The Kaemika* Apparoach to Integrated Modeling
of Reaction Networks and Protocols

Luca Cardelli

Department of Computer Science, University of Oxford

December 2019

1 Introduction

The classical cycle of observation, hypothesis formulation, experimentation, and
falsification, which has driven scientific and technical progress since the scientific
revolution, is lately becoming automated in all its separate components. Data gath-
ering is conducted by high-throughput machinery. Models are automatically syn-
thesized, at least in part, from data. Experiments are selected to maximize knowl-
edge acquisition. Laboratory protocols are run under reproducible and auditable
software control. However, integration between these automated components is
lacking. Theories are not placed in the same formal context as the (coded) proto-
cols that are supposed to test them: theories talk about changing quantities, while
protocols talk about steps carried out by machines. Neither knows about the other,
although they both try to describe the same process. The consequence is that often
it is hard tell what happened when something fails: was it an error in the model, or
an error in the protocol? In parameter inference, both may have unknown parame-
ters that must be fit to data. When all those activities are automated, we need a way
to answer those questions that is equally automated.

We should ideally start from an integrated description from which we can ex-
tract both the model of a phenomenon, for possibly automated mathematical anal-
ysis, and the steps carried out to test it, for automated execution by lab equipment.
This is essential to carry out automated model synthesis and falsification by taking
into account uncertainties in the both model structure and in equipment tolerances.

*/’kimika/

Untitled < Untitled Gl B untitled
(R

00 {92} u ° O 0 o o Protocol Step Graph ° o Reaction Complex Graph

1 =

Output

output

Figure 1: Output of a Kaemika program under Android [4]. Left: Source code for
a simple chemical oscillator and some liquid handling operations. Center left: A
view of a stochastic simulation (top) followed by droplet movement on a simulated
digital microfluidics device (bottom). Center right: A view of the liquid-handling
protocol. Right: A view of the chemical reaction network inside the droplets.

Here we present one such modeling framework, rooted in languages for chemical
reaction networks [13] [16] [14], and for lab protocols [2]; implementations are
available at [4], with sources in [5].

Integrated modeling of networks and protocols is not common because, on one
hand, reaction networks are usually observed from nature (or at best are engineered
from natural components), while on the other hand protocols are meant to be de-
signed. But the opposite situation is also possible: reaction networks can be engi-
neered from scratch [19], while protocols can be seen as something that ’sponta-
neously” happens [18]. In general, it seems useful to be able to codify networks and
protocols in a unified way, to be able to describe them, analyze them, and automate
them as a whole.

2 The Kaemika Language

2.1 Main properties

The Kaemika modeling language is a function, nominal language with a monadic
semantics, whose purpose is to describe dynamical systems and the way they are
manipulated in a wet lab.

2.1.1 Functional aspects

The main structuring abstraction consists of functions that take values as parame-
ters and produce values as results. Values, which are dynamically typed, include
functions: these higher order capabilities are based on lexical scoping of variables.

A fairly conventional syntax allows for the definition and use of functions over
basic values such as numbers and, less conventionally, chemical species:

function F(number x, species a) { x * observe(a) }
species A@ 3 mM // A at 0.003 Molar concentration
number n = F(2,A) // n = 0.006

A similar syntax allows for encapsulating networks of chemical reactions:

network N(species a, number r) { a ->{r} a + a }
species A @ 3 mM
N(A,2) // produces the 1l-reaction network A ->{2} A + A

A network is nothing more than an abbreviation for a function that returns a trivial
value. Still, a network (or a function) can produce chemical reactions. The way
in which species and reactions can occur in functional computation, and the sense
in which a network of reactions can be ‘produced’, is explained below regarding
nominal values (for species) and monadic output (for reactions).

Species are values that can be passed to functions and networks, and returned
from functions. Reactions are not values, but reaction-producing networks (like N
above) are values that can be passed to functions and networks, and returned from
functions. Functions can be constructed from basic values (booleans, numbers,
species) via boolean and arithmetic operators, conditionals, lists, and recursion.
This way, reaction networks can be generated whose number of species and reac-
tions depends on parameters. The nominal aspects of the language are essential for
making sense of dynamically generated species.

2.1.2 Nominal aspects

An unbounded number of distinct species can be generated during a computation
via species definitions such as species A @ 3 mM. Any such definition generates
a new species with a unique species-name and at the same time binds that species
to a variable (A). The species is uniquely characterized by its species-name, which
however can never be known or mentioned. The variable denoting the species can
be mentioned within its lexical scope, but the species itself is a value that can escape
that scope. Hence a species-name has an identity that goes beyond the lexical name
of the variable (c.f. the nominal A-calculus [10]). A report instruction can be used
to mark dynamically generated species for plotting during a later simulation.

network N(species a) {
species B@ 1 mM // a species declaration

a + B ->{1} a // repeated at each invocation of N
report B // reporting *that* species

}

species A @ 3 mM // another species declaration

N(A) // produces a reaction A + B ->{1} A
N(A) // produces a different reaction A + Bel ->{1} A

Here two different reactions are produced because a (species-name for) B is
generated each time the network abstraction is invoked. Each B is subject to its
own report, so they can both be plotted at a later time. When displayed as outputs,
they are distinguished by a decoration like Be1 based on the original variable name.
These decorations are not part of the syntax, and are used only to distinguish species
with distinct species-names that happen to have been initially bound to equally
named variables.

2.1.3 Monadic aspects

Kaemika functions return (primarily) values, but can also produce (on the side)
an output stream of chemical actions. These actions can involve the simulation
of a chemical reaction network that has been produced. In fact, computation and
simulation can be interleaved: see the section on Protocols.

More precisely, an output monad is implicit in the language, and explicit in its
execution [17]. Given a result type 1" and a collection Action of output actions,
including declarations of new species and chemical reactions between them, the
output monad (Out(T),n € T — Out(T),= € (Out(T), T — Out(U)) —
Out(U)) is given by:

Out(T) =T x List(Action)
n(z) = (,[])
= = A(z,s), f)let (y,t) = f(x)in(y, s++t)

where [] is the empty list and ++ is list concatenation.

Via (n, =) we can interpret a functional computation intermixed with actions.
For example, a basic functional computation (A(x,y)x + y)(3, 4) is interpreted in
the output monad as (A(x,y)x = My = N n(x +))(n(3),n4)) = (7,]]) =
n(7). The occurrence of an output action a € Action can then be interpreted as
emit(a) = (nil,[a]), where emit € Action — Out(Nil), yielding a null re-
sult value and a singleton output stream. In a dynamically typed language all

values have effectively a single type Value, so the output monad used here is
Out(Value) = Value x List(Action), which represents the outcome of any com-
putation.

2.2 Flows

A flow, in the sense of time-flow, is a function of time represented as a data structure
rather than as a proper function. The handling of flows is always staged: in a first
stage the flow is assembled, and in a later stage, after its computation has completed,
the flow is used. A flow can be assembled by any computational means available,
including paremeterization, conditional execution, and recursion.

Flows are used in three contexts. (1) in report statements to describe functions
of time that should be plotted: those functions typically depend on the concen-
trations of species over time. The flows themselves are used as labels in the plot
legend. (2) to describe general rates for reactions, in particular ones that may be
time-dependent in a non-mass-action way. This enables also fixing arbitrary func-
tions of time as concentration profiles for selected species. (3) to observe the results
of chemical evolution, and to feed those back into algorithms (this is discussed in
the section on Protocols). When a flow is used, it is typically queried at some fre-
quency from time 0 to some time bound.

Syntactically, a flow is represented using the same syntax as expressions, but
the interpretation of these expressions is different in an normal context vs. a flow
context (i.e. (1),(2),(3) above). For example, in a normal context a variable x bound
to a species denotes that species, but in a flow context it denotes the concentration
of that species at a given time.

The simplest flow is time, representing the identity function Az¢. Other flows
can be produced by arithmetic operators like sin(time), representing At sin(t), or
by constants like pi, representing \¢m: these can be useful as reference lines in
plots.

The most common flows involve species: a*b = Ata(t) * b(¢), is the prod-
uct of the concentrations of a and b at any given time, and cond(a<b,a,b) =
Atifa(t) < b(t) thena(t) else b(t), is the minimum of the concentrations of a and
b at any given time. The conditional flow operator cond should be contrasted
with the ordinary boolean conditional if x then a else b end which, still in
a flow context, assembles either the flow Aza(¢) or the flow \¢b(¢), depending on
the (timeless) boolean value of variable x.

In conjunction with Linear Noise Approximation simulation, stochastic flows
can be used. var(a) denotes the variance of species a over time, and cov(a,b) the
covariance. Here a and b need not be single species, but are restricted to linear com-
bination of species, so that they can be correctly evaluated; for example var(a-b)

—]
— pOISsON(XT) B
— 02
sin(time)
x1 =0

poisson(x1) =0

Molarity (M)
= M
%

0 2 4 B
Time (s)

Figure 2: Reporting the flows x1, poisson(x1), log(x2), sin(time)

=var(a)+var(b)-2*cov(a,b). A useful stochastic flow is poisson(a) which, on
a time plot, paints Poisson noise centered around the mean of a: it can provide a
visual benchmark to interpret var(a).

2.3 Simulation of chemical Kinetics

A chemical reaction network can be simulated [7] by the equilibrate instruction
over a given time period. Linear Noise Approximation (LNA) simulation can be
enabled, providing both mean and variance of species concentrations. Equilibrate
instruction can be preceded by report instructions to select the flows to be plotted
(by default, all the single species flows are plotted). Report and equilibrate, which
are themselves Actions, can occur anywhere within a computation, and are affected
by previous actions.
Figure 2 shows the LNA output of this simple script:

species x1 @ 0.5 M // prey

species x2 @ 0.5 M // predator

x1 -> x1 + x1 // prey reproduces

X1 + x2 -> x2 + X2 // predator eats prey

X2 -> # // predator dies

report x1, poisson(x1l), log(x2), sin(time) // flows (what to plot)
equilibrate for 7 // simulate and plot

Apart from simulation, differential equations for the species concentrations can

be produced, including equations for covariances from the LNA:

Orxl = 21 — xl x x2
Orx2 = xl x x2 — x2

owar(zl) = 2 xvar(zl) — cov(xl, 22) * x1
—cov(x2,z21) * 21 — 2 x var(zl) x 22 + x1 + z1 * 22
Orcov(xl, x2) = cov(xl, 22) * x1 — var(z2) x x1
— cov(xl,x2) * 22 + var(xl) * 22 — z1 * 22
owwar(x2) = 2 x var(z2) x x1 + cov(xl, x2) * x2
+ cov(x2,21) * 22 — 2 x var(x2) + x1 * 2 + 22

LNA simulation handles, numerically, both mass action rates and flows; that
is, arbitrary rate functions can be used in stochastic simulation. When requesting
symbolic LNA output, as above, flows appearing in reaction rates are handled as
long as they are differentiable.

2.4 Visualization of chemical reaction networks

Chemical reaction networks are usually visualized as either (A) graphs whose nodes
are complexes (left hand sides and right hand sides of reactions), and whose edges
represent the related reactions, or (B) as multigraphs whose nodes are species and
whose multiedges represent the reactions. In the biological literature a multitude of
other informal representations are used, the vast majority of which are specific to
a single article and non-invertible (it is not possible to exactly recover the reaction
network from the graph). In the bioinformatics literature, invertible representation
have been achieved and standardized for use in tools. Still, the automated layout of
such graphs, even when using state-of-the-art algorithms, is highly unsatisfactory
in the sense of not bringing out the symmetries of the network, and awkward in the
sense of requiring constant panning and zooming.

Kaemika uses a new graphical representation of directed multigraphs with mul-
tiplicities, which are those needed to unambiguously represent chemical reactions.
In first instance, the problem is the same as visually representing Petri nets. Even
here we appear to be making an original contribution, although the mapping of Petri
nets to our representation is fairly straightforward. Beyond that, catalytic aspects
of chemical reaction networks are important to convey meaning, and in this area
we introduce a more compact visual notation that extends the basic one.

lolT + hil —> lo1 + md

el

ey

Figure 3: Mozart style. This network is a chemical oscillator consisting of two
similar subnetworks interconnected in an alternating pattern, with 6 species and 16
reactions. Blue/blunt tips are reagents, red/sharp tips are products, and vertical (or
empty) stems are reactions. An optional bin-packing has been applied, so that the
two similar subnetworks are stacked on top of each other on the left. A reaction can
be highlighted by hovering over it: its standard chemical wording is then shown at
the top, and the species involved in the reaction are highlighted as well, according
to a color scheme for reagents (blue) products (red) and catalysts (green). The
highlighted lines point out connections between the highlighted reaction and other
reactions.

We call this new representation a reaction score: like a musical score it has a set
of horizontal lines, each associated with a chemical species rather than a frequency.
Reactions are added to the score in vertical orientation. Neither the horizontal or
vertical orders are important (unlike in musical notation), and it is useful to be
able to manually or automatically reorder species and reactions to cluster them in
different ways.

The basic Petri-nets capable representation is shown in Figure 3. Each chemical
reaction is seen as a Petri net transition from input (blue) blue species to output (red)
species. Each Petri net place (species) is stretched out into a horizontal line, and
the transitions are laid out vertically as stems. Otherwise, the connectivity of the
underlying Petri net is respected by connecting transitions to places as appropriate.
Each reaction occupies only a bounded horizontal region, the width of which is
given by the multiplicities of the incoming and outgoing edges. This results in a
regular and compact layout that fits naturally into a rectangular region of a display.
The area occupied is given by the number of species, vertically, times the number
of reactions, horizontally, each adjusted by its multiplicities. In our implementation
we always rescale the whole score to fit exactly in the available space, but zooming
and panning is then available.

Just to give it a name, we call this first representation style ‘Mozart’. The next

lol + hil —> lo1 + md

A Bt I |

L ool

Figure 4: Bach style. This is the same network as in Figure 3; we can now see
clearly its reliance on catalytic reactions. This representation is more compact,
in part due to straightening connections onto the stem. We refrain from similarly
compacting the Mozart case, which is meant mostly as a tutorial for the Bach style.
All the stems have been reduced to size 1, but this depends on the vertical order of
the species, which can be changed by dragging. On the right, for comparison, is
the same multigraph rendered by GraphViz, with ovals for species and squares for
reactions, already reduced as in Bach style via catalytic edged (round tips).

step is ‘Bach’, where we factor out the catalysts from the reactions. Each reaction
A — Biis first recast in the form C' >> A’ — B’ where for each species s if n * s
occurs in A and m * s occurs in B, then min(n, m) * s are moved into C, and the
rest are left in A’ or B’ (not both). The reaction A’ — B’ is laid out in Mozart
style (with some additional compaction of connections onto the vertical line of the
stem, when possible). Additional catalytic connections, using a different visual
style (green), are introduced between the species in C' and the stem of A’ — B’.
That is all, modulo taking care of some special cases when A’ or B’ are empty, and
routing all the connections so that they do not interfere with each other (Figure 4).

We emphasize that this representation is complete (any reaction network can
be automatically laid out) and unambiguous (the original reaction network can be
recovered from it, except for the reaction rates and initial conditions).

3 Protocols

Chemical reaction networks can be localized to samples (representing, e.g., test
tubes or droplets), and combined into protocols that perform the equivalent of lig-
uid handling in a wet lab. Samples are values in the language: there can be an
unbounded number of them, and their names are handled in the nominal style sim-
ilarly to species.

3.1 Samples

A sample is a named container for chemical species characterized by a volume and
a temperature for a quantity of water in which the chemicals are dissolved. Both the
volume and temperature of a sample are assumed to remain constant over time, but
samples can be turned into other samples with different volumes and temperatures.

sample A {1 pL, 20 C}
sample B {2 pL, 37 C}

The same chemical species can occur in different samples; to this end species should
first be declared without referring to their initial concentrations:

species {a, b#le} // b has molar mass of 10 g/mol

Here b is assigned a molar mass of 10, while a’s molar mass is unspecified. Those
species can then be added to various samples, in specified amounts:

amount a @ ©.001 nmol in A // initialized in mol
amount a @ 1 pM in B // initialized in Molar = mol/L
amount b @ ©0.02 ng in B // initialized in grams

These initializations along with the previous declarations result in 1 pM of a in both
Aand B, and 1 uM of b in B. Whenever the dimension of an initial quantity is Molar,
the assigned value directly determines the concentration within the sample. When
the dimension is mol or grams, the outcome depends on the volume of the sample,
and in the case of grams, it requires a declaration of the molar mass of the species.

Chemical reactions should be listed after the samples that they are meant to
affect, but they do not reference samples explicitly. Each reaction applies to all
the relevant samples, that is to all previously declared samples that contain some
amount (even if zero) of all the species that are involved in the reaction:

a -> # // relevant to samples A and B
b -> # // relevant to sample B but not sample A
a >{2Yya+b // relevant to sample B but not sample A

(# 1s the empty multiset of species, {2} is a reaction rate, defaulting to {1}.)

We have seen that the volume of a sample can affect the concentration of the
species placed into it. The temperature of a sample, instead, can affect the rates of
the reactions. A reaction rate like {r} indicates a constant (temperature-independent)
rate where r is the productive collision frequency of the reagents, which is multi-
plied by the concentration of the reagents to obtain the usual mass action kinetics.

10

A reaction rate like {r,a} instead indicates a collision frequency of r, as before,
and an activation energy of a. These quantities feed into the temperature-dependent
Arrhenius’ formula, re” ET where R is the universal gas constant, and 7' is the tem-
perature of the sample. The resulting value is again multiplied by the concentrations
of the reagents to obtain a temperature-dependent mass action kinetics.

In the initial sections we used species and reactions, but no samples. In fact,
there is a default sample called vessel that collects all the species that are not as-
signed to other samples. The notation we used previously, species a @ 1 mM is
thus an abbreviation for species a @ 1 mM in vessel, and that in turn is an ab-
breviation for species {a}; amount a @ 1 mM in vessel. Similarly, ifa species
is used in a single sample it can be declared and initialized at once, as in: species a

@1 mM in A

3.2 Liquid handling

In addition to sample preparation, explained in the previous section, a number of
operations can be applied to samples.
A sample A can be split into a number of other samples B, C,D:

split B, C, D = A

The resulting samples have the same temperature as A, and their volumes sum up
to that of A. The concentration of the species from A remains the same in the new
samples. The above instruction indicates an equal split, but proportional splits can
be expressed as split B, C, D = A by 0.5, 0.3, 0.2 (the last proportion can
be omitted).

A number of samples can be mixed into one:

mix E = B, C

The temperature of the resulting sample is the volume-weighted average of the con-
tributing samples, and its volume is the sum of their volumes. The concentrations of
the species from B and C become typically diluted, contributing to E proportionally
to the ratio of their volumes to the volume of E.

Samples can be discarded:

dispose D

Mix, split, and dispose operations, as well as sample preparation, happen in-
stantly, that is without any reactions firing within the samples. Another operation
allows time to pass in a sample (or in a collection of samples in parallel), while any
other samples are assumed to remain unaffected:

11

equilibrate F = E for 10

During the next 10 second, the initial state of E is allowed to evolve according
to the kinetics of the relevant reactions over the species contained in E (it need
not actually reach equilibrium). This evolution is carried out by integrating the
differential equations resulting from the chemical reactions, starting from the initial
conditions of E. At the end of the integration, a new sample F is produced whose
concentrations equal the final ones of E. LNA stochastic state is propagated through
multiple simulations, as well as through mix and split operations.

The input samples of all these operations are consumed, that is rendered unus-
able to any further protocol operations, but they can remain available for observa-
tion. Samples can be observed by applying flows to them; an observation always
yields a number:

number n = observe(f, F)

Here f is a flow that provides a way of observing the contents of sample F. For ex-
ample, observe(a, F) yields the concentration of a in F (at the current time in F’s
timeline, which in the example above is time 0 because F has not been further equi-
librated), and observe(time, E), observe(volume, E), observe(kelvin, E)
yields the current time in E’s timeline (which in the example above is the final
simulation time of E) and its volume and temperature. It is possible to use observe
within a flow, e.g. to make a reaction rate in a sample depend on the state of a
different sample.

Subsequently, we can keep applying protocol operations to F and its derivates,
including further equilibrations. All these operations on samples can be freely em-
bedded in functions and networks, and combined algorithmically, providing the
ability to encapsulate complex parameterized protocols.

Protocol operation provide some of the output monad actions discussed earlier.
For example the execution of mix E = B, C produces an action emit(miz E =
B, C') which records all the details of the three samples, before and after the mixing.
In the final List(Action) we obtain a detailed trace of the protocol steps that have
been executed, and their effects. This trace can be displayed, e.g., as a graph, or
otherwise inspected (Figure 1).

3.3 Digital microfluidics

The Kaemika system provides an interpreter for the Kaemika language, including
simulation and plotting for the evolution of chemical reaction networks. In addition,
it provides a virtual liquid handling device for the simulation and visualization of
protocols. Many flavors on liquid-handling devices exist, but we focus on digital

12

Figure 5: Simulated digital microfluidics device.

microfluidics because of its generality, simplicity, and programmability, in that a
single device can execute all basic liquid-handling protocols (within practical size
limitations) [3] [1] [20], and can support a number of options for observation of the
samples [8].

A Kaemika protocol contains information both about the kinetics of reactions
that naturally occur within samples, and about laboratory manipulations performed
on samples. The two are linked because lab operations affect concentrations, vol-
umes, and temperatures, which affect kinetics. Correspondingly, the execution of
a kaemika protocol intertwines the simulation of individual reaction networks with
the microfluidic manipulation of the samples, including intertwining the plotting of
simulations and the visualization of liquid handling. The state of a sample at the end
of a chemical simulation is propagated to the following liquid handling operations,
and vice versa.

A typical digital microfluidics device has a rectangular array of electrically con-
trolled pads, and some means of adding and removing liquid droplets over its sur-
face. Injection and extraction may by done hand, or by extruding standard-size
droplets from larger on-device reservoirs, or by pumps at the device’s periphery.
The standard droplet size is around 1pL. Droplets can be moved by changing the
electrical properties of adjacent pads, and multiple droplets can be moved in par-
allel. Droplets can be merged by causing one to move over the pad of another,
and split by electrically pulling them in opposite directions. An overhead camera
or an on-surface sensing apparatus may provide feedback about the position of the
droplets.

In the Kaemika droplet simulation, sample preparation is done off-device, and

13

each completed sample is represented by a droplet on the device. Mixing, splitting,
and disposing of samples is handled by appropriate routing of the droplets over the
device surface: this is automatic, and does not require further annotations.

Some further assumptions are needed for equilibration, for observation, and for
the handling of temperatures and volumes. We assume that a region of the device is
maintained at a cool temperature. All the staging and mixing operation are executed
in this region, because chemical reactions are not supposed to be happening during
liquid handling, and a cool temperature can approximate that condition. We also
assume that another region of the device is maintained at a kot temperature, and an
intermediate region is at warm, ambient temperature. Equilibrate operations move
droplets into one of the warm or hot regions, according to need, hold them there for
the prescribed time, and then them move them back to the cool region.

The mix operation can be used to dilute a sample, by mixing it with pure water,
and even to change its temperature by mixing it with hot or cold water. But this
is not very convenient because a change of temperature thus requires a change in
volume or concentration. Moreover, the inverse of dilution, evaporation, is not
available. To help with the handling of temperatures, a regulate instruction can
be used that does not affect sample volume:

regulate A to 25 C

This simply moves a droplet to a region appropriate for that temperature, and
may instruct the device to achieve that temperature. For the handling of volumes,
more speculatively, we allow a concentrate operation that causes a change of
volume by removing (evaporating) or adding (diluting) water, without affecting
temperature:

concentrate B to 1 pL

Finally, we already discussed using observe(f, A) to observe the properties
of a sample during the execution of a protocol, possibly then altering the protocol
in response. It is useful, for example, to iterate a subprotocol until some concentra-
tion is achieved. The kind of observations that are practical depend on the hardware
capability of a device; there are for example several optical means to detect parti-
cles or concentrations. More powerful observation (mass spectroscopy [9], nuclear
magnetic resonance [11], DNA hybridization detection [15], DNA amplification
[6], DNA sequencing [20], single molecule detection [12]), require separate tech-
niques, although many of these can be integrated or carried out on the microfluidic
device itself. The Kaemika language supports powerful observation based on con-
centrations, but their practicality will always depend on the particular hardware that
is available.

14

3.4 Example

In the following example, we prepare a sample A, we let it react for a bit, we prepare
a sample B, we let it react for a bit, we then mix A with B into C, and we let C react
by the union of the species and reactions of A and B. Both A and B are relatively
inert, but an oscillation is triggered after they are mixed into C.

species {c}

sample A {1uL, 20C}
species a @ 10mM in A
amount ¢ @ 1mM in A
a+c->a+a
equilibrate A for 100

sample B {1pL, 20C}
species b @ 10mM in B
amount ¢ @ 1mM in B
b+c->c+c
equilibrate B for 100

mix C = A, B
a+b->b+b

equilibrate C for 1000

/7

/7
/7

//
/7

//
//

//
//

//
//

/7

occurs in multiple samples

prepare sample A
species initially local to A

reactions in A
let A evolve

prepare sample B
species initially local to B

reactions in B
let B evolve

mix A and B
further reactions

let C evolve by all reactions

From this unified script we can extract the dynamical system for each sample, sep-

arately from the protocol:

KINETICS for STATE_@ (sample A) for 100 time units:

da =a * c
dc = - a * ¢

KINETICS for STATE_1 (sample B) for 100 time units:

db = - b * ¢
dc = b * ¢

KINETICS for STATE_3 (sample C) for 1000 time units:

da=a*c-a*hb
dc = b *c-a*c
ob=a*b -b *c

15

We can also extract the sequence of protocol steps, separately from the dynamical
systems:

sample A {1pL, 293.2K}
amount a @ 10 mM in A
amount ¢ @ 1 mM in A
equilibrate Ael = A for 100

sample B {1pL, 293.2K}
amount b @ 10 mM in B
amount ¢ @ 1 mM in B
equilibrate Bel = B for 100

mix C = Ael, Bel
equilibrate Cel = C for 1000

References

[1]
[2]

[3]

[4]

Printeria. http://2018.igem.org/Team:Valencia UPV.

Abate A., Cardelli L., Kwiatkowska M., Laurenti L., and Yordanov B. Ex-
perimental biological protocols with formal semantics. In Ceska M. and
Safranek D., editors, Computational Methods in Systems Biology, volume
Lecture Notes in Computer Science 11095, pages 165—-182. Springer, 2018.

Mirela Alistar and Urs Gaudenz. Opendrop: An integrated do-it-yourself
platform for personal use of biochips. Bioengineering (Basel), 4(2):45, 2017.

Luca Cardelli. Kaemika apps. Windows: https://www.microsoft.com/
en-us/p/kaemika/9n258rnwv8pr. Android: https://play.google.com/
store/apps/details?id=com.kaemika.Kaemika&hl=en_GB. iOS: https:
//apps.apple.com/app/id1491803017. macOS: https://apps.apple.
com/us/app/kaemika/id1493299038.

Luca Cardelli. Kaemika software sources. https://github.com/
luca-cardelli/KaemikaXM.

Beatriz Coelho, Bruno Veigas, Elvira Fortunato, Rodrigo Martins, Hugo
Aguas, Rui Igreja, and Pedro V. Baptista. Digital microfluidics for nucleic
acid amplification. Sensors, 17(7):1495, 2017.

16

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Neil Dalchau. Open solving library for ODEs. https://www.microsoft.
com/en-us/research/project/open-solving-1library-for-odes/.

Sergio L.S. Freire. Perspectives on digital microfluidics. Sensors and Actua-
tors A: Physical, 250:15-28, 2016.

Andrea E. Kirby and Aaron R. Wheeler. Digital microfluidics: An emerging
sample preparation platform for mass spectrometry. Analytical Chemistry,
85(13):6178-6184, 2013.

Roy L.Crole and Frank Nebel. Nominal lambda calculus: An internal lan-
guage for fm-cartesian closed categories. Electronic Notes in Theoretical
Computer Science, 298:93—-117, 2013.

Ka-Meng Lei, Pui-In Mak, Man-Kay Lawa, and Rui P. Martinsab. NMR-
DMF: a modular nuclear magnetic resonance—digital microfluidics system for
biological assays. Analyst, 139:6204-6213, 2014.

Kiihnemund M, Witters D, Nilsson M, and Lammertyn J. Circle-to-circle
amplification on a digital microfluidic chip for amplified single molecule de-
tection. Lab on a Chip, 16:2983-2992, 2014.

Pedersen M. and Plotkin G. A language for biochemical systems. In Heiner
M. and Uhrmacher A.M., editors, Computational Methods in Systems Biol-
0gy, volume Lecture Notes in Computer Science 5307, pages 63—82. Springer,
2008.

Vasic M., Soloveichik D., and Khurshid S. CRN++: Molecular programming
language. In Doty D. and Dietz H., editors, DNA Computing and Molecular
Programming 24, volume Lecture Notes in Computer Science 11145, pages
1-18. Springer, 2018.

Lidija Malic, Teodor Veres, and Maryam Tabrizian. Biochip functionaliza-
tion using electrowetting-on-dielectric digital microfluidicsfor surface plas-
mon resonance imaging detection of dna hybridization. Biosensors and Bio-
electronics, 24:2218-2224, 2009.

Michael Pedersen and Andrew Phillips. Towards programming languages for
genetic engineering of living cells. Journal of the Royal Society Interface,
6:S437-S450, April 2009.

Tomas Petricek. What we talk about when we talk about monads. The Art,
Science, and Engineering of Programming, 2(2):12, 2018.

17

[18] Santiago Schnell. Ten simple rules for a computational biologist’s laboratory
notebook. PLoS computational biology, 11:¢1004385, 09 2015.

[19] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal sub-
strate for chemical kinetics. Proceedings of the National Academy of Sciences,
107(12):5393-5398, 2010.

[20] Max Willsey, Ashley P. Stephenson, Chris Takahashi, Pranav Vaid, Bich-
lien H. Nguyen, Michal Piszczek, Christine Betts, Sharon Newman, Sarang
Joshi, Karin Strauss, and Luis Ceze. Puddle: A dynamic, error-correcting,
full-stack microfluidics platform. In ASPLOS’19.

18

