
 1

Strand Algebras for DNA Computing

Luca Cardelli

Microsoft Research, 7 J J Thomson Avenue, Cambridge CB3 0FB, UK

luca@microsoft.com

Abstract. We present a process algebra for DNA computing, discussing compilation of
other formal systems into the algebra, and compilation of the algebra into DNA structures.

1 Introduction

DNA technology is reaching the point where one can envision automatically compiling high-
level formalisms to DNA computational structures [18]. Examples so far include the ‘manual

compilation’ of automata and Boolean networks, where some impressive demonstrations have
been carried out [1][8][15][16]. Typically one considers sequential or functional computations,

realized by massive numbers of molecules; we should strive, however, to take more direct ad-
vantage of massive concurrency at the molecular level. To that end it should be useful to con-

sider concurrent high-level formalism, in addition to sequential ones. In this paper we describe
three compilation processes for concurrent languages. First, we compile a low-level combinato-
rial algebra to a certain class of composable DNA structures [17]: this is intended to be a direct

(but not quite trivial) mapping, which provides an algebraic notation for writing concurrent
molecular programs. Second, we compile a higher-level expression-based algebra to the low-

level combinatorial algebra, as a paradigm for compiling expressions of arbitrary complexity to
‘assembly language’ DNA combinators.

Third is our original motivation: translating heterogeneous collections of interacting automa-
ta [4] to molecular structures. How to do that was initially unclear, because one must choose
some suitable ‘programmable matter’ (such as DNA) as a substrate, but must also come up with

compositional protocols for interaction of the components that obey the high-level semantics of
the language. We show a solution to this problem in Section 5, based on the combinatorial

DNA algebra. The general issue there is how to realize the external choice primitive of interact-
ing automata (also present in most process algebras and operating systems), for which there is

currently no direct DNA implementation. In DNA we can instead implement a join primitive,
based on [17]: this is a powerful operator, widely studied in concurrency theory [7][13], which
can indirectly provide an implementation of external choice. The DNA algebra supporting the

translation is built around the join operator.

2 Strand Algebras

By a strand algebra we mean a process algebra [11] where the main components represent
DNA strands, DNA gates, and their interactions. We begin with a nondeterministic algebra, and

we discuss a stochastic variant in Section 4. Our strand algebras may look very similar to either
chemical reactions, or Petri nets, or multiset-rewriting systems. The difference is that the equiv-

alent of, respectively, reactions, transitions, and rewrites, do not live outside the system, but
rather are part of the system itself and are consumed by their own activity, reflecting their DNA
implementation. A process algebra formulation is particularly appropriate for such an internal

representation of active elements.

 2

2.1 The Combinatorial Strand Algebra, ����

Our basic strand algebra has some atomic elements (signals and gates), and only two combina-

tors: parallel (concurrent) composition P | Q, and populations P*. An inexhaustible population
P* has the property that P* = P | P*; that is, there is always one more P that can be taken from
the population. The set � is formally the set of finite trees P generated by the syntax below; we

freely use parentheses when representing these trees linearly as strings. Up to the algebraic
equations described below, each P is a multiset, i.e., a solution. The signals x are taken from a

countable set.

2.1–1 Syntax

 P ::= x ⋮ [x1,..,xn].[x’1,..,x’m] ⋮ 0 ⋮ P1 | P2 ⋮ P* n≥1, m≥0

A gate is an operator from signals to signals: [x1,..,xn].[x’1,..,x’m] is a gate that binds signals

x1..xn, produces signals x’1,..,x’m, and is consumed in the process. We say that this gate joins n
signals and then forks m signals; see some special cases below. An inert component is indicated

by 0. Signals and gates can be combined into a ‘soup’ by parallel composition P1 | P2 (a com-
mutative and associative operator, similar to chemical ‘+’), and can also be assembled into

inexhaustible populations, P*.

2.1–2 Explanation of the Syntax and Abbreviations

 x is a signal 0 is inert

 x1.x2 ≝ [x1].[x2] is a transducer gate P1 | P2 is parallel composition

 x.[x1,..,xm] ≝ [x].[x1,..,xm] is a fork gate P* is unbounded population

 [x1,..,xn].x ≝ [x1,..,xn].[x] is a join gate

The relation ≡ ⊆ �x�, called mixing, is the smallest relation satisfying the following prop-
erties; it is a substitutive equivalence relation axiomatizing a well-mixed solution [2]:

2.1–3 Mixing

 P ≡ P equivalence P ≡ Q ⇒ P | R ≡ Q | R in context

 P ≡ Q ⇒ Q ≡ P P ≡ Q ⇒ P* ≡ Q*

 P ≡ Q, Q ≡ R ⇒ P ≡ R

 P* ≡ P* | P population

 P | 0 ≡ P diffusion 0* ≡ 0

 P | Q ≡ Q | P (P | Q)* ≡ P* | Q*

 P | (Q | R) ≡ (P | Q) | R P** ≡ P*

The relation → ⊆ �x�, called reaction, is the smallest relations satisfying the following
properties. In addition, →*, reaction sequence, is the symmetric and transitive closure of →.

2.1–4 Reaction

 x1 | .. | xn | [x1,..,xn].[x’1,..,x’m] → x’1 | .. | x’m gate (n≥1, m≥0)

 P → Q ⇒ P | R → Q | R dilution

 P ≡ P’, P’ → Q’, Q’ ≡ Q ⇒ P → Q well mixing

The first reaction (gate) forms the core of the semantics: the other rules allow reactions to hap-

 3

pen in context. Note that the special case of the gate rule for m=0 is x1 | .. | xn | [x1,..,xn].[] →

0. And, in particular, x.[] annihilates an x signal. We can choose any association of operators in
the formal gate rule: because of the associativity of parallel composition under ≡ the exact
choice is not important. Since → is a relation, reactions are in general nondeterministic. Some

examples are:

x1 | x1.x2 → x2

x1 | x1.x2 | x2.x3 →* x3

x1 | x2 | [x1,x2].x3 → x3

x1 | x1.x2 | x1.x3 → x2 | x1.x3 and → x3 | x1.x2

X | ([X,x1].[x2,X])* a catalytic system ready to transform

 multiple x1 to x2, with catalyst X

There is a duality between signals and gates: signals can interact with gates but signals cannot
interact with signals, nor gates with gates. As we shall see, in the DNA implementation the

input part of a gate is the Watson-Crick dual of the corresponding signal strand. This duality
need not be exposed in the syntax: it is implicit in the separation between signals and gates, so
we use the same x1 both for the ‘positive’ signal strand and for the complementary ‘negative’

gate input in a reaction like x1 | x1.x2 → x2.

3 DNA Semantics

In this section we provide a DNA implementation of the combinato-

rial strand algebra. Given a representation of signals and gates, it is
then a simple matter to represent any strand algebra expression as a

DNA system, since 0, P1 | P2, and P* are assemblies of signals and
gates.

There are many possible ways

of representing signals and gates as
DNA structures. First one must
choose an overall architecture,
which is largely dictated by a rep-

resentation of signals, and then one
must implement the gates, which
can take many forms with various

qualitative and quantitative trade-offs. We follow the general principles of [17], where DNA
computation is based on strand displacement on loop-free structures. Other architectures are

possible, like computation with hairpins [18], but have not been fully worked out. The four-
segment signal structure in [17] yields a full implementation of the combinatorial strand algebra

(not shown, but largely implied by that paper). Here we use a novel, simpler, signal structure.
We represent a signal x as a DNA signal strand with three segments xh,xt,xb (Figure 1): xh =

history, xt = toehold, xb = binding. A toehold is a segment that can reversibly interact with a
gate: the interaction can then propagate to the adjacent binding segment. The history is accumu-
lated during previous interactions (it might even be hybridized) and is not part of signal identi-

ty. That is, x denotes the equivalence class of signal strands with any history, and a gate is a
structure that operates uniformly on such equivalence classes. We generally use arbitrary letters

to indicate DNA segments (which are single-stranded sequences of bases).
A strand like b,c,d has a Watson-Crick complement (b,c,d)⊥ = d⊥,c⊥,b⊥ that, as in Figure 2,

can partially hybridize with a,b,c along the complementary segments. For two signals x,y, if

x≠y then neither x and y nor x and y⊥ are supposed to hybridize, and this is ensured by appro-
priate DNA coding of the segments [9][10]. We assume that all signals are made of ‘positive’

strands, with ‘negative’ strands occurring only in gates, and in particular in their input seg-

 Fig. 1: Signal Strand

 Fig. 2: Hybridization

 Fig. 3: Strand Displacement

 Fig. 4: Annihilator

 Fig. 5: Transducer

 4

ments; this separation enables the use of 3-letter codes, that helps design independent sequences

[10][20].
The basic computational

step of strand displacement

[17] is shown in Figure 3
for matching single and

double strands. This reac-
tion starts with the reversi-

ble hybridization of the
toehold t with the complementary
t⊥ of a structure that is otherwise

double-stranded. The hybridiza-
tion can then extend to the bind-

ing segment b by a neutral series
of reactions between base pairs
(branch migration [19]) each

going randomly left or right
through small exergy hills, and

eventually ejecting the b strand
when the branch migration ran-

domly reaches the right end. The free b strand can in principle reattach to the double-stranded
structure, but it has no toehold to do so easily, so the last step is considered irreversible. The

simple-minded interpretation of strand displacement is then that the strand a,b is removed, and
the strand b is released irreversibly. The double-stranded structure is consumed during this

process, leaving an inert residual (defined as one containing no single-stranded toeholds).
Figure 4 shows the

same structure, but
seen as a gate G ab-
sorbing a signal x and

producing nothing (0).
The annotation ‘xh

generic’ means that the
gate works for all in-

put histories xh, as it should. In Figure 5 we implement a gate x.y that transduces a signal x into
a signal y. The gate is made of two separate structures Gb (gate backbone) and Gt (gate trigger).
The forward Gb reaction can cause y to detach because the binding of a toehold (yt) is reversi-

ble. That whole Gb reaction is reversible via strand displacement from right to left, but the Gt
reaction eventually ‘locks’ the gate in the state where x is consumed and y is produced. The

annotation ‘a fresh’ means that the segment ‘a’ is not shared by any other gate in the system to
prevent interference (while of course the gate is implemented as a population of identical copies
that share that segment). In general, we take all gate segments to be fresh unless they are non-

history segments of input or output signals. Abstractly, an x to y transduction is seen as a single
step but the implementation of x.y takes at least two steps, and hence has a different kinetics.

This is a common issue in DNA encodings, but its impact can be minimized [17], e.g. in this

 Fig. 7A: 2-way Join - core function

 Fig. 7B: 2-way Join - cleanup

 Fig. 6: 2-way Fork

 Fig. 8: Curried Gates

 5

case by using a large Gt population. In Figure 6 (cf. Figure 2 in [17]), we generalize the

transducer to a 2-way fork gate, x.[y,z], producing two output signals; this can be extended to
n-way fork, via longer trigger strands.

Many designs have been investigated for join gates [5]. The solution shown in Figure 7 ad-

mits the coexistence of joins with the same inputs, [x,y].z | [x,y].z’, without disruptive crosstalk
or preprocessing of the system (not all join gates have this property). It is crucial for join to fire

when both its inputs are available, but not to absorb a first input while waiting for the second
input, because the second input may never come, and the first input may be needed by another

gate (e.g., another join with a third input). The solution is to reversibly bind the first input, tak-
ing advantage of chemical reversibility. Given two inputs x,y, a ‘reversible-AND’ Gb backbone
releases two strands r1,r2, with r1 providing reversibility while waiting for y (cf. Figure 3 in

[17]); the trigger Gt finally irreversibly releases the output z (or outputs). In a cleanup phase
(Figure 7B), off the critical path, we use a similar reversible-AND C1 structure (working from

right to left) to remove r1 and r2 from the system, so that they do not accumulate to slow down
further join operations. This phase is initiated by the release of r2, so we know by construction
that both r1 and r2 are available. Therefore, the r3 and r4 reversibility strands released by C1 can

be cleaned up immediately by C3,C4, ending a possible infinite regression of reversible-ANDs.
(Note that without the extra c,d segments, a strand yt,yb = y would be released.) This gate struc-

ture can be easily generalized to n-way join gates by cascading more inputs on the Gb back-
bone. Alternatively, we can implement a 3-way join from 2-way joins and an extra signal x0,

but this encoding ‘costs’ a population: [x1,x2,x3].x4

≝

([x1,x2].x0 | x0.[x1,x2])* | [x0,x3].x4.

This completes the implementation of strand algebra in DNA. For the purposes of the next
section, however, it is useful to consider also curried gates (gates that produce gates). Figure 8

shows a gate x.H(y) that accepts a signal x and activates the backbone Hb of a gate H(y), where
H(y) can be any gate with initial toehold yt

⊥, including another curried gate. For example, if

H(y) is a transducer y.z as in Figure 5, we obtain a curried gate x.y.z such that x | x.y.z → y.z.
(The extra a,b segments prevent the release of a strand xb,yt that would interfere with r1 of

[x,y].z; see Figure 7A.) This implies that there is an extension of strand algebra with gates of
the form G ::= [x1,..,xn].[x’1,..,x’m] ⋮ [x1,..,xn].G; this extension can be translated back to the
basic strand algebra, e.g. by setting x.y.z = x.w | [w,y].z for a fresh w, but a direct implementa-

tion of curried gates is also available.

4 Stochastic Strand Algebra

Stochastic strand algebra is obtained by assigning stochastic rates to gates, and by dropping the
unbounded populations, P*. Since the binding strengths of toeholds of the same length are

comparable [18], we assume that all gates with the same number n of inputs have the same
stochastic rate gn, collapsing all the gate parameters into a single effective parameter. Although
gate rates are fixed, we can vary population sizes in order to achieve desired macroscopic rates.

Moreover, as we describe below, it is possible to maintain stable population sizes, and hence to
achieve desired stable rate ratios.

In this section [x1,..,xn].[y1,..,ym] is a stochastic gate of rate gn, and we write Pk for k parallel
copies of P. In a global system state P, the propensity of a gate reaction is (P choose (x1 | .. | xn |

[x1,..,xn].[y1,..,ym]))×gn; that is, the gate rate gn multiplied by the number of ways of choosing
out of P a multiset consisting of a gate and its n inputs. For example, if P = xn | ym | ([x,y].z)p
with x≠y, then the propensity of the first reaction in P is n×m×p×g2. A global transition from a

global state P to a next global state, labeled with its propensity, has then the following form,
where \ is multiset difference:

 P →(P choose (x1 | .. | xn | [x1,..,xn].[y1,..,ym]))×gn

P\(x1 | .. | xn | [x1,..,xn].[y1,..,ym]) | y1 | ... | ym

The collection of all global transitions from P and from its successive global states forms a

labeled transition graph, from which one can extract the Continuous Time Markov Chain of the

 6

system [4]. We shall soon use also a curried gate of the form x.G, whose DNA structure is dis-

cussed in Section 3, and whose global transitions are:

 P →(P choose (x | x.G))×g1 P\(x | x.G) | G

In a stochastic system, an unbounded population like P* has little meaning because its rates

are unbounded as well. In stochastic strand algebra we simply drop the P* construct. In doing
so, however, we eliminate the main mechanism for iteration and recursion, and we need to find

an alternative mechanism. Rather than P*, we should instead consider finite populations Pk
exerting a stochastic pressure given by the size k. It is also interesting to consider finite popula-

tions that remain at constant size k: let’s indicate them by P=k. In particular, P=1 represents a
single catalyst molecule.

We now show that we can model populations of constant size k by using a bigger buffer

population to keep a smaller population at a constant level. Take, e.g., P = [x,y].z, and define:

P=k ≝ ([x,y].[z,X])k | (X.[x,y].[z,X])f(k) for a fresh (otherwise unused) signal X

Here f(k) is the size of a large-enough buffer population. A global transition of P=k in context Q
(with Q not containing other copies of those gates) is (Q | P=k) →((Q | P=k) choose (x|y|[x,y].[z,X]))×g2

(Q\(x | y) | ([x,y].[z,X])k-1 | z | X | (X.[x,y].[z,X])f(k)). For a large enough f(k), the propensity of

a next reaction on gate X.[x,y].[z,X] can be made arbitrarily large, so that the two global transi-
tions combined approximate (Q | P=k) →((Q | P=k) choose (x|y|[x,y].[z,X]))×g2

(Q\(x | y) | ([x,y].[z,X])k

| z | (X.[x,y].[z,X])f(k)-1), where the gate population is restored at level k, and the buffer popula-
tion decreases by 1. We have shown that the reaction propensity in (Q | P=k) can be made arbi-

trarily close to the reaction propensity in (Q | Pk), but with the gate population being restored to
size k. Moreover, it is possible to periodically replenish the buffer by external intervention
without disturbing the system (except for the arbitrarily fast reaction speed on X). This provides

a practical way of implementing recursion and unbounded computation, by ‘topping-up’ the
buffer populations, without a notion of unbounded population. The construction of a stable

population ([x,y].z)=k can be carried out also without curried gates, but it then requires balanc-
ing the rate of a ternary gate against the desired rate of a binary gate.

We should note that the stochastic strand algebra is a convenient abstraction, but the corre-
spondence with the DNA semantics of Section 3 is not direct. More precisely, it is possible to
formulate a formal translation from the stochastic strand algebra to a chemical algebra, by fol-

lowing the figures of Section 3 (considering strand displacement as a single reaction). Such a
chemical semantics does not exactly match the global transition semantics given above, because

for example a single reaction x | x.y → y is modeled by two chemical reactions. It is possible to
define a chemical semantics that approximates the global transition semantics, by using the

techniques discussed in [17], but this topic requires more attention that we can provide here.

5 Compiling to Strand Algebra

We give examples of translating other formal languages to strand algebra, in particular translat-

ing interacting automata. The interesting point is that by these translations we can map all those
formal languages to DNA, by the methods in Section 3.

Finite Stochastic Reaction Networks
We summarize the idea of [17], which shows how to encode with approximate dynamics a

stochastic chemical system as a set of DNA signals and gates. A unary reaction A→C1+..+Cn is
represented as (A.[C1,..,Cn])*. A binary reaction A+B→C1+..+Cn is represented as

([A,B].[C1,..,Cn])*. The initial solution, e.g. A+A+B, is represented as A | A | B and composed
with the populations representing the reactions. For stochastic chemistry, one must replace the

unbounded populations with large but finite populations whose sizes and rates are calibrated to
provide the desired chemical rates. Because of technical constraints on realizing the rates, one

 7

may have to preprocess the system of reactions [17].

Petri Nets
Consider a place-transition Petri Net [13] with places xi; then, a transition with incoming arcs

from places x1..xn and outgoing arcs to places x’1..x’m is represented as ([x1,..,xn].[x’1..x’m])*.
The initial marking {x1, .., xk} is represented as x1 | .. | xk. The idea is similar to the translation
of chemical networks: those can be represented as (stochastic) Petri nets. Conversely (thanks to
Cosimo Laneve for pointing this out), a signal can be represented as a marked place in a Petri
net, and a gate [x1,..,xn].[x’1..x’m] as a transition with an additional marked ‘trigger’ place on

the input that makes it fire only once; then, P* can be represented by connecting the transitions
of P to refresh the trigger places. Therefore, strand algebra is equivalent to Petri nets. Still, the

algebra provides a compositional language for describing such nets, where the gates/transitions
are consumed resources.

Finite State Automata
We assume a single copy of the FSA and of the input string. An FSA state is represented as a
signal X. The transition matrix is represented as a set of terms ([X,x].[X’,τ])* in parallel, where

X is the current state, x is from the input alphabet, X’ is the next state, and τ is a signal used to
synchronize with the input. For nondeterministic transitions there will be multiple occurrences

of the same X and x. The initial state X0 | τ is placed in parallel with those terms. An input
string x1,x2,x3... is encoded as τ.[x1,y1] | [y1,τ].[x2,y2] | [y2,τ].[x3,y3] | ... for fresh y1,y2,y3... .

Interacting Automata
Interacting automata [4] (a stochastic subset of CCS [11]) are finite state automata that interact

with each other over synchronous stochastic channels. An interaction can happen when two
automata choose the same channel cr, with rate r, one as input (?cr) and the other as output (!cr).
Intuitively, these automata ‘collide’ pairwise on complementary exposed surfaces (channels)

and change states as a result of the collision. Figure 9 shows two such automata, where each
diagram represents a population of identical automata interacting with each other and with other

populations (see [3] for many examples). Interacting automata can be faithfully emulated in
stochastic strand algebra by generating a binary join gate for each possible collision, and by

choosing stable population sizes that produce the prescribed rates. The translation can cause an
n2 expansion of the representation [4].

A system of interacting automata is given by a system E of equations of the form X = M,

where X is a species (an automaton state) and M is a molecule of the form π1;P1 ⊕ … ⊕ πn;Pn,
where ⊕ is stochastic choice among possible interactions, Pi are multisets of resulting species,

and πi are either delays τr, inputs ?cr, or outputs !cr on a
channel c at rate r. For example, in an E1 population, an

automaton in state A1 can collide by !ar with an automaton
in state B1 by ?ar, resulting in two automata in state A1:

 E1: A1 = !ar.A1 ⊕ ?bs.B1 E2: A2 = !ar.A2 ⊕ ?ar.B2

 B1 = !bs.B1 ⊕ ?ar.A1 B2 = !bs.B2 ⊕ ?bs.A2

With initial conditions Ai
n | Bi

m (that is, n automata in state Ai and m in state Bi), the Continu-

ous Time Markov Chain semantics of [4] prescribes the propensities of the interactions. On
channel ar, in E1 the propensity is n×m×r, while in E2, with two symmetric ?/! ways for A2 to
collide with A2, the propensity is 2×(n choose 2)×r = n×(n-1)×r:

A1
n|B1

m: (ar) A1
n|B1

m →n×m×r A1
n+1|B1

m-1 A2
n|B2

m: (ar) A2
n|B2

m →n×(n-1)×r A2
n-1|B2

m+1

 (bs) A1
n|B1

m →n×m×s A1
n-1|B1

m+1 (bs) A2
n|B2

m →m×(m-1)×s A2
n+1|B2

m-1

Subsequent transitions are computed in the same way. One can also mix E1,E2 populations.
The translation of interacting automata to strand algebra is as follows. E.X.i denotes the i-th

Fig. 9: Interacting Automata

 8

summand of the molecule associated to X in E; ⟪...⟫ and ∪ denote multisets and multiset union

to correctly account for multiplicity of interactions; and Parallel(S) is the parallel composition
of the elements of multiset S. Strand(E) is then the translation of a system of equations E, using
the stable buffered populations P=k described in Section 4, where gi are the gate rates of i-ary

gates (we assume for simplicity that the round-off errors in r/gi are not significant and that
r/gi≥1; otherwise one should appropriately scale the rates r of the original system):

Strand(E) = Parallel(⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τr;P ⟫ ∪
 ⟪ ([X,Y].[P,Q])=r/g2 s.t. X≠Y and ∃i,j,c. E.X.i = ?cr;P and E.Y.j = !cr;Q ⟫ ∪
 ⟪ ([X,X].[P,Q])=2r/g2 s.t. ∃i,j,c. E.X.i = ?cr;P and E.X.j = !cr;Q ⟫)

The E1,E2 examples above, in particular, translate as follows:

P1 = Strand(E1) = ([B1,A1].[A1,A1])=r/g2 | P2 = Strand(E2) = ([A2,A2].[B2,A2])=2r/g2 |

 ([A1,B1].[B1,B1])=s/g2 ([B2,B2].[A2,B2])=2s/g2

Initial automata states are translated identically into initial signals and placed in parallel. As

described in Section 4, a strand algebra transition from global state An | Bm | ([A,B].[C,D])=p
has propensity n×m×p×g2, and from An | ([A,A].[C,D])=p has propensity (n choose 2)×p×g2.
From the same initial conditions An | Bm as in the automata, we then obtain the global strand

algebra transitions:

 A1
n|B1

m|P1 →n×m×r/g2×g2 A1
n+1|B1

m-1|P’1
 A2

n|B2
m|P2 →(n×(n-1))/2×2r/g2×g2 A2

n-1|B2
m+1|P’2

 A1
n|B1

m|P1 →n×m×s/g2×g2 A1
n-1|B1

m+1|P”1
 A2

n|B2
m|P2 →(m×(m-1))/2×2s/g2×g2 A2

n+1|B2
m-1|P”2

which have the same propensities as the interacting automata transitions. Here P’i,P”i are sys-

tems where a buffer has lost one element, but where the active gate populations that drive the

transitions remain at the same level as in Pi. We have shown that the stochastic behavior of

interacting automata is preserved by their translation to strand algebra, assuming that the buff-
ers are not depleted.

Figure 10 shows another example: a 3-state automaton and a Gillespie simulation of 1500
such automata with r=1.0. The equation system and its translation to strand algebra are (take,
e.g., r=g2=1.0):

A = !ar.A ⊕ ?br.B ([A,B].[B,B])=r/g2 |

B = !br.B ⊕ ?cr.C ([B,C].[C,C])=r/g2 |
C = !cr.C ⊕ ?ar.A ([C,A].[A,A])=r/g2 |
A900 | B500 | C100 A900 | B500 | C100

6 Nested Strand Algebra

The purpose of this section is to allow nesting of join/fork operators in strand algebra, so that
natural compound expressions can be written. We provide a uniform translation of this extend-

ed language back to �, as a paradigm for the compilation of high(er) level languages to DNA
strands. Consider a simple cascade of operations, ?x1.!x2.?x3, with the meaning of first taking

an input (‘?’) x1, then producing an output (‘!’) x2, and then taking an input x3. This can be
encoded as follows:

?x1.!x2.?x3

 ≝ x1.[x2,x0] | [x0,x3].[]

where the right hand side is a set of � combinators, and where x0 can be chosen fresh so that it
does not interfere with other structures (although it will be used by all copies of ?x1.!x2.?x3).

The nested algebra n� admits such nesting of operators in general. The main change from
the combinatorial � algebra consists in allowing syntactic nesting after an input or output pre-

 Fig. 10: Oscillator

0

200

400

600

800

1000

1200

0

0
.0
1

0
.0
2

0
.0
3

A()

B()

C()

 9

fix. This has the consequence that populations can now be nested as well, as in ?x.(P*). The

new syntax is:

P ::= x ⋮ ?[x1,..,xn].P ⋮ ![x1,..,xn].P ⋮ 0 ⋮ P1 | P2 ⋮ P* n≥1

Here ![x1,..,xn].P spontaneously releases x1,..,xn into the solution and continues as P, while

?[x1,..,xn].P extracts x1,..,xn from the solution (if they are all available) and continues as P. The
mixing relation is the same as in �. The reaction relation is modified only in the gate rule:

?[x1,..,xn].P | x1 | .. | xn → P input gate (e.g.: ?x.0 | x → 0)
![x1,..,xn].P → x1 | .. | xn | P output gate (e.g.: !x.0 → x | 0)

We now show how to compile n� to �. Let 	 be an infinite lists of distinct signals, and

be the set of such 	’s. Let 	i be the i-th signal in the list, 	≥i

be the list starting at the i-th posi-

tion of 	, evn() be the even elements of 	, and odd() be the odd elements. Let
P be the set

of those 	∈
 that do not contain any signal that occurs in P. The unnest algorithm U(P)	, for
P∈n� and 	∈
P, is shown in Table 6.1–1. The inner loop U(X,P)	 uses X as the trigger for

the translation of P.

6.1–1 Unnest Algorithm

 U(P)	 ≝ 	0 | U(0,P)	≥1

 U(X, x)	 ≝ X.x

 U(X, ?[x1,..,xn].P)	 ≝ [X,x1,..,xn].	0 | U(0,P)	≥1

 U(X, ![x1,..,xn].P)	 ≝ X.[x1,..,xn,	0] | U(0,P)	≥1

 U(X, 0)	 ≝ X.[]

 U(X, P’ | P”)	 ≝ X.[0,	1] | U(0,P’)evn(≥2) | U(1,P”)odd(≥2)

 U(X, P*)	 ≝ (X.[0,X] | U(0,P)	≥1
)*

For example, the translations for ?x1.![x2,x3].?x4.0 and ?x1.(x2*) are:

U(?x1.![x2,x3].?x4.0)	 = 	0 | [0,x1].	1 | 	1.[x2,x3,	2] | [2,x4].	3 | 	3.[]
U(?x1.(x2*))	 = 	0 | [0,x1].	1 | (1.[2,	1] | 	2.x2)*

In ?x1.(x2*), activating x1 once causes a linear production of copies of x2. For an exponential

growth of the population one should change U(X,P*)	 to produce (X.[0,X,X] |
U(0,P’)	≥1

)*. In the nested algebra we can also easily solve systems of recursive definitions;

for example: ‘X = (?x1.X | !x2.Y) and Y = ?x3.(X | Y)’ can be written as: ‘(?X.(?x1.X | !x2.Y))*
| (?Y.?x3.(X | Y))*’.

As an example, consider a coffee vending machine controller, Vend, that accepts two coins
for coffee. An ok is given after the first coin and then either a second coin (for coffee) or an

abort (for refund) is accepted:

Vend = ?coin. ![ok,mutex]. (Coffee | Refund)

Coffee = ?[mutex,coin]. !coffee. (Coffee | Vend)
Refund = ?[mutex,abort]. !refund. (Refund | Vend)

Each Vend iteration spawns two branches, Coffee and Refund, waiting for either coin or abort.
The branch not taken in the mutual exclusion is left behind; this could skew the system towards

one population of branches. Therefore, when the Coffee branch is chosen and the system is
reset to Vend, we also spawn another Coffee branch to dynamically balance the Refund branch

that was not chosen; conversely for Refund.

 10

7 Contributions and Conclusions

We have introduced strand algebra, a formal language based on a simple relational semantics

that is equivalent to place-transition Petri nets (in the current formulation), but allows for com-
positional descriptions where each component maps directly to DNA structures. Strand algebra
connects a simple but powerful class of DNA system to a rich set of techniques from process

algebra for studying concurrent systems. Within this framework, it is easy to add operators for
new DNA structures, or to map existing operators to alternative DNA implementations. We

show how to use strand algebra as an intermediate compilation language, by giving a translation
from a more convenient syntax. We also describe a stochastic variant, and a technique for main-
taining stable buffered populations to support indefinite and unperturbed computation.

Using strand algebra as a stepping stone, we describe a DNA implementation of interacting
automata that preserves stochastic behavior. Interacting automata are one of the simplest pro-

cess algebras in the literature. Hopefully, more advanced process algebra operators will eventu-
ally be implemented as DNA structures, and conversely more complex DNA structures will be

captured at the algebraic level, leading to more expressive concurrent languages for program-
ming molecular systems.

I would like to acknowledge the Molecular Programming groups at Caltech for invaluable
discussions and corrections. In particular, join and curried gate designs were extensively dis-
cussed with Lulu Qian, David Soloveichik and Erik Winfree.

References
1. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro. Programmable and Autono-

mous Computing Machine made of Biomolecules. Nature, 414(22), November 2001.

2. G. Berry, G. Boudol. The Chemical Abstract Machine. Proc. 17th POPL, ACM, 81-94, 1989.

3. L. Cardelli: Artificial Biochemistry. In: A. Condon, D. Harel, J.N. Kok, A. Salomaa, E.Winfree (Eds.).
Algorithmic Bioprocesses. Springer, 2009.

4. L. Cardelli: On Process Rate Semantics. Theoretical Computer Science 391(3) 190-215, 2008.

5. L. Cardelli, L. Qian, D. Soloveichik, E. Winfree. Personal communications.
6. V. Danos, C. Laneve. Formal molecular biology. Theoretical Computer Science 325(1) 69-110. 2004.

7. C. Fournet, G. Gonthier. The Join Calculus: a Language for Distributed Mobile Programming. In Pro-

ceedings of the Applied Semantics Summer School (APPSEM), Caminha, 9-15 September 2000.

8. M. Hagiya. Towards Molecular Programming. In G. Ciobanu, G. Rozenberg, (Eds.) Modelling in

Molecular Biology. Springer, 2004.

9. L. Kari, S. Konstantinidis, P. Sosík. On Properties of Bond-free DNA Languages. Theoretical Comput-

er Science 334(1-3) 131-159, 2005.

10. A. Marathe, A.E. Condon, R.M. Corn. On Combinatorial DNA Word Design. J. Comp. Biology 8(3)

201–219, 2001.

11. R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, 1999.

12. L. Qian, E. Winfree. A Simple DNA Gate Motif for Synthesizing Large-scale Circuits. Proc. 14th Inter-

national Meeting on DNA Computing. 2008.

13. W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.
14. A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients: An Abstraction for Bio-

logical Compartments. Theoretical Computer Science 325(1) 141-167, 2004.

15. K. Sakamoto, D. Kiga, K. Komiya, H.Gouzu, S. Yokoyama, S. Ikeda, H. Sugiyama, M.Hagiya: State
Transitions by Molecules. Biosystems 52, 81–91, 1999.

16. G. Seelig, D. Soloveichik, D.Y. Zhang, E. Winfree. Enzyme-Free Nucleic Acid Logic Circuits. Sci-

ence, 314(8), 2006.

17. D.Soloveichik, G.Seelig, E. Winfree. DNA as a Universal Substrate for Chemical Kinetics. DNA14.

18. P. Yin, H.M.T. Choi, C.R. Calvert, N.A. Pierce. Programming Biomolecular Self-assembly Pathways.

Nature, 451:318-322, 2008.

19. B. Yurke, A.P. Mills Jr. Using DNA to Power Nanostructures, Genetic Programming and Evolvable

Machines archive 4(2), 111 - 122, Kluwer, 2003.

20. D. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree. Engineering Entropy-driven Reactions and Net-

works Catalyzed by DNA. Science, 318:1121-1125, 2007.

