INTEGRATED INTERACTIVE COMPUTING SYSTEMS
P. Degano and E. Sandewall, editors
North-Holland Publishing Company / © ECICS, 1983 139

TWO-DIMENSIONAL SYNTAX
FOR FUNCTIONAL LANGUAGES

Luca Cardelli
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974, USA

Introduction

The ideas discussed in this paper developed from some attempts at prog-
ramming with boxes (Cardelli €2) and other graphical data structures (Car-
delli 81). Boxes, intended as rectangles with reference points (Knuth 79),
are interesting data structures for expressing two-dimensional layouts of
text or pictures. They can be composed and moved around by a simple set of
operations, and can be manipulated in a fairly abstract way, often indepen-
dently of their exact size.

Unfortunately, the programs one writes to compose boxes are not very sug-
gestive of the compound boxes they produce, mostly because an essentially
two-dimensional activity of box composition has to be flattened out in tex-
tual format. Is it possible to write these programs on a (high-resolution)
screen in some graphical fashion, so that they can give a feeling of what
they are doing? This can be done easily for non parametric expressions, but
if we look for generality the need for two-dimensionality rapidly spreads to
all the features of the language. One wants to manipulate lists of boxes, to
write functions producing boxes, etc. The problem becomes that of defining 2
general purely graphical notation for arbitrary data structures (not just
two-dimensional ones), and involves solving difficult problems like the
fraphical interpretation of parameterisation.

This paper is a preliminary attempt at graphical programming (Lakin 80).
Some standard control constructs do not seem to fit in this approach, while
some non standard ones developed for functional languzres (noticeably case-
analysis (Burstall 80)) fit particularly well. What we hope to achieve with
thie kind of notation is freedom from the keyboard slavery, an intuitive in-
terface for naive users, and an effective way of exploiting high-resolution
screens and pointing devices. Experiments are needed to determine whether
this approach car help in the normal software development activity.

In the following sections, we first examine a simple but complete general
purpose language having a graphical syntax, and then we introduce boxes and
their operations. Examples are given of most of the features of the language,
but they are not intended to be exhaustive; some effort may be recuired to
see how the examples fit the definitions.

Variables and Simple Data Types

We begin with the pgraphical interpretation of variables as ellipses; to
distinguish an ellipse from another we may insert some text or symbol into
them. The ellipses surrounding identifiers may sometimes be omitted, espec-

140 L. Cardelli

ially when the identifiers are in functicn position. The type of & variarle
ie inferred from the corntext of ite occurrences; we ascume here the poly-
morphic tvpe system of Edinburgh ML (Gordon 79) (KL also inspires m=ny of

the feztures of the language).

O O ©

For the purpose of describing the syntax of expresrcions we need meta-
variables denoting them. We use hexagons for this purpose, noticing that
they are not part of the actual syntax.

AR

Parentheses are drawn as rectangular frames which may contain any expres-
sion. Multiple parentheses may be collapsed. An empty parenthesis is inter-
preted as the object nil, the only element of the primitive type null.

(g V)]

nil

Boolean constants and operators are denoted by the following symbols:

I R P SR

true false not and or

We introduce here the syntax for function application, in order to show some
boolean expressions. The argument of a function is enclosed in a "dented"
box pointing to the function; infix operators with two or more arguments
have several argument boxes vpointing to them:

~ (T} DV~

not true false or not true

Numbers are built from a constant (zero) and two unary operators (succ

and pred):

Two-Dimensional Syntax for Functional Languages 141

I C a

zero succ pred

The succ operator is applied by apnending it to the left of an existing
number or expression, so that succ(zero) looks like one (1!') 1little souare,
succ(succ(zero)) like two (2!) souares, and so on. Similarly for pred, which
is apnended to the right and can form negaztive numbers. As an abhreviation
we zlso allow to put arabic numerals in number frames:

O m OO o> L

1 2 nxm + 1 n <+ 1 127

Somebodv mieht worry about graphical ambipuities (like nil and the num-
ber 1, which are very similar); we assume that we are always able to dis-
ambiguate these situations, e.g. by the thickness of the lines or the abso-
lute size of an object. We shall see later that this is not an important

issue because we shall not actually try to parse pictures mechanically, and
some ambiguity may be tolerated.

ke can now consider some simple compound types. A& pair of objects can be
formed by a vertical or horizontal bar:

Pairing is a right-bottom-associative operation, so that the following
expressions are considered eouivalent:

DO~

Homogeneous linear lists are obtained by a constant (empty) and a binary
operator (cons) having as arpuments an object and a list of objects of the

¢ o T =+] gD
D D =

empty cons cons(a,cons(b,empty)) cons(a,l)

142 L. Cardelli

Firnally we irtroduce obiects of dicioint union iypes by the urary opera-

tors of left injection (irleft) and richt injection (inright) in the left
and rirsht part of a disjoint urion:

g ?

inleft inright inleft(inleft(inright(a)))

These operations are used, for example, when we want to write a function
returning booleans or numbers: the type of its codomain will be the disjoint
union of boolean and number.

Note that we have only defined constructors for our ground and compound
types, ignoring selectors and discriminators. This is justified by the
introduction of case-analysis (a simple form of pattern matching) in the
next section.

Functions and Declarations

Functions are defined by cases on a set of "typical" inputs. For example
the boolean not operation can be expressed as:

R
dEETE

i.e. not maps true to false and false to true. All the different cases of a
function are stacked vertically in an octogonal frame. This frame is to be
interpreted as an if-then-else: if the left hand side of the first case
matches the input, then the right hand side is evaluated and given as result,
else the subsecuent cases are considered in turn. If no case matches the input.
then we have a run-time failure.

This case analysis may involve the binding of variables to parts of the
inputs; in this situation the bound variables can be used in the respective
right hand sides, as in the following function which swaps a pair:

(ole = o|o)

Note that a data constructor on the left hand side of an arrow works like a

selector, and that case analysis replaces the use of discriminators.

Functions have a domain and a codomain, hence all the left hand sides of
a case analysis must have the same type (the domain type) and all the right
hand sides must have the same type (the codomain type). These rules can be
checked automatically without exvplicit type declarations (Milner 78), ana

Two-Dimensional Syntax for Functional Languages 143

they are not restrictive because of the presence of disjoint union types.

To assipgn names to functions, and in general to anv data object, we intro-
duce definitions in the form of left-pointing arrows:

SaC

liere, the variable on the left hand side of the arrow is bound to the (value
of the) right hand side. In general, a pattern may appear on the left hand
side (just like in case-analysis) and it should match the result of the
right hand side. In the case of function definition we may use an abbrevia-
tion exemplified by the not operation:

(o4 L fEan
1L C> T AN <1 T

NMultiple definitions are organized into declarations. & declaration is
either a single definition, or the composition of simpler declarations. We
use four operators for assembling declarations, which were first described
in (Milne 76); parallel declarations are independent of each other: seouen-
tial declarations are the usual cascaded declarations, each of them possibly
using the previous ones; private declarations account for own variables;

recursive declarations allow us to define recursive functions. From a seman-
tic point of view, we are working with a statically scoped lansuage usine
call-by-value for parameter passing.

We use triangles as meta-variables for declarations, and round—edged
rectangles to bracket declarations:

~y

To explain the effect of declarations, we sav that each declaration
imports some variables, used in the right hand sides of its definitions, and
exports other variables (those being defined), appearing in the left hand
sides of its definitions. A simple definition imports all the free variables
used in its right hand side (i.e. those variables not bound by an inner case-
analysis or declaration), and exports all the variables occurring in its left
hand side (there may be several of them because of pattern matching, but they
must all be distinct).

The simplest form of compound declaration is obtained by parallel compo-
sition, represented by the simple juxtaposition of declarations:

144 L. Cardelli

v :
sy

The parallel composition of two declarations D and D' exports the union of

the exports of D and D' (there must be no repeated definition), and imports
the union of the imports of D and D'. The exports of D are not imported in

D' and vice versa.

The seouential composition of declarations is represented by the followine

right-bottom-associative operator:

7D
V|

The secuential composition of D and D' exports the exvorts of D' and those
exports of D which are not exports of D', and imports the imports of D and
those imports of D' which are not exports of D. Moreover the exvnorts of D
are imported in D', but not vice versa. Hence D may be used in D' and out-
side the composition (if it is not "hidden" by D').

The private composition of declarations is represented by another right-

bottom-associative operator:

Z
VI

The private composition of D and D' exvorts the exports of D' only, and
imports the imports of D and those imports of D' which are not exports of D.
Again, the exports of D are imported in D', but not vice versa. Hence D is
"own" by D' and it is not "known" outside the composition.

Finally, a recursive declaration is represented by a declaration enclosec
in special brackets:

The recursive closure of D exports the exports of D, and imports those im-
ports of D which are not among its own exports. Moreover the exvorts of D
are imported back into D. Hence D "knows" its own definitions. Recursive
declarations may only contain function definitions, and must not contain
private declarations.

Two-Dimensional Syntax for Functional Languages 145

We are now able ito draw some interecsting examples, starting (of course!)
vith the factorial function:

I = 0O

o o oI

The append function gives a simple example of 1list manipulation:

<

(D@ < A

[¢ (i)
@ “ o “/

=

Note how the arrows have been reversed in this example, according to a pre-
viously defined abbreviation.

There should be a way of delimiting the scope of declarations. This is
done by inserting a declaration and an expression in a scope block; the

expression is then the only part of the program having access to the exports
of the declaration:

Y o
o Y9 @

B N

-

An example of scope block is given in the following split function, which
splits a list at a given position, returning the two halves as results. Note
that every function takes a single argument and returns a single value, but
values may be pairs, tuples (i.e. multiple pairs) or lists, simulating the
effect of functions with multiple arguments and results.

146 L. Cardelli

L

G|l > 1 GD
=D
l@ >
o@D < e @)

ik

N =

split <:

We complete our set of programming constructs with the graphical repre-
sentation of if-then-else:

O

&

The else part may contain another if-then-else without need to enclose it
in a surrounding frame.

Boxes

The notation we have developed becomes particularly interesting when
applied to the manipulation of actually two-dimensional data structures. We

introduce now a data type box and operations for manipulating boxes.

A box is a rectangle with a reference point (P). Boxes always have
horizontal and vertical sides, i.e. they cannot be oblioue.

| <
eaj null box

There is a set of basic boxes which we assume here to contain characters
and graphical symbols. In general, basic boxes may contain very complex

P @

Two-Dimensional Syntax for Functional Languages 147

rictures, penerated by direct granhical interaction, or tv an adeouate
of praphical functione (e.s. splines).

o
ag A .
" =:-— EBi (

Furthermore, there is a set of primitive onerations on boxes:
- size: takes a box and returns its size as a pair of numbers (x,y);

ft]
o
.~

'

- refpoint: takes a box and returns a pair of numberes which are the dis-
placement of the reference point from the lower left corner of the boxgs

- move: takes a box and two numbers, and moves the box with respect to its
reference point by the cuantity specified by the numbers, e.p.:

k>

— frame: takes a box and two pairs of numbers, and replaces the rectangle

of the box with the rectangle specified by the four numbers (the first two
are the lover left corner znd the second two are the upper right corner):

{[g)|m|m] -

M
vy

wee Co | 1|1 OO O3 -

N
v

D

- over: takes two boxes and overlaps them identifying their reference points.
The result is the smallest rectangle enclosing both the argument rectangles,
with reference point in the common reference point, e.g.:

over &) =

— composition: there are four kinds of compositions of two boxes, denoted

by horizontal and vertical "bumped" bars (see below). Horizontal composition
is obtained by placing the two boxes so that the right side of the first box
is aligned on the same vertical line as the left side of the second box,

with reference points aligned on the same horizontal line. The result is the
smallest box enclosing both arguments, where the reference point is the ref-
erence point of the first box if the "right-bumped" composition is used, or
the reference point of the second box if the "left-bumped" composition is
used. Similarly for vertical composition, which connects in the top-to-bottom
direction.

148 L. Cardelli

A - P2 BIE - B

O 9,
o] o
@ AN -

Compositions are not in general associative, hence by convention they asso-
ciate to the left and to the top. Moreover we use abbreviations like:

These are all the primitive operations we need to manipulate boxes (we
might add rotations and reflections around the reference points, without
affecting the basic ideas). Some useful derived operations can be easily
programmed, such as horsea which builds a horizontal seocuence of several
copies of the same box, with resulting reference point to the left (and
similarly for verseq, with resulting reference point to the bottom):

@ll > o
<]
L@y@ > ®>

horseq

Here is & function, called wrap which puts a frame around a box, leaving
the reference point in the lower left corner:

S T3A ONVO3(vmem

Two-Dimensional Syntax for Functional Languages 149

@>

O < (@@

o< o
@< e
E<mere T

o)

=/

= |
DD,
> o,

6@9‘

&

The 1ittle basic boxes composing the frame in the fipure above have unitary
size. Note that the reference point of the argument box has t0 be renormal-
ized to the lower left cornmer (to place the frame in the correct position):
the result of the refpoint operation is used to move the box.

In order to use case analysis on boxes we adopt the convention that a
shaded variable matches any arbitrary basic box. We can then vrite, for ex-
ample, the following basics function which builds 2 list of all the basic
components of a (compound) box:

basics <:|

® o> L

R

N &> [Ty

—

DI > =)

= =
E> basics@>

150 L. Cardelli

Tvo-Dimensional Editing

Te it rossible to implement en editor for the svrtax we have preserted,
and to crezte and edit programs in this fashion? We think this is ratrer
ezey, provided that we have a high-resolution screer and a pointine device.
However we carnot use traditional parsing technioues, 2nd the task of parsine

programs from pictures seems to be rather unfezsible or even hopeless.

Forturately we do not actually need a parser. The internal representation
of proereams is still to be done bv standard abstract syntax trees, so that
the two-dimensionaliiy only appears in the concrcte syntax. Hence we can use
structure editors working on the abstract syntax (Donzezu-Gouge 80)(Teitel-
baum 81) to create and edit our programs. This has also the advantage that
we are not forced to draw all the details of our pictures because most of
this work will be done for us automatically by the printing routine of the
editor.

A11 ve need is then a prettyprinter producing pictures from syntax trees,
which might conveniently be written using our box data structures. We might
also have a more conventional prettyprinter, producing formatted text, and
we could merge the graphical and textual notations according to our taste.
However, in the most extreme situation, we would only work on pictures,
carefully hiding the abstract syntax representation, so that the user could
have the feeling of manipulating pictures directly.

Conclusions

We have described a graphical syntax for a small functional language,
avoiding semantic considerations whenever possible. These ideas may be the
basis for a programming system using a structure editor to manipulate two-
dimensional representations of programs. We have also given an example of
a2 simple graphical data structure (boxes) which can be more effectively
manipulated by a graphical notation. More general graphical data structures
can be found in (Cardelli 81).

The particular syntax presented here is very experimental and better
versions may be found. We think that for some applications a eraphical
notation is preferable to a2 textual one, and it is not excluded that the
former can also be applied to conventional programming after a period of
experimentation and adjustment.

Along with the increasing availability of graphical devices, picture
maripulation is becoming a more and more important and widespread activity.
We hope that notations on the style of the one we have proposed can help
in making it also an easier activity, especially when naive users are
concerned.

Two-Dimensional Syntax for Functional Languages 151

References

(Burstall 80) R.M.Burstall, D.B.NacQueen, D.T.Sannella: "Yope: an experi—
mentzl applicative language". Proc. 1980 LISP Conference, Stanford.

(Cardelli 81) L.Cardelli, G.Plotkin: "An algebreic approach to VLSI design".
in J.P.Gray (ed.): VLSI 81. kAcademic Press.

(Cardel1i 82) L.Cardelli: "PaperBox: an eppliceative text formatter".
Unpublished program documentation.

(Donzeau—Gouge 80) V.Donzeau-Gouge, G.Huet, G.Kahn, B.Lang: "Programming
environments based on structured editors: the Mentor experience".
Report 26, INRIA,.

(Gordon 79) M.J.Gordon, R.Milner, C.P.Wadsworth: "Edinburgh LCF". Lecture
Notes in Computer Science, n.78. Springer-Verlag.

(Knuth 79) D.E.Knuth: "TEX and Fetafont". Digitel Press.

(Lakin 80) F.lakin: "Computing with text-graphic forms". Proc. 1980 LISP
Conference, Stanford.

(Milne 76) R.E,Milne C.S5trachey: "R theory of programming language seman-
9
tics". Chapman and Hall.

(Milner 76) R.Milner: "A theory of type polymorphism in programming". JCSS,
vol.17, n.3.

(Teitelbaum 81) T.Teitelbaum, T.Reps, S.Horwitz: "The why and wherefore of
the Cornell Program Synthesizer". Proc. of the ACM symposium on Text
Manipulation.

