Stream Input/Qutput

Luca Cardelli

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

This is a proposal for sequential Input/Output in Standard ML. My ideas on IO have been deeply
influenced by the Unix operating system, however I do not consider this as an uncritical suggestion
of doing VO "like in Unix" (e.g. Common Lisp turns out to be particularly close to this proposal).
I have been under the influence of other operating systems for longer periods of time, and I have
often tried to figure out nice sets of IO primitives, but nothing came out of it. If some ideas have
come out of Unix, I like to think it is because they are inherently simple and powerful.

I think I now understand that O issues are often obfuscated by convoluted abstractions and mis-
placed efficiency considerations. Even when the right primitives are available, they are hidden
under layers of software. In a few words, most of the time they have got it wrong.

Programming languages fall into two categories with respect to I/O. System programming
languages often directly call the operating system through bizarre parameter lists, offering a jungle
of ’primitives’ with no mediating abstraction. On the other hand, VO systems in algorithmic
languages are often overrestricted and oversimplified toys (e.g. Pascal), meant as the intersection
of all possible VO systems. Very few languages have files as first class objects, which is the single
most important requirement for any non-trivial use of I/O.

It is time to include powerful VO systems within programming languages, particularly because
Unix-like operating systems, which can easily support them, are becoming universal standards, and
most modern operating systems have the necessary primitives. Crude I/O systems are particularly
crippling on personal computers, where many common VO limitations simply do not apply.

Files and processes

Streams are communication windows on the external world of files and processes. The basic
design goal of this proposal is the following:

External files and processes should
offer a uniform interface.

The above property entails great simplicity and uniformity in operating systems, and has particu-
larly been explored in Unix. Unix is totally based on the file paradigm: everything is a file; even a
terminal process "is" a pair of files because it is identified with its VO streams. Similarly, every-
thing could be based on the process paradigm. There a file "is" the process which reads and writes

it.
The important point is the consistent view of the outside world. If the file and process interfaces

Unix is a trade mark of Bell Laboratories

-2.

are uniform, then programs can be written without embedding knowledge of who or whar they will
be talking to. This makes them very flexible and usable in different and unpredictable situations.

Files can be read and wrinen; temporary files are often alternatively read and written. Processes
can accept questions and provide answers: interesting processes require a dialogue. This suggests
(even if it does not demand) that communication streams should be bipolar, admitting both input
and output actions(1). Bipolar temporary files can be implemented very efficiently by keeping
them in memory most of the time. Bipolar channels to other processes can be set up with cleaner
protocols than pairs of unipolar channels. A typical bipolar file is one used as an interface between
two passes of a compiler. A typical bipolar channel is terminal, for terminal VO (as opposed to
unipolar input and output streams).

A bipolar stream connected to a process looks like this:

Such a stream is also called a channel, or an external stream. P may be another ML system.

Any output operation should always be immediately successful. An input operation may have to
wait for P to produce some input: in this case the input operation should hang. The alternative to
hanging is failing on empty stream: this requires polling of the input (to discover when data is
ready), which is bad style and it is either wasteful (for frequent polling), or it degrades the interac-
tion (for unfrequent polling, e.g. when P is the terminal). To detect the possibility of hanging, it is
then necessary to be able to test for empty stream.

A bipolar stream connected to a file is obtained by letting P be the identity process (for an initially

empty file) or a process which executes a single initial output, and then becomes the identity (for a
file with some initial contents):

ovl

Such a stream is also called a file or an internal stream (as no external process is actually
involved). The above discussion implies that input operations should hang on empty files, even if
in this situation the wait would never end(2).

Some stream can be unipolar. /O operations fail on these stream streams if they have the wrong
polarity.

(1) Bipolar files are called pipes in Unix, and bidirectional streams in Common Lisp. This proposal does not in
any way assume the existence of pipes, and even under Unix will not be implemented by pipes. Bipolar files are
simply pairs of file descriptors pointing to the same file.

(2) The "break™ key can be used to stop infinite waits, producing an “interrupt™ exception.

External processes

Why should we bother including arbitrary external processes in an IO system? Aren't files
enough?

So far I have tried to show how natural and compelling is the extension of file primitives to
processes. Another important observation(3) is that process channels can put a stop to the dozens
of meaningless extensions that people will inevitably end up hacking in any ML system. For exam-
ple somebody may require a "date" primitive, or want to read his mail from ML.

The dirty alternatives are: (a) put "date”, "mail", etc. primitives in the ML compiler; (b) supply a
general "external function call" feature to call the date or mail routines, or any routine, endanger-
ing the ML system and undermining its type security; (c) introduce an operating system escape
mode.

The clean alternative is to dynamically create channels to the "date" and "mail" processes: this way
all the possible interaction goes through character channels which guarantee the isolation and pro-
tection of ML, while allowing two-way communication.

Will external processes change the ML programming style? I do not think so: it will just make pos-
sible things which are now impossible or awkward. The "whole world" outside ML will be avail-
able from the system by a clean, powerful and secure set of primitives, even if at the moment we
do not know what this external world will look like.

Can I implement it?

This /O system is not implementable in many high level languages (e.g. Pascal), essentially when-
ever files are not objects in the language. However most operating systems provide the necessary
primitives. Basically, it is necessary to be able to open, close, read and write simple character files,
and to position at random locations in a file. It must also be possible to perform unbuffered IO to
processes and devices, and to obtain and store file descriptors. Multiple file descriptors for the
same file are very convenient but, as far as I can see, not strictly necessary.

A good test for any VO system is whether it can support an Emacs-like screen editor. If your
favorite language cannot do it, it can probably appeal to the operating system. If your operating
system cannot do it, it is probably not worth using anyway. Conversely, if your language or operat-
ing system can support a screen editor, then there is a good chance that they can implement this
proposal.

Here is a non-exhaustive list of systems and languages on which this proposal is certainly imple-
mentable:

C/Unix (VAX, Perq, 68000's, etc.)

VAX/VMS

Multics

Apollo AEGIS

Lisp (Franz Lisp, Common Lisp, Lisp-Machine Lisp, etc.)

The proposed streams are particularly similar to Unix’s pipes and Common Lisp’s bidirectional
stream.

Stream Primitives

Stream primitives can be divided into two groups: stream creation and stream actions. Streams can
be created in a variety of ways (from files, processes and devices), but once created they admit the
same set of I/O operations.

Stream creation primitives are:

(3) Suggested by Mark Manasse

stream : unit —> stream

file : string —> stream

save : string —> stream —> unit
channel : string —> stream

terminal : stream

stream creates a new empty stream at every invocation.

file creates a stream out of a file (the argument is the file name). The file is not affected by this
operation, nor by further operations on the stream(s) extracted from it (except "save"). If the file
does not exist, an empty one is created.

save stores the current contents of a stream on a file (the first argument is a filename). The stream
is not affected; any preexisting file having that filename is deleted. Because of the way “file"
operates, there is no distinction between empty and non-existing files. Hence a file can be erased
by a "save" operation on it with an empty stream as argument.

channel creates a new stream which is a channel to the process identified by its argument. The
argument (which is operating system dependent) will usually describe an executable program which
is activated as a separate process with its input and output connected to the stream.

terminal is the standard terminal channel: input form this channel will read from the user terminal,
and output will print to the user terminal. Auxiliary terminals and other devices can be linked by
specialized channel commands. The semantics of the terminal device is not specified in detail, to
accommodate different kinds of terminals and protocols. Moreover, terminal echoing and buffer-
ing are local properties of the device, not of the terminal channel, and are not part of the seman-
tics of the I/O operations. Properties of the terminal device can conceivable be changed when
needed by communication to the operating system through an auxiliary channel.

Stream action primitives are:

input : stream —> int —> string

output : stream —> string —> unit
lookahead :stream —> (int # int) —> string
caninput :stream —> int —> bool

input inputs n characters from a stream. Input is unbuffered (i.e. the characters are available as
. soon as the process at the other end produces them) and uninterpreted (i.e. they may include back-
spaces, line dels, etc.: all the editing characters normally interpreted by the operating system(4)).
The effect of buffering can be achieved by n-char "output" operations at the other end of the
stream, and n-char "input" operations at this end. Interpretation must be programmed. If not all
the n characters are currently available, the operation hangs until they can be read from the
stream. The n characters are then exmracted from the stream and are no longer available to
succeeding input operations.

output outputs a string to a stream. Output is unbuffered (all the characters are immediately avail-
able at the other end of the stream) and uninterpreted (all Ascii characters can be transmitted on a
stream). Buffering can be achieved by emitting long strings (this is normally going to be more
efficient than emitting one character at a time). Interpretation of special signals (e.g. a character
meaning "this is the end of the message") has to be done at the other end of the stream. An output

(4) The terminal process normally interprets editing characters locally, and sends out one line at a time. In this
case line editing happens even if the stream is uninterpreted. In a different mode (needed for example in screen
editors) the terminal process transmits immediately every key stroke. In this case the uninterpreted stream
transmits the characters unchanged to the other end, where interpretation must be programmed.

-5.

operation inserts characters in a stream: any succeeding "output” operation will insert characters
after those.

lookahead behaves very much like "input”, but does not affect the stream. Given two integers, it
returns a segment of a stream: the first integer is the starting position of the segment in the stream
(the first character is at position 1), and the second integer is the length of the segment. Like
"input”, it hangs until enough characters are available. The efficiency of lookahead should be
expected to deteriorate for long or remote segment.

caninput determines whether n character are currently available for read on a stream: if they are
not, it returns false without hanging. The normal use is "if caninput s n then input s n" or "if can-
input s (n+m-1) then lookahead s (n,m)" when it is undesirable to hang.

All the above primitives can rise exceptions because of IO errors, failing with their respective
names.

Examples
Here is how to copy a stream to another stream:

val CopyStream (InStream: stream, OutStream: stream) : unit =
while caninput InStream 1 do
output OutStream (input InStream 1);

Without realizing it, we have just written a program which can print a file to the terminal:

val PrintFile (FileName: string) : unit =
CopyStream(file FileName, terminal);

Using CopyStream in the "opposite” direction, we can write a program to append memos to the
end of (possibly preexisting) memo files; the memo is read from the terminal, and is terminated by
the break key which produces an "interrupt" exception:

val Memo (FileName: string) : unit =
let val MemoStream = file FileName
in (CopyStream(terminal, MemoStream)
? save FileName MemoStream)

And here is a program which prints the date (under Unix):

val Date () =
CopyStream(channel "/bin/date", terminal);

Input prompts can be programmed this way: Prompting InChar is a version of InChar (i.e. of
"input s 1"), which prompts for input.

local val lastchar = ref ""
in val Prompting_InChar (stream: stream) (prompt: string) : string =
(if !astchar = "\L"
then output stream prompt
else ();
lastchar := input stream 1;
llastchar);

Note that, because of bipolar streams, we do not need to pass two streams to Prompting_InChar.

Notes

Multiplexing. A stream is said to be input (output) multiplexed when it is used by different
parts of a program for conceptually distinct purposes. Multiplexing is possible and well defined.
Multiplexed input and output operations simply interleave; any of those operations may affect the
result of all the succeeding I/O operations in all the other parts of the program. The predefined zer-
minal stream is multiplexed between the user and the ML system: both can do VO on the user ter-
minal. This multiplexing is set up so that every DEL char (Ascii 127, but this may depend on
implementations) typed at the keyboard is captured by the ML system and never reaches the user
program. The ML system uses this character to induce an "interrupt” exception in the user pro-
gram, so that computations can be interrupted even when they are on wait or input-loop on the ter-
minal input.

Device Mapping. Initially the "terminal” stream is connected to the standard "terminal” dev-
ice. The terminal stream can be redirected to other devices, files or processes by operating-system
commands. However this should rarely be necessary: the correct practice is to parameterize every
program with respect to the streams it uses, so that we can pass it "terminal” or some other stream.

ML-to-ML communications. These should happen through auxiliary channels (i.e. not
through "terminal" streams). The protocol to establish these channels may require running ad-hoc
external processes, or communicating directly with the operating system; hence it is not described
here.

Dead channels. If the process at the other end of a channel dies for some reason, and if its
death can be detected, then all the operations on that channel should fail. When dead channels
cannot be detected, they look just like empty streams.

Saving channels. "save" can be used to write the current contents of an external stream (i.e.
the portion which has been already generated by the other side of the channel but not yet absorbed
by this side) on a file, without affecting the stream.

Stream lifetime. Only the garbage collector can eliminate streams when they are no longer
needed. If that stream is a channel, after the elimination it will look like a dead channel to
processes at the other end. Operating systems usually allow only a very small number of files and
channels to be active at the same time. If a larger number of streams are generated, and cannot be
garbage collected, some of the old files or channels can be temporarily deactivated, until needed
again. Deactivate channels are not dead.

. Streams never end. There is no way of telling whether a file or a channel is "finished": more
input may come at any moment. Still, we want to be able to test for empty stream at any particular
moment. The only way to do this is to see whether it is- possible to read one more character: at
some level this implies a real read operation on the stream. This is why instead of an emprystream
primitive (which can be defined as "caninput s 1") we have the more explicit caninput. Moreover,
an n-char caninput is needed in conjunction with n-char input and lookahead operations. Caninput
never hangs: it always immediately returns the current state of the stream.

Streams never say ouch! Some devices (typically terminals) may require the transmission of
full 8-bit characters to execute special functions, as opposed to the Ascii 7-significant-bits charac-
ters. Hence a character should be intended as an 8-bit quantity. Characters with the 8th bit high
should be denoted inside strings by a new escape sequence "\#c", where "c" is any of the old char-
acters or escape sequences, e.g. "\#L" (high L), "\#\L" (high linefeed), "\#\"C" (high control-C),
etc. Any 8-bit character can be transmitted on a stream; no exceptions. Some systems use particu-
lar characters for particular functions (e.g. end-of-transmission), or use the 8th bit for parity
checking. In these situations all the anomalous characters have to be transparently encoded and
decoded to transmit them on streams. When reading a stream from the terminal, it may be neces-
sary to have an end-of-stream character to terminate the input (e.g. "D in Unix). This must be
explicitly programmed. Note that it may be sufficient to use the break key and trap the correspond-
ing exception.

The power of lookahead. "lookahead" may seem too general. Here is an application where
all its power is needed. Suppose one wants to write an input scanner which recognizes arbitrary

o

regular expressions (these programs actually exist under Unix and are widely used). After recog-
nizing an initial segment of the input, one wants to look ahead a few more characters (without
starting from scratch again); a failure to recognize those characters might require to backtrack
before the current position. Hence one wants to "lookahead" arbitrary segments of the input, and
actually commit himself to "input" only when everything is settled. An alternative could be to have
and "uninput" primitive, replacing "lookahead”, which puts character back on the stream so that
they can be "input" again. Unfortunately "uninput" interacts badly with multiplexing.

Substandards. Robin Milner suggests the following substandard to facilitate implementa-
tions. All internal streams are unipolar; "stream" creates unipolar output streams, "file" creates
unipolar input streams. "input s 0" and "output s "" " can be used to test the polarity of a stream
(because of the exceptions they may generate) and to determine whether an implementation is sub-
standard. Another substandard can consist in implementing a "peek s n" primitive, equivalent to
"lookahead s (1,n)", instead of the full "lookahead".

Operating system requests. Operating-system dependent operations can be performed by
communication with the operating system itself. This can be done by opening a channel to an
operating-system command interpreter. For example, under Unix the current date could be
obtained by opening a channel to the "date” process (val DateProcess = channel"/bin/date"; val
Date = ReadOneLine DateProcess;), or by opening a channel to a shell, and asking it to execute
the "date” command (val ShellProcess = channel"/bin/sh"; output ShellProcess "date val Date =
ReadOneLine ShellProcess). Note that this practice is potentially dangerous; it should be used only
in cases of extreme necessity, and until we agree on new language primitives which can do the
same job.

File Protection. If a file is write-protected (e.g. system files), then a "file" operation on it
will open an unipolar stream of the appropriate polarity. Similarly, if a file is read-protected. If a
file is both read and write protected, then a "no-polarity” stream should be opened, on which both
input and output operations fail. Protection schemes seem to be too operating-system dependent to
be included in this proposal. Under Unix the protection of a file could be changed by opening a
channel to a shell process, and instructing it to change the protection by a Unix command.

Are streams fast? In VO, speed is only a factor of the implementation effort (given some
basic raw speed of the storage devices), because there are so many things that can be optimized. I
am confident that the stream primitives can approach the raw speed of the operating system primi-
tives within sensible bounds. However this could be compromised when the operating system gets
in the way by not providing simple and efficient character-level /O primitives.

Implementation notes

These are ideas about the implementation of streams in Unix-like environments. The critical
assumption seems to be the presence of multiple file descriptors pointing to the same file. I think
that, in this restricted context, multiple descriptors can be simulated in environments which only
provide unique descriptors (at some cost), but I do not have very clear ideas about this problem.

Internal Streams. Internal streams are the ones obtained by "file" and "stream". They
should be kept in memory as far as possible, and all movements to disk should happen in large
chunks. A way of doing this is to use two circular buffers and two file descriptors for every inter-
nal stream. The file descriptors are only allocated at the first read and the first write operation
respectively, and not at the time of creation of the stream. The semantics of "file” requires that the
file originating the stream be copied before any write operation on the stream; the copy should not
be made as long as simple read operations are performed.

wht?
I 2 l Yo l "]\J b l "/-:l w, l ‘/l S-f'kea“"\ objﬂct_

Vrere=l 1] [co=rma] Circolar bofgers
N 4
’I \\
,’ \‘

\

[4
BT e en,

Disw file

et i A of chavacters 1 the sf‘req»\,\

If the stream contents are shorter than the sum of the lengths of the read and write buffers, every-
thing is kept in memory. When the buffers underflow or overflow, data is read form, or written to
the file in buffer units. Note that internal stream VO is buffered even if the VO primitives look
unbuffered to the user! :

The stream primitives can be based on the following InChar and OutChar routine sketches (refer-
ring to the previous figure), where + (n) is sum modulo n, and n is the size of the buffers:

OutChar(c) =
ifwl +(n)1=w0
then WriteBufferFull(c)
else (wbuffer[wl] := ¢; wl := wl +(n) 1)

WriteBufferFull(c) =
if rfp = wip {file is empty}
then ifrl +(n) 1 =10
then (WriteBufferToFile(); wbuffer[wl] := ¢; wl := wl +(n) 1)
else (tbuffer[rl] := ¢; 1l = 11 +(n) 1)
else (WriteBufferToFile(); wbuffer[wl] := ¢; wl:= wl +(n) 1)

InChar() =
if 10 = 1l
then ReadBufferEmpty
else (result := rbuffer[r0]; 10 := 10 +(n) 1; result)

ReadBufferEmpty() =
if rfp = wip {file is empty}
then if w0 +(n) 1 = wl
then Hang()
else (result := wbuffer[w0]; w0 := w0 +(n) 1; result)

-9.

else (ReadBufferFromFile(); result := rbuffer[r0]; 10 := 10 +(n) 1; result)

The "save" primitive may produce unnecessary copying of files, e.g. when a file is saved for
the last time it would be sufficient to rename the temporary file implementing the stream instead
of copying it. Instead of changing the semantics of save (I don’t see any way of doing it which
would not require unnecessary copying in some situation), I think one should implement a "copy-
by-need" strategy. For example, "save" could always rename the temporary file to the real file
without copying, but the first time the stream is subsequently affected, the real file is copied back
into a temporary stream file.

External streams. External streams are "terminal" and the ones obtained by "channel”. They
are unbuffered, but they still need an unbounded input buffer to implement the lookahead and can-
input operations. This unbounded input buffer can be implemented as a fixed length in-memory
buffer with an overflow file on disk, if needed. The file descriptors here are replaced by device or
channel descriptors.

