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Introduction
Many statically and dynamically typed languages attempt

to achieve flexibility in their type discipline by some notion of

subtyping. Subtyping relaxes the requirement that functions

take arguments of a given type, by allowing arguments of any

subtype of that type to be given. Such functions can accept

arguments of types which will only be defined in the future;

the open-ended character of this situation is important in large

systems where it is essential to be able to extend existing

facilities without modifying them.

Some languages attempt to use subtyping as a uniform

structuring principle, noticeably pure object-oriented

languages such as Smalltalk. Other languages are fairly

consistent in their treatment of subtyping for some specific

data types; this is the case, for example, for Simula67

subclasses and Pascal subranges. More commonly, ad-hoc

notions of subtyping are introduced to relax type rules that

seem too restrictive; this is the case for inclusions of basic

types and notions such as sub-modules and sub-interfaces.

The purpose of this paper is to present a type system

where subtyping is an orthogonal concept that applies to all

type constructions, including function types, abstract types,

and interfaces. Expressive power and feasibility of

typechecking are our major concerns. Expressive power alone

might point us to viewing subtypes as arbitrary subsets, but

the desire to perform typechecking leads us to a more

restricted, structural, notion of subtyping.

A type can be intuitively regarded as defining a set of

values: the set of values having that type. It is then natural to

consider the notion of subtype as analogous to the notion of

subset: a type A is a subtype of a type B if all the values of

type A are also values of type B.

Types are not intended as arbitrary sets of values, but as

sets whose elements share a common structure (or behavior),

with the property that the structure of a value (or the structure

of a description of it) can help determine its type. For

example, a pair is obviously related, because of its structure,

to a cartesian product type, while a prime number is not so

obviously related to the hypothetical type of prime numbers.

Typechecking is often easier (e.g., it does not require theorem

proving) if the types are structural, in this sense.

Similarly, subtypes should not be intended as arbitrary

subsets. An arbitrary subset of a type corresponds to an

arbitrary predicate, which for typechecking purposes may be

very hard to test. As candidates for subtypes, we should look

for structural subsets, i.e., for subsets that are determined by

the structure of values (or their descriptions).

As an example, a simple notion of structural subtyping

can be defined on record types: two record types are in a

subtyping relation if one of them has more fields than the

other, while the common fields have compatible types. Given

a record value, it is possible to infer its most general record

type, and to verify that that record is a member of any given

subtype of that type.

In the type system presented in the next sections, typing

and subtyping are determined strictly by structure, hence we

diverge from the common programming language practice of

matching types by name according to the name given to them

in type declarations. Since pure name matching is never used

in languages, it may be useful to study structural matching

just to understand situations where a mixture of name and
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structural matching is used. It is also conceivable to add name

matching rules to type systems based on structural matching,

but many complex issues arise and we do not explore these

here. The main advantage of pure structural matching is that

types (including abstract types) have meaning independently

of "when" they are generated; for example, their values can be

stored and retrieved in distinct programming sessions.

We shall show how to extend the basic subtyping

relations, such as the one among records, to all type

constructors in certain languages. This program can be carried

out in many type systems, for example [Cardelli 84] applied it
to first-order λ-calculus, [Cardelli Wegner 85] to second-order

λ-calculus, and [Wand 87] to polymorphic λ-calculus with

implicit typing. Here we apply it to a more general type

system derived from intuitionistic type theory [Martin-Löf 73]

[Cardelli 86].

A novel notion of power types, analogous to powersets, is

introduced to model subtyping in such a system. Combined

with type quantifiers, power types can express bounded type

quantification, leading to parametric inheritance and partially-

abstract data types.

One of our types will be the type Type. We adopt here the

property Type:Type (Type has itself type Type). There are

both theoretical and practical reasons for not wanting this

property (while still admitting Type as a type), and we discuss

this later. For now, we simply remark that the Type:Type

property simplifies the exposition of the the kind of type

systems we are interested in, and provides a starting point for

studying various systems which do not admit this property.

It is not feasible to illustrate all the different situations

that can be modeled in our type system; we just remark that

most of the examples in [Burstall Lampson 84]  and [Cardelli

Wegner 85] can be directly translated. In this paper we

concentrate on examples involving dependent types and

power types.

Notation and basic rules
Our type system is defined by type inference rules,

describing how the type of an expression can be inferred from

the types of its subexpressions. These rules do not define a

typechecking algorithm, but are sufficient to specify (a

superset of) what a typechecker should do; they are much

easier to understand and less technology-dependent than any

given algorithm.

The type inference rules are introduced in groups, one

group for each type operator. The rules which are not

connected to any specific type operator are described in this

section.

Following the notation in [Harper Honsell Plotkin 87], S

denotes signatures associating types to constants, E denotes

environments associating types to variables, and the
judgement E ∫ S a:A  is read "we can deduce that the

expression a has type A, in a signature S and an environment

E".
The judgement E ∫S A↔B is read "expressions A and B

are definitionally (syntactically) equivalent". The exact rules

for definitional equivalence depend on the language, but they
should always guarantee that ↔  is an equivalence relation

which is also a congruence over the terms of the language.

The notation E,x:A stands for the environment E

extended with the assumption that the variable x has type A.

The notation S,k:A stands for the signature S extended with a
constant k of type A. Finally, B{x←a} stands for the result of

substituting the term a for the free occurrences of the variable

x in the term B.

We need some well-formedness rules for signatures and

environments: the judgement ∫ S sig asserts that S is well
formed, and the judgement ∫S E env asserts that E is well

formed in the signature S. Hence we have four basic

judgements, to be defined by inference rules:

∫ S sig S is a well-formed signature
 ∫S E env E is a well-formed environment

E ∫S a:A a has type A

E ∫S A↔B A and B are equivalent

We do not need a subtyping judgement, since it is obtained as

a special case of the typing judgement.

We briefly describe how the first two judgements are
defined. The empty signature ∅ is well-formed; if S is well-

formed and A is a type (i.e., ∅  ∫S A:Type) then S,k:A is well-

formed, provided k is not already defined in S. The empty
environment ∅ is well-formed in any well-formed signature;

if E is a well-formed environment in the signature S, and A is
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a type (i.e., E ∫S A:Type), then E,x:A is well-formed in S,

provided x is not already defined in E.

We always identify terms up to renaming of bound

variables.

Our first typing rule is also the only one which applies to

all terms, regardless of their syntactic shape. It asserts that if a

value has a type A, and A can be shown to be equivalent to a

type B, then that value also has type B (the horizontal line is

read "implies").

Conversion
E ∫S a:A    E ∫S A↔B
—————————

E ∫S a:B

This rule says that equivalent types may replace each other as

the type of a term. The precise definition of equivalence shall

be discussed as we introduce type constructors. For the kind

of type systems we are considering, equivalence normally

includes equality up to typed lambda-conversion; hence the

Conversion rule may imply that arbitrary computations can be

carried out at the type level.

Each syntactic construct has its type rules. Here are the

rule for the simplest constructs: constants and variables. The

other constructs are treated in the next sections.

Given
∫S E env       k:A ∈ S

—————————

E ∫S k:A

Assumption
∫S E env       x:A ∈ E

—————————

E ∫S x:A

That is, if a constant (resp., variable) has a type in an

signature (environment) then we can trivially deduce that that

constant (variable) has that type.

Power types
Subtypes are intuitively analogous to subsets; power types

can then be intuitively understood as powersets. If A is a type,

then Power(A) is the type whose elements are all the subtypes

of A; if B has type Power(A) then B is a subtype of A (written
B⊆ A, as an abbreviation of B:Power(A)). Our first task is to

give formation, introduction, elimination and subtyping rules

for Power (a similar task has to be carried out for all  type

constructors).

Power Formation
E ∫S A:Type

—————————

E ∫S Power(A) : Type

Power Introduction
E ∫S A:Type

——————

E ∫S A ⊆  A

Power Elimination
E ∫S a:A    E ∫S A

 ⊆  B
——————————

E ∫S a:B

Power Subtyping
E ∫S A ⊆  B

———————————

E ∫S Power(A) ⊆  Power(B)

The formation rule asserts that if A is a type then

Power(A) is also a type. (In general, formation rules prescribe

how to construct a legal type.)

The introduction rule asserts that if A is a type, then A is

a subtype of itself (i.e., A has type Power(A)). (In general,

introduction rules prescribe how to create an object whose

type is given by a type constructor.)

The elimination rule asserts that if a has type A and A is a

subtype of B, then a has also type B. (In general, elimination

rules prescribe how to use an object whose type is given by a

type constructor.)

Finally, the subtyping rule asserts that if A is a subtype of

B, then Power(A) is a subtype of Power(B), i.e., Power(A) has

type Power(Power(B)). (In general, subtyping rules determine

the subtypes of a given type constructor.)

The Power operator can be understood simply as a way of

introducing subtyping into the system, but we shall see that

new and interesting types can be expressed when combining

Power with type quantifiers.
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Variant types
Variant types are unordered, n-ary disjoint unions of

types; the component types are indexed by distinct tags (or

labels). An element of a variant type is a pair of a tag and a

value of the type determined by that tag.

Variant Formation
E ∫S A1

: Type   ...   E ∫S An
: Type

——————————————

E ∫S [t1:A1
 ... t

n
:A

n
]: Type

Variant Introduction
E ∫S ai

: A
i

 
 i∈ 1..n

——————————————————

E ∫S [ti=a
i
] as [t

1
:A

1
 ... t

n
:A

n
]: [t

1
:A

1
 ... t

n
:A

n
]

Variant Elimination (where  C = [t
1
:A

1
 ... t

n
:A

n
])

E ∫S c:C      E,z:C ∫S B : Type
E,x

i
:A

i
∫S bi

:B{z←[t
i
=x

i
] as C}      i ∈ 1..n

——————————————————————

E ∫S case(z:C=c)B | [t
1
=x

1
] b

1
 ... | [t

n
=x

n
] b

n
 : B{z←c}

Variant Subtyping
E ∫S A1

 ⊆  B
1
   ...   E ∫S An

 ⊆  B
n
   ...   E ∫S Bm

: Type
—————————————————————

E ∫S [t1:A1
 ... t

n
:A

n
] ⊆  [t

1
:B

1
 ... t

n
:B

n
 ... t

m
:B

m
]

The formation rule constructs a variant type out of n
(distinct) tags t

1
 ... t

n
 and n types A

1
 ... A

n
. We identify variant

types up to permutation of the tagged type components.
The introduction rule constructs a variant object [t

i
=a

i
] as

[t
1
:A

1
 ... t

n
:A

n
] by labeling a term a

i
 with a tag t

i
 and specifying

its full disjoint union type [t
1
:A

1
 ... t

n
:A

n
] so that there is no

ambiguity (the latter would normally be omitted if it can be

inferred).

The elimination rule describes the typing of the case

expression, which is used to inspect variant objects. If c has
the form [ti=ai] as C, then the branch bi is executed with xi

bound to ai. The type B is the result type of the case statement;

it may have a free variable z which is bound to c. Normally

the result type does not depend on the value being

discriminated on, so case(z:C=c)B can be abbreviated as case

c. We identify case expressions up to permutation of their

branches.

The subtyping rule says that a variant of n components is

also a variant of n+k components, if the corresponding

components are in the subtyping relation.

The ↔  relation is extended with the typed computation

rules for variant and case expressions.

Examples
It is a simple excercise to derive booleans and

conditionals from variants.

Many examples will use enumeration types, which are a

special case of variant types. If we assume a trivial type Ok,

with a single constant ok:Ok, then we can take the

enumeration type "[A, B, C]" as an abbreviation for "[A: Ok,

B: Ok, C: Ok]", and "[A] as [A, B, C]" as an abbreviation for

"[A = ok] as [A, B, C]".

Throughout the paper, we use electronic video

components as sources of examples. The main parameters of a

video component are the kind of signal it can receive and, in

the case of a video cassette recorder, the tape format it can

accept. These parameters are expressed as enumeration types.

(All definitions have the form "def x:A = a" where x is a

variable, A is a term of type Type and a is a term of type A;

the type A may be omitted.)

def Signal: Type = [Ntsc, Pal, Secam]

def Format: Type = [Vhs, Beta, EightMm]

As a simple example of subtyping, we can define the type

of European video signals:

def EuropeanSignal: Type = [Pal, Secam]

According to the variant subtyping rule, we have
EuropeanSignal ⊆ Signal.

Record types
Record types have a natural subtyping relation, coming

from object-oriented programming. Given a record type A, a

subtype B of A can be formed by adding fields to A.

Normally (e.g., in Simula67) this is done by specifying

only the additional fields of B and its dependency on A. This

only provides for single inheritance (when the subtyping

hierarchy on record types forms a tree) and has name-

matching instead of structure matching at the base of type

compatibility.
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To achieve structural subtyping we assume that the fields

of records and record types are unordered (and uniquely

identified by their tags), and that type matching is performed

field-wise by matching type components indexed by the same

tag. This gives us a form of multiple inheritance since a record

type can be a subtype of many (possibly incompatible) record

types, namely all those types which structurally have fewer

fields. This is formalized in the following rules.

Record Formation
E ∫S A1

: Type   ...   E ∫S An
: Type

——————————————

E ∫S {t
1
:A

1
 ... t

n
:A

n
}: Type

Record Introduction
E ∫S a1

: A
1
   ...   E ∫S an

: A
n

———————————————

E ∫S {t
1
=a

1
 ... t

n
=a

n
} : {t

1
:A

1
 ... t

n
:A

n
}

Record Elimination
E ∫S r: {t

1
:A

1
 ... t

n
:A

n
}  i ∈ 1..n

—————————

E ∫S r.ti
: A

i

Record Subtyping
E ∫S A1 ⊆  B

1
   ...   E ∫S An

 ⊆  B
n
   ...   E ∫S Am

: Type
—————————————————————

E ∫S {t
1
:A

1
 ... t

n
:A

n
 ... t

m
:A

m
} ⊆  {t

1
:B

1
 ... t

n
:B

n
}

The formation rule says how to make a record type out of
n (distinct) tags t

1
 ... t

n
 and n types A

1
 ... A

n
. The introduction

rule determines the type of a record object. The elimination

rule describes how to extract a record field, with the usual dot

notation. The subtyping rule says that a subtype of a record

type can be obtained by adding fields, or by weakening the

existing component types. We identify records and record

types up to reordering of their tagged components.

It may seem surprising that a record with three

components is a subtype (intuitively, subset) of a record with

two components, instead of vice-versa. To make sense of this,

one must think in terms of the set of values of a type. Every

record with three fields is (i.e., can be used as) a record with

two fields (and not vice-versa). Hence there are more records

with two fields than records with three fields. Hence a set of

records with three fields is a subset of a corresponding set of

records with two fields.

The ↔  relation is extended with the typed computation

rules for records and record selections.

Examples
We build a multiple inheritance hierarchy of video

components. A generic video component has a signal type as

its only attribute. A video camera has a signal type and a

zoom capability. A video recorder has a signal type and a tape

format. Finally, a cam-corder is both a camera and a recorder,

and has the attributes of both.

def VideoComponent: Type =

{signal: Signal}

def VideoCamera: Type =

{signal: Signal,

 zoom: Boolean}

def VideoRecorder: Type =

{signal: Signal,

 format: Format}

def CamCorder: Type =

{signal: Signal,

 format: Format,

 zoom: Boolean}

Now we define a particular video component (a 25- inch

tv set) that has Ntsc as its signal.

def myTv =

{signal = [Ntsc] as Signal,

 inches = 25}

By subtyping, myTv is a VideoComponent. Note that no

type of tv sets has been defined yet; this can be done now, and
we obtain myTv: TvSet and TvSet⊆ VideoComponent.

Structural typing and subtyping permits this kind of after-the-

fact definitions.

def TvSet: Type =

{signal: Signal, inches: Integer}
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Here is another video component which has type

CamCorder and (by subtyping) VideoCamera,

VideoRecorder, VideoComponent, and many others (but not

TvSet).

def myCamCorder: CamCorder =

{signal = [Ntsc] as Signal,

 format = [EightMm] as Format,

 zoom = True}

Dependent function types
The type All(x:A)B is the type of all functions mapping

an element x of type A into an element of type B, where B

may depend on (have free occurrences of) the variable x. In

the non-dependent case, when x does not occur in B, we

reduce to an ordinary function space which can be written as
A→B. In case that A=Type, the dependent function type

reduces to universal type quantification, written ∀ x. B, which

can model parametric polymorphism [Reynolds 85]. Full

dependent types are strictly more powerful than these two

special cases, since we can have types depending on values, as

we shall see in the examples.

All Formation
E ∫S A:Type      E, x:A ∫S B:Type

——————————————

E ∫S All(x:A)B : Type

All Introduction
E ∫S A:Type    E, x:A ∫S b:B

————————————

E ∫S fun(x:A)b : All(x:A)B

All Elimination
E ∫S a:A    E ∫S b: All(x:A)B

————————————

E ∫S b(a): B{x←a}

All Subtyping
E ∫S A0 ⊆  A      E,x:A0 ∫S B ⊆  B0

——————————————

E ∫S All(x:A)B ⊆  All(x:A0)B0

The introduction rule concerns functions, and the

elimination rule concerns applications; note that the type of

the result of an application depends on the value of the

parameter.

The subtyping rule is a generalization of the ordinary

contravariance rule for function spaces. A (dependent)

function space is a subtype of another one if the domains are

in the inverse inclusion relation, and the ranges are in the

direct inclusion relation with an assumption about the free

variable x.

The subtyping rule extends subtyping to higher-order

function spaces. This integrates at the type level functional

programming, which is based on higher-order functions, with

object-oriented programming, which is based on first-order

subtyping. This rule also defines subtyping for parametric

polymorphic types, since we have seen that these are a special

case of dependent types.

Combining dependent function types with the Power

operator, we can express interesting new types such as
All(A⊆ B)A→A (which is an abbreviation for

All(A:Power(B))A→ A). This is the type of all functions

which given as first argument any subtype of B and as second

argument an object of that subtype, return a result of that
subtype. One such function is fun(A⊆ B) fun(a:A)a, the

polymorphic identity over subtypes of B. The prefix
All(A⊆ B) is called a bounded universal quantifier .

A reason for choosing Power as the subtyping primitive,
instead of ⊆ , is that it allows us to introduce uniform

abbreviations (such as the prefix fun(A⊆ B) for

fun(A:Power(B))) in all binding positions, without needing

special binders for subtyping. Note however that the
expressiveness of Power goes beyond ⊆  and bounded

quantification, for example when Power appears in the result

type of a function.
The ↔  relation is extended with typed β  and η

reductions.

Examples
A video tape has a format and a length. Instead of

defining the type of video tapes directly, we define a function

which given a format type returns the type of tapes of that

format:

def TapeOfFormat: All(F⊆ Format) Type =

fun(F⊆ Format) {format: F, length: Integer}



Page 7

The type of all video tapes is simply
TapeOfFormat(Format) ↔ {format: Format, length: Integer},

but we can be more specific and define the type of eight-

millimeter video tapes only:

def EightMmTape: Type =

TapeOfFormat([EightMm])

Then we can define a particular video tape:

def myTape: EightMmTape =

{format = [EightMm] as [EightMm],

  length = 120}

The following function produces a type (a subtype of

Format) out of a value (a VideoRecorder). Note that the result

type of this function could be Type, but Power(Format) is

more precise.

def FormatOfVcr:
All(Vcr⊆ VideoRecorder) Vcr → Power(Format) =

fun(Vcr⊆ VideoRecorder) fun(vcr: Vcr)

    case (f:Format=vcr.format) Power(Format)

    | [Vhs=x]  [Vhs]

    | [Beta=x]  [Beta]

    | [EightMm=x]  [EightMm]

We can now compose TapeOfFormat and FormatOfVcr

to obtain the type of tapes which are compatible with a given

vcr.

def TapeForVcr:
All(Vcr⊆ VideoRecorder) Vcr → Type =

fun(Vcr⊆ VideoRecorder) fun(vcr: Vcr)

    TapeOfFormat(FormatOfVcr(Vcr)(vcr))

For example, myCamCorder requires eight-millimeter

tapes. Note the subtyping relations.

TapeForVcr(CamCorder)(myCamCorder)
 ↔ {format: [EightMm], length: Integer}

Finally, we can write a procedure which given a vcr and a

tape of the correct format, "inserts" the tape in the vcr, by

returning the pair of them:

def insertTape:
All(Vcr⊆ VideoRecorder) All(vcr: Vcr)

  All(tape: TapeForVcr(Vcr)(vcr))

    {vcr: Vcr, tape: TapeForVcr(Vcr)(vcr)} =
fun(Vcr⊆ VideoRecorder) fun(vcr: Vcr)

  fun(tape: TapeForVcr(Vcr)(vcr))

    {vcr = vcr, tape = tape};

For example, it is legal to use myTape in myCamCorder

(but typechecking would fail when trying to insert the wrong

kind of tape):

insertTape(CamCorder)(myCamCorder)(myTape)
↔ {vcr = myCamCorder, tape = myTape}

In these examples, some apparently dynamic relations

which depend on object values (like "being a tape of the

correct format"), are statically captured by the type system. A

word of caution is due here. Dependent types can capture

"more" situations statically, but not arbitrary situations. More

complex semantic relations may be inexpressible and

typechecking may fail. The point here is to show something

which is not normally typecheckable, but one should not infer

that everything is typecheckable. In particular, types in this

system are still not first-class values, since there are no

operations for inspecting their structure.

Dependent pair types
The type Some(x:A)B is the type of all pairs consisting of

a left component x of type A and a right component of type B,

where B may depend on the value of the left component

(since it may have free occurrences of x). In the non-

dependent case, when x does not occur in B, we have a simple
cartesian product, written A×B. In case that A=Type, we have

existential type quantification [Mitchell Plotkin 85], written
∃ x. B, and which can model abstract types and interfaces. For

example, Some(A:Type)A×(A→Int) is the type of a package

providing a constant of type A and an operation of type
A→Int over a hidden representation type A. Combining
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dependent function and dependent pair types, one can give

account of various parametric module mechanisms

[MacQueen 86].

Some Formation
E ∫S A:Type     E, x:A ∫S B:Type

——————————————

E ∫S Some(x:A)B : Type

Some Introduction
E ∫S a:A     E ∫S b{x←a}:B{x←a}

———————————————

E ∫S pair(x:A=a)b:B :  Some(x:A)B

Some Elimination
E ∫S c : Some(x:A)B     E, z:Some(x:A)B ∫S C:Type

E,x:A,y:B ∫S d:C{z←pair(x:A=x)y:B}
—————————————————————

E ∫S bind x,y=c in d  :  C{z←c}

Some Subtyping
E ∫S A ⊆  A0      E,x:A ∫S B ⊆  B0

———————————————

E ∫S Some(x:A)B ⊆  Some(x:A0)B0

The introduction rule concerns pairs: pair(x:A=a)b:B is

the pair with left component a of type A and right component

b of type B (written <a,b> in simple non-dependent

situations), where the variable x of type A is bound to a and

may appear in b and B.

The elimination rule concerns splitting pairs into their

components: bind x,y=c in d splits the pair c and binds the

components to the variables x,y which can be used in the

scope d. The left and right projections of a pair can be easily

defined.

The subtyping rule defines subtyping for cartesian

products and abstract types as special cases. Combining

dependent pair types with Power we can express partially
abstract types: for example the interface Some(A⊆ B )

A×(A→Int) is the type of a package in which the

representation type A is unknown, except that A is known to

be a subtype of B.
The ↔  relation is extended with (the typed versions of)

the reductions:
bind x,y = pair(z=a) b in d   ↔   d{x←a, y←b{z←a}}

pair(z=bind x,y = c in x) bind x,y = c in y   ↔   c

where z does not occur free in c.

Examples
A vcr gift is a package consisting of three items: the type

of vcr contained in the package, a vcr of that type, and a tape

of the correct format.

def VcrGift: Type =
Some(Vcr⊆ VideoRecorder) Some(vcr: Vcr)

    TapeForVcr(Vcr)(vcr)

For example, here is how to wrap myCamCorder and myTape

as a gift:

def gift: VcrGift =
pair(Vcr⊆ VideoRecorder = CamCorder)

  pair(vcr: Vcr = myCamCorder)

    myTape

Recursive types
Recursion can be introduced by an operator rec(x:A)a (the

variable x occurring in a is recursively identified with a) with
a reduction rule rec(x:A)a ↔  a{x←rec(x:A)a} (given the

appropriate type assumptions). Note that this operator can be

used for building recursive values, and also recursive types

when A=Type, taking advantage of Type:Type.

Rec
E ∫S A:Type    E, x:A ∫S a:A

————————————

E ∫S rec(x:A)a : A

This rule says how to build a recursive value or type. We

do not need any other rules, since we can fold or unfold the

recursion whenever needed, according to the reduction rule.

Type universe

Finally, we have to provide the rules for Type. We only

need formation and subtyping:

Type Formation
∫S E env

———————

E ∫S Type : Type
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Type Subtyping
E ∫S A:Type

——————————

E ∫S Power(A) ⊆  Type

The formation rule says that Type is a member of itself.

The subtyping rules says that if A is a type, then Power(A) is

a subtype of Type (intuitively, the collection of subtypes of A

is a subset of the collection of all types). In particular
Power(Type) ⊆  Type, and we already had rules implying

Power(Type) : Type and Type : Power(Type). The transitivity
of ⊆ can be derived.

Discussion
We now discuss some of the troublesome aspects of our

type system.

Undecidable typechecking
Our system is striving for expressiveness, which is

achieved by providing a rich set of constructions at the type

level. In fact, arbitrary computations, and in particular non-

terminating computations, can be carried out at the type level

because of the presence of a general recursion operator. (Even

without general recursion, the Type:Type property is

sufficient to express non-terminating computations [Girard

71].)

Recursion is necessary  to express recursive types in the

familiar ways. (Most such types can be expressed without

recursion, but this leads to an unacceptably awkward

programming style.) Hence one must choose between limiting

the expressive power of the system, or living with possibly

non-terminating typechecking. Without ruling out the viability

of the former solution, we have chosen the latter, since

virtually all common programming situations, and many

uncommon ones, can be typechecked, using reasonably

simple and efficient techniques [Cardelli 87].

The basic reason typechecking works in practice is that it

is still fundamentally based on type structure. The situations

in which typechecking diverges turn out to be either

degenerate, or the result of using the full power of the system,

beyond what is possible to typecheck in ordinary languages.

Kind and phase distinctions
The system presented here makes use of the controversial

Type:Type property. This property presents theoretical

problems [Meyer Reinhold 86] and practical implementation

problems [Cardelli 87], sketched below.

The Type:Type property is perfectly acceptable in purely-

applicative interpretive languages, such as languages for

describing modular structure [Burstall 84]. None of the

theoretical objections seem to apply to this class of

applications, and the implementation problems are avoided by

using interpretive techniques.

The basic problem of Type:Type is that it eliminates the

distinctions between types and kinds (the types of types),

hence introducing confusion into the system. Distinguishing

between types and kinds is however not trivial; several

interesting design decisions come up. For example, one has to
decide whether All(A:Type) A→A is a type or a kind. In the

former case we obtain proper polymorphic functions as

values, in the latter case polymorphic functions must be fully

instantiated before they can be used as values. Similarly, if
Some(A:Type) A×(A→Int) is a type, we obtain proper

abstract data types; if it is a kind, the instances of abstract

types are second-class values, as it happens in most module

systems.

Eliminating the distinctions between types and kinds

through Type:Type, also indirectly confuses the distinctions

between values and types. For example consider the program f

= fun(A:Type) fun(x:A) x, and try and answer the question "is

x a value?", or "is the result of f a value?". This cannot be

determined, because the following applications are both legal:

f(Integer)(3) and f(Type)(Integer).

This mixing of value and type levels becomes a

considerable obstacle when considering compiled languages,

or languages extended with imperative features, which must

make a clear distinction between compile-time and run-time

phases. In such cases, one should at least make a proper

distinction between types and kinds, or otherwise stratify the

system in order to eliminate Type:Type.

Unfortunately, the confusion between compile-time and

run-time phases can be caused by dependent types alone, even

without Type:Type. This is because of the All Elimination
rule, where B{x←a} requires an arbitrary term (possibly a

run-time value) to be substituted inside a (compile-time) type.
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Hence, for compiled languages the main question becomes

one of being able to make phase distinctions, rather than

whether to abolish Type:Type.

Since we feel there is still much to be done in the way of

introducing kind and phase distinctions, we have chosen to

present a kind-free system, using the Type:Type property,

which is simpler to present, and can be used as a paradigm for

more refined systems.

 Accidental matching
Since types match purely by structure, it is possible that

some types match by accident. This may happen in a large

programs, since the labels associated with records and

variants have global scoping.

This is obviously a problem, but there are some natural

solutions. If the values are really determined by their

structure, then nothing bad can happen by accidental type

matching. The only case in which accidental matching may

lead to problems is when values maintain implicit invariants,

not reflected in the type structure, which are violated by

accidental type matching. But when values have hidden

invariants, one should always build abstract types; then the

accidental matching problem disappears (but see the

discussion below on abstract types).

It may also seem strange that to organize a concrete

inheritance hierarchy  one has to choose the syntactic name of

labels very carefully, so that the desired hierarchy will follow.

Most object-oriented languages have declarative mechanisms

for specifying hierarchy; these could be added to our language

as syntactic sugar.

A unique property of our system is that we can set up

abstract inheritance hierarchies, of the form Some(A:Type)
Some(B⊆ A) Some(C⊆ A) ... , which can be implemented in

different ways, using different labels in the implementation

types. (In the present system, abstract multiple inheritance

hierarchies cannot be expressed, because this would require a
quantifier of the form Some(D⊆ B∩C), using a general type

intersection operator).

Abstract types
We have used the term abstract type for types of the form

P = Some(A:Type) B, because this models the concept of

having an unknown type A which supports a set of operations

of signature B.

It should be pointed out that, unlike abstract types in

second-order lambda calculus [Mitchell Plotkin 85] this

notion of type abstraction does not prevent impersonation.

That is, given a particular implementation p = pair(A:Type =

C) b:B of P, the representation type C is visible, hence one

can build an object of type A without using the operations in

b.

This problems can be partially solved by scoping

techniques; e.g., a function which must operate on arbitrary

implementations of P cannot make assumptions about any

particular C. A complete solution to the impersonation

problem requires introducing additional concepts [MacQueen

86].

On the positive side, the fact that even abstract types are

matched by structure means that redefining an abstract type

does not create a "new" one. This is convenient in interactive

systems, which often reload definitions, and in systems which

store abstract type instances across programming sessions.

Conclusions
We have presented a type system supporting a uniform

notion of subtyping in a very general framework based on

dependent types. In the present form, it can be used for purely

functional, interpreted languages. Adaptations to compiled,

imperative languages are being investigated.

We have worked in a very syntactic fashion, basing our

system on syntactic reductions and inferences. No semantic

models seem to be known, because of the difficulty of mixing

recursive types, contravariance of function types, Type:Type,

and Power. (Several models are known for systems with

various subsets of these features.) Stratified versions of this

type system may be easier to model. However it is not quite

trivial to stratify the type system while preserving desirable

programming properties, like having first-class polymorphic

functions, abstract type instances, and modules.

Elsewhere we have investigated typechecking techniques

for this type system, and we have built a prototype

typechecker which performs quite satisfactorily on a selection

of interesting programming examples, although in principle it

may diverge.
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