A Pure Calculus of Subtyping, and Applications
(Outline)

Luca Cardelli
Digital Equipment Corporation, Systems Research Center
130 Lytton Avenue, Palo Alto CA 94301, USA
luca@src.dec.com

Abstract
One of the problems in understanding object-oriented languages is understanding their type systems, e.g.
making sure that they are sound. To this end, | propogeedfoundation for object-oriented languages, based
on a small typed-calculus with polymorphism and subtyping.

1 Motivation

In recent years we have seen a flourishing of ideas and techniques both in the design and in the study of typed
object-oriented languages. New languages and language features are proposed at every turn, and new
semantic models and semantic interpretations closely follow.

While, on one hand, one should be gratified by such richness, | cannot help feeling also a bit
embarrassed. New mechanisms are justifiably proposed out of necessity, to remedy deficiencies of existing
mechanisms. But, eventually, one reaches a point of diminishing returns, where the convenience of additional
mechanisms is overshadowed by their added complexity. How many good ideas can there really be?

This kind of exploration should eventually be replaced by consolidatiomamchay be a good time. In
this respect, | would like to strike against two common attitudes. One is the assumption that we understand
existing languages well enough, so we can go ahead and create more complex ones. | think it has not been
proved yet (nor disproved) that object-oriented programming as currently intended is a "good thing". It is
conceivable that even basic features suckedfswill eventually be considered too subtle and powerful for
robust software engineering (or verification), and should be abandoned. Some features will of course survive,
possibly becoming more general. Consolidation does not mean oversimplification; necessary distinctions
must be made, e.g. between types and classes. But do we need both prototypes and multiple inheritance at
once? How can we tell when a language is powerful, as opposed to "just too complicated"?

The other objectionable attitude is of a more technical nature. The semantics of typed object-oriented
programming has been so far explained in terms of denotational models, and here too we have seen a variety
of models and an embarrassing richness of interpretation techniques. In all cases, thyoegthplject-
oriented language is translated into samg/pedi-calculus (the language of the model); a typing soundness
theorem then must be proven. | think this is a rather indirect and uninformative approach, from a typing
perspective, and leads to too many arbitrary choices. Many of the subtle problems we confront these days are
in the typing of object-oriented languages (as well as in their meaning). A proof of typing soundness in a
denotational model may show that the type rules of an object-oriented language are sound, but | don't think it
showswhy they are sound. What are the essential properties of all these models and interpretations that make
the type rules sound?

2 A pure calculus of subtyping

The central question for me is: what is the smallest typed formal system that captures the essence of object-
oriented programming? Let us temporarily call this hypothetical sy$teg| think one should codify the

crucial properties of denotational models (or just our plain intuitions) RS and then give meaning to
object-oriented languages bytype-preservingsubtype-preservingandmeaning-preservingranslation into

TFS If we can do this, then we will be able to say that the typing and equational rdIES oépture the

essence of typed object-oriented programming.

I have my share or responsibility for producing overcomplex formal systems, but recently | have been
investigating a very simple one, with the aims explained above. This system, Fealled described in
[Cardelli Martini Mitchell Scedrov 914nd, just to show its compactness, here is the complete syntax of types:

AB:= Types:
X type variable.
Top the supertype of all types.
A-B function space.
HX<:A)B bounded quantification.

I am not yet claiming that this is the "right” minimal formal system, but certainly | think it is on the right
track. The first indication is that many common constructions, sufikeaksize recordscan be encoded and

their type rules can be derived. More significantgxtensible recordsfor which many complex
axiomatizations have been proposed, can also be encoded. (Extensible records were investigated for their
relevance to functional and imperative update.)

3 An applied calculus of subtyping

Trying to get closer to our goals, we can define an extended cal€ug, (F<: with rows), that has
extensible records already built-in [Cardelli 91]. This extended calculus is independently axiomatized with its
own type, subtype, and equality rules. The type structure of this calculus is as follows:

L Finite sets of labels...|,,.
AB:=.. Types as iR<:, plus:
Rcd(R) record type over mw type R(a list of labelled fields).
R/L-B functions from rows iR lackingL-labeled fields to values.
X /L)B guantification over a row typ¢ lackingL-labeled fields.
R:= Rows types:
X row type variable (bound by son€X /L)).
Etc the empty row type (it lacKs-labeled fields for any.).
AR row type with an initial field of labdland typeA,

followed by a row typR with nol-labeled field.

The extra richness and convenience of this calculus is however an illusion. We can prove that there is a
translation fromF<: p to F<: that preserves typing, subtyping, and equality. HeReep is in principle no
more complex than tB<:, although it has a much more appealing notation.

This F<: p calculus does not yet resemble an object-oriented language, but we can express many object-
oriented techniques, especially through clever uses of recursive types (that can be adde&<o aoth
F<:p) and of extensible record®ecord concatenationan always troubling subject related to multiple
inheritance, can be encoded as well, following Remy. With recursion and higher-order features we can also
emulateF-bounded quantificationand we can capture all the crucial features of my (much larger) Quest
language.

4 Understanding the type structure of object-oriented languages
The next step is to consider some semi-realistic object-oriented language and attempt to give it meaning in
F<:p. An interesting case study is the following language, originally due to Kim Bruce, which combines two
troublesome feature: the tygelf and updating of instance variables.

This language is based on a distinction between objects and classes (the latter being object-generators),
with a corresponding distinction between object-types and class-types. Classes can be extended and
overridden; objects, generated from classes, can be updated and can receive messages.

Object{\jl:% | (Self)m:T;} an object type witinstance variableslj:q, andmethods fiT;
where the typ&elfmay appear in thg;.
Class{\f:Sj | (Self)m:T;} a class type, similarly.

cIass{\f:dj | (self:Self)nre;} a class value with instance variablqsd-, andmethods pFe;
where the typ&elfand the valuself:Selfmay appear in the, .
¢ with {v=d | (self:Self)m=e} a clas extended with (e.g.) a new variabland a new methoa.

¢ but { (self:Self)m=¢e} overriding an existing method of class

new c creating an object from a class.

o<V extracting a instance variable from an object.

o<=m extracting a method from an object.

o gets{v=d} updating a variable of objecto (yielding a modified copy od).

This object-oriented language is independently axiomatized with its own typing, subtyping, and equivalence
rules; these strongly resemble the rules of a Simula-style language.

The interesting point is that for this language, and for similar ones, it is possible to find a translation into
F<: pthat again preserves typing, subtyping, and equality. As a corollary, we obtain that the non-trivial type
system of our object-oriented language is sound ($trcas sound).

5 Conclusions
In conclusion, | argue that we should be lookingtfgmed semanticef object-oriented languages, given by
translation into small typedl-calculi. The advantages of this approach are that (1) the translation process
"explains" the type rules of the source language in terms of more fundamental type rules of the target
calculus, and (2) the target calculus, being small, has fewer, cleaner and more powerful features, and
relatively simple models.

If it turns out that this kind of translation is practically unfeasible for some particular object-oriented
language, it may mean that we have the wrong approach. But, as we were discussing at the beginning, it may
also be a mesaure of the fact that the language is "just too complicated".

6 References

[Cardelli Martini Mitchell Scedrov 91] L.Cardelli, J.C.Mitchell, S.Martini, A.Scedrov: An extension of
system F with subtyping, Proc. TACS'91, LNCS 526, Springer-Verlag.

[Cardelli 91] L.Cardelli: Extensible records in a pure calculus of subtyping, to appear.

(Additional references can be found in the papers above.)

