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Abstract. We present a process algebra for DNA computing, discussing compilation of 
other formal systems into the algebra, and compilation of the algebra into DNA structures. 

 

1  Introduction 

DNA technology is reaching the point where one can envision automatically compiling high-
level formalisms to DNA computational structures [18]. Examples so far include the ‘manual 

compilation’ of automata and Boolean networks, where some impressive demonstrations have 
been carried out [1][8][15][16]. Typically one considers sequential or functional computations, 

realized by massive numbers of molecules; we should strive, however, to take more direct ad-
vantage of massive concurrency at the molecular level. To that end it should be useful to con-

sider concurrent high-level formalism, in addition to sequential ones. In this paper we describe 
three compilation processes for concurrent languages. First, we compile a low-level combinato-
rial algebra to a certain class of composable DNA structures [17]: this is intended to be a direct 

(but not quite trivial) mapping, which provides an algebraic notation for writing concurrent 
molecular programs. Second, we compile a higher-level expression-based algebra to the low-

level combinatorial algebra, as a paradigm for compiling expressions of arbitrary complexity to 
‘assembly language’ DNA combinators. 

Third is our original motivation: translating heterogeneous collections of interacting automa-
ta [4] to molecular structures. How to do that was initially unclear, because one must choose 
some suitable ‘programmable matter’ (such as DNA) as a substrate, but must also come up with 

compositional protocols for interaction of the components that obey the high-level semantics of 
the language. We show a solution to this problem in Section 5, based on the combinatorial 

DNA algebra. The general issue there is how to realize the external choice primitive of interact-
ing automata (also present in most process algebras and operating systems), for which there is 

currently no direct DNA implementation. In DNA we can instead implement a join primitive, 
based on [17]: this is a powerful operator, widely studied in concurrency theory [7][13], which 
can indirectly provide an implementation of external choice. The DNA algebra supporting the 

translation is built around the join operator.  

2  Strand Algebras 

By a strand algebra we mean a process algebra [11] where the main components represent 
DNA strands, DNA gates, and their interactions. We begin with a nondeterministic algebra, and 

we discuss a stochastic variant in Section 4. Our strand algebras may look very similar to either 
chemical reactions, or Petri nets, or multiset-rewriting systems. The difference is that the equiv-

alent of, respectively, reactions, transitions, and rewrites, do not live outside the system, but 
rather are part of the system itself and are consumed by their own activity, reflecting their DNA 
implementation. A process algebra formulation is particularly appropriate for such an internal 

representation of active elements. 
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2.1  The Combinatorial Strand Algebra, ����    

Our basic strand algebra has some atomic elements (signals and gates), and only two combina-

tors: parallel (concurrent) composition P | Q, and populations P*. An inexhaustible population 
P* has the property that P* = P | P*; that is, there is always one more P that can be taken from 
the population. The set � is formally the set of finite trees P generated by the syntax below; we 

freely use parentheses when representing these trees linearly as strings. Up to the algebraic 
equations described below, each P is a multiset, i.e., a solution. The signals x are taken from a 

countable set.  

2.1–1  Syntax 
 

 

 P   ::=   x  ⋮  [x1,..,xn].[x’1,..,x’m]  ⋮  0  ⋮  P1 | P2  ⋮  P*                        n≥1, m≥0  
 

 

 

A gate is an operator from signals to signals: [x1,..,xn].[x’1,..,x’m] is a gate that binds signals 

x1..xn, produces signals x’1,..,x’m, and is consumed in the process. We say that this gate joins n 
signals and then forks m signals; see some special cases below. An inert component is indicated 

by 0. Signals and gates can be combined into a ‘soup’ by parallel composition P1 | P2 (a com-
mutative and associative operator, similar to chemical ‘+’), and can also be assembled into 

inexhaustible populations, P*. 

2.1–2  Explanation of the Syntax and Abbreviations 
 

 

 x         is a signal    0 is inert  

 x1.x2   ≝ [x1].[x2]   is a transducer gate P1 | P2 is parallel composition 

 x.[x1,..,xm]  ≝ [x].[x1,..,xm] is a fork gate   P* is unbounded population  

 [x1,..,xn].x  ≝ [x1,..,xn].[x]  is a join gate  
 

 

 

The relation ≡ ⊆ �x�, called mixing, is the smallest relation satisfying the following prop-
erties; it is a substitutive equivalence relation axiomatizing a well-mixed solution [2]: 

2.1–3  Mixing 
 

 

 P ≡ P       equivalence  P ≡ Q  ⇒  P | R ≡ Q | R        in context 

 P ≡ Q  ⇒  Q ≡ P         P ≡ Q  ⇒  P* ≡ Q* 

 P ≡ Q, Q ≡ R  ⇒  P ≡ R 

              P*  ≡  P* | P                          population 

 P | 0  ≡  P      diffusion   0*  ≡  0 

 P | Q  ≡  Q | P          (P | Q)*  ≡  P* | Q* 

 P | (Q | R)  ≡  (P | Q) | R       P**  ≡  P* 
 

 

 

The relation → ⊆ �x�, called reaction, is the smallest relations satisfying the following 
properties. In addition, →*, reaction sequence, is the symmetric and transitive closure of →. 

2.1–4  Reaction 
 

 

 x1 | .. | xn | [x1,..,xn].[x’1,..,x’m]   →   x’1 | .. | x’m    gate     (n≥1, m≥0) 

 P  →  Q    ⇒    P | R  →  Q | R        dilution 

 P ≡ P’,  P’ → Q’,  Q’ ≡ Q    ⇒     P → Q     well mixing 
 

 

 

The first reaction (gate) forms the core of the semantics: the other rules allow reactions to hap-
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pen in context. Note that the special case of the gate rule for m=0 is  x1 | .. | xn | [x1,..,xn].[]  →  

0. And, in particular, x.[] annihilates an x signal. We can choose any association of operators in 
the formal gate rule: because of the associativity of parallel composition under ≡ the exact 
choice is not important. Since → is a relation, reactions are in general nondeterministic. Some 

examples are: 
 

x1 | x1.x2   →   x2 

x1 | x1.x2 | x2.x3   →*   x3 

x1 | x2 | [x1,x2].x3   →   x3 

x1 | x1.x2 | x1.x3   →   x2 | x1.x3     and     →   x3 | x1.x2 

X | ([X,x1].[x2,X])*   a catalytic system ready to transform  

            multiple x1 to x2, with catalyst X 
 

There is a duality between signals and gates: signals can interact with gates but signals cannot 
interact with signals, nor gates with gates. As we shall see, in the DNA implementation the 

input part of a gate is the Watson-Crick dual of the corresponding signal strand. This duality 
need not be exposed in the syntax: it is implicit in the separation between signals and gates, so 
we use the same x1 both for the ‘positive’ signal strand and for the complementary ‘negative’ 

gate input in a reaction like x1 | x1.x2 → x2. 
 

3  DNA Semantics 

In this section we provide a DNA implementation of the combinato-

rial strand algebra. Given a representation of signals and gates, it is 
then a simple matter to represent any strand algebra expression as a 

DNA system, since 0, P1 | P2, and P* are assemblies of signals and 
gates. 

There are many possible ways 

of representing signals and gates as 
DNA structures. First one must 
choose an overall architecture, 
which is largely dictated by a rep-

resentation of signals, and then one 
must implement the gates, which 
can take many forms with various 

qualitative and quantitative trade-offs. We follow the general principles of [17], where DNA 
computation is based on strand displacement on loop-free structures. Other architectures are 

possible, like computation with hairpins [18], but have not been fully worked out. The four-
segment signal structure in [17] yields a full implementation of the combinatorial strand algebra 

(not shown, but largely implied by that paper). Here we use a novel, simpler, signal structure.  
We represent a signal x as a DNA signal strand with three segments xh,xt,xb (Figure 1): xh = 

history, xt = toehold, xb = binding. A toehold is a segment that can reversibly interact with a 
gate: the interaction can then propagate to the adjacent binding segment. The history is accumu-
lated during previous interactions (it might even be hybridized) and is not part of signal identi-

ty. That is, x denotes the equivalence class of signal strands with any history, and a gate is a 
structure that operates uniformly on such equivalence classes. We generally use arbitrary letters 

to indicate DNA segments (which are single-stranded sequences of bases).  
A strand like b,c,d has a Watson-Crick complement (b,c,d)⊥ = d⊥,c⊥,b⊥ that, as in Figure 2, 

can partially hybridize with a,b,c along the complementary segments. For two signals x,y, if 

x≠y then neither x and y nor x and y⊥ are supposed to hybridize, and this is ensured by appro-
priate DNA coding of the segments [9][10]. We assume that all signals are made of ‘positive’ 

strands, with ‘negative’ strands occurring only in gates, and in particular in their input seg-

 
 Fig. 1: Signal Strand 

 
 Fig. 2: Hybridization 

 
 Fig. 3: Strand Displacement 

 
 Fig. 4: Annihilator 

 
 Fig. 5: Transducer 
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ments; this separation enables the use of 3-letter codes, that helps design independent sequences 

[10][20].  
The basic computational 

step of strand displacement 

[17] is shown in Figure 3 
for matching single and 

double strands. This reac-
tion starts with the reversi-

ble hybridization of the 
toehold t with the complementary 
t⊥ of a structure that is otherwise 

double-stranded. The hybridiza-
tion can then extend to the bind-

ing segment b by a neutral series 
of reactions between base pairs 
(branch migration [19]) each 

going randomly left or right 
through small exergy hills, and 

eventually ejecting the b strand 
when the branch migration ran-

domly reaches the right end. The free b strand can in principle reattach to the double-stranded 
structure, but it has no toehold to do so easily, so the last step is considered irreversible. The 

simple-minded interpretation of strand displacement is then that the strand a,b is removed, and 
the strand b is released irreversibly. The double-stranded structure is consumed during this 

process, leaving an inert residual (defined as one containing no single-stranded toeholds). 
Figure 4 shows the 

same structure, but 
seen as a gate G ab-
sorbing a signal x and 

producing nothing (0). 
The annotation ‘xh 

generic’ means that the 
gate works for all in-

put histories xh, as it should. In Figure 5 we implement a gate x.y that transduces a signal x into 
a signal y. The gate is made of two separate structures Gb (gate backbone) and Gt (gate trigger). 
The forward Gb reaction can cause y to detach because the binding of a toehold (yt) is reversi-

ble. That whole Gb reaction is reversible via strand displacement from right to left, but the Gt 
reaction eventually ‘locks’ the gate in the state where x is consumed and y is produced. The 

annotation ‘a fresh’ means that the segment ‘a’ is not shared by any other gate in the system to 
prevent interference (while of course the gate is implemented as a population of identical copies 
that share that segment). In general, we take all gate segments to be fresh unless they are non-

history segments of input or output signals. Abstractly, an x to y transduction is seen as a single 
step but the implementation of x.y takes at least two steps, and hence has a different kinetics. 

This is a common issue in DNA encodings, but its impact can be minimized [17], e.g. in this 

 
 Fig. 7A: 2-way Join - core function 

 
 Fig. 7B: 2-way Join - cleanup 

 
 Fig. 6: 2-way Fork 

 
 Fig. 8: Curried Gates 
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case by using a large Gt population. In Figure 6 (cf. Figure 2 in [17]), we generalize the 

transducer to a 2-way fork gate, x.[y,z], producing two output signals; this can be extended to 
n-way fork, via longer trigger strands.  

Many designs have been investigated for join gates [5]. The solution shown in Figure 7 ad-

mits the coexistence of joins with the same inputs, [x,y].z | [x,y].z’, without disruptive crosstalk 
or preprocessing of the system (not all join gates have this property). It is crucial for join to fire 

when both its inputs are available, but not to absorb a first input while waiting for the second 
input, because the second input may never come, and the first input may be needed by another 

gate (e.g., another join with a third input). The solution is to reversibly bind the first input, tak-
ing advantage of chemical reversibility. Given two inputs x,y, a ‘reversible-AND’ Gb backbone 
releases two strands r1,r2, with r1 providing reversibility while waiting for y (cf. Figure 3 in 

[17]); the trigger Gt finally irreversibly releases the output z (or outputs). In a cleanup phase 
(Figure 7B), off the critical path, we use a similar reversible-AND C1 structure (working from 

right to left) to remove r1 and r2 from the system, so that they do not accumulate to slow down 
further join operations. This phase is initiated by the release of r2, so we know by construction 
that both r1 and r2 are available. Therefore, the r3 and r4 reversibility strands released by C1 can 

be cleaned up immediately by C3,C4, ending a possible infinite regression of reversible-ANDs. 
(Note that without the extra c,d segments, a strand yt,yb = y would be released.) This gate struc-

ture can be easily generalized to n-way join gates by cascading more inputs on the Gb back-
bone. Alternatively, we can implement a 3-way join from 2-way joins and an extra signal x0, 

but this encoding ‘costs’ a population: [x1,x2,x3].x4
 
≝

 
([x1,x2].x0 | x0.[x1,x2])* | [x0,x3].x4. 

This completes the implementation of strand algebra in DNA. For the purposes of the next 
section, however, it is useful to consider also curried gates (gates that produce gates). Figure 8 

shows a gate x.H(y) that accepts a signal x and activates the backbone Hb of a gate H(y), where 
H(y) can be any gate with initial toehold yt

⊥, including another curried gate. For example, if 

H(y) is a transducer y.z as in Figure 5, we obtain a curried gate x.y.z such that x | x.y.z → y.z. 
(The extra a,b segments prevent the release of a strand xb,yt that would interfere with r1 of 

[x,y].z; see Figure 7A.) This implies that there is an extension of strand algebra with gates of 
the form G ::= [x1,..,xn].[x’1,..,x’m] ⋮ [x1,..,xn].G; this extension can be translated back to the 
basic strand algebra, e.g. by setting x.y.z = x.w | [w,y].z for a fresh w, but a direct implementa-

tion of curried gates is also available. 

4  Stochastic Strand Algebra 

Stochastic strand algebra is obtained by assigning stochastic rates to gates, and by dropping the 
unbounded populations, P*. Since the binding strengths of toeholds of the same length are 

comparable [18], we assume that all gates with the same number n of inputs have the same 
stochastic rate gn, collapsing all the gate parameters into a single effective parameter. Although 
gate rates are fixed, we can vary population sizes in order to achieve desired macroscopic rates. 

Moreover, as we describe below, it is possible to maintain stable population sizes, and hence to 
achieve desired stable rate ratios. 

In this section [x1,..,xn].[y1,..,ym] is a stochastic gate of rate gn, and we write Pk for k parallel 
copies of P. In a global system state P, the propensity of a gate reaction is (P choose (x1 | .. | xn | 

[x1,..,xn].[y1,..,ym]))×gn; that is, the gate rate gn multiplied by the number of ways of choosing 
out of P a multiset consisting of a gate and its n inputs. For example, if P = xn | ym | ([x,y].z)p 
with x≠y, then the propensity of the first reaction in P is n×m×p×g2. A global transition from a 

global state P to a next global state, labeled with its propensity, has then the following form, 
where \ is multiset difference: 
 

 P    →(P choose (x1 | .. | xn | [x1,..,xn].[y1,..,ym]))×gn
    

P\(x1 | .. | xn |  [x1,..,xn].[y1,..,ym]) | y1 | ... | ym 
 

The collection of all global transitions from P and from its successive global states forms a 

labeled transition graph, from which one can extract the Continuous Time Markov Chain of the 
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system [4]. We shall soon use also a curried gate of the form x.G, whose DNA structure is dis-

cussed in Section 3, and whose global transitions are: 
 

 P    →(P choose (x | x.G))×g1    P\(x | x.G) | G 
 

In a stochastic system, an unbounded population like P* has little meaning because its rates 

are unbounded as well. In stochastic strand algebra we simply drop the P* construct. In doing 
so, however, we eliminate the main mechanism for iteration and recursion, and we need to find 

an alternative mechanism. Rather than P*, we should instead consider finite populations Pk 
exerting a stochastic pressure given by the size k. It is also interesting to consider finite popula-

tions that remain at constant size k: let’s indicate them by P=k. In particular, P=1 represents a 
single catalyst molecule. 

We now show that we can model populations of constant size k by using a bigger buffer 

population to keep a smaller population at a constant level. Take, e.g., P = [x,y].z, and define: 
 

P=k   ≝  ([x,y].[z,X])k | (X.[x,y].[z,X])f(k)       for a fresh (otherwise unused) signal X 
 

Here f(k) is the size of a large-enough buffer population. A global transition of P=k in context Q 
(with Q not containing other copies of those gates) is (Q | P=k) →((Q | P=k) choose (x|y|[x,y].[z,X]))×g2

 
(Q\(x | y) | ([x,y].[z,X])k-1 | z | X | (X.[x,y].[z,X])f(k)). For a large enough f(k), the propensity of 

a next reaction on gate X.[x,y].[z,X] can be made arbitrarily large, so that the two global transi-
tions combined approximate (Q | P=k) →((Q | P=k) choose (x|y|[x,y].[z,X]))×g2

 
(Q\(x | y) | ([x,y].[z,X])k 

| z | (X.[x,y].[z,X])f(k)-1), where the gate population is restored at level k, and the buffer popula-
tion decreases by 1. We have shown that the reaction propensity in (Q | P=k) can be made arbi-

trarily close to the reaction propensity in (Q | Pk), but with the gate population being restored to 
size k. Moreover, it is possible to periodically replenish the buffer by external intervention 
without disturbing the system (except for the arbitrarily fast reaction speed on X). This provides 

a practical way of implementing recursion and unbounded computation, by ‘topping-up’ the 
buffer populations, without a notion of unbounded population. The construction of a stable 

population ([x,y].z)=k can be carried out also without curried gates, but it then requires balanc-
ing the rate of a ternary gate against the desired rate of a binary gate. 

We should note that the stochastic strand algebra is a convenient abstraction, but the corre-
spondence with the DNA semantics of Section 3 is not direct. More precisely, it is possible to 
formulate a formal translation from the stochastic strand algebra to a chemical algebra, by fol-

lowing the figures of Section 3 (considering strand displacement as a single reaction). Such a 
chemical semantics does not exactly match the global transition semantics given above, because 

for example a single reaction x | x.y → y is modeled by two chemical reactions. It is possible to 
define a chemical semantics that approximates the global transition semantics, by using the 

techniques discussed in [17], but this topic requires more attention that we can provide here. 

5  Compiling to Strand Algebra 

We give examples of translating other formal languages to strand algebra, in particular translat-

ing interacting automata. The interesting point is that by these translations we can map all those 
formal languages to DNA, by the methods in Section 3. 

Finite Stochastic Reaction Networks 
We summarize the idea of [17], which shows how to encode with approximate dynamics a 

stochastic chemical system as a set of DNA signals and gates. A unary reaction A→C1+..+Cn is 
represented as (A.[C1,..,Cn])*. A binary reaction A+B→C1+..+Cn is represented as 

([A,B].[C1,..,Cn])*. The initial solution, e.g. A+A+B, is represented as A | A | B and composed 
with the populations representing the reactions. For stochastic chemistry, one must replace the 

unbounded populations with large but finite populations whose sizes and rates are calibrated to 
provide the desired chemical rates. Because of technical constraints on realizing the rates, one 
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may have to preprocess the system of reactions [17].  

Petri Nets 
Consider a place-transition Petri Net [13] with places xi; then, a transition with incoming arcs 

from places x1..xn and outgoing arcs to places x’1..x’m is represented as ([x1,..,xn].[x’1..x’m])*. 
The initial marking {x1, .., xk} is represented as x1 | .. | xk. The idea is similar to the translation 
of chemical networks: those can be represented as (stochastic) Petri nets. Conversely (thanks to 
Cosimo Laneve for pointing this out), a signal can be represented as a marked place in a Petri 
net, and a gate [x1,..,xn].[x’1..x’m] as a transition with an additional marked ‘trigger’ place on 

the input that makes it fire only once; then, P* can be represented by connecting the transitions 
of P to refresh the trigger places. Therefore, strand algebra is equivalent to Petri nets. Still, the 

algebra provides a compositional language for describing such nets, where the gates/transitions 
are consumed resources. 

Finite State Automata 
We assume a single copy of the FSA and of the input string. An FSA state is represented as a 
signal X. The transition matrix is represented as a set of terms ([X,x].[X’,τ])* in parallel, where 

X is the current state, x is from the input alphabet, X’ is the next state, and τ is a signal used to 
synchronize with the input. For nondeterministic transitions there will be multiple occurrences 

of the same X and x. The initial state X0 | τ is placed in parallel with those terms. An input 
string x1,x2,x3... is encoded as τ.[x1,y1] | [y1,τ].[x2,y2] | [y2,τ].[x3,y3] | ... for fresh y1,y2,y3... . 

Interacting Automata 
Interacting automata [4] (a stochastic subset of CCS [11]) are finite state automata that interact 

with each other over synchronous stochastic channels. An interaction can happen when two 
automata choose the same channel cr, with rate r, one as input (?cr) and the other as output (!cr). 
Intuitively, these automata ‘collide’ pairwise on complementary exposed surfaces (channels) 

and change states as a result of the collision. Figure 9 shows two such automata, where each 
diagram represents a population of identical automata interacting with each other and with other 

populations (see [3] for many examples). Interacting automata can be faithfully emulated in 
stochastic strand algebra by generating a binary join gate for each possible collision, and by 

choosing stable population sizes that produce the prescribed rates. The translation can cause an 
n2 expansion of the representation [4]. 

A system of interacting automata is given by a system E of equations of the form X = M, 

where X is a species (an automaton state) and M is a molecule of the form π1;P1 ⊕ … ⊕ πn;Pn, 
where ⊕ is stochastic choice among possible interactions, Pi are multisets of resulting species, 

and πi are either delays τr, inputs ?cr, or outputs !cr on a 
channel c at rate r. For example, in an E1 population, an 

automaton in state A1 can collide by !ar with an automaton 
in state B1 by ?ar, resulting in two automata in state A1: 
 

 E1: A1 = !ar.A1 ⊕ ?bs.B1  E2: A2 = !ar.A2 ⊕ ?ar.B2 

  B1 = !bs.B1 ⊕ ?ar.A1   B2 = !bs.B2 ⊕ ?bs.A2 
 

With initial conditions Ai
n | Bi

m (that is, n automata in state Ai and m in state Bi), the Continu-

ous Time Markov Chain semantics of [4] prescribes the propensities of the interactions. On 
channel ar, in E1 the propensity is n×m×r, while in E2, with two symmetric ?/! ways for A2 to 
collide with A2, the propensity is 2×(n choose 2)×r = n×(n-1)×r: 
 

A1
n|B1

m: (ar) A1
n|B1

m →n×m×r A1
n+1|B1

m-1      A2
n|B2

m: (ar) A2
n|B2

m →n×(n-1)×r A2
n-1|B2

m+1 

         (bs) A1
n|B1

m →n×m×s A1
n-1|B1

m+1                      (bs) A2
n|B2

m →m×(m-1)×s A2
n+1|B2

m-1  
 

Subsequent transitions are computed in the same way. One can also mix E1,E2 populations.  
The translation of interacting automata to strand algebra is as follows. E.X.i denotes the i-th 

 
Fig. 9: Interacting Automata 
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summand of the molecule associated to X in E; ⟪...⟫ and ∪ denote multisets and multiset union 

to correctly account for multiplicity of interactions; and Parallel(S) is the parallel composition 
of the elements of multiset S. Strand(E) is then the translation of a system of equations E, using 
the stable buffered populations P=k described in Section 4, where gi are the gate rates of i-ary 

gates (we assume for simplicity that the round-off errors in r/gi are not significant and that 
r/gi≥1; otherwise one should appropriately scale the rates r of the original system): 
 

Strand(E) = Parallel(⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τr;P ⟫ ∪  
  ⟪ ([X,Y].[P,Q])=r/g2  s.t. X≠Y and ∃i,j,c. E.X.i = ?cr;P and E.Y.j = !cr;Q ⟫ ∪   
  ⟪ ([X,X].[P,Q])=2r/g2  s.t. ∃i,j,c. E.X.i = ?cr;P and E.X.j = !cr;Q ⟫  ) 

 

The E1,E2 examples above, in particular, translate as follows: 
 

P1 = Strand(E1) = ([B1,A1].[A1,A1])=r/g2 |     P2 = Strand(E2) = ([A2,A2].[B2,A2])=2r/g2 | 

                            ([A1,B1].[B1,B1])=s/g2                               ([B2,B2].[A2,B2])=2s/g2 

 

Initial automata states are translated identically into initial signals and placed in parallel. As 

described in Section 4, a strand algebra transition from global state An | Bm | ([A,B].[C,D])=p 
has propensity n×m×p×g2, and from An | ([A,A].[C,D])=p has propensity (n choose 2)×p×g2. 
From the same initial conditions An | Bm as in the automata, we then obtain the global strand 

algebra transitions: 
 

  A1
n|B1

m|P1 →n×m×r/g2×g2 A1
n+1|B1

m-1|P’1
  A2

n|B2
m|P2 →(n×(n-1))/2×2r/g2×g2 A2

n-1|B2
m+1|P’2

 

  A1
n|B1

m|P1 →n×m×s/g2×g2 A1
n-1|B1

m+1|P”1
  A2

n|B2
m|P2 →(m×(m-1))/2×2s/g2×g2 A2

n+1|B2
m-1|P”2 

 

which have the same propensities as the interacting automata transitions. Here P’i,P”i are sys-

tems where a buffer has lost one element, but where the active gate populations that drive the 

transitions remain at the same level as in Pi. We have shown that the stochastic behavior of 

interacting automata is preserved by their translation to strand algebra, assuming that the buff-
ers are not depleted. 

Figure 10 shows another example: a 3-state automaton and a Gillespie simulation of 1500 
such automata with r=1.0. The equation system and its translation to strand algebra are (take, 
e.g., r=g2=1.0): 
 

A = !ar.A ⊕ ?br.B ([A,B].[B,B])=r/g2 | 

B = !br.B ⊕ ?cr.C ([B,C].[C,C])=r/g2 | 
C = !cr.C ⊕ ?ar.A ([C,A].[A,A])=r/g2 | 
A900 | B500 | C100 A900 | B500 | C100 

 

6  Nested Strand Algebra 

The purpose of this section is to allow nesting of join/fork operators in strand algebra, so that 
natural compound expressions can be written. We provide a uniform translation of this extend-

ed language back to �, as a paradigm for the compilation of high(er) level languages to DNA 
strands. Consider a simple cascade of operations, ?x1.!x2.?x3, with the meaning of first taking 

an input (‘?’) x1, then producing an output (‘!’) x2, and then taking an input x3. This can be 
encoded as follows: 
 

?x1.!x2.?x3
  
   ≝     x1.[x2,x0] | [x0,x3].[] 

 

where the right hand side is a set of � combinators, and where x0 can be chosen fresh so that it 
does not interfere with other structures (although it will be used by all copies of ?x1.!x2.?x3). 

The nested algebra n� admits such nesting of operators in general. The main change from 
the combinatorial � algebra consists in allowing syntactic nesting after an input or output pre-

 
 Fig. 10: Oscillator 
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fix. This has the consequence that populations can now be nested as well, as in ?x.(P*). The 

new syntax is:  
 

P   ::=   x  ⋮  ?[x1,..,xn].P  ⋮  ![x1,..,xn].P  ⋮  0  ⋮  P1 | P2  ⋮  P*     n≥1  
 

Here ![x1,..,xn].P spontaneously releases x1,..,xn into the solution and continues as P, while 

?[x1,..,xn].P extracts x1,..,xn from the solution (if they are all available) and continues as P. The 
mixing relation is the same as in �. The reaction relation is modified only in the gate rule: 
 

?[x1,..,xn].P | x1 | .. | xn   →   P    input gate  (e.g.:  ?x.0 | x  →  0) 
![x1,..,xn].P   →   x1 | .. | xn | P    output gate  (e.g.:  !x.0  →  x | 0) 

 

We now show how to compile n� to �. Let 	 be an infinite lists of distinct signals, and 
 
be the set of such 	’s. Let 	i be the i-th signal in the list, 	≥i

 
be the list starting at the i-th posi-

tion of 	, evn(	) be the even elements of 	, and odd(	) be the odd elements. Let 
P be the set 

of those 	∈
 that do not contain any signal that occurs in P. The unnest algorithm U(P)	, for 
P∈n� and 	∈
P, is shown in Table 6.1–1. The inner loop U(X,P)	 uses X as the trigger for 

the translation of P. 

6.1–1  Unnest Algorithm 
 

 U(P)	     ≝  	0 | U(	0,P)	≥1 

 U(X, x)	    ≝  X.x 

 U(X, ?[x1,..,xn].P)	 ≝  [X,x1,..,xn].	0 | U(	0,P)	≥1
 

 U(X, ![x1,..,xn].P)	  ≝  X.[x1,..,xn,	0] | U(	0,P)	≥1
 

 U(X, 0)	     ≝  X.[] 

 U(X, P’ | P”)	   ≝  X.[	0,	1] | U(	0,P’)evn(	≥2) | U(	1,P”)odd(	≥2) 

 U(X, P*)	    ≝  (X.[	0,X] | U(	0,P)	≥1
)* 

 

 

For example, the translations for ?x1.![x2,x3].?x4.0 and ?x1.(x2*) are: 
 

U(?x1.![x2,x3].?x4.0)	 =   	0 | [	0,x1].	1 | 	1.[x2,x3,	2] | [	2,x4].	3 | 	3.[] 
U(?x1.(x2*))	    =   	0 | [	0,x1].	1 | (	1.[	2,	1] | 	2.x2)* 

 

In ?x1.(x2*), activating x1 once causes a linear production of copies of x2. For an exponential 

growth of the population one should change U(X,P*)	 to produce (X.[	0,X,X] | 
U(	0,P’)	≥1

)*. In the nested algebra we can also easily solve systems of recursive definitions; 

for example: ‘X = (?x1.X | !x2.Y) and Y = ?x3.(X | Y)’ can be written as: ‘(?X.(?x1.X | !x2.Y))* 
| (?Y.?x3.(X | Y))*’.  

As an example, consider a coffee vending machine controller, Vend, that accepts two coins 
for coffee. An ok is given after the first coin and then either a second coin (for coffee) or an 

abort (for refund) is accepted: 
 

Vend = ?coin. ![ok,mutex]. (Coffee | Refund) 

Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend) 
Refund = ?[mutex,abort]. !refund. (Refund | Vend) 

 

Each Vend iteration spawns two branches, Coffee and Refund, waiting for either coin or abort. 
The branch not taken in the mutual exclusion is left behind; this could skew the system towards 

one population of branches. Therefore, when the Coffee branch is chosen and the system is 
reset to Vend, we also spawn another Coffee branch to dynamically balance the Refund branch 

that was not chosen; conversely for Refund. 
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7  Contributions and Conclusions 

We have introduced strand algebra, a formal language based on a simple relational semantics 

that is equivalent to place-transition Petri nets (in the current formulation), but allows for com-
positional descriptions where each component maps directly to DNA structures. Strand algebra 
connects a simple but powerful class of DNA system to a rich set of techniques from process 

algebra for studying concurrent systems. Within this framework, it is easy to add operators for 
new DNA structures, or to map existing operators to alternative DNA implementations. We 

show how to use strand algebra as an intermediate compilation language, by giving a translation 
from a more convenient syntax. We also describe a stochastic variant, and a technique for main-
taining stable buffered populations to support indefinite and unperturbed computation.  

Using strand algebra as a stepping stone, we describe a DNA implementation of interacting 
automata that preserves stochastic behavior. Interacting automata are one of the simplest pro-

cess algebras in the literature. Hopefully, more advanced process algebra operators will eventu-
ally be implemented as DNA structures, and conversely more complex DNA structures will be 

captured at the algebraic level, leading to more expressive concurrent languages for program-
ming molecular systems.  

I would like to acknowledge the Molecular Programming groups at Caltech for invaluable 
discussions and corrections. In particular, join and curried gate designs were extensively dis-
cussed with Lulu Qian, David Soloveichik and Erik Winfree. 
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