
 

1

 

The fundamental purpose of a type system is to prevent the occurrence of type errors during the execution of a

program. This informal statement motivates the study of type systems, but requires clarification. Its accuracy de-

pends, first of all, on the rather subtle issue of what constitutes a type error. Even when that is settled, the 

 

type

soundness

 

 of a programming language (the absence of type errors in all program runs) is a non-trivial property.

A fair amount of careful analysis is required to avoid false and embarrassing claims of type soundness; as a con-

sequence, the classification, description, and study of type systems has emerged as a formal discipline.

The formal framework of type systems has practical applicability; it provides conceptual tools with which to

judge the adequacy of important aspects of language definitions. Informal language descriptions often fail to

specify a type system in sufficient detail to allow unambiguous implementation: different compilers for the same

language may implement slightly different type systems. Moreover, many language definitions have been found

to be type-unsound, allowing a program to 

 

crash

 

 even though it is judged acceptable by a typechecker. Formal

techniques need not be applied in full to be useful; a knowledge of the main principles of type systems can help

avoiding obvious and not-so-obvious pitfalls, and can inspire regularity and orthogonality in language design.

For the great majority of programming languages, type systems have not been formally specified and type

soundness has not been formally established. Adequate technology, however, is now available. It involves defin-

ing the notion of type error for a given language, formalizing the type system by a set of type rules, and verifying

that program execution of well-typed programs cannot produce type errors. This process, if successful, guaran-

tees the type-soundness of a language as a whole. Type checking algorithms can then be developed as a separate

concern, and their correctness can be verified with respect to a given type system; this process guarantees that

typecheckers satisfy the language definition.

 

Program types

 

A type system describes the types that can be used to annotate programs, and the relationship between programs

and types; common program types include Booleans, Integers, Reals, Records, Unions, Arrays, Objects, and Pro-

cedures. Annotations about the behavior of programs can, in general, range from informal comments to formal

specifications subject to theorem proving. Type systems sit in the middle of this spectrum: they are more precise

than comments, and more easily mechanizable than full specifications. 

Type systems are designed to be 

 

decidably verifiable

 

: there should be an algorithm (called a 

 

typechecking algo-

rithm

 

) that can tell whether or not a program is type-correct. (

 

cf.

 

: general specifications do not have correctness

algorithms.) Type systems should be 

 

transparent

 

: a programmer should be able to predict easily whether a pro-

gram will typecheck. If it fails to typecheck, the reason for the failure should be self-evident. (

 

cf.

 

: automatic the-

orem proving may fail in mysterious ways.) Type systems should be 

 

enforceable

 

: type declarations should be

 

Type Systems

 

Luca Cardelli

 

Digital Equipment Corporation, Systems Research Center



 

2

 

statically checked as much as possible, and otherwise dynamically checked. The consistency between type dec-

larations and their associated programs should be routinely verified. (

 

cf.

 

: program comments and conventions

are not checked.)

These considerations dictate the kind of constructions that are appropriate for typing programs. For exam-

ple, they explain why many ordinary set-theoretical constructions are inappropriate, since they are not easily ma-

nipulated by a typechecker. Type systems for programming languages take inspiration, instead, from 

 

type theory

 

,

which is a branch of constructive logic separate from set theory.

 

Formal type systems

 

Type systems are normally described via a particular formalism based on assertions called 

 

judgments

 

. The most

important judgment is the 

 

typing judgment

 

, which asserts that a program fragment 

 

M

 

 has a type 

 

A

 

 with respect

to a typing environment for the free variables of 

 

M

 

. This judgment is written in the form:

Any given judgment can be regarded as 

 

valid

 

 (e.g. 

 

Γ

 

 

 

∫

 

 

 

true 

 

: 

 

Bool

 

) or 

 

invalid

 

 (e.g. 

 

Γ

 

 

 

∫

 

 

 

true 

 

: 

 

Int

 

). The collection

of valid judgments is described via 

 

type rules

 

, which assert the validity of certain judgments on the basis of other

valid judgments. In contrast to monolithic typechecking algorithms, type rules are highly modular: rules for dif-

ferent program constructs can be written separately. Therefore, type rules are comparatively easy to read, under-

stand, analyze, and reuse. 

A collection of type rules is called a 

 

(formal) type system

 

. A program fragment 

 

M

 

 is 

 

well-typed

 

 if there is a type

 

A

 

 such that 

 

Γ

 

 

 

∫

 

 

 

M

 

 : 

 

A

 

 is a valid judgment for some 

 

Γ

 

; that is, if the program fragment 

 

M

 

 can be given some type.

If there is no possible type for a given program, the program is 

 

not typeable

 

 (it has a 

 

type error

 

). Thus, type errors

are formalized independently of any particular typechecking algorithm.

Type systems are not explicitly algorithmic: the discovery of a type for a term in a given type system is called

the 

 

type inference problem

 

. Its solution requires the construction of appropriate typechecking algorithms, which is

in itself an important and sometimes complex endeavor.

 

Status and outlook

 

A large variety of formal type systems have been developed, with corresponding typechecking algorithms. They

cover imperative, functional, and concurrent languages. They can handle simple and structured types, data ab-

straction, polymorphism, object-orientation, and modularization.

At the moment, some advanced constructions used in programming escape proper type-theoretical founda-

tions. This could be either because the programming constructions are ill-conceived, or because our type theories

are not yet sufficiently expressive: only the future will tell. Examples of active research areas are the typing of

advanced object-orientation and modularization constructs, and the typing of concurrency and distribution.

 

Γ

 

 

 

∫

 

 

 

M

 

 : 

 

A

 

program 

 

M

 

 has type 

 

A

 

 in environment 

 

Γ

 

For example:

 

 ∫

 

 

 

true

 

 : 

 

Bool true

 

 has type 

 

Bool

 

 in the empty environment

 



 

, 

 

x

 

:

 

Int

 

 

 

∫

 

 

 

x

 

+1 : 

 

Int x

 

+1

 

 

 

has type 

 

Int

 

, provided that 

 

x

 

 has type 

 

Int


