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Abstract. We study the problem of optimal syntax-guided synthesis of
stochastic Chemical Reaction Networks (CRNs) that plays a fundamen-
tal role in design automation of molecular devices and in the construc-
tion of predictive biochemical models. We propose a sketching language
for CRNs that concisely captures syntactic constraints on the network
topology and allows its under-specification. Given a sketch, a correctness
specification, and a cost function defined over the CRN syntax, our goal
is to find a CRN that simultaneously meets the constraints, satisfies the
specification and minimizes the cost function. To ensure computational
feasibility of the synthesis process, we employ the Linear Noise Approx-
imation allowing us to encode the synthesis problem as a satisfiability
modulo theories problem over a set of parametric Ordinary Differen-
tial Equations (ODEs). We design and implement a novel algorithm for
the optimal synthesis of CRNs that employs almost complete refutation
procedure for SMT over reals and ODEs, and exploits a meta-sketching
abstraction controlling the search strategy. Through relevant case studies
we demonstrate that our approach significantly improves the capability
of existing methods for synthesis of biochemical systems and paves the
way towards their automated and provably-correct design.

1 Introduction

Chemical Reaction Networks (CRNs) are a versatile language widely used for
modelling and analysis of biochemical systems. The power of CRNs derives from
the fact that they provide a compact formalism equivalent to Petri nets [42],
Vector Addition Systems (VAS) [36] and distributed population protocols [4].

CRNs also serve as a high-level programming language for molecular de-
vices [49, 14] in systems and synthetic biology. Motivated by numerous potential
applications ranging from smart therapeutics to biosensors, the construction of
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CRNs that exhibit prescribed dynamics is a major goal of synthetic biology [21,
17, 52]. Formal verification methods are now commonly embodied in the de-
sign process of biological systems [32, 34, 40] in order to reason about their
correctness and performance. However, there is still a costly gap between the
design and verification process, exacerbated in cases where stochasticity must
be considered, which is typically the case for molecular computation. Indeed,
automated synthesis of stochastic CRNs is generally limited to the estimation or
synthesis of rate parameters [20, 53], which neglect the network structure, and
suffers from scalability issues [23].

Current research efforts in design automation aim to eliminate this gap and
address the problem of program synthesis – automatic construction of programs
from high-level specifications. The field of syntax-guided program synthesis [1]
has made tremendous progress in recent years, based on the idea of supplement-
ing the specification with a syntactic template that describes a high-level struc-
ture of the program and constrains the space of allowed programs. Applications
range from bit-streaming programming [47] and concurrent data structures [46],
to computational biology [37]. Often not only the correctness of synthesized
programs is important, but also their optimality with respect to a given cost [8].

In this paper we consider the problem of optimal syntax-guided synthesis of
CRNs. We work in the setting of program sketching [47], where the template is
a partial program with holes (incomplete information) that are automatically
resolved using a constraint solver. We define a sketching language for CRNs
that allows designers to not only capture the high-level topology of the network
and known dependencies among particular species and reactions, but also to
compactly describe parts of the CRN where only limited knowledge is available
or left unspecified (partially specified) in order to examine alternative topologies.
A CRN sketch is therefore a parametric CRN, where the parameters can be
unknown species, (real-valued) rates or (integer) stoichiometric constants. Our
sketching language is well-suited for biological systems, where partial knowledge
and uncertainties due to noisy or imprecise measurements are very common. We
associate to a sketch a cost function that captures the structural complexity of
the CRNs and reflects the cost of physically implementing it using DNA [14].

Traditionally, the dynamical behaviour of a CRN is represented as a deter-
ministic time evolution of average species concentrations, described by a set of
Ordinary Differential Equations (ODEs), or as a discrete-state stochastic process
solved through the Chemical Master Equation (CME) [51]. Given the importance
of faithfully modelling stochastic noise in biochemical systems [27, 5], we focus
on the the (continuous) Linear Noise Approximation (LNA) of the CME [51,
28]. It describes the time evolution of expectation and variance of the species
in terms of ODEs, thus capturing the stochasticity intrinsic in CRNs, but, in
contrast to solving the CME, scales well with respect to the molecular counts.

We can therefore represent the stochastic behaviour of a sketch as a set of
parametric ODEs, which can be adequately solved as a satisfiability modulo
theories (SMT) problem over the reals with ODEs. For this purpose, we employ
the SMT solver iSAT(ODE) [26] that circumvents the well-known undecidability



of this theory by a procedure generating either a certificate of unsatisfiability, or
a solution that is precise up to an arbitrary user-defined precision.

To specify the desired temporal behaviour of the network, we support con-
straints about the expected number and variance of molecules, and, crucially,
their derivatives over time. This allows us, for instance, to formalise that a
given species shows a specific number of oscillations or has higher variability
than another species, thus providing greater expressiveness compared to simple
reachability specifications or temporal logic.

We therefore formulate and provide a solution to the following problem. For
a given CRN sketch, a formal specification of the required temporal behaviour
and a cost function, we seek a sketch instantiation (a concrete CRN) that sat-
isfies the specification and minimizes the cost. The optimal solution for a given
sketch is computed using the meta-sketch abstraction for CRNs inspired by [8].
It combines a representation of the syntactic search space with the cost func-
tion and defines an ordered set of sketches. This cost-based ordering allows us
to effectively prune the search space during the synthesis process and guide the
search towards the minimal cost.

In summary, this paper makes the following contributions:

• We propose the first sketching language for CRNs that supports partial spec-
ifications of the topology of the network and structural dependencies among
species and reactions.

• We formulate a novel optimal synthesis problem that, thanks to the LNA
interpretation of stochastic dynamics, can be solved as an almost complete
decision/refutation problem over the reals involving parametric ODEs. In this
way, our approach offers superior scalability with respect to the size of the
system and the number of parameters and, crucially, supports the synthesis
of the CRN structure and not just of rate parameters.

• We design a new synthesis algorithm that builds on the meta-sketch abstrac-
tion, ensuring the optimality of the solution, and the SMT solver iSAT.

• We develop a prototype implementation of the algorithm and evaluate the
usefulness and performance of our approach on three case studies, demon-
strating the feasibility of synthesising networks with complex dynamics in a
matter of minutes.

We stress that CRNs provide not just a programming language for bio-systems,
but a more general computational framework. In fact, CRNs are formally equiv-
alent to population protocols and Petri nets. As a consequence, our methods
enable effective program synthesis also in other non-biological domains [3].

Related work. In the context of syntax-guided program synthesis (SyGuS)
and program sketching, SMT-based approaches such as counter-example guided
inductive synthesis [48] were shown to support the synthesis of deterministic
programs for a variety of challenging problems [46, 8]. Sketching for probabilistic
programs is presented in [43], together with a synthesis algorithm that builds on
stochastic search and approximate likelihood computation. A similar approach
appears in [31, 11], where genetic algorithms and probabilistic model checking



are used to synthesise probabilistic models from model templates (an extension
of the PRISM language [38]) and multi-objective specifications. SyGuS has also
been used for data-constrained synthesis, as in [37, 45, 24], where (deterministic)
biological models are derived from gene expression data.

A variety of methods exist for estimating and synthesising rate parameters
of CRNs, based on either the deterministic or stochastic semantics [35, 6, 53, 10,
20, 41, 2]. In contrast, our approach supports the synthesis of network structure
and (uniquely) employs LNA.

Synthesis of CRNs from input-output functional specifications is considered
in [23], via a method comprising two separate stages: (1) SMT-based generation
of qualitative CRN models (candidates), and (2) for each candidate, parameter
estimation of a parametric continuous time Markov chain (pCTMC). In contrast
to our work, [23] do not consider solution optimality and require solving an
optimisation problem for each concrete candidate on a pCTMC whose dimension
is exponential in the number of molecules, making synthesis feasible only for very
small numbers of molecules. On the other hand, our approach has complexity
independent of the initial molecular population.

In [18], authors consider the problem of comparing CRNs of different size.
They develop notions of bisimulations for CRNs in order to map a complex CRN
into a simpler one, but with similar dynamical behaviour. Our optimal synthesis
algorithm automatically guarantees that the synthesized CRN has the minimal
size among all the CRNs consistent with the specification and the sketch.

2 Sketching Language for Chemical Reaction Networks

In this section, we introduce CRNs and the sketching language for their design.

2.1 Chemical Reaction Networks

CRN Syntax. A chemical reaction network (CRN) C = (Λ,R) is a pair of finite
sets, where Λ is a set of species, |Λ| denotes its size, and R is a set of reactions.
Species in Λ interact according to the reactions in R. A reaction τ ∈ R is a
triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the reactant complex, pτ ∈ N|Λ| is the
product complex and kτ ∈ R>0 is the coefficient associated with the rate of the
reaction. rτ and pτ represent the stoichiometry of reactants and products. Given

a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2
k1−→ 2λ3.

The state change associated to τ is defined by υτ = pτ − rτ . For example, for
τ1 as above, we have υτ1 = [−1,−1, 2]. The initial condition of a CRN is given
by a vector of initial populations x0 ∈ N|Λ|. A chemical reaction system (CRS)
C = (Λ,R, x0) is a tuple where (Λ,R) is a CRN and x0 ∈ N|Λ| represents its
initial condition.

CRN semantics. Under the usual assumption of mass action kinetics, the stochas-
tic semantics of a CRN is generally given in terms of a discrete-state, continuous-
time Markov process (CTMC) (X(t), t ≥ 0) [28], where the states, x ∈ N|Λ|, are
vectors of molecular counts. Such a representation is accurate, but not scalable



in practice because of the state space explosion problem [39, 34]. An alterna-
tive deterministic model describes the evolution of the concentrations of the
species as the solution Φ : R≥0 → R|Λ| of the following ODEs (the so called rate
equations) [13]:

dΦ(t)

dt
= F (Φ(t)) =

∑
τ∈R

υτ · (kτ
∏
S∈Λ

Φ
rS,τ
S (t)) (1)

where ΦS and rS,τ are the components of vectors Φ and rτ relative to species S.
However, such a model does not take into account the stochasticity intrinsic in
molecular interactions. In this paper, we work with the Linear Noise Approxi-
mation (LNA) [51, 16, 28], which describes the stochastic behaviour of a CRN in
terms of a Gaussian process Y converging in distribution to X [28, 9]. For a CRS
C = (Λ,R, x0) contained in a system of volume N , we define Y = N ·Φ+

√
N ·Z,

where Φ is the solution of the rate equations (Eqn 1) with initial condition
Φ(0) = x0

N . Z is a zero-mean Gaussian process with variance C[Z(t)] described
by

dC[Z(t)]

dt
= JF (Φ(t))C[Z(t)] + C[Z(t)]JTF (Φ(t)) +W (Φ(t)) (2)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JTF (Φ(t)) its transpose version, and
W (Φ(t)) =

∑
τ∈R υτυτ

T kτ
∏
S∈Λ(ΦS)rS,τ (t). Y is a Gaussian process with ex-

pectation E[Y (t)] = NΦ(t) and covariance matrix C[Y (t)] = NC[Z(t)]. As a
consequence, for any t ∈ R≥0, the distribution of Y (t) is fully determined by
its expectation and covariance. These are computed by solving the ODEs in
Eqn. 1-2, and thus avoiding the state space exploration. We denote by [[C]]N =
(E[Y ], C[Y ]) the solution of these equations for CRS C in a system of size N ,
henceforth called the LNA model. By using the LNA we can consider stochastic
properties of CRNs whilst maintaining scalability comparable to that of the
deterministic model [16]. In fact, the number of ODEs required for LNA is
quadratic in the number of species and independent of the molecular counts.

2.2 CRN sketching language

CRN sketches are defined in a similar fashion to concrete CRNs, with the main
difference being that species, stoichiometric constants and reaction rates are
specified as unknown variables. The use of variables considerably increases the
expressiveness of the language, allowing the modeller to specify additional con-
straints over them. Constraints facilitate the representation of key background
knowledge of the underlying network, e.g. that a reaction is faster than another,
or that it consumes more molecules than it produces.

Another important feature is that reactants and products of a reaction are
lifted to choices of species (and corresponding stoichiometry). In this way, the
modeller can explicitly incorporate in the reaction a set of admissible alterna-
tives, letting the synthesiser resolve the choice.

Further, a sketch distinguishes between optional and mandatory reactions
and species. These are used to express that some elements of the network might



be present and that, on the other hand, other elements must be present. Our
sketching language is well suited for synthesis of biological networks: it allows
expressing key domain knowledge about the network, and, at the same time,
it allows for network under-specification (holes, choices and variables). This is
crucial for biological systems, where, due to inherent stochasticity or noisy mea-
surements, the knowledge of the molecular interactions is often partial.

Definition 1 (Sketching language for CRNs). A CRN sketch is a tuple S =
(Λ,R,Var,Dec, Ini,Con), where:

– Λ = Λm∪Λo is a finite set of species, where Λm and Λo are sets of mandatory
and optional species, respectively.

– Var = VarΛ ∪ Varc ∪ Varr is a finite set of variable names, where VarΛ, Varc
and Varr are sets of species, coefficient and rate variables, respectively.

– Dec is a finite set of variable declarations. Declarations bind variable names
to their respective domains of evaluation and are of the form x : D, where
x ∈ Var and D is the domain of x. Three types of declaration are supported:
• Species, where x ∈ VarΛ and D ⊆ Λ is a finite non-empty set of species.
• Stoichiometric coefficients, where x ∈ Varc and D ⊆ N is a finite non-

empty set of non-negative integers.
• Rate parameters, where x ∈ Varr and D ⊆ R≥0 is a bounded set of

non-negative reals.
– Ini is the set of initial states, that is, a predicate on variables {λ0}λ∈Λ de-

scribing the initial number of molecules for each species.
– Con is a finite set of additional constraints, specified as quantifier-free for-

mulas over Var.
– R = Rm ∪ Ro is a finite set of reactions, where Rm and Ro are sets of

mandatory and optional reactions, respectively. As for a concrete CRNs,
each τ ∈ R is a triple τ = (rτ , pτ , kτ ), where in this case kτ ∈ Varr is a
rate variable; the reaction complex rτ and the product complex pτ are sets
of reactants and products, respectively. A reactant R ∈ rτ (product P ∈ pτ )
is a finite choice of species and coefficients, specified as a (non-empty) set
R = {ciλi}i=1,...,|R|, where ci ∈ Varc and λi ∈ VarΛ. We denote with frτ
the uninterpreted choice function for the reactants of τ , that is, a function
frτ : rτ −→ Varc × VarΛ such that frτ (R) ∈ R for each R ∈ rτ . The choice
function for products, fpτ , is defined equivalently.

As an example, reaction τ = ({{c1λ1, c2λ2}, {c3λ3}}, {{c4λ4, c5λ5}}, k) is prefer-

ably written as {c1λ1, c2λ2}+ c3λ3
k−→ {c4λ4, c5λ5}, using the shortcut c3λ3 to

indicate the single-option choice {c3λ3}. A possible concrete choice function for
the reactants of τ is the function frτ = {{c1λ1, c2λ2} 7→ c1λ1, {c3λ3} 7→ c3λ3}
that chooses option c1λ1 as first reactant.

Holes and syntactic sugar. Unknown information about the network can be also
expressed using holes, i.e. portions of the model left “unfilled” and resolved by
the synthesiser. Holes, denoted with ?, are implicitly encoded through sketch
variables. To correctly interpret holes, we assume default domains, Dr ⊆ R



bounded and Dc ⊆ N finite, for rate and coefficient variables, respectively. We
also support the implicit declaration of variables, as shown in Example 1.

The following example illustrates the proposed sketching language and the
optimal solution obtained using our synthesis algorithm introduced in Section 4.

Example 1 (Bell shape generator). For a given species K, our goal is to syn-
thesize a CRN such that the evolution of K, namely the expected number of
molecules of K, has a bell-shaped profile during a given time interval, i.e. during
an initial interval the population K increases, then reaches the maximum, and
finally decreases, eventually dropping to 0. Table 1 (left) defines a sketch for the
bell-shape generator inspired by the solution presented in [12].

Λm = {K}, Λo = {A,B},Rm = {τ1, τ2},
Ro = {τ3}, Dec = {c1, . . . , c4 : [0, 2],

k1, k2, k3 : [0, 0.1], λ1, λ2 : {A,B}},
Con = {λ1 6= λ2, c1 < c2, c3 > c4},
Ini = {K0 = 1 ∧A0 ∈ [0, 100] ∧B0 ∈ [0, 100]}

τ1 = λ1 + c1K
k1−→ c2K

τ2 = {0, 1}λ2 + c3K
k2−→?λ2 + c4K

τ3 = ∅ k3−→ {λ2, [1, 2]K}

A+K →56 2K; K +B →43 2B
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Table 1: Left: The sketch for bell-shape generator, with Volume N = 100.
Right: CRN producing the bell-shape profile (species K) synthesized by our
algorithm

This sketch reflects our prior knowledge about the control mechanism of the
production/degradation of K. It captures that the solution has to have a reaction
generating K (τ1) and a reaction where K is consumed (τ2). We also know that
τ1 requires a species, represented by variable λ1, that is consumed by τ1, and
thus τ1 will be blocked after the initial population of the species is consumed. An
additional species, λ2, different from λ1, may be required. However, the sketch
does not specify its role exactly: reaction τ2 consumes either none or one molecule
of λ2 and produces an unknown number of λ2 molecules, as indicated by the
hole ?. There is also an optional reaction, τ3, that does not have any reactants
and produces either 1 molecule of λ2 or between 1 and 2 molecules of K. The
sketch further defines the mandatory and optional sets of species, the domains
of the variables, and the initial populations of species. We assume the default
domain Dc = [0, 2], meaning that the hole ? can take values from 0 to 2. Note
that many sketch variables are implicitly declared, e.g. term [1, 2]K corresponds
to c′λ′ with fresh variables c′ : [1, 2] and λ′ : {K}.

Table 1 (right) shows the optimal CRN computed by our algorithm for the cost
function given in Definition 3 and the bell-shape profile produced by the CRN.

We now characterise when a concrete network is a valid instantiation of a sketch.

Definition 2 (Sketch instantiation). A CRS C = (ΛC ,RC , x0) is a valid instan-
tiation of a sketch S = (Λ,R,Var,Dec, Ini,Con) if: Ini(x0) holds; there exists an
interpretation I of the variables in Var and choice functions such that:



1. all additional constraints are satisfied: I |=
∧
φ∈Con φ,

2. for each τ ∈ Rm there is τ ′ ∈ RC that realises τ , i.e., τ ′ is obtained from τ
by replacing variables and choice functions with their interpretation6, and

3. for each τ ′ ∈ RC there is τ ∈ R such that τ ′ realises τ ;

and the following conditions hold:

4. for each τ ′ = (rτ ′ , pτ ′ , kτ ′) ∈ RC: kτ ′ > 0 and rτ ′ + pτ ′ > 0
5. Λm ⊆ ΛC and ΛC ⊆ Λm ∪ Λo and
6. for each species A ∈ ΛC there is r ∈ RC such that A appears in r as reactant

or product.

Such an interpretation is called consistent for S. For sketch S and consistent
interpretation I, we denote with I(S) the instantiation of S through I. We denote
with L(S) the set of valid instantiations of S.

Condition 4. states that there are no void reactions, i.e. having null rate (kτ ′ = 0),
or having no reactants and products (rτ ′ +pτ ′ = 0). Further, condition 6. ensures
that the concrete network contains only species occurring in some reactions.

Example 2. A CRS C1 = {{A,B,K}, {τ ′1, τ ′2, τ ′3}, x0} where

τ ′1 = A+K
0.01−−→ 2K τ ′2 = B +K

0.1−−→ 2B τ ′3 =∅ 0.001−−−→ K,

with x0 = (A0 = 100, B0 = K0 = 1) is a valid instantiation of the bell shape
sketch S from Example 1. Reactions τ ′1, τ ′2 and τ ′3 realise respectively reac-
tion sketches τ1, τ2 and τ3. The corresponding consistent interpretation is I =
{λ1 7→ A, c1 7→ 1, k1 7→ 0.01, c2 7→ 2, c′1 7→ 1, λ2 7→ B, c3 7→ 1, k2 7→ 0.1,
H 7→ 2, c4 7→ 0, k3 7→ 0.001, fpτ3 7→ {{λ2, [1, 2]K} 7→ [1, 2]K}, c′2 7→ 1}, where c′i
is the i-th implicit stoichiometric variable and H is the only hole. The interpre-
tation of fpτ3 indicates that the choice {λ2, [1, 2]K} is resolved as [1, 2]K.

Since a sketch instantiation corresponds to a CRS, we remark that its behaviour
is given by the LNA model. Similarly, as we will show in Section 4, the SMT
encoding of a sketch builds on a symbolic encoding of the LNA equations.

3 Specification Language

We are interested in checking whether a CRN exhibits a given temporal pro-
file. For this purpose, our specification language supports constraints about the
expected number and variance of molecules, and, importantly, about their deriva-
tives over time. This allows us, for instance, to synthesise a network where a given
species shows a bell-shape profile (as in Example 1), or has variance greater than
its expectation (considered in Section 5). Before explaining the specification lan-
guage, we introduce the logical framework over which properties, together with
CRN sketches, will be interpreted and evaluated.

6When τ ′ realises sketch reaction τ , its reactants rτ ′ is a set of the form {cRλR}R∈rτ ,
i.e. containing a concrete reactant for each choice R. Then, this is readily encoded in
the reactant vector form rτ ′ ∈ N|Λ| as per CRN definition (see Section 2.1). Similar
reasoning applies for products pτ ′ .



3.1 Satisfiability modulo ODEs

In syntax-guided synthesis, the synthesis problem typically reduces to an SMT
problem [1]. Since we employ LNA, which generally involves non-linear ODEs, we
resort to the framework of satisfiability modulo ODEs [25, 26, 30], which provides
solving procedures for this theory that are sound and complete up to a user-
specified precision. We stress that this framework allows for continuous encoding
of the LNA equations, thus avoiding discrete approximations of its dynamics.
Crucially, we can express arbitrary-order derivatives of the LNA variables, as
these are smooth functions, and hence admit derivatives of all orders.

We employ the SMT solver iSAT(ODE) [25] that supports arithmetic con-
straint systems involving non-linear arithmetic and ODEs. The constraints solved
are quantifier-free Boolean combinations of Boolean variables, arithmetic con-
straints over real- and integer-valued variables with bounded domains, and ODE
constraints over real variables plus flow invariants. Arithmetic constraints are of
the form e1 ∼ e2, where ∼∈ {<,≤,=,≥, >} and e1,2 are expressions built from
real- and integer-valued variables and constants using functions from {+,−, ·, sin,
cos,powN, exp,min,max}. ODE constraints are time-invariant and given by dx

dt =
e, where e is an expression as above7 containing variables themselves defined by
ODE constraints. Flow invariant constraints are of the form x ≤ c or x ≥ c, with
x being an ODE-defined variable and c being a constant. ODE constraints have
to occur under positive polarity and are interpreted as first-order constraints on
pre-values x and post-values x′ of their variables, i.e., they relate those pairs
(x, x′) being connected by a trajectory satisfying dx

dt = e and, if present, the flow
invariant throughout.

Due to undecidability of the fragment of arithmetic addressed, iSAT(ODE)
implements a sound, yet quantifiably incomplete, unsatisfiability check based
on a combination of interval constraint propagation (ICP) for arithmetic con-
straints, safe numeric integration of ODEs, and conflict-driven clause learning
(CDCL) for manipulating the Boolean structure of the formula. This procedure
investigates “boxes”, i.e. Cartesian products of intervals, in the solution space
until it either finds a proof of unsatisfiability based on a set of boxes covering the
original domain or finds some hull-consistent box [7], called a candidate solution
box, with edges smaller than a user-specified width δ > 0. While the interval-
based unsatisfiability proof implies unsatisfiability over the reals, thus rendering
the procedure sound, the report of a candidate solution box only guarantees
that a slight relaxation of the original problem is satisfiable. Within this relax-
ation, all original constraints are first rewritten to equi-satisfiable inequational
form t ∼ 0, with ∼∈ {>,≥}, and then relaxed to the strictly weaker constraint
t ∼ −δ. In that sense, iSAT and related algorithms [30, 50] provide reliable
verdicts on either unsatisfiability of the original problem or satisfiability of its
aforementioned δ-relaxation, and do in principle8 always terminate with one of
these two verdicts. Hence the name “δ-decidability” used by Gao et al. in [29].

7where we can additionally use non-total functions /,
√

and ln.
8i.e., when considering the abstract algorithms using unbounded precision rather

than the safe rounding employed in their floating-point based actual implementations.



3.2 Specification for CRNs

The class of properties we support are formulas describing a dynamical profile
composed as a finite sequence of phases. Each phase i is characterised by an
arithmetic predicate pre-posti, describing the system state at its start and end
points (including arithmetic relations between these two), as well as by flow
invariants (formula invi) pertaining to the trajectory observed during the phase.
Formally, a specification ϕ comprising M ≥ 1 phases is defined by

ϕ =

M∧
i=1

invi ∧ pre-posti (3)

Note that entry as well as target conditions of phases can be expressed within
pre-posti. Initial conditions are not part of the specification but, as explained in
Section 4, the sketch definition.

CRS correctness. For a CRS C, Volume N , and property ϕ, we are interested in
checking whether C is correct with respect to ϕ, written [[C]]N |= ϕ, i.e., whether
C at Volume N exhibits the dynamic behavior required by ϕ. Since [[C]]N is a set
of ODEs, this corresponds to checking whether ϕ̂ ∧ ϕ[[C]]N is satisfiable, where
ϕ[[C]]N is an SMT formula encoding the set of ODEs given by [[C]]N and their
higher-order derivatives9 by means of the corresponding ODE constraints, and
ϕ̂ is the usual bounded model checking (BMC) unwinding of the step relation∧M
i=1(phase = i ⇒ invi ∧ pre-posti) ∧ phase ′ = phase + 1 encoding the phase

sequencing and the pertinent phase constraints, together with the BMC target
phase = M enforcing all phases to be traversed. As this satisfiability problem is
undecidable in general, we relax it to checking whether ϕ̂∧ϕ[[C]]N is δ-satisfiable
in the sense of admitting a candidate solution box of width δ. In that case, we
write [[C]]N |=δ ϕ.

Example 3 (Specification for the bell-shape generator). The required bell-shaped
profile for Example 1 can be formalized using a 2-phase specification as follows:

inv1 ≡ E(1)[K] ≥ 0, pre-post1 ≡ E
(1)[K]′ = 0 ∧ E[K]′ > 30,

inv2 ≡ E(1)[K] ≤ 0, pre-post2 ≡ E[K]′ ≤ 1 ∧ T ′ = 1

where E[K] is the expected value of species K and E(1)[K] its first derivative. T is
the global time. Primed notation (E[K]′, E(1)[K]′, T ′) indicates the variable value
at the end of the respective phase. Constraints inv1 and inv2 require, respectively,
that E[K] is not decreasing in the first phase, and not increasing in the second
(and last) phase. pre-post1 states that, at the end of phase 1, E[K] is a local
optimum (E(1)[K]′ = 0), and has an expected number of molecules greater than
30. pre-post2 states that, at the final phase, the expected number of molecules of
K is at most 1 and that the final time is 1.

This example demonstrates that we can reason over complex temporal specifi-
cations including, for instance, a relevant fragment of bounded metric temporal
logic [44].

9Only the derivatives appearing in ϕ are included. These are encoded using the Faà
di Bruno’s formula [33].



4 Optimal Synthesis of Chemical Reaction Networks

In this section we formulate the optimal synthesis problem where we seek to find
a concrete instantiation of the sketch (i.e. a CRN) that satisfies a given property
and has a minimal cost. We further show the encoding of the problem using
satisfiability modulo ODEs and present an algorithm scheme for its solution.

4.1 Problem Formulation

Before explaining our optimal synthesis problem, we first need to introduce the
class of cost functions considered. A cost function G for a sketch S has signature
G : L(S)→ N and maps valid instantiations of S to a natural cost. A variety of
interesting cost functions fit this description, and, depending on the particular
application, the modeller can choose the most appropriate one. A special case
is, for instance, the overall number of species and reactions, a measure of CRN
complexity used in e.g. CRN comparison and reduction [19, 18]. Importantly,
cost functions are defined over the structure of the concrete instantiation, rather
than its dynamics. As we shall see, this considerably simplifies the optimisation
task, since it leads to a finite set of admissible costs. In the rest of the paper, we
consider the following cost function, which captures the structural complexity of
the CRN and the cost of physically implementing it using DNA [49, 14].

Definition 3 (Cost function). For a sketch S = (Λ,R,Var,Dec, Ini,Con), we
consider the cost function GS : L(S) → N that, for any CRS instantiation
C = (Λ,R) ∈ L(S), is defined as:

GS(C) = 3 · (|Λ ∩ Λo|) +
∑
τ∈RC

∑
S∈Λ

6 · rS,τ + 5 · pS,τ

where rS,τ (pS,τ ) is the stoichiometry of species S as reactant (product) of τ .
This cost function penalizes the presence of optional species (Λo) and the num-
ber of reactants and products in each reaction. It does not explicitly include a
penalty for optional reactions, but this is accounted for through an increased
total number of reactants and products. We stress that different cost functions
can be used, possibly conditioned also on the values of reaction rates.

Problem 1 (Optimal synthesis of CRNs). Given a sketch S, cost function GS ,
property ϕ, Volume N and precision δ, the optimal synthesis problem is to find
CRS C∗ ∈ L(S), if it exists, such that [[C∗]]N �δ ϕ and, for each CRS C ∈ L(S)
such that GS(C) < GS(C∗), it holds that [[C]]N 2δ ϕ.

An important characteristic of the sketching language and the cost function is
that for each sketch S the set {GS(C) | C ∈ L(S)} is finite. This follows from
the fact that S restricts the maximal number of species and reactions as well as
the maximal number of reactants and products for each reaction. Therefore, we
can define for each sketch S the minimal cost µS and the maximal cost νS .

Example 4. It is easy to verify that the cost of the CRS C of Example 2, a
valid instantiation of the bell-shape generator sketch S, is GS(C) = 3 · 2 + 6 ·
4 + 5 · 5 = 55, and that minimal and maximal costs of sketch S are, respectively,
µS = 3 · 1 + 6 · 2 + 5 · 2 = 25 and νS = 3 · 2 + 6 · 5 + 5 · 7 = 71.



We now define a meta-sketch abstraction for our sketching language that allows
us to formulate an efficient optimal synthesis algorithm.

Definition 4 (Meta-sketch for CRNs). Given a sketch S and a cost function
GS , we define the meta-sketch MS = {S(i) | µS ≤ i ≤ νS}, where S(i) is a
sketch whose instantiations have cost smaller than i, i.e. L(S(i)) = {C ∈ L(S) |
GS(C) < i}.

A meta-sketch MS establishes a hierarchy over the sketch S in the form of an
ordered set of sketches S(i). The ordering reflects the size of the search space for
each S(i) as well as the cost of implementing the CRNs described by S(i). In con-
trast to the abstraction defined in [8], the ordering is given by the cost function
and thus it can be directly used to guide the search towards the optimum.

4.2 Symbolic Encoding

Given a sketch of CRN S = (Λ,R,Var,Dec, Ini,Con), we show that the dynamics
of L(S), set of possible instantiations of S, can be described symbolically by a
set of parametric ODEs, plus additional constraints. These equations depend on
the sketch variables and on the choice functions of each reaction, and describe
the time evolution of mean and variance of the species.

For S ∈ Λ, λ ∈ Var, we define the indicator function IS(λ) = 1 if λ = S, and
0 otherwise. For S ∈ Λ and τ ∈ R, we define the following constants:

rS,τ =
∑
R∈rτ

(c,λ)=frτ (R)

c·IS(λ), pS,τ =
∑
P∈pτ

(c,λ)=fpτ (P )

c·IS(λ), υS,τ = pS,τ−rS,τ

Note that these are equivalent to the corresponding coefficients for concrete
CRNs, but now are parametric as they depend on the sketch variables. As for
the LNA model of Section 2.1, symbolic expectation and variance together char-
acterise the symbolic behaviour of sketch S, given as the set of parametric ODEs
[[S]]N = (N · Φ,N · C[Z]), for some Volume N .

The functions Φ(t) and C[Z(t)] describe symbolically the time evolution of
expected values and covariance of all instantiations of S, not just of valid instan-
tiations. We restrict to valid instantiations by imposing the following formula:

consist ≡ Ini(x0) ∧
∧

φ∈Con

φ ∧
∧

τ∈Rm

¬void(τ) ∧
∧

S∈Λm

used(S)

which, based on Definition 2, states that initial state and additional constraints
have to be met, all mandatory reactions must not be void, and all mandatory
species must be “used”, i.e. must appear in some (non-void) reactions. Note that
we allow optional reactions to be void, in which case they are not included in
the concrete network. Formally, void(τ) ≡ (kτ = 0) ∨

∑
S∈Λ(rS,τ + pS,τ ) = 0

and used(S) ≡
∨
τ∈R ¬void(τ) ∧ (rS,τ + pS,τ ) > 0.

Sketch correctness. Given an interpretation I consistent for S, call ΦI and C[Z]I ,
the concrete functions obtained from Φ and C[Z] by substituting variables and
functions with their assignments in I. The symbolic encoding ensures that the



LNA model [[I(S)]]N of CRS I(S) (i.e. the instantiation of S through I, see
Definition 2) is equivalent to (ΦI , C[Z]I).

With reference to our synthesis problem, this implies that the synthesis of a
CRS C∗ that satisfies a correctness specification ϕ from a sketch S corresponds
to finding a consistent interpretation for S that satisfies ϕ. Similarly to the
case for concrete CRSs, this corresponds to checking if ϕ̂ ∧ consist ∧ ϕ[[S]]N is
δ-satisfiable for some precision δ, where ϕ̂ is the BMC encoding of φ (see Section
3.2) and ϕ[[S]]N is the SMT encoding of the symbolic ODEs given by [[S]]N and
the corresponding derivatives.

Cost constraints. For a sketch S and cost i ∈ N, the following predicate encodes
the cost function of Definition 3 in order to restrict S into S(i), i.e. the sketch
whose instantiations have cost smaller than i:

ConG(i) ≡

(
3 ·
∑
S∈Λo

I(used(S)) +
∑
τ∈R
I(¬void(τ)) ·

∑
S∈Λ

(6 · rS,τ + 5 · pS,τ )

)
< i

where I is the indicator function, and used and void are predicates defined above.

4.3 Algorithm Scheme for Optimal Synthesis

In Algorithm 1, we present an algorithm scheme for solving the optimal syn-
thesis problem for CRNs. It builds on the meta-sketch abstraction described in
Definition 4, which enables effective pruning of the search space through cost
constraints, and the SMT-based encoding of Section 4.2, which allows for the
automated derivation of meta-sketch instantiations (i.e. CRNs) that satisfy the
specification and the cost constraints.

This scheme repeatedly invokes the SMT solver (δ-Solver) on the sketch en-
coding, and at each call the cost constraints are updated towards the optimal
cost. We consider three approaches: 1) top-down: starting from the maximal cost
νS , it solves meta-sketches with decreasing cost until no solution exists (UNSAT);
2) bottom-up: from the minimal cost µS , it increases the cost until a solution
is found (SAT); 3) binary search: it bounds the upper estimate on the optimal
solution using a SAT witness and the lower estimate with an UNSAT witness.

We further improve the algorithm by exploiting the fact that UNSAT wit-
nesses can also be obtained at a lower precision δinit (δinit � δ), which con-
sistently improves performance. Indeed, UNSAT outcomes are precise and thus
valid for any precision. Note that the top-down strategy does not benefit from
this speed-up since it only generates SAT witnesses.

At every iteration, variable i maintains the current cost. The solver is firstly
called using the rough precision δinit (line 3). If the solver returns SAT (potential
false positive), we refine our query using the required precision δ (line 5). If this
query is in turn satisfiable, then the solver also returns a candidate solution box
M , where all discrete variables are instantiated to a single value and an interval
smaller than δ is assigned to each real-valued variable. Function getSoln computes
the actual sketch instantiation C∗ as the centre point of M that δ-satisfies ϕ.



Algorithm 1 Generalised synthesis scheme

Require: Meta-sketch MS , property ϕ, precision δ and initial precision δinit
Ensure: C∗ is a solution of Problem 1 if ∃ C ∈ L(Mω

S) : C �δ ϕ, otherwise C∗ = null
1: i> ← νS ; i⊥ ← µS ; i← g(i⊥, i>); C∗ ← null
2: repeat
3: SAT1 ← δ-Solver(S(i), ϕ, δinit); SAT2 ← false
4: if SAT1 then
5: (M,SAT2)← δ-Solver(S(i), ϕ, δ)
6: if SAT2 then C∗ = getSoln(S(i),M)
7: else δinit = (δinit − δ)/2
8: (i⊥, i>)← f(i, i⊥, i>, SAT2,GS(C∗)); i← g(i⊥, i>)
9: until i⊥ ≤ i>

10: return C∗

The cost of C∗ provides the upper bound on the optimal solution. If either query
returns UNSAT, the current cost i provides the lower bound on the optimal
solution. The second query being UNSAT implies that the rough precision δinit
produced a false positive, and thus it is refined for the next iteration (line 7).

The actual search strategy used in Algorithm 1 is given by the functions
f controlling how the upper (i>) and lower (i⊥) bounds on the cost are updated
and by g determining the next cost to explore. Note that such bounds ensure the
termination of the algorithm (line 9). In the bottom-up approach, f “terminates”
the search (i.e. causes i⊥ > i>) if SAT2 is true (i.e. when the first SAT witness
is obtained), otherwise f sets (i⊥, i>) ← (i + 1, i>) and g sets i ← i⊥. In the
top-down case, f terminates the search if SAT2 is false (i.e. at the first UNSAT
witness), otherwise it sets (i⊥, i>)← (i⊥,GS(C∗)−1) and i← i>, where GS(C∗)
is the cost of CRN C∗. Binary search is obtained with f that updates (i⊥, i>)
to (i⊥,GS(C∗) − 1) if SAT2 = true, to (i + 1, i>) otherwise, and with g that
updates i to i⊥ + b(i> − i⊥)/2c.

5 Experimental Evaluation

We evaluate the usefulness and performance of our optimal synthesis method on
three case studies, representative of important problems studied in biology: (1)
the bell-shape generator, a component occurring in signaling cascades; (2)
Super Poisson, where we synthesize CRN implementations of stochastic pro-
cesses with prescribed levels of process noise; and (3) Phosphorelay network,
where we synthesize CRNs exhibiting switch-like sigmoidal profiles, which is
the biochemical mechanism underlying cellular decision-making, driving in turn
development and differentiation.

We employ the solver iSAT(ODE) [25, 26]10, even if our algorithm supports
any δ-solver. We ran preliminary experiments using the tool dReal [30], finding
that iSAT performs significantly better on our instances. All experiments were

10Version r2806. Parameters: --maxdepth=k (k is the BMC unrolling depth) and
--ode-opts=--continue-after-not-reaching-horizon.
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binary-search 2/4 3440/3121

Table 2: Performance of bell-shape generator model. Left: runtimes for different
precisions δ and discrete search space size. Right: optimal synthesis with differ-
ent variants of Algorithm 1, fixed discrete search space size (1536) and δ = 10−3.

run on a server with a Intel Xeon CPU E5645 @2.40GHz processor (using a single
core) and 24GB @1333MHz RAM.

Bell-Shape Generator. We use the example described in Examples 1 and 3,
resulting in 8 parametric ODEs, as the main benchmark. The synthesised CRN
is shown in Figure 1. In the first experiment, we evaluate the scalability of the
solver with respect to precision δ and the size of the discrete search space, altered
by changing the domains of species and coefficient variables of the sketch. We
exclude cost constraints as they reduce the size of the search space. Runtimes,
reported in Table 2 (left), correspond to a single call to iSAT with different δ
values, leading to SAT outcomes in all cases. Note that the size of the continuous
state space, given by the domains of rate variables, does not impose such a
performance degradation, as shown in Table 3 (right) for a different model.

In the second experiment, we analyse how cost constraints and different vari-
ants of Algorithm 1 affect the performance of optimal synthesis. Table 2 (right)
shows the number of iSAT calls with UNSAT/SAT outcomes (2nd column) and
total runtimes without/with the improvement that attempts to obtain UNSAT
witnesses at lower precision (δinit = 10−1). Importantly, the average runtime
for a single call to iSAT is significantly improved when we use cost constraints,
since these reduce the discrete search space (between 216s and 802s with cost
constraints, 1267s without). Moreover, results clearly indicate that UNSAT cases
are considerably faster to solve, because inconsistent cost constraints typically
lead to trivial UNSAT instances. This favours the bottom-up approach over the
top-down. In this example, the bottom-up approach also outperforms binary-
search, but we expect the opposite situation for synthesis problems with wider
spectra of costs. As expected, we observe a speed-up when using a lower precision
for UNSAT witnesses, except for the top-down approach.

Super Poisson. We demonstrate that our approach is able to synthesise a CRN
that behaves as a stochastic process, namely, a super Poisson process having
variance greater than its expectation. We formalise the behaviour on the interval
[0, 1] using a 1-phase specification as shown in Table 3 (left). For N = 100 we
consider the sketch listed in Table 3 (center) where both reactions are mandatory,
reflecting the knowledge that A is both produced and degraded.



inv1 ≡ C[A] > E[A]

pre-post1 ≡ T
′ = 1

Λ = {A,B}, Λo = {B}, λ1, λ2 : Λ,
Rm = {τ1, τ2}, A0 = B0 = 0,
k1, k2 : [0, 100], c1, c2, c3 : [0, 2]

τ1 :→k1 c1A+ c2λ1; τ2 : A→k2 c3λ2;

Rate interval Time (s)

[0, 1] 4
[0, 10] 18
[0, 100] 31

Table 3: Left: The 1-phase specification of the super Poisson process. Centre:
The sketch. Right: Runtimes for different precisions.

Using precision δ = 10−3, we obtained the optimal solution { 23−→ 2A,A
94−→}

(cost 16) in 4s. Notably, the synthesis without the cost constraints took 19s.
Moreover, the ability to reason over the variance allows the solver to discard
solution {→ A,A →} (implementation of a Poisson process [15]), which would
have led to a variance equal to expectation. Table 3 (right) demonstrates the
scalability of our approach with respect to the size of the continuous parameter
space. Despite its non-trivial size (10 ODEs and discrete search space of size
288), we obtain remarkable performance, with runtimes in the order of seconds.

Phosphorelay Network. In the last case study we present a rate synthesis
problem (i.e. all discrete parameters are instantiated) for a three-layer phospho-
relay network [22]. In this network, each layer Li (i = 1, 2, 3) can be found in
phosphorylated form, Lip, and there is the ligand B, acting as an input for the
network. The authors of [22] were interested in finding rates such that the time
dynamics of L3p shows ultra-sensitivity – a sigmoid shape of the time evolution
of L3p – which they obtained by manually varying the parameters until the right
profile was discovered. We show that our approach can automatically find these
parameters, thus overcoming such a tedious and time-consuming task.

k1 = 15, k2 = 53, k3 = 90, k4 = 3
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Fig. 1: The synthesised rates and
the corresponding profile (without
variance constraints).

We formalise the required behaviour
using the 2-phase specification as shown
in Table 4 (left). In particular, we con-
sider a time interval [0, 1] during which
L3p never decreases (E(1)[L3p] ≥ 0), and
we require that an inflection point in the
second derivative occurs in the transition
between the two phases. At the final time
we require that the population of L3p is
above 100, to rule out trivial solutions. For
N = 1000 we consider the sketch listed in
Table 4 (center), inspired by [22]. Figure 1
lists the rates synthesised for δ = 10−3 and
illustrates the obtained sigmoid profile.

We further consider a more complex
variant of the problem, where we extend the specification to require that the
variance of L3p on its inflection point (the point where the variance is known
to reach its maximum [22]) is limited by a threshold. This extension led to an
encoding with 37 symbolic ODEs, compared to the 9 ODEs (7 species plus two
ODEs for the derivatives of L3p) needed for the previous specification. Table 4
(right) shows the runtimes of the synthesis process for both variants of the model
and different precisions δ. The results demonstrate that neither increasing the



inv1 ≡ E(1)[L3p] ≥ 0 ∧ E(2)[L3p] ≥ 0

pre-post1 ≡ E
(2)[L3p]′ = 0

inv2 ≡ E(1)[L3p] ≥ 0 ∧ E(2)[L3p] ≤ 0

pre-post2 ≡ E[L3p]′ > 100 ∧ T ′ = 1

L1 +B
k1−→ B + L1p

L2 + L1p
k2−→ L1 + L2p

L2p+ L3
k3−→ L2 + L3p

L3p
k4−→ L3; ∅ 1−→ B

k1, . . . , k4 : (0, 100],
Li0 = 330, Lip0 = B0 = 0

ODEs δ Time (s)

9 10−1 53
9 10−3 370
9 10−5 719
37 10−1 1052
37 10−3 11276
37 10−5 39047

Table 4: Left: The 2-phase specification of the sigmoid profile (no variance con-
straints). Centre: The sketch. Right: Runtimes for different precisions and the
two variants (without and with covariances).

number of ODEs nor improving the precision leads to exponential slowdown of
the synthesis process, indicating good scalability of our approach.

6 Conclusion

Automated synthesis of biochemical systems that exhibit prescribed behaviour is
a landmark of synthetic and system biology. We presented a solution to this prob-
lem, introducing a novel method for SMT-based optimal synthesis of stochastic
CRNs from rich temporal specifications and sketches (syntactic templates). By
means of the LNA, we define the semantics of a sketch in terms of a set of
parametric ODEs quadratic in the number of species, which allows us to reason
about stochastic aspects not possible with the deterministic ODE-based seman-
tics. Able to synthesize challenging systems with up to 37 ODEs and ∼ 10K
admissible network topologies, our method shows unprecedented scalability and
paves the way for design automation for provably-correct molecular devices.

In future work we will explore alternative notions of optimality and encod-
ings, and develop a software tool based on parallel search strategies.
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