
2009-04-24 16:04:56 1

Strand Algebras for DNA Computing

Luca Cardelli

Microsoft Research

Abstract

We present a process algebra for DNA computing, and we discuss compilation of various other

formal systems into the algebra, and compilation of the algebra into DNA structures.

1 Introduction

DNA technology is reaching the point where one can envision automatically compiling high-level

formalisms to DNA computational structures [16]. Examples so far include the ‘manual compilation’

of automata and Boolean networks, where some impressive demonstrations have been carried out

[1][8][13][14]. Typically one considers sequential or functional computations, realized by massive

numbers of molecules; we should strive, however, to take more direct advantage of massive concur-

rency at the molecular level. To that end it should be useful to consider concurrent high-level formal-

ism, in addition to sequential ones. In this paper we describe three compilation processes for concur-

rent languages. First, we compile a low-level combinatorial algebra to a certain class of composable

DNA structures [15]: this is intended to be a direct (but not quite trivial) mapping, which provides an

algebraic notation for writing concurrent molecular programs. Second, we compile a higher-level ex-

pression-based algebra to the low-level combinatorial algebra, as a paradigm for compiling expres-

sions of arbitrary complexity to ‘assembly language’ DNA combinators.

Third is our original motivation: translating heterogeneous collections of interacting automata [4]

to molecular structures. How to do that was initially unclear, because one must choose some suitable

‘programmable matter’ (such as DNA) as a substrate, but must also come up with compositional pro-

tocols for interaction of the components that obey the high-level semantics of the language. We show

a solution to this problem in Section 5.1.4, based on the combinatorial DNA algebra. The general issue

there is how to realize the external choice primitive of interacting automata (also present in most

process algebras and operating systems), for which there is currently no direct DNA implementation.

What can be implemented directly in DNA, is instead a join primitive, based on [15]: this is a power-

ful operator, widely studied in concurrency theory [7], which can indirectly provide an implementa-

tion of external choice. The DNA algebra supporting the translation is built around joins operators.

We begin with an introduction to process algebras, which are formal languages designed to de-

scribe and analyze the concurrent activities of multiple processes. The standard technical presentation

of process algebras was initially inspired by a chemical metaphor [2], and it is therefore natural, as a

tutorial, to see how the chemistry of diluted well-mixed solutions can itself be presented as a process

algebra. Having chemistry in this form also facilitates relating it to other process algebras.

Take a set C of chemical solutions denoted by P,Q,R. We define two binary relations on this set.

The first relation, mixing, P ≡ Q is an equivalence relation: its purpose is to describe reversible events

that amount to ‘chemical mixing’; that is, to bringing components close to each other (syntactically) so

that they can conveniently react by the second relation. Its basic algebraic laws are the commutative

monoid laws of + and 0, where + is the chemical combination symbol and 0 represents the empty solu-

tion. The second relation, reaction, P → Q, describes how a (sub-)solution P becomes a different solu-

tion Q. A reaction P → Q operates under a dilution assumption; namely, that adding some R to P does

not make it then impossible for P to become Q (although it may enable additional reactions). The two

2009-04-24 16:04:56 2

relations of mixing and reaction, are connected by a rule that says that the solution is well mixed. It is

also useful to consider the symmetric and transitive closure, →*, representing sequences of reactions.

In first instance, the reaction relation does not have chemical rates. However, from the initial solution,

from the rates of the base reactions, and from the relation → describing whole-system transitions, one

can generate a continuous-time Markov chain representing the kinetics of the system.

As a process algebra, chemistry obeys the following general laws:

1.1–1 Chemistry as a Process Algebra

 P ≡ P; P ≡ Q ⇒ Q ≡ P; P ≡ Q, Q ≡ R ⇒ P ≡ R equivalence

 P ≡ Q ⇒ P + R ≡ Q + R in context

 P + Q ≡ Q + P; P + (Q + R) ≡ (P + Q) + R; P + 0 ≡ P diffusion

 P → Q ⇒ P + R → Q + R dilution

 P ≡ P’, P’ → Q’, Q’ ≡ Q ⇒ P → Q well mixing
in

In addition to these general rules, any given chemical system has a specific set of reaction rules.

For example, consider a chemical process algebra with species: H, O, OH, H2, H2O. The set of solu-

tions is given by those basic species, plus the empty solution 0 and any solution P+Q obtained by

combining two solutions. The mixing relation is exactly the one above. The reaction relation is given,

for example, by the following specific reactions, plus dilution and well-mixing: H + H → H2; H + O →

OH; H2 + O → H2O; H + OH → H2O. The mixing and reaction relations are defined inductively; that

is, we consider the smallest binary relations that satisfy all the given rules.

We can then deduce, for example, that H + O + H →→ H2O, that is we can produce water mole-

cules in two steps (and by two different paths), and that H+H+H+H+O+O →* H2O + H2O. Chemical

evolution is therefore encoded in the two relations of mixing and reaction: a solution P can evolve to a

solution Q iff 〈P,Q〉 ∈ →*. Algebra is about equations, but instead of axiomatizing a set of equations,

we can use the reaction relation to study the equations that hold in a given algebra, meaning that P =

Q holds if P and Q produce the same reactions [10]. The complexity of these derived equational theo-

ries varies with the algebra. A simple instance here is the equation P + 0 = P, which requires verifying

that in our definition of → there is no reaction for 0, nor for 0 combined with something else.

This way, chemistry can be presented as a process algebra. But the algebra of chemical ‘+’ is one

among many: there are other process algebras that can suit biochemistry more directly [6][12] or, as in

this paper, that can suit DNA computing.

2 Strand Algebras

By a strand algebra we mean a process algebra [10] where the main components represent DNA

strands, DNA gates, and their interactions. We begin with a nondeterministic algebra, and we discuss

a stochastic variant in Section 4. Our strand algebras may look very similar to either chemical reac-

tions, or Petri nets, or multiset-rewriting systems. The difference is that the equivalent of, respective-

ly, reactions, transitions, and rewrites, do not live outside the system, but rather are part of the system

itself and are consumed by their own activity, reflecting their DNA implementation. A process algebra

formulation is particularly appropriate for such an internal representation of active elements.

2.1 The Combinatorial Strand Algebra, ����

Our basic strand algebra has some atomic elements (strands and gates), and only two combinators:

parallel (concurrent) composition P|P, and populations P*. An inexhaustible population P* has the prop-

erty that P* = P|P*; that is, there is always one more P that can be taken from the population.

2009-04-24 16:04:56 3

2.1.1 Syntax

The set � is the set of finite trees P generated by the syntax below. We freely use parentheses when

representing these trees linearly as strings. The set � is a countable set of distinct strands x.

2.1–1 Syntax

 P ::= x ⋮ [x1,..,xn].[x1’,..,xm’] ⋮ 0 ⋮ P1|P2 ⋮ P* n≥1, m≥0

A gate is an operator from strands to strands: [x1,..,xn].[x1’,..,xm’] is a gate that binds strands x1..xn,

produces strands x1’..xm’, and is consumed in the process. We say that this gate joins n strands and

then forks m strands; see some special cases below. An inert component is indicated by 0. Strands and

gates can be combined into a ‘soup’ by parallel composition P1|P2 (a commutative and associative

operator, similar to chemical ‘+’), and can also be assembled into inexhaustible populations, P*.

2.1–2 Explanation of the Syntax and Abbreviations

 x is a strand 0 is inert

 x1.x2 ≝ [x1].[x2] is a sequence gate P|P is parallel composition

 x.[x1,..,xm] ≝ [x].[x1,..,xm] is a fork gate P* is an unbounded population

 [x1,..,xn].x ≝ [x1,..,xn].[x] is a join gate

2.1.2 Semantics

The relation ≡ ⊆ �x�, called mixing, is the smallest relation satisfying the following properties; it is a

substitutive equivalence relation axiomatizing a well-mixed solution [2]:

2.1–3 Mixing

 P ≡ P equivalence P ≡ Q ⇒ P | R ≡ Q | R in context

 P ≡ Q ⇒ Q ≡ P P ≡ Q ⇒ P* ≡ Q*

 P ≡ Q, Q ≡ R ⇒ P ≡ R

 P* ≡ P* | P population

 P | 0 ≡ P diffusion 0* ≡ 0

 P | Q ≡ Q | P (P | Q)* ≡ P* | Q*

 P | (Q | R) ≡ (P | Q) | R P** ≡ P*

The relation → ⊆ �x�, called reaction, is the smallest relations satisfying the following proper-

ties. In addition, →*, reaction sequence, is the symmetric and transitive closure of →.

2.1–4 Reaction

 x1 | .. | xn | [x1,..,xn].[x1’,..,xm’] → x1’ | .. | xm’ gate (n≥1, m≥0)

 P → Q ⇒ P | R → Q| R dilution

 P ≡ P’, P’ → Q’, Q’ ≡ Q ⇒ P → Q well mixing

The first reaction (gate) forms the core of the semantics: the other rules allow reactions to happen in

context. Note that the special case of the gate rule for m=0 is x1 | .. | xn | [x1,..,xn].[] → 0. And, in par-

ticular, x.[] annihilates an x strand. Because of the associativity of parallel composition under ≡, and of

the well-mixing rule, it does not matter how the left or right hand side of the gate rule associates, al-

though one should assume a fixed association for the formal rule.

2009-04-24 16:04:56 4

Since → is a relation, reactions are in general nondeterministic. Some examples are:

 x1 | x1.x2 → x2

 x1 | x1.x2 | x2.x3 →* x3

 x1 | x2 | [x1,x2].x3 → x3

 x1 | x1.x2 | x1.x3 → x2 | x1.x3 and → x3 | x1.x2

 X | ([X,x1].[x2,X])* a catalytic system ready to transform

 multiple x1 to x2, with catalyst X

It is important to note that there is a duality between strands

and gates: strands can interact with gates but strands cannot interact with strands, and gates cannot

interact with gates. As we shall see, in the DNA implementation the input part of a gate is the Wat-

son-Crick dual of the corresponding strand. This duality need not be exposed in the syntax: it is im-

plicit in the separation between strands and gates, so we use the same x1 both for the ‘positive’ free

strand and for the complementary ‘negative’ gate inputs in a reaction like x1 | x1.x2 → x2.

3 DNA Semantics

In this section we provide a DNA implementation

of the combinatorial strand algebra. Given a repre-

sentation of strands and gates, it is then a simple

matter to represent any strand algebra expression as a DNA system,

since 0, P|P, and P* are just assemblies of strands and gates.

Following [15], we represent a strand x in the strand algebra as a

DNA signal strand with four regions 1,2,3,4 (Figure 1): 1 = history, 2 =

toehold, 3 = body, 4 = next toehold. The history is accumulated during

previous interactions (and might even by hybridized), and is not part

of signal identity: DNA strands with different histo-

ries should behave the same. Hence, x denotes an

equivalence class of strands with different histories.

A toehold is a region that causes interaction with

gates.

A strand 5⊥,4⊥,3⊥,2⊥ = (2,3,4,5)⊥ is Watson-Crick

complementary to 2,3,4,5 and, as in Figure 2, can par-

tially hybridize with 1,2,3,4. For two abstract strands

x,y, if x≠y then neither x and y nor x and y⊥ are sup-

posed to hybridize, and this is ensured by appropriate DNA coding of the regions [9]. In our algebra

we assume that all strands are ‘positive’, that is, they are encoded in such a way that none is comple-

mentary to another: the only ‘negative’ strands occur in the input region of gates.

The basic signal transduction [15] is shown in Figure 3. This is a reaction that starts from the hy-

bridization of toehold 2 with 2⊥. Then it continues with a neutral series of reactions between base

pairs (branch migration [17]) each going randomly left or right through small exergy hills, and even-

tually ejecting the 3,4,5,6 strand when the branch migration randomly reaches the right end. The

3,4,5,6 strand can in principle reattach at any point along the 3,4 segment, but it has no toehold to do

so easily, and would be ejected again, so this reaction is considered irreversible. Moreover, the toe-

hold 4 has become free, and this toehold with its contiguous branch migration segment 5 can initiate

another reaction (while the 4 segment in 1,2,3,4 could not).

The simple-minded interpretation of transduction is then that the strand 1,2,3,4 is removed, and

the strand 3,4,5,6 is released irreversibly. The transducer itself is consumed during this process, leav-

ing an inert residual (assuming that the history segment 1 has no activity).

Figure 5: Sequence

2⊥

2 3 4

3⊥ 4⊥

2 3 4

4 5 6

4⊥

5 6

5⊥ 6⊥

8

4⊥

4 5 6

5⊥ 6⊥

6 7 8

1 1

3

3

5

7

2⊥

3 4

3⊥ 4⊥

6

5S1

x 0

x | x.y → y

t

S2

y

0

Figure 1: Signal Strand

2 3 4
1

Figure 3: Transducer

5

2 3 4

2⊥

3 4

3⊥ 4⊥

6

2⊥

2 3 4

3⊥ 4⊥

4 5 6
1 3

1
2⊥

2 3 4

3⊥ 4⊥

4
3

6

1 5

Figure 2: Hybridization

2 3 4

2⊥ 3⊥ 4⊥ 2⊥

2 3 4

3⊥ 4⊥

1

5⊥

1

5⊥

Figure 4: Annihilation

2 3 4

2⊥

3 4

3⊥ 4⊥ 2⊥

2 3 4

3⊥ 4⊥

3 4

x.[]

x

0

x | x.[] → 0

1

1

0

2009-04-24 16:04:56 5

Figure 4 shows the simplest gate:

it inputs a strand and produces nothing

that has any significant activity. In Fig-

ure 5 we implement an x.y gate as the

serial composition of two transducers.

The result is a sequence gate that can

transform any signal x into any other

signal y, through a temporary strand t

that connects them. The

t strand overlaps with x

in 3,4 and overlaps with

y in 5,6, but the strands

for x and y are inde-

pendent. Note that in a

stochastic algebra a step

like x.y would be un-

derstood on the basis of

an exponential distribu-

tion, while the imple-

mentation makes two

steps, and hence produces

an Erlang distribution. This

is a common issue in DNA

encodings [15].

In Figure 6 (Figure 2

in [15]), we generalize this

schema to produce two

outputs by releasing two

strands from the second transducer. The temp strand is tailored to the task, and in particular it does

not have the structure of a normal signal strand, but the inputs and outputs do. Therefore, the com-

bined structures F1,F2 give us an implementation of a 2-way fork gate, x.[y,z]; the idea can be easily

generalized to n-way forks.

Many designs are being investigated for join [5]. The solution shown here admits the composi-

tion of joins with the same inputs, [x,y].z|[x,y].z’, without crosstalk or preprocessing of the system.

More economical solutions are known, assuming compiler support. Figure 7 implements a binary join

operator by the composition of two ‘reversible-AND’ gates [15] and an intermediate fork. It is crucial

for join to fire when both its inputs are available, but not to absorb a first input while waiting for the

second input, because the second input may never come, and the first input may be needed by anoth-

er gate (e.g., another join with a third input). The solution is to reversibly bind the first input, taking

advantage of chemical reversibility. Given two inputs x,y, the reversible-AND gate J1 produces a

temporary output t1, with strand r1 providing reversibility while waiting for the second input (Figure

7A, from Figure 3 in [15]). Since t1 has an overlap with y, we then need a further step to convert it to

the desired independent output z via J2. In the next phase (Figure 7B) we use another reversible-AND

gate J3 with inputs t2 and r1 to remove r1 from the system, so that r1 does not accumulate to slow down

further join operations; this garbage collection phase happens off the critical path. Note that r1 is elim-

inated only when the reversibility of J1 is no longer needed, while the strand r2, providing reversibili-

ty for J3 can be eliminated right away via J5, because by construction J3 has both inputs available. The

join gate itself is given by the structures J1..J5. The domains 9,13,16, which do not appear in the recog-

nition regions of x,y,z, are independent parameter and are used as gate fingerprints; for example, 9 is

chosen different for each different 〈x,y〉 pair so that J1 and J2 are connected without crosstalk.

Figure 7A: 2-Way Join - core function

2⊥

3 4

3⊥ 4⊥

2 3 4

6

6⊥

7 8

7⊥ 8⊥

101415

9J1

x1

13 2⊥ 3⊥ 4⊥

2 3 4

6⊥

7 8

7⊥ 8⊥

1415 10

9
2⊥ 3⊥ 4⊥

2 3 4

6⊥

7 8

7⊥ 8⊥

6
6 7 8

y

4 136
r1

1

5

3

1 5

t1
9 14 15108

7

8⊥ 9⊥ 10⊥

9 14 15

14⊥ 15⊥

11

12

10
J2 16

10 11 12
z9

15 16

0

8⊥ 9⊥ 10⊥

9 14 15

14⊥ 15⊥

108
7 0

x | y | [x,y].z → z

9,13,16: unique for each <x,y>

Figure 7B: 2-Way Join - garbage collection

15 16

15⊥

16 4

16⊥ 4⊥

6

6⊥

13

13⊥

J3

4 136
r13

15 16

15⊥ 16⊥ 4⊥

6

6⊥

13

13⊥

16 4
r2

6 13

6⊥

13

13⊥

J4

J516

16⊥ 4⊥

15⊥ 16⊥ 4⊥

15 16 4

6⊥

13

13⊥

6
14 30

6 13

6⊥

13

13⊥

16⊥ 4⊥

16 4 16

0

0

Figure 6: 2-Way Fork

2⊥

2 3 4

3⊥ 4⊥

2 3 4

4 5

4⊥

5 6

5⊥ 6⊥

8

4⊥

4 5 6

5⊥ 6⊥

10 11 12

1 1

3

3

9

7

2⊥

3 4

3⊥ 4⊥

6

5F1

x 0

x | x.[y,z] → y | z

t

F2

z

0

910

9 10

9⊥ 10⊥

12

11

6 9 10

9 10

9⊥ 10⊥

5 y
6 7 8

2009-04-24 16:04:56 6

This technique can be generalized to n-way join gates (logically firing only when all n inputs are

available) by cascading reversible r1..rn-1 strands on the same J1 backbone before committing irreversi-

bly to the t1 output. Alternatively, the reversibility idea suggests a way to implement a 3-way join

from a 2-way join and an extra strand x0, although this encoding ‘costs’ a population: [x1,x2,x3].x4
≝

([x1,x2].x0 | x0.[x1,x2])* | [x0,x3].x4.

For the purposes of the next section, note that by adding to the [x1,x2].x3 gate of Fig 7A a compo-

nent that complements and removes r1, thus blocking the reversibility of the first reaction, yields a 2-

way sequence gate x1.x2.x3 with reactions x1 | x2 | x1.x2.x3 → x2 | x2.x3 → x3 (up to some initial binding

and unbinding of x1); the garbage collection of r1 in Figure 7B is then irrelevant. Similarly, blocking

the reversibility of the first reaction on a 3-way join yields a gate x1.[x2,x3].x4 with reactions x1 | x2 | x3

| x1.[x2,x3].x4 → x2 | x3 | [x2,x3].x4 → x4. With a large enough number of blocking components one can

ensure that the first reaction essentially never reverses, thus implementing purely sequential gates.

Other implementations of such sequential gates are also possible.

4 Stochastic Strand Algebra

Stochastic strand algebra is obtained by assigning stochastic rates to gates, and by dropping the un-

bounded populations, P*. Since the binding strengths of toeholds of the same length are comparable

[16], we assume that all gates with the same number n of inputs have the same stochastic rate gn, col-

lapsing all the gate parameters into a single effective parameter. Although gate rates are fixed, we can

vary population sizes in order to achieve desired macroscopic rates. By the fingerprinting technique

from Section 3 we can even have populations of different sizes that respond separately to the same

inputs. And, as we describe below, it is possible to maintain stable population sizes, and hence to

achieve desired stable rate ratios.

In this section [x1,..,xn].[y1,..,ym] is a stochastic gate of rate gn, and we write Pk for k parallel cop-

ies of P. In a global system state P, the propensity of a gate reaction is (P choose (x1 | .. | xn |

[x1,..,xn].[y1,..,ym]))×gn; that is, the gate rate gn multiplied by the number of ways of choosing out of P

a multiset consisting of a gate and its n inputs. For example, if P = xn|ym|([x,y].z)p with x≠y, then the

propensity of the first reaction in P is n×m×p×g2. A global transition from a global state P to a next

global state, labeled with its propensity, has then the following form, where \ is multiset difference:

 P →(P choose (x1|..|xn|[x1,..,xn].[y1,..,ym]))×gn

P\(x1 | .. | xn | [x1,..,xn].[y1,..,ym])) | y1 | ... |ym

The collection of all global transitions from P and from its successive global states forms a labeled

transition graph, from which one can extract the Continuous Time Markov Chain of the system [4].

The stochastic algebra needs in general additional gate primitives, because the encoding of a

complex gates into simpler gates (which is what keeps the algebra of Section 2 minimal) may not pre-

serve stochastic behavior. We shall soon need a gate of the form x0.[x1,..,xn].[y1,..,ym], whose DNA

structure and reactions are discussed at the end of Section 3, and whose global transitions are:

 P →(P choose (x0|x0.[x1,..,xn].[y1,..,ym]))×g1 P\(x0 | x0.[x1,..,xn].[y1,..,ym])) | [x1,..,xn].[y1,..,ym]

In a stochastic system, an unbounded population like P* has little meaning because its rates are

unbounded as well. In stochastic strand algebra we simply drop the P* construct. In doing so, howev-

er, we eliminate the main mechanism for iteration and recursion, and we need to find an alternative

mechanism. Rather than P*, we should instead consider finite populations Pk exerting a stochastic

pressure given by the size k. It is also interesting to consider finite populations that remain at constant

size k: let’s indicate them by P=k. In particular, P=1 represents a single catalyst molecule.

We now show that we can model populations of constant size k by using a bigger buffer popula-

tion to keep a smaller population at a constant level. Take, for example, P = [x,y].z, and define:

 P=k ≝ [x,y].[z,X]k | (X.[x,y].[z,X])f(k) for a fresh strand X

2009-04-24 16:04:56 7

Here f(k) is the size of a large-enough buffer population. A global transition of P=k in context Q (with

Q not containing other copies of those gates) is (Q|P=k) →((Q|P=k) choose (x|y|[x,y].[z,X]))×g2

(Q\(x|y) |

[x,y].[z,X]k-1 | z | X | (X.[x,y].[z,X])f(k)). For a large enough f(k), the propensity of a next reaction on

gate X.[x,y].[z,X] can be made arbitrarily large, so that the two global transitions combined approx-

imate (Q|P=k) →((Q|P=k) choose (x|y|[x,y].[z,X]))×g2

(Q\(x|y) | [x,y].[z,X]k | z | (X.[x,y].[z,X])f(k)-1), where the

gate population is restored at level k, and the buffer population decreases by 1. We have shown that

the reaction propensity in (Q|P=k) can be made arbitrarily close to the reaction propensity in (Q|Pk),

but with the gate population being restored to size k. Moreover, it is possible to periodically reple-

nish the buffer by external intervention without disturbing the system (except for the arbitrarily fast

reaction speed on X). This provides a practical way of implementing recursion and unbounded com-

putation, by ‘topping-up’ the buffer populations, without a notion of unbounded population.

It is possible to formulate a formal translation from the stochastic strand algebra to the chemical

algebra of Introduction, by following the figures of Section 3 (considering branch migration as a sin-

gle reaction). This chemical semantics of the strand algebra does not exactly match the global transi-

tion semantics given above, because for example a single reaction x|x.y → y is modeled by two chem-

ical reactions; however, as in [15], it can approximate it.

5 Compiling to Strand Algebra

We give examples of translating other formal languages to strand algebra, in particular translating

interacting automata. The interesting point is that by these translations we can map all those formal

languages to DNA, by the methods in Section 3.

5.1.1 Finite Stochastic Reaction Networks

We summarize the idea of [15], which shows how to encode with approximate dynamics a stochastic

chemical system as a set of DNA strands and gates. A unary reaction A→C1+..+Cn is represented as

(A.[C1,..,Cn])*. A binary reaction A+B→C1+..+Cn is represented as ([A,B].[C1,..,Cn])*. The initial solu-

tion, e.g. A+A+B, is represented as A|A|B and composed with the populations representing the reac-

tions. For stochastic chemistry, one must replace the unbounded populations with large but finite

populations whose sizes and rates are calibrated to provide the desired chemical rates. Because of

technical constraints on realizing the rates, one may have to preprocess the system of reactions [15].

5.1.2 Petri Nets

Consider a place-transition net with places xi; then, a transition with incoming arcs from places x1..xn

and outgoing arcs to places x1’..xm’ is represented as ([x1,..,xn].[x1’,..,xm’])*. The initial marking {x1, ..,

xk} is represented as x1|..|xk. The idea is obviously similar to the translation of chemical networks,

because those can be represented as (stochastic) Petri nets. Conversely (thanks to Cosimo Laneve for

pointing this out), a strand can be represented as a marked place in a Petri net, and a gate

[x1,..,xn].[x1’,..,xm’] as a transition with an additional marked ‘trigger’ place on the input that makes it

fire only once; then, P* can be represented by connecting the transitions of P to refresh the trigger

places. Therefore, strand algebra is equivalent to Petri nets. Still, the algebra provides a compositional

language for describing such nets, where the gates/transitions are consumed resources.

5.1.3 Finite State Automata and Transducers

A state in an FSA is represented as a strand X. The transition matrix of the FSA is represented as a set

of terms ([X,x].X’)* in parallel, where X is the current state, x is from the input alphabet, and X’ is the

next state. For multiple transitions from the same state there will be multiple occurrences with the

same X and different xi. For nondeterministic transitions there will be multiple occurrences of the

same X and x. The initial state X0 is placed in parallel with those terms. For a transducer, the terms

2009-04-24 16:04:56 8

have the form ([X,x].[X’,x’])*, where x’ is taken from the output alphabet. An encoding of input strings

x1.x2.x3... as sequential inputs can be obtained by cascading binary joins.

5.1.4 Interacting Automata

Interacting automata [4] are finite state automata that interact with each other over synchronous sto-

chastic channels (that is, they ‘collide’ pairwise and change states); see [3] for many examples. They

can be faithfully emulated in stochastic strand algebra by generating a binary join gate for each possi-

ble collision, and by choosing stable population sizes that produce the prescribed rates. The transla-

tion can cause an n2 expansion of the representation [4].

A system of interacting automata is given by a system E of equations of the form X = M, where X

is a species (an automaton state) and M is a molecule of the form π1;P1 ⊕ … ⊕ πn;Pn, where ⊕ is stochas-

tic choice, Pi are multisets of resulting species, and πi are either delays τr, inputs ?cr, or outputs !cr on

a channel c at rate r. Complementary !cr / ?cr prefixes specify collisions at rate r. For example, in E1 an

A automaton can collide with a B automaton on channel a, resulting in two A automata:

 E1: A = !ar.A ⊕ ?bs.B E2: A = !ar.A ⊕ ?ar.B

 B = !bs.B ⊕ ?ar.A B = !bs.B ⊕ ?bs.A

With initial conditions An|Bm (that is, n automata in state A and m in state B), the Continuous Time

Markov Chain semantics of [4] prescribes the propensities for the transitions out of An|Bm (in E2 there

are two ?/! ways for A to collide with A, hence the rate there is 2×(n choose 2)×r = n×(n-1)×r):

 E1: by a: An|Bm →n×m×r An+1|Bm-1 E2: by a: An|Bm →n×(n-1)×r An-1|Bm+1

 by b: An|Bm →n×m×s An-1|Bm+1 by b: An|Bm →m×(m-1)×s An+1|Bm-1

Subsequent transitions are computed in the same way.

The translation of interacting automata to strand algebra is as follows. E.X.i denotes the i-th

summand of the molecule associated to X in E; ⟪...⟫ and ∪ denote multisets and multiset union to cor-

rectly account for multiplicity of interactions; and Parallel(S) is the parallel composition of the ele-

ments of multiset S. Strand(E) is then the translation of a system of equations E, using the stable buf-

fered populations P=k described in Section 4:

 Strand(E) = Parallel(⟪ (X.[P])=r/g1 s.t. ∃i. E.X.i = τr;P ⟫ ∪
 ⟪ ([X,Y].[P,Q])=r/g2 s.t. X≠Y and ∃i,j,c. E.X.i = ?cr;P and E.Y.j = !cr;Q ⟫ ∪
 ⟪ ([X,X].[P,Q])=2r/g2 s.t. ∃i,j,c. E.X.i = ?cr;P and E.X.j = !cr;Q ⟫)

The E1,E2 examples above, in particular, translate as follows:

 S1: ([B,A].[A,A])=r/g2 | S2: ([A,A].[B,A])=2r/g2 |

 ([A,B].[B,B])=s/g2 ([B,B].[A,B])=2s/g2

Initial automata states are translated identically to initial strands and placed in parallel. As described

in Section 4, a strand algebra transition from global state An|Bm|([A,B].[C,D])=p has propensity

n×m×p×g2, and from An|([A,A].[C,D])=p has propensity (n choose 2)×p×g2. From the same initial condi-

tions An|Bm as in the automata, we then obtain the global transitions:

 An|Bm|S1 →
n×m×r/g2×g2 An+1|Bm-1|S1’

 An|Bm|S2 →
(n×(n-1))/2×2r/g2×g2 An-1|Bm+1|S2’

 An|Bm|S1 →
n×m×s/g2×g2 An-1|Bm+1|S1”

 An|Bm|S2 →
(m×(m-1))/2×2s/g2×g2 An+1|Bm-1|S2”

which are equivalent to the interacting automata transitions. Here Si’,Si” are systems where a buffer

has lost one element, but where the active gate populations remain at the same level as in Si. We have

shown that the stochastic behavior of interacting automata is preserved by their translation to strand

algebra, assuming that the buffers are not depleted.

2009-04-24 16:04:56 9

6 Nested Strand Algebra

The purpose of this section is to allow nesting of join/fork operators in strand algebra, so that natural

compound expressions can be written. We provide a uniform translation of this extended language

back to �, as a paradigm for the compilation of high(er) level languages to DNA strands.

Consider a simple cascade of operations, ?x1.!x2.?x3, with the meaning of first taking an input (‘?’)

x1, then producing an output (‘!’) x2, and then taking an input x3. This can be encoded as follows:

 ?x1.!x2.?x3
 ≝ x1.[x2,x0] | [x0,x3].[]

where the right hand side is a set of � combinators, and where x0 can be chosen fresh so that it does

not interfere with other structures (although it will be used by all copies of ?x1.!x2.?x3).

The nested algebra n� admits such nesting of operators in general. The main change from the

combinatorial � algebra consists in allowing syntactic nesting after an input or output prefix. This has

the consequence that populations can now be nested as well, as in ?x.(P*). The new syntax is:

 P ::= x ⋮ ?[x1,..,xn].P ⋮ ![x1,..,xn].P ⋮ 0 ⋮ P1|P2 ⋮ P* n≥1

The mixing relation is the same as in �. The reaction relation is modified only in the gate rule:

 ?[x1,..,xn].P | x1 | .. | xn → P input gate (e.g.: ?x.0 | x → 0)

 ![x1,..,xn].P → x1 | .. | xn | P output gate (e.g.: !x.0 → x | 0)

We now show how to compile n� to �. Let
 be an infinite lists of distinct strands, and � be the

set of such
’s. Let
i be the i-th strand in the list,
≥i
be the list starting at the i-th position of
,

evn(
) be the even elements of
, and odd(
) be the odd elements. Let �P be the set of those
∈� that

do not contain any strand that occurs in P. The unnest algorithm U(P)
, for P∈n� and
∈�P, is

shown in Table 9.1–1. The inner loop U(X,P)
 uses X as the trigger for the translation of P.

6.1–1 Unnest Algorithm

 U(P)
 ≝
0 | U(
0,P)
≥1

 U(X, x)
 ≝ X.x

 U(X, ?[x1,..,xn].P)
 ≝ [X,x1,..,xn].
0 | U(
0,P)
≥1

 U(X, ![x1,..,xn].P)
 ≝ X.[x1,..,xn,
0] | U(
0,P)
≥1

 U(X, 0)
 ≝ X.[]

 U(X, P’|P”)
 ≝ X.[
0,
1] | U(
0,P’)evn(
≥2) | U(
1,P”)odd(
≥2)

 U(X, P*)
 ≝ (X.[
0,X] | U(
0,P)
≥1
)*

For example, the translations for ?x1.![x2,x3].?x4.0 and ?x1.(x2*) are:

 U(?x1.![x2,x3].?x4.0)
 =
0 | [
0,x1].
1 |
1.[x2,x3,
2] | [
2,x4].
3 |
3.[]

 U(?x1.(x2*))
 =
0 | [
0,x1].
1 | (
1.[
2,
1] |
2.x2)*

In ?x1.(x2*), activating x1 once causes a linear production of copies of x2. For an exponential growth of

the population one should change U(X,P*)
 to produce (X.[
0,X,X] | U(
0,P’)
≥1
)*.

In the nested algebra we can also easily solve systems of recursive definitions; for example: ‘X =

(?x1.X | !x2.Y) and Y = ?x3.(X | Y)’ can be written as: ‘(?X.(?x1.X | !x2.Y))* | (?Y.?x3.(X | Y))*’.

7 Contributions and Conclusions

We have introduced strand algebra, a formal language based on a simple relational semantics that is

equivalent to place-transition Petri nets (in the current formulation), but allows for compositional de-

2009-04-24 16:04:56 10

scriptions where each component maps directly to DNA structures. Strand algebra connects a simple

but powerful class of DNA system to a rich set of techniques from process algebra for studying con-

current systems. Within this framework, it is easy to add operators for new DNA structures, or to

map existing operators to alternative DNA implementations. We show how to use strand algebra as

an intermediate compilation language, by giving a translation from a more convenient syntax. We

also describe a stochastic variant, and a technique for maintaining stable buffered populations to sup-

port indefinite and unperturbed stochastic computation.

Using strand algebra as a stepping stone, we describe a DNA implementation of interacting au-

tomata that preserves stochastic behavior. Interacting automata (a stochastic subset of CCS [10]) are

about the simplest process algebra in the literature. Hopefully, more advanced features of process

algebra will eventually be implemented as DNA structures, and conversely more complex DNA

structures will be captured at the algebraic level, leading to more expressive concurrent languages for

programming molecular systems.

I would like to acknowledge the Molecular Programming groups at Caltech for invaluable dis-

cussions and corrections. In particular, the join gate design of Figure 7 evolved through extended dis-

cussions with David Soloveichik and Erik Winfree.

References

[1] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro. Programmable and Autonomous

Computing Machine made of Biomolecules. Nature, Vol 414, 22 November 2001.

[2] G. Berry, G. Boudol. The Chemical Abstract Machine. Proc. 17th POPL, ACM, 81-94, 1989.

[3] L. Cardelli: Artificial Biochemistry. In: A. Condon, D. Harel, J.N. Kok, A. Salomaa, E.Winfree (Eds.). Algo-

rithmic Bioprocesses. Springer, April 2009. <http://lucacardelli.name/Papers/Artificial%20Biochemistry.pdf>

[4] L. Cardelli: On Process Rate Semantics. Theoretical Computer Science 391(3) 190-215, 2008.

[5] L. Cardelli, L. Qian, D. Soloveichik, E. Winfree. Personal communications.

[6] V. Danos, C. Laneve. Formal molecular biology. Theoretical Computer Science 325(1) 69-110. 2004.

[7] C. Fournet, G. Gonthier. The Join Calculus: a Language for Distributed Mobile Programming. In Proceed-

ings of the Applied Semantics Summer School (APPSEM), Caminha, 9-15 September 2000.

[8] M. Hagiya. Towards Molecular Programming. In G. Ciobanu, G. Rozenberg, (Eds.) Modelling in Molecular

Biology. Springer 2004.

[9] L. Kari, S. Konstantinidis, P. Sosík. On Properties of Bond-free DNA Languages. Theoretical Computer

Science 334(1-3), 131-159, 2005.

[10] R. Milner. Communicating and Mobile Systems: The ππππ-Calculus. Cambridge University Press, 1999.

[11] L. Qian, E. Winfree. A Simple DNA Gate Motif for Synthesizing Large-scale Circuits. Proc. 14th Interna-

tional Meeting on DNA Computing. 2008.

[12] A. Regev, E.M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients: An Abstraction for Biological

Compartments. Theoretical Computer Science 325(1) 141-167, 2004.

[13] K. Sakamoto, D. Kiga, K. Komiya, H.Gouzu, S. Yokoyama, S. Ikeda, H. Sugiyama, M.Hagiya: State Transi-

tions by Molecules. Biosystems 52, 81–91, 1999.

[14] G. Seelig, D. Soloveichik, D.Y. Zhang, E. Winfree. Enzyme-Free Nucleic Acid Logic Circuits. Science, Vol

314, 8 December 2006.

[15] D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal Substrate for Chemical Kinetics Proc. DNA14.

[16] P. Yin, H.M.T. Choi, C.R. Calvert, N.A. Pierce. Programming Biomolecular Self-assembly Pathways. Na-

ture, 451:318-322, 2008.

[17] B. Yurke, A.P. Mills Jr. Using DNA to Power Nanostructures, Genetic Programming and Evolvable Ma-

chines archive 4(2), 111 - 122, Kluwer, 2003.

[18] D. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree. Engineering Entropy-driven Reactions and Networks

Catalyzed by DNA. Science, 318:1121-1125, 2007.

