofthe type system in expressing properties of simple protools for thread mobility.31



Our ambient alulus is related to earlier distributed variants of the �-alulus,some of whih have been equipped with type systems. The type system of Ama-dio [3℄ prevents a hannel from being de�ned at more than one loation. Sewell'ssystem [33℄ traks whether ommuniations are loal or non-loal, so as to alloweÆient implementation of loal ommuniation. In Riely and Hennessy's alu-lus [32℄, proesses need appropriate permissions to perform ations suh as migra-tion; a well-typed proess is guaranteed to possess the appropriate permission forany ation it attempts. Other work on typing for mobile agents inludes a typesystem by De Niola, Ferrari, and Pugliese [16℄ that traks the aess rights anagent enjoys at di�erent loalities; type-heking ensures that an agent omplieswith its aess rights.Our groups are similar to the sorts used as stati lassi�ations of names in the�-alulus [27℄. Our basi system of Setion 4 is omparable to Milner's sort systemfor �, exept that sorts in the �-alulus are mutually reursive; we would have toadd a reursion operator to ahieve a similar e�et. Another di�erene is that anoperator for sort reation does not seem to have been onsidered in the �-alulusliterature. Our operator for group reation an guarantee serey properties, as weshow in the setting of a typed �-alulus equipped with groups [11℄. Our systems ofSetions 5 and 6 depend on groups to onstrain the opening and rossing behaviorof proesses. We are not aware of any uses of Milner's sorts to ontrol proessbehavior beyond ontrolling the sorts of ommuniated names.Apart fromMilner's sorts, other stati lassi�ations of names our in derivativesof the �-alulus. We mention two examples. In the type system of Abadi [1℄ for thespi alulus, names are lassi�ed by three stati seurity levels|Publi, Seret, andAny|to prevent inseure information ows. In the ow analysis of Bodei, Degano,Nielson, and Nielson [6℄ for the �-alulus, names are lassi�ed by stati hannelsand binders, again with the purpose of establishing seurity properties. Althoughthere is a similarity between these notions and groups, and indeed to sorts, nothingakin to our (�G) operator appears to have been studied.There is a onnetion between groups and the region variables in the work of Tofteand Talpin [34℄ on region-based implementation of the �-alulus. The store is splitinto a set of stak-alloated regions, and the type of eah stored value is labelledwith the region in whih the value is stored. The soping onstrut letregion � in ealloates a fresh region, binds it to the region variable �, evaluates e, and on om-pletion, dealloates the region bound to �. The onstruts letregion � in e and(�G)P are similar in that they onfer stati sopes on the region variable � and thegroup G, respetively. One di�erene is that in our operational semantis (�G)P issimply a soping onstrut; it alloates no storage. Another is that sope extrusionlaws do not seem to have been expliitly investigated for letregion . Still, we aninterpret letregion in terms of (�G), as is reported elsewhere [15℄.As noted in the introdution, the type systems presented in this artile were�rst reported in onferene papers on exhange types [12℄, mobility types [9℄, andambient groups [10℄. We onlude the artile with a survey of other stati analysesfor the ambient alulus.� Several papers examine the problem of omputing safe approximations to thehierarhial struture of ambients, that is, of determining an approximation to the32



sets of ambients that may our as hildren of other ambients. Nielson, Nielson,Hansen, and Jensen [29℄ present the �rst ontrol ow analysis to address this prob-lem. They present an algorithm for validating �rewalls programmed in the ambientalulus. In subsequent work, Nielson and Nielson [31℄ and Nielson, Nielson, andSagiv [30℄ present more aurate but also more expensive algorithms based, respe-tively, on regular tree grammars and on an interpretation in Kleene's three-valuedlogi.� Abstrat interpretation is a methodology for deriving program analyses system-atially from the semantis of a programming language. Hansen, Jensen, Nielson,and Nielson [20℄ desribe a onstraint-based framework for abstrat interpretationof mobile ambients; instanes of the framework inlude an analysis ounting o-urrenes of ambients, and also the original ontrol ow analysis for the ambientalulus [29℄. Levi and Ma�eis [24℄ and Feret [19℄ present abstrat interpretationsbased on alternative semantis of the ambient alulus.� Some analyses have been developed in the setting of Levi and Sangiorgi's al-ulus of safe ambients [25℄, a generalization of the original ambient alulus thatgives proesses greater ontrol over synhronization, and hene avoids ertain kindsof nondeterminism. In their paper, Levi and Sangiorgi propose a type system toguarantee immobility and single-threadedness.� Seurity properties are onsidered by several authors. Bugliesi and Castagna [8℄desribe a type system for safe ambients that heks seurity properties, inludingseurity in a distributed setting. They rely on a notion of ambient domain that issimilar to the notion of an ambient group, but have no ounterpart to the groupreation operator. Dezani-Cianaglini and Salvo [18℄ present a type system for safeambients where eah ambient has a seurity level, akin to a group. Unlike oursystem, seurity levels are partially ordered, allowing the system to express trustrelationships. Degano, Levi, and Bodei [17, 23℄ re�ne Nielson and Nielson's originalow analysis [29℄ for the alulus of safe ambients. The analysis allows the proofof simple serey properties; they formally distinguish between trustworthy anduntrustworthy ambients, and show that no trustworthy ambient may be openedimmediately inside an untrustworthy ambient.� Finally, Amtoft, Kfoury, and Perias-Geertsen [5℄ propose a polymorphi am-bient alulus, a onservative extension of our system of exhange types [12℄.ACKNOWLEDGMENTSilvano Dal Zilio ommented on a draft of this paper. Ghelli aknowledges the support ofMirosoft Researh during the writing of this paper. The same author has also been partiallysupported by grants from the E.U. workgroup APPSEM, and by \Ministero dell'Universit�a e dellaRiera Sienti�a e Tenologia", projet DATA-X. Comments from the anonymous referees wereinvaluable. APPENDIX AProof of Subjet RedutionIn this appendix we prove Theorem 6.1, the subjet redution property for thetype system of Setion 6, the rihest of the three type systems presented in thispaper. Proofs of subjet redution for the other two systems an be obtained assimpli�ations of this appendix. 33



We begin by stating some basi properties of the type system. The lemmas westate without proof an be proved by straightforward indutions on derivations.We use the notation E ` J to stand for an instane of any of the �ve di�erentjudgments of the system. We write fn(J ) and fg(J ) to stand for the names andgroups, respetively, that our free in J . Moreover, if G = fG1; : : : ; Gkg we writethe notation G; E ` J as a shorthand for G1; : : : ; Gk; E ` J .Lemma A.1. If E;E0 ` J then E ` � and dom(E) \ dom(E0) = ?.Proof. The proof is by indution on the depth of the derivation of E;E0 ` J .Lemma A.2. If E0; n:W;E00 ` J then E0 `W .Proof. By Lemma A.1 we have E0; n:W;E00 ` J ) E0; n:W ` �, whih musthave been derived from E0 `W .We have two weakening lemmas:Lemma A.3. If E0; E00 ` J and n =2 dom(E0; E00) and E0 `W then E0; n:W;E00 `J .Lemma A.4. If E0; E00 ` J and G =2 dom(E0; E00) then E0; G;E00 ` J .Lemma A.5. If E `M :W then E `W .Proof. By indution on the derivation of E ` M : W , using Lemma A.2,Lemma A.3, and Lemma A.4 in ase (Exp n).We state a useful orollary:Lemma A.6. If E0; E00 ` J and E0;G; E00 ` J 0 then E0;G; E00 ` J .Proof. By Lemma A.1, E0;G; E00 ` J 0 implies that G \ dom(E0; E00) = ?. ByLemma A.4, this implies that E0;G; E00 ` J .Lemma A.7. If E ` n :W and E ` n :W 0 then W =W 0.Proof. Use Lemma A.1.Lemma A.8. If E ` J then fn(J ) � dom(E) and fg(J ) � dom(E).Proof. By indution on the derivation of E ` J .Lemma A.9. If E ` � and fg(W ) � dom(E) then E ` W ; if E ` � andfg(F ) � dom(E) then E ` F . 34



Proof. By mutual indution on the struture of W and F .Hereafter, let fg(E00) be the set of all groups that our either in the domain ofE00 or in types ourring in E00.Lemma A.10. If E `M : GyG[F ℄ than M = n for some n.Proof. (Exp n) is the only rule that an derive E `M : GyG[F ℄.Lemma A.11. If E0; G;E00 ` n :W and G 2 fg(W ) then G 2 fg(E00).Proof. If n were de�ned in E0, then, by Lemmas A.2 and A.8, we would haveG 2dom(E0), whih ontradits Lemma A.1. Hene n is de�ned in E00, and the thesisfollows by Lemma A.7.We have two strengthening lemmas.Lemma A.12. If E0; n:W;E00 ` J and n =2 fn(J ) then E0; E00 ` J .Lemma A.13. If E0; G;E00 ` J and G =2 fg(J ) [ fg(E00) then E0; E00 ` J .Proof. By indution on the derivation of E0; G;E00 ` J . Needs Lemma A.11 inases (Exp In), (Exp Out), (Exp Open), and (Pro Amb). Lemma A.10 is also usedfor (Pro Amb) and (Pro Go).Lemma A.14. If E ` P : F then E ` F .Proof. By indution on the derivation of E ` P : F . Needs Lemmas A.12 andA.13 in ases (Pro Res), (Pro GRes), and (Pro Input) and Lemma A.5 in ase(Pro Output).Next, we have four exhange lemmas. They are all proved by indution on thederivation, exploiting the weakening and strengthening lemmas in the ruial ases(Env n) and (Env G).Lemma A.15. If E0; n:W 0;m:W 00; E00 ` J then E0;m:W 00; n:W 0; E00 ` J .Lemma A.16. If E0; n:W 0; G;E00 ` J then E0; G; n:W 0; E00 ` J .Lemma A.17. If E0; G; n:W 0; E00 ` J and G =2 fg(W 0) then E0; n:W 0; G;E00 ` J .Lemma A.18. If E0; G;H;E00 ` J then E0; H;G;E00 ` J .35



We have a substitution lemma:Lemma A.19. If E0; n:W;E00 ` J and E0 `M :W then E0; E00 ` J fn Mg.Proof. By indution on the derivation of E0; n:W;E00 ` J . Most ases arestraightforward, with the exeption of (Exp n), (Exp In), (Exp Out), and (ExpOpen), when the name that appears in the rule is exatly n. For the ase (Exp n), weget the desired judgment E0; E00 `M :W from E0 `M :W by the weakening lem-mas, Lemmas A.3 and A.4. For the ases (Exp In), (Exp Out), and (Exp Open), weuse Lemma A.10 to show that M is atually a name m. By the weakening lemmas,we get E0; E00 ` m : W , and then may draw the desired onlusion with (Exp In),(Exp Out), or (Exp Open), respetively.Next, we prove that strutural ongruene preserves typing judgments, possiblywith the inlusion of fresh group names.Proposition A.1. If E ` P : F and P � Q then there are groups G1, . . . , Gksuh that G1; : : : ; Gk; E ` Q : F .Proof. The proposition follows by showing that P � Q implies:(1) If E ` P : F then 9G suh that G; E ` Q : F .(2) If E ` Q : F then 9G suh that G; E ` P : F .We proeed by indution on the derivation of P � Q.(Strut Re) Trivial.(Strut Symm) Then Q � P . For (1), assume E ` P : F . By indution hypoth-esis (2), Q � P implies that 9G suh that G; E ` Q : F . Part (2) is symmetri.(Strut Trans) Then P � R, R � Q for some R. For (1), assume E ` P : F . Byindution hypothesis (1), 9G: G; E ` R : F . Again by indution hypothesis (1),9H: H;G; E ` Q : F . Part (2) is symmetri.(Strut Res) Then P = (�n:W )P 0 and Q = (�n:W )Q0, with P 0 � Q0. For(1), assume E ` P : F . This must have been derived from (Pro Res), withE; n:GyG0[F 0℄ ` P 0 : F , where W = GyG0[F 0℄. By indution hypothesis (1),9G: G; E; n:GyG0[F 0℄ ` Q0 : F . By (Pro Res), G; E ` (�n:W )Q0 : F . Part (2) issymmetri.(Strut GRes) Then P = (�G)P 0 and Q = (�G)Q0, with P 0 � Q0. For (1),assume E ` P : F . This must have been derived from (Pro GRes), with E;G `P 0 : F where G =2 fg(F ). By indution hypothesis (1), 9G: G; E;G ` Q0 : F . By(Pro GRes), G; E ` (�G)Q0 : F . Part (2) is symmetri.(Strut Par) Then P = P 0 j R, Q = Q0 j R, and P 0 � Q0. For (1), assumeE ` P 0 j R : F . This must have been derived from (Pro Par), with E ` P 0 : F ,E ` R : F . By indution hypothesis (1), 9G: G; E ` Q0 : F . By Lemma A.6,G; E ` R : F . By (Pro Par), G; E ` Q0 j R : F . Part (2) is symmetri.(Strut Repl) Then P = !P 0, Q = !Q0, and P 0 � Q0. For (1), assume E ` P : F .This must have been derived from (Pro Repl), with E ` P 0 : F . By indution36



hypothesis (1), 9G: G; E ` Q0 : F . By (Pro Repl), G; E ` !Q0 : F . Part (2) issymmetri.(Strut Amb) Then P = M [P 0℄, Q = M [Q0℄, and P 0 � Q0. For (1), assumeE ` P : F . This must have been derived from (Pro Amb), with E ` F , E `M : GyG0[F 0℄ and E ` P 0 : F 0, for some G;F 0;G0. By indution hypothesis (1),9G: G; E ` Q0 : F 0. By Lemma A.6, G; E ` F and G; E ` M : GyG0[F 0℄. By(Pro Amb), G; E `M [Q0℄ : F . Part (2) is symmetri.(Strut Ation) Then P = M:P 0, Q = M:Q0, and P 0 � Q0. For (1), assumeE ` P : F . This must have been derived from (Pro Ation), with E `M : Cap [F ℄and E ` P 0 : F . By indution hypothesis (1), 9G: G; E ` Q0 : F . By Lemma A.6,G; E `M : Cap[F ℄. By (Pro Ation), G; E `M:Q0 : F .Part (2) is symmetri.(Strut Input) Then P = (n1:W1; : : : ; nk:Wk):P 0, Q = (n1:W1; : : : ; nk:Wk):Q0,and P 0 � Q0. For (1), assume E ` P : F . This must have been derived from (ProInput), with E; n1:W1; : : : ; nk:Wk ` P 0 : F , where F = yG0;ÆH;W1 � � � � �Wk .By indution hypothesis, 9G: G; E; n1:W1; : : : ; nk:Wk ` Q0 : F . By (Pro Input),G; E ` (n1:W1; : : : ; nk:Wk):Q0 : F . Part (2) is symmetri.(Strut Go) Then P = go N:M [P 0℄, Q = go N:M [Q0℄, and P 0 � Q0. For (1),assume E ` P : F . This must have been derived from (Pro Go), with E ` F ,E ` N : Cap[F 00℄, E `M : GyG0[F 0℄ and E ` P 0 : F 0, with F 00 =yG0;Æfg;Shh , forsome G, G0, F 0. By indution hypothesis (1), 9G: G; E ` Q0 : F 0. By Lemma A.6,G; E ` F and G; E ` N : Cap [F 00℄ and G; E ` M : GyG0[F 0℄. By (Pro Go),G; E ` go N:M [Q0℄ : F . Part (2) is symmetri.(Strut Par Comm) Then P = P 0 j P 00 and Q = P 00 j P 0.For (1), assume E ` P 0 j P 00 : F . This must have been derived from E ` P 0 : Fand E ` P 00 : F . By (Pro Par), E ` P 00 j P 0 : F . Hene, E ` Q : F .Part (2) is symmetri.(Strut Par Asso) Then P = (P 0 j P 00) j P 000 and Q = P 0 j (P 00 j P 000).For (1), assume E ` (P 0 j P 00) j P 000 : F . This must have been derived from (ProPar) twie, with E ` P 0 : F , E ` P 00 : F , and E ` P 000 : F . By (Pro Par) twie,E ` P 0 j (P 00 j P 000) : F . Hene E ` Q : F .Part (2) is symmetri.(Strut Repl Par) Then P = !P 0 and Q = P 0 j !P 0.For (1), assume E ` !P 0 : F . This must have been derived from (Pro Repl), withE ` P 0 : F . By (Pro Par), E ` P 0 j !P 0 : F . Hene, E ` Q : F .For (2), assume E ` P 0 j !P 0 : F . This must have been derived from (Pro Par),with E ` P 0 : F and E ` !P 0 : F . Hene, E ` P : F .(Strut Res Res) Then P = (�n1:W1)(�n2:W2)P 0 and Q = (�n2:W2)(�n1:W1)P 0with n1 6= n2. For (1), assume E ` (�n1:W1)(�n2:W2)P 0 : F . This must havebeen derived from (Pro Res) twie, with E; n1:G1yG1[F1℄; n2:G2yG2[F2℄ ` P 0 :F , where W1 = G1yG1[F1℄ and W2 = G2yG2[F2℄. By Lemma A.15, we haveE; n2:G2yG2[F2℄; n1:G1yG1[F1℄ ` P 0 : F . By (Pro Res) twie we have E `(�n2:W2)(�n1:W1)P 0 : F . Part (2) is symmetri.37



(Strut Res Par) Then P = (�n:W )(P 0 j P 00) and Q = P 0 j (�n:W )P 00, withn =2 fn(P 0).For (1), assume E ` P : F . This must have been derived from (Pro Res), withE; n:GyG[F 0℄ ` P 0 j P 00 : F and W = GyG[F 0℄, and from (Pro Par), withE; n:GyG[F 0℄ ` P 0 : F and E; n:GyG[F 0℄ ` P 00 : F . By Lemma A.12, sinen =2 fn(P 0), we have E ` P 0 : F . By (Pro Res) we have E ` (�n:GyG[F 0℄)P 00 : F .By (Pro Par) we have E ` P 0 j (�n:GyG[F 0℄)P 00 : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro Par), with E `P 0 : F and E ` (�n:W )P 00 : F , and from (Pro Res), with E; n:GyG[F 0℄ ` P 00 : Fand W = GyG[F 0℄. By Lemma A.1, n =2 dom(E). By Lemma A.2, E ` GyG[F 0℄.By Lemma A.3, E; n:GyG[F 0℄ ` P 0 : F . By (Pro Par), E; n:GyG[F 0℄ ` P 0 j P 00 :F . By (Pro Res), E ` (�n:GyG[F 0℄)(P 0 j P 00) : F , that is, E ` P : F .(Strut Res Amb) Then P = (�n:W )m[P 0℄ and Q = m[(�n:W )P 0℄, with n 6= m.For (1), assume E ` P : F . This must have been derived from (Pro Res) withE; n:GyG[F 0℄ ` m[P 0℄ : F with W = GyG[F 0℄, and from (Pro Amb) withE; n:GyG[F 0℄ ` F and E; n:GyG[F 0℄ ` m : H yG0[F 00℄ and E; n:GyG[F 0℄ ` P 0 :F 00 for some H , F 00, G0. By (Pro Res) we have E ` (�n:GyG[F 0℄)P 0 : F 00. ByLemma A.12, E ` F , and E ` m : H yG0[F 00℄ (by n 6= m). By (Pro Amb),E ` m[(�n:GyG[F 0℄)P 0℄ : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro Amb)with E ` F , E ` m : H yG0[F 00℄ and E ` (�n:W )P 0 : F 00, and from (ProRes), with E; n:GyG[F 0℄ ` P 0 : F 00 and W = GyG[F 0℄. By Lemma A.1, n =2dom(E). By Lemma A.2, E; n:GyG[F 0℄ ` P 0 : F 00 implies E ` GyG[F 0℄. ByLemma A.3, E; n:GyG[F 0℄ ` F and E; n:GyG[F 0℄ ` m : H yG0[F 00℄. By (ProAmb), E; n:GyG[F 0℄ ` m[P 0℄ : F . By (Pro Res), E ` (�n:GyG[F 0℄)m[P 0℄ : F ,that is, E ` P : F .(Strut GRes Res) Then P = (�G)(�n:W )P 0 and Q = (�n:W )(�G)P 0 with G =2fg(W ).For (1), assume E ` (�G)(�n:W )P 0 : F . This must have been derived from (ProGRes), with E;G ` (�n:W )P 0 : F and G =2 fg(F ), and from (Pro Res), withE;G; n:G0yG[F 0℄ ` P 0 : F , where W = G0yG[F 0℄. Sine G =2 fg(W ) by hypothe-sis, by Lemma A.17 we have E; n:G0yG[F 0℄; G ` P 0 : F . We know that G =2 fg(F ),hene by (Pro GRes) we have E; n:G0yG[F 0℄ ` (�G)P 0 : F . Finally from (ProRes) we have E ` (�n:W )(�G)P 0 : F .For (2), assume E ` (�n:W )(�G)P 0 : F . This must have been derived from (ProRes), with E; n:G0yG[F 0℄ ` (�G)P 0 : F , where W = G0yG[F 0℄, and from (ProGRes), with E; n:G0yG[F 0℄; G ` P 0 : F , with G =2 fg(F ). By Lemma A.16,E;G; n:G0yG[F 0℄ ` P 0 : F . The thesis follows by applying (Pro Res) and (ProGRes).(Strut GRes GRes) Then P = (�G1)(�G2)P 0 and Q = (�G2)(�G1)P 0.For (1), assume E ` (�G1)(�G2)P 0 : F . This must have been derived from (ProGRes) twie, with E;G1; G2 ` P 0 : F andG2 =2 fg(F ), G1 =2 fg(F ). By Lemma A.18we have E;G2; G1 ` P 0 : F . By (Pro Res) twie we have E ` (�G2)(�G1)P 0 : F .Part (2) is symmetri. 38



(Strut GRes Par) Then P = (�G)(P 0 j P 00) and Q = P 0 j (�G)P 00, with G =2fg(P 0).For (1), assume E ` P : F . This must have been derived from (Pro GRes), withE;G ` P 0 j P 00 : F and G =2 fg(F ), and from (Pro Par), with E;G ` P 0 : F andE;G ` P 00 : F . By Lemma A.13, sine G =2 fg(P 0)[ fg(F ), we have E ` P 0 : F . By(Pro GRes) we have E ` (�G)P 00 : F . By (Pro Par) we have E ` P 0 j (�G)P 00 : F ,that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro Par), withE ` P 0 : F and E ` (�G)P 00 : F , and from (Pro GRes), with E;G ` P 00 : F andG =2 fg(F ). By Lemma A.1, G =2 dom(E). By Lemma A.4, E;G ` P 0 : F . By (ProPar), E;G ` P 0 j P 00 : F . By (Pro GRes), sine G =2 fg(F ), E ` (�G)(P 0 j P 00),that is, E ` P : F .(Strut GRes Amb) Then P = (�G)m[P 0℄ and Q = m[(�G)P 0℄.For (1), assume E ` P : F . This must have been derived from (Pro GRes)with E;G ` m[P 0℄ : F with G =2 fg(F ), and from (Pro Amb) with E;G ` F ,E;G ` m : G0yG[F 0℄, and E;G ` P 0 : F 0 for some G0, G, F 0. By Lemma A.13,E;G ` F and G =2 fg(F ) imply E ` F . The judgment E;G ` m : G0yG[F 0℄must have been derived from (Exp n), hene m 2 dom(E). Hene, by (Exp n)and by Lemma A.7, E ` m : G0yG[F 0℄. By Lemma A.1, G =2 dom(E). Hene, byE ` m : G0yG[F 0℄ and Lemma A.8, G =2 fg(G0yG[F 0℄) and so G =2 fg(F 0). By(Pro GRes) we have E ` (�G)P 0 : F 0. By (Pro Amb), E ` m[(�G)P 0℄ : F , thatis, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro Amb)with E ` F , E ` m : G0yG[F 0℄, and E ` (�G)P 0 : F 0, for some G0, G, F 0,and from (Pro GRes), with E;G ` P 0 : F 0 and G =2 fg(F 0). By Lemma A.1,G =2 dom(E). By Lemma A.4, E;G ` m : G0yG[F 0℄ and E;G ` F . By (ProAmb), E;G ` m[P 0℄ : F . By Lemma A.8, E ` F and G =2 dom(E) implyG =2 fg(F ).By (Pro GRes), E ` (�G)m[P 0℄ : F , that is, E ` P : F .(Strut Zero Par) Then P = P 0 j 0 and Q = P 0.For (1), assume E ` P : F . This must have been derived from (Pro Par) withE ` P 0 : F and E ` 0 : F . Hene, E ` Q : F .For (2), assume E ` P 0 : F . By Lemma A.14, E ` F . By (Pro Zero), E ` 0 : F .By (Pro Par), E ` P 0 j 0 : F , that is, E ` P : F .(Strut Zero Res) Then P = (�n:GyG0[F 0℄)0 and Q = 0.For (1), assume E ` P : F . This must have been derived from (Pro Res) withE; n:GyG0[F 0℄ ` 0 : F . By Lemma A.12, E ` 0 : F , that is, E ` Q : F .For (2), assume E ` 0 : F . We identify proesses up to onsistent renaming ofbound names and groups, hene we may assume that the bound name n does notour in dom(E). LetG be fg(GyG0[F 0℄)�dom(E). By Lemma A.4,G; E ` �. ByLemma A.9, G; E ` GyG0[F 0℄. By Lemma A.14, E ` F . By repeated appliationof Lemma A.4, G; E ` F . By Lemma A.3, G; E; n:GyG0[F 0℄ ` F . By (Pro Zero),G; E; n:GyG0[F 0℄ ` 0 : F . By (Pro Res), G; E ` (�n:GyG0[F 0℄)0 : F , that is,G; E ` P : F .(Strut Zero GRes) Then P = (�G)0 and Q = 0.39



For (1), assume E ` P : F . This must have been derived from (Pro GRes) withE;G ` 0 : F and G =2 fg(F ). By Lemma A.13, E ` 0 : F , that is, E ` Q : F .For (2), assume E ` 0 : F . We may assume that the bound name G does not ourin dom(E). Hene, by Lemma A.8, G =2 fg(F ), and by Lemma A.4, E;G ` 0 : F .By (Pro GRes), E ` (�G)0 : F , that is, E ` P : F .(Strut Zero Repl) Then P = !0 and Q = 0.For (1), assume E ` P : F . This must have been derived from (Pro Repl) withE ` 0 : F , that is, E ` Q : F .For (2), assume E ` 0 : F . By (Pro Repl), E ` !0 : F , that is, E ` P : F .(Strut �) Then P = �:P 0 and Q = P 0.For (1), assume E ` P : F . This must have been derived from (Pro Ation) withE ` � : Cap[F ℄ and E ` P 0 : F , that is, E ` Q : F .For (2), assume E ` P 0 : F . By Lemma A.14, E ` F . By (Type Cap), E ` Cap [F ℄.By (Exp �), E ` � : Cap [F ℄. By (Pro Ation), E ` �:P 0 : F , that is, E ` P : F .(Strut :) Then P = (M:M 0):P 0 and Q =M:M 0:P 0.For (1), assume E ` P : F . This must have been derived from (Pro Ation) withE ` P 0 : F and E `M:M 0 : Cap[F ℄. The latter must have ome from (Exp :) withE `M : Cap[F ℄ and E `M 0 : Cap[F ℄, By (Pro Ation) twie, E `M:(M 0:P 0) : F ,that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived from (Pro Ation),twie, with E ` M : Cap [F ℄, E ` M 0 : Cap [F ℄, and E ` P 0 : F . By (Exp :),E `M:M 0 : Cap [F ℄. By (Pro Ation), E ` (M:M 0):P 0 : F , that is, E ` P : F .(Strut Go �) Then P = go �:M [P 0℄ and Q =M [P 0℄.For (1), assume E ` P : F . This must have been derived using (Pro Go), withE ` F , E ` � : Cap[yG;Æfg;Shh ℄, E ` M : GyG[F 0℄, and E ` P 0 : F 0. By (ProAmb), E `M [P 0℄ : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived using (Pro Amb), withE ` F , E ` P 0 : F 0 and E ` M : GyG[F 0℄. By Lemma A.5, E ` GyG[F 0℄.This must have been derived using (Type Amb), with G � dom(E), and E `F 0. By (E�et Shh) and Lemma A.1, E ` yG;Æfg;Shh . By (Type Cap), E `Cap [yG;Æfg;Shh℄. By (Exp �), E ` � : Cap[yG;Æfg;Shh ℄. By (Pro Go), E `go �:M [P 0℄ : F , that is, E ` P : F .(Strut Go � :) Then P = go (�:M):N [P 0℄ and Q = goM:N [P 0℄. This ase followsby an argument very similar to the ase for (Strut Go �). We omit the details.(Strut Go : �) Then P = go (M:�):N [P 0℄ and Q = go M:N [P 0℄.For (1), assume E ` P : F . This must have been derived using (Pro Go), withE ` F , E ` M:� : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, with F 00 =yG;Æfg;Shh . The judgment E ` M:� : Cap[F 00℄ must have been derived using(Exp :) from E `M : Cap [F 00℄ and E ` � : Cap[F 00℄. By (Pro Go), we an deriveE ` go M:N [P 0℄ : F , that is, E ` Q : F .For (2), assume E ` Q : F . This must have been derived using (Pro Go), with E `F , E `M : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, with F 00 = yG;Æfg;Shh .By (Exp �) and (Exp :), we get E ` M:� : Cap [F 00℄. By (Pro Go), we an deriveE ` go (M:�):N [P 0℄ : F , that is, E ` P : F .40



(Strut Go : Asso) In this ase, we have P = go ((M:M 0):M 00):N [P 0℄ and Q =go (M:(M 0:M 00)):N [P 0℄.For (1), assume E ` P : F . This must have been derived using (Pro Go), withE ` F , E ` (M:M 0):M 00 : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, withF 00 = yG;Æfg;Shh. The judgment E ` (M:M 0):M 00 : Cap [F 00℄ must have beenderived using (Exp :), twie from E ` M : Cap[F 00℄ and E ` M 0 : Cap [F 00℄ andE ` M 00 : Cap [F 00℄. By (Exp :), we an derive E ` M:(M 0:M 00) : Cap[F 00℄,and then, by (Pro Go), we an derive E ` go (M:(M 0:M 00)):N [P 0℄ : F , that is,E ` Q : F .For (2), assume E ` Q : F . This must have been derived using (Pro Go), withE ` F , E ` M:(M 0:M 00) : Cap [F 00℄, E ` N : GyG[F 0℄, and E ` P 0 : F 0, withF 00 = yG;Æfg;Shh. The judgment E ` M:(M 0:M 00) : Cap [F 00℄ must have beenderived using (Exp :), twie from E ` M : Cap[F 00℄ and E ` M 0 : Cap [F 00℄ andE ` M 00 : Cap [F 00℄. By (Exp :), we an derive E ` (M:M 0):M 00 : Cap[F 00℄,and then, by (Pro Go), we an derive E ` go ((M:M 0):M 00):N [P 0℄ : F , that is,E ` P : F .Proof of Theorem 6.1 If E ` P : F and P ! Q then there are G1, . . . , Gksuh that G1; : : : ; Gk; E ` Q : F .Proof. For the sake of oniseness, throughout this proof the fat that E ` P : Fimplies E ` F (Lemma A.14) will be used several times, without any further expliitaknowledgement. We proeed by indution on the derivation of P ! Q.(Red In) Then P = n[in m:P 0 j P 00℄ j m[P 000℄ and Q = m[n[P 0 j P 00℄ j P 000℄.Assume E ` P : F . This must have been derived from (Pro Par), with E `n[in m:P 0 j P 00℄ : F and E ` m[P 000℄ : F . The former must have been derived from(Pro Amb), with E ` F , E ` n : GnyGn[Fn℄ and E ` in m:P 0 j P 00 : Fn, forsome Gn, Gn, Fn, while the latter must have been derived from (Pro Amb) withE ` F , E ` m : GmyGm[Fm℄ and E ` P 000 : Fm, for some Gm,Gm, Fm. Moreover,E ` in m:P 0 j P 00 : Fn must ome from (Pro Par) with E ` in m:P 0 : Fn andE ` P 00 : Fn. Finally, E ` in m:P 0 : Fn must ome from E ` in m : Cap [Fn℄ andE ` P 0 : Fn. By (Pro Par), we have E ` P 0 j P 00 : Fn, and by (Pro Amb) we anderiveE ` n[P 0 j P 00℄ : Fm. Then, by (Pro Par), we haveE ` n[P 0 j P 00℄ j P 000 : Fm.By (Pro Amb) we an derive E ` m[n[P 0 j P 00℄ j P 000℄ : F , that is, E ` Q : F .(Red Out) Then P = m[n[out m:P 0 j P 00℄ j P 000℄ and Q = n[P 0 j P 00℄ j m[P 000℄.Assume E ` P : F . This must have been derived using (Pro Amb) from E ` F ,E ` m : GmyGm[Fm℄ and E ` n[outm:P 0 j P 00℄ j P 000 : Fm for some Gm, Gm, Fm,and from (Pro Par) using E ` n[outm:P 0 j P 00℄ : Fm and E ` P 000 : Fm. The formermust have been derived using (Pro Amb) from E ` Fm, E ` n : GnyGn[Fn℄and E ` out m:P 0 j P 00 : Fn for some Gn, Gn, Fn, and using (Pro Par) fromE ` out m:P 0 : Fn and E ` P 00 : Fn. The former must have been derived using(Pro Ation) from E ` out m : Cap [Fn℄ and E ` P 0 : Fn. By (Pro Par),E ` P 0 j P 00 : Fn. By (Pro Amb), E ` n[P 0 j P 00℄ : F . By (Pro Amb),E ` m[P 000℄ : F . By (Pro Par), E ` n[P 0 j P 00℄ j m[P 000℄ : F , that is, E ` Q : F .(Red Open) Then P = open n:P 0 j n[P 00℄ and Q = P 0 j P 00. Assume E ` P :F . This must have been derived using (Pro Par) from E ` open n:P 0 : F and41



E ` n[P 00℄ : F . The former must have been derived using (Pro Ation) withE ` open n : Cap [F ℄ and E ` P 0 : F , while the latter must have been derived using(Pro Amb) with E ` F , E ` n : G0yG0[F 0℄ and E ` P 00 : F 0 for some G0, G0, F 0.The judgment E ` open n : Cap [F ℄ must have been derived using (Exp Open) fromE ` n : GyG[F ℄ for some G, G. By Lemma A.7, G0yG0[F 0℄ = GyG[F ℄, and so,in partiular, F 0 = F . Hene, by (Pro Par), E ` P 0 j P 00 : F , that is, E ` Q : F .(Red I/O) In this ase we have P = (n1:W1; : : : ; nk:Wk):P 0 j hM1; : : : ;Mki andQ = P 0fn1 M1; : : : ; nk Mkg. Assume E ` P : F . This must have been derivedfrom (Pro Par) with E ` (n1:W1; : : : ; nk:Wk):P 0 : F and E ` hM1; : : : ;Mki : F .The former an only have been derived from (Pro Input) with E; n1:W1; : : : ; nk:Wk `P 0 : F and F = yG;ÆH;W1 � � � � �Wk for some G, H. The latter judgment E `hM1; : : : ;Mki : F must have been derived from (Pro Output) with E `Mi :W 0i foreah i 2 1::k, and F = yG;ÆH;W 01 � � � � �W 0k. Hene W 0i = Wi for eah i 2 1::k.By k appliations of Lemma A.19, we get E ` P 0fn1 M1; : : : ; nk Mkg : F .(Red Go In) Here P = go(in m:N):n[Pn℄ j m[Pm℄ and Q = m[go N:n[Pn℄ j Pm℄.Assume E ` P : F . This must have been derived using (Pro Par) from E `go(inm:N):n[Pn℄ : F and E ` m[Pm℄ : F . The former must have been derived using(Pro Go) with E ` F , E ` in m:N : Cap[yGn;Æfg;Shh ℄, E ` n : GnyGn[Fn℄,and E ` Pn : Fn for some Gn, Gn, Fn,, and the latter must have been derivedusing (Pro Amb) with E ` F , E ` m : GmyGm[Fm℄ and E ` Pm : Fm for someGm, Gm, Fm. Moreover, the judgment E ` in m:N : Cap [yGn;Æfg;Shh℄ musthave been derived using (Exp .) from E ` in m : Cap [yGn;Æfg;Shh℄ and E ` N :Cap [yGn;Æfg;Shh ℄. By (Pro Go) and (Pro Par), E ` go N:n[Pn℄ j Pm : Fm. By(Pro Amb), we get E ` m[go N:n[Pn℄ j Pm℄ : F , that is, E ` Q : F .(Red Go Out) Here P = m[go(out m:N):n[Pn℄ j Pm℄ and Q = go N:n[Pn℄ jm[Pm℄. Assume E ` P : F . This must have been derived using (Pro Amb) fromE ` F , E ` m : GmyGm[Fm℄ and E ` go(out m:N):n[Pn℄ j Pm : Fm for some Gm,Gm, Fm, and from (Pro Par) with E ` go(outm:N):n[Pn℄ : Fm and E ` Pm : Fm.The former must have been derived using (Pro Go) from E ` Fm, E ` out m:N :Cap [yGn;Æfg;Shh℄, E ` n : GnyGn[Fn℄, and E ` Pn : Fn for some Gn, Gn, Fn.The judgment E ` out m:N : Cap[yGn;Æfg;Shh ℄ must have been derived using(Pro :) from E ` out m : Cap[yGn;Æfg;Shh ℄ and E ` N : Cap [yGn;Æfg;Shh ℄. By(Pro Go), E ` go N:n[Pn℄ : F . By (Pro Amb), E ` m[Pm℄ : F . By (Pro Par),E ` go N:n[Pn℄ j m[Pm℄ : F , that is, E ` Q : F .(Red Res) Here P = (�n:W )P 0 and Q = (�n:W )Q0 with P 0 ! Q0. Assume E `P : F . This must have been derived using (Pro Res) from E; n:GyG0[F 0℄ ` P 0 : Fwith W = GyG0[F 0℄. By indution hypothesis, 9G suh that G; E; n:GyG0[F 0℄ `Q0 : F . By (Pro Res), G; E ` (�n:GyG0[F 0℄)Q0 : F , that is, G; E ` Q : F .(Red GRes) Here P = (�G)P 0 and Q = (�G)Q0 with P 0 ! Q0. Assume E `P : F . This must have been derived using (Pro GRes) from E;G ` P 0 : F withG =2 fg(F ). By indution hypothesis, 9G suh that G; E;G ` Q0 : F . By (ProGRes), G; E ` (�G)Q0 : F , that is, G; E ` Q : F .(Red Amb) Here P = n[P 0℄ and Q = n[Q0℄ with P 0 ! Q0. Assume E ` P : F .This must have been derived using (Pro Amb) from E ` F , E ` n : GyG0[F 0℄,and E ` P 0 : F 0. By indution hypothesis, 9G suh that G; E ` Q0 : F 0. ByLemma A.6, G; E ` F and G; E ` n : GyG0[F 0℄. By (Pro Amb), G; E ` n[Q0℄ :F , that is, G; E ` Q : F . 42



(Red Par) Here P = P 0 j R and Q = Q0 j R with P 0 ! Q0. Assume E ` P : F .This must have been derived using (Pro Par) from E ` P 0 : F and E ` R : F . Byindution hypothesis, 9G suh that G; E ` Q0 : F . By Lemma A.6, G; E ` R : F .By (Pro Par), G; E ` Q0 j R : F , that is, G; E ` Q : F .(Red �) Here P � P 0, P 0 ! Q0, and Q0 � Q. Assume E ` P : F . By Proposi-tion A.1, 9G1 suh that G1; E ` P 0 : F . By indution hypothesis, 9G2 suh thatG2;G1; E ` Q0 : F . By Proposition A.1, 9G3 suh that G3;G2;G1; E ` Q : F .APPENDIX BProof of E�et SafetyIn this appendix we prove the e�et safety property stated in Setion 7.Proof of Proposition 7.1 Suppose that E ` P : yG;ÆH; T .(1) If P # in n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(2) If P # out n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G.(3) If P # open n then E ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 H.Proof. We prove part (1) in detail; the other parts follow by similar arguments.We proeed by indution on the derivation of P # in n.(Ex Cap) We have P # in n derived from P � in n:Q. By Proposition A.1,E ` P : yG;ÆH; T and P � in n:Q imply there are groups G1, . . . , Gk suh thatG1; : : : ; Gk; E ` in n:Q : yG;ÆH; T . This must have been derived using (ProAtion) from G1; : : : ; Gk; E ` in n : Cap [yG;ÆH; T ℄, whih itself must have beenderived using (Exp In) from G1; : : : ; Gk; E ` n : GyG0[F ℄ for some type GyG0[F ℄with G 2 G. The latter judgment must have been derived using (Exp n), andtherefore E = E0; n:GyG0[F ℄; E00. By Lemma A.1, E ` P : yG;ÆH; T impliesE ` �, and therefore E ` n : GyG0[F ℄, by (Exp n).(Ex Par 1) We have P j Q # in n derived from P # in n. The judgment E ` P jQ : yG;ÆH; T must have been derived using (Pro Par) from E ` P : yG;ÆH; T .By indution hypothesis, this and P # in n imply the required result.(Ex Par 2) We have P j Q # in n derived from Q # in n. The judgment E ` P jQ : yG;ÆH; T must have been derived using (Pro Par) from E ` Q : yG;ÆH; T .By indution hypothesis, this and Q # in n imply the required result.(Ex Res) We have (�m:W )P # in n derived from P # in n and m =2 fn(in n). Thejudgment E ` (�m:W )P :yG;ÆH; T must have been derived using (Pro Res) fromE;m:W ` P : yG;ÆH; T . By indution hypothesis, this and P # in n imply thatE;m:W ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G. By Lemma A.12,m 6= n and E;m:W ` n : GyG0[F ℄ imply E ` n : GyG0[F ℄.(Ex ResG) We have (�H)P # in n derived from P # in n. The judgment E `(�H)P : yG;ÆH; T must have been derived using (Pro GRes) from E;H ` P :yG;ÆH; T with H =2 fg(yG;ÆH; T ). By indution hypothesis, the latter and P #in n imply that E;H ` n : GyG0[F ℄ for some type GyG0[F ℄ with G 2 G. ByLemma A.13, H =2 fg(yG;ÆH; T ) and E;H ` n : GyG0[F ℄ imply E ` n : GyG0[F ℄.43



REFERENCES1. M. Abadi. Serey by typing in seurity protools. Journal of the ACM, 46(5):749{786,September 1999.2. M. Abadi and L. Cardelli. A Theory of Objets. Springer, 1996.3. R. M. Amadio. An asynhronous model of loality, failure, and proess mobility. In ProeedingsCOORDINATION 97, volume 1282 of Leture Notes in Computer Siene. Springer, 1997.4. R. M. Amadio and S. Prasad. Loalities and failures. In Proeedings FST&TCS'94, volume880 of Leture Notes in Computer Siene, pages 205{216. Springer, 1994.5. T. Amtoft, A. J. Kfoury, and S. M. Perias-Geertsen. What are polymorphially-typed ambi-ents? In Proeedings ESOP'01, Leture Notes in Computer Siene, pages 206{220. Springer,2001.6. C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Control ow analysis for the �-alulus.In Proeedings Conur'98, volume 1466 of Leture Notes in Computer Siene, pages 84{98.Springer, 1998.7. G. Boudol. Asynhrony and the �-alulus (note). Rapport de Reherhe 1702, INRIA Sophia-Antipolis, May 1992.8. M. Bugliesi and G. Castagna. Seure safe ambients. In Proeedings POPL'01, pages 222{235.ACM, January 2001.9. L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile ambients. In ProeedingsICALP'99, volume 1644 of Leture Notes in Computer Siene, pages 230{239. Springer, 1999.10. L. Cardelli, G. Ghelli, and A. D. Gordon. Ambient groups and mobility types. In ProeedingsIFIP TCS 2000, volume 1872 of Leture Notes in Computer Siene, pages 333{347. Springer,2000.11. L. Cardelli, G. Ghelli, and A. D. Gordon. Serey and group reation. In C. Palamidessi,editor, CONCUR 2000|Conurreny Theory, volume 1877 of Leture Notes in ComputerSiene, pages 365{379. Springer, 2000.12. L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proeedings POPL'99, pages79{92. ACM, January 1999.13. L. Cardelli and A.D. Gordon. Mobile ambients. Theoretial Computer Siene, 240:177{213,2000.14. T. Coquand and G. Huet. The alulus of onstrutions. Information and Computation,76(2/3):95{120, February/Marh 1988.15. S. Dal Zilio and A. D. Gordon. Region analysis and a �-alulus with groups. In Mathe-matial Foundations of Computer Siene 2000, volume 1893 of Leture Notes in ComputerSiene, pages 1{20. Springer, 2000. Aepted for publiation in the Journal of FuntionalProgramming.16. R. De Niola, G. Ferrari, and R. Pugliese. Types as spei�ations of aess poliies. In SeureInternet Programming 1999, volume 1603 of Leture Notes in Computer Siene, pages 117{146. Springer, 1999.17. P. Degano, F. Levi, and C. Bodei. Safe ambients: Control ow analysis and seurity. InAdvanes in Computing Siene (ASIAN'00), volume 1961 of Leture Notes in ComputerSiene, pages 199{214. Springer, 2000.18. M. Dezani-Cianaglini and I. Salvo. Seurity types for mobile safe ambients. In Advanes inComputing Siene (ASIAN'00), volume 1961 of Leture Notes in Computer Siene, pages215{236. Springer, 2000.19. J. Feret. Abstrat interpretation-based stati analysis of mobile ambients. In Stati Analysis(SAS'01), volume 2126 of Leture Notes in Computer Siene, pages 412{430. Springer, 2001.20. R.R. Hansen, J.G. Jensen, F. Nielson, and H. Riis Nielson. Abstrat interpretation of mobileambients. In Stati Analysis (SAS'99), volume 1694 of Leture Notes in Computer Siene,pages 134{148. Springer, 1999.21. K. Honda and M. Tokoro. An objet alulus for asynhronous ommuniation. In Proeed-ings of the European Conferene on Objet-Oriented Programming, LNCS, pages 133{147.Springer-Verlag, 1991.22. D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with Aglets.Addison-Wesley, 1998. 44



23. F. Levi and C. Bodei. Seurity analysis for mobile ambients. In Workshop on Issues in theTheory of Seurity (WITS'00), pages 18{23, 2000.24. F. Levi and S. Ma�eis. An abstrat interpretation framework for analysing mobile ambients. InStati Analysis (SAS'01), volume 2126 of Leture Notes in Computer Siene, pages 395{411.Springer, 2001.25. F. Levi and D. Sangiorgi. Controlling interferene in ambients. In Proeedings POPL'00, pages352{364. ACM, 2000.26. T. Lindholm and F. Yellin. The Java Virtual Mahine Spei�ation. Addison-Wesley, 1997.27. R. Milner. Communiating and Mobile Systems: the �-Calulus. CUP, 1999.28. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly language.ACM Transations on Programming Languages and Systems, 21(3):528{569, 1999.29. F. Nielson, H. Riis Nielson, R.R. Hansen, and J.G. Jensen. Validating �rewalls in mobileambients. In Conurreny Theory (Conur'99), volume 1664 of Leture Notes in ComputerSiene, pages 463{477. Springer, 1999.30. F. Nielson, H. Riis Nielson, and M. Sagiv. Abstrat interpretation of mobile ambients. InProgramming Languages and Systems (ESOP'00), volume 1782 of Leture Notes in ComputerSiene, pages 305{319. Springer, 2000.31. H. Riis Nielson and F. Nielson. Shape analysis for mobile ambients. In 27th ACM Symposiumon Priniples of Programming Languages (POPL'00), pages 135{148, 2000.32. J. Riely and M. Hennessy. A typed language for distributed mobile proesses. In ProeedingsPOPL'98, pages 378{390. ACM, 1998.33. P. Sewell. Global/loal subtyping and apability inferene for a distributed �-alulus. InProeedings ICALP'98, volume 1443 of Leture Notes in Computer Siene, pages 695{706.Springer, 1998.34. M. Tofte and J.-P. Talpin. Region-based memory management. Information and Computation,132(2):109{176, 1997.35. J.E. White. Mobile agents. In J. Bradshaw, editor, Software Agents. AAAI Press/The MITPress, 1996.36. P. Zimmer. Subtyping and typing algorithms for mobile ambients. In Proeedings of Founda-tions of Software Siene and Computation Strutures FOSSACS'00, volume 1784 of LetureNotes in Computer Siene, pages 375{390. Springer, 2000.

45


