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We present an approach for constructing dynamic models of gene regulatory networks from sim-
ple computational elements. Each element is termed a gene gate and defines an input/output-
relationship corresponding to the binding and production of transcription factors. The proposed
gene gate kinetics is mapped onto standard rate equations and stochastic processes. While the
ode-approach requires fixing the system’s topology before its correct implementation, expressing
them in stochastic π-calculus leads to a fully compositional scheme: network elements become au-
tonomous and only the input/output relationships fix their wiring. For 2n elements, the size of the
input/output-interface equals 2n, while the number of kinetic reactions can be in the worst case n2.
As an application we present the stochastic repressilator, which we show oscillates readily without
any cooperative effects. Modifications due to the inclusion of cooperative mechanisms are discussed.

PACS numbers: 82.20.Fd, 82.39.-k, 87.16.Yc

Providing efficient ways to model the dynamics of gene
regulatory networks is an important challenge. Many
different methods have been proposed, ranging from dis-
crete, logical approaches [1] to rate equations (ode’s) [2],
and master equations [3, 4]. An underlying problem for
the quantitative description of the dynamics of gene reg-
ulation is the enormous diversity of the ‘actors’ involved,
i.e., the biomolecules which determine the network struc-
ture and dynamics. Both from an analytic and compu-
tational point of view, one therefore needs to simplify:
representing all actors by individual computational el-
ements is simply unfeasible. But this is not the only
problem. Two obvious other challenges are: i) to have
flexible modelling schemes, and ii) schemes which do not
grow too fast with the increase of the number of reactions
included.

We propose a compositional approach to models of gene
regulatory network dynamics which is both flexible and
has such advantages in terms of system size. It is based
on an abstraction of the genome as a set of input-output
elements, the gene gates. The properties of each gate are
defined by a set of abstract kinetic reactions. Based on
these modules, simple circuits can be constructed by for-
mulating input-output relationships between the gates.
We show that the reaction kinetics of the gates maps
to the standard description by ode’s in the determinis-
tic case. However, the full advantage of our approach
can only be seen by formulating the network in terms of
processes defined in a process calculus, the π-calculus,
originating in the field of programming languages in the-
oretical computer science [5]. Not only do the composi-
tional features of this calculus allow to express each gate
as an autonomous network element, but they also sig-
nificantly reduce the system size: if there are 2n species

in the system, it is described by n2 reactions and a sto-
ichiomatric matrix of size 2n3 [6]. The process calculus

keeps the system size description manageable: as in pro-
gramming notations, the system description is a compact
representation of the combinatorial state space.

Furthermore, the process calculus directly leads to a
stochastic formulation of the dynamics, which is clearly
more realistic for networks of molecules with small copy
numbers. This feature can indeed be critical for a correct
description of the network dynamics, as we illustrate by
our application of the approach to the repressilator, a
three-gate inhibitory network [7].

To be specific, in this work we want to consider inter-
actions between genes in genomes equivalent to those of
prokaryotes (bacteria). In such organisms, the basic reg-
ulatory mechanism follows the classical dogma of molecu-
lar biology, according to which DNA “makes” RNA which
in turns “makes” protein [8]. Since in prokaryotes the
role of RNA is fairly passive, it seems feasible to coarse-
grain over its degrees of freedom. One is then left with
a network in which only DNA and proteins occur. As
a further simplification, we consider only single and not
multiple inputs and outputs, but this restriction can eas-
ily be dropped.

We abstract the whole gene network as one composed
of “gene gates”. A gene gate comprises not only the read-
ing process of the gene - transcription - by RNA poly-
merase, but also the translation of the mRNA transcript
into protein, and finally also the degradation machin-
ery of the proteins. Transcription and translation will
be lumped together in one parameter set, and protein
degradation will be controlled by a seperate parameter
set. We thus arrive at the representation of a gene reg-
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FIG. 1: i) A gene gate g which receives a transcription fac-
tor A as input and gives off a transcription factor B as its
output. ii) Three elementary gene circuits constructed from
the basic gene gate shown in i). From top to bottom: au-
toinhibitory circuit; bistable switch; repressilator (for expla-
nation, see text). For simplicity, the gate names and in- and
outputs are suppressed.

ulatory base element as shown in Figure 1 i). Here, a
protein A can repress the action of gene gate g. If not
repressed, the gene gate produces a protein B which can,
in turn, act upon either the same gene gate (if B = A)
or, within a regulatory circuit, on other gene gates. In
this abstraction, the proteins can also be interpreted to
act like messages that are being exchanged between the
gene gates via their inputs and outputs.

The action of a gene gate can be described in a formal
gate reaction kinetics. The first reaction is the action of
A on g,

A + g →r g′ + A (1)

where A binds on g with rate r and g is turned into the
state g′. The factor A is released unaltered.

The gene gate g can undergo two kinds of reactions.
We assume that it constitutively produces a protein B at
a basal rate ε; the corresponding reaction reads as

g →ε g + B . (2)

Further, since the transcription factor on input represses
the gate, we have the reaction

g′ →η g , (3)

i.e., the gate state g′ simply relaxes back to g. A low
rate of relaxation will leave the gate in the state g′ and
hence effectively repress transcription factor production.
Finally, we list the degradation reactions for the proteins,

A →γ 0 , B →γ 0 . (4)

Eqs.(1) - (4) constitute the basis of our gate-reaction
scheme.

We now apply this scheme to the simplest circuit that
can be built from the inhibitory gate, the autoinhibitory
loop [9], where the output B acts upon its own gate,
hence B and A have to be identified. We first show
that, on a deterministic level, our description reduces to
the standard ode-based approach. For this, we cast the
gate kinetics into rate equations. The autoinhibitory loop
is then described by the system of ordinary differential
equations

Ȧ = εg − γA , (5)

ġ = −rgA + ηg′ (6)

ġ′ = rgA − ηg′ . (7)

Since g +g′ = 1 is a constant (there is only one gene), we
can eliminate the equation for g′ and then end up with
one equation for the gate, i.e.,

ġ = η − (η + rA)g . (8)

The inhibitory loop is then described by two ode’s, one
each for A and g. If the relaxation rate η is high and
ν ≡ r/η = finite, ġ ≈ 0, and we can insert eq.(8) into the
equation for A which yields

Ȧ =
ε

1 + νA
− γA , (9)

i.e., a standard Hill-type equation for an inhibitory loop
[9].

This approach allows us to describe any given network
with single input/output relations in terms of a collection
of ode’s; also gates with positive activation can be for-
mulated in the same way [10]. The network construction
is however not compositional: for any given network, we
have to predefine its topology first, via the kinetic reac-
tions, and then translate them into ode’s. This problem
arises already for the simple autoinhibitory gate. Sup-
pose we had started with the reaction equations eqs.(1) -
(4), had written down the ode’s, and only then identified
A with B: the network topology would have been fixed
afterwards. In this case, we would then have been left
with two identical expressions for the degradation of the
protein A, one stemming from the original equation for
A, the other from the equation for B. This problem is
clearly easy to fix for such a trivial case, but becomes
very difficult to tackle systematically for large networks.

It is hence desirable to define each network element
as an autonomous object with its proper actions on in-
put and output, and then to be able to build the net-
works only by fixing the wiring. To achieve this for our
gene gates, we invoke an approach orginating in theoret-
ical computer science. This so-called process calculus-
approach was pioneered for computational biology by
A. Regev and E. Shapiro [11, 12]. They proposed that
the interaction of two biomolecules, e.g. the complexa-
tion of two proteins, can be understood as a communi-
cation in which messages are exchanged. In the simple
protein example the messages correspond to the bind-
ing actions of the two interacting protein domains: these
have to convey the message to each other that they are
“ready to bind”, or,“ready to be bound”, respectively.
The exchange of these messages abstracts the physical
interactions [5].

The process calculus approach has a distinct advan-
tage over other schemes exactly due to its composition-
ality properties. In our example of the autoinhibitory
switch we define the gate as a process in π-calculus by
neg(A, B) where A, B are channels on which input and
output messages are sent [13]. Transcription is thus de-
scribed by a process rule in which outputs are defined
by their dependence on input. Going back to the kinetic



3

FIG. 2: Output generated by the stochastic bistable switch
without cooperativity. Time-series of the fluctuating output
of the protein numbers. The parameters in the simulation are
r = 1.0, ε = 0.1, η = 1× 10−3, γ = 1× 10−2.

reactions, eqs.(1) and (2), we see that we have to define
two rules, one of basal transcription with a rate ε, which
does not depend on input, and inhibition of transcription
with a rate η, which depends on the input.

Further, and importantly, the degradation mechanism
is bound to the channel on which the messages pass.
Therefore, the process describing the autoinhibitory gate
neg(A, A) automatically calls only the channel A, while a
gate neg(A, B) would call both channels A and B. Each
neg-gate acts as a fully autonomous computational mod-
ule which can be composed at will without predefining
the systems’ topology.

E.g., a bistable switch circuit can easily be represented
by parallel composition (indicated by the symbol |) of
inhibitory gate processes neg(x, y) in the form of

neg(A, B)|neg(B, A) (10)

A further advantage of the process description are its
size requirements. For a system of 2n elements, writ-
ing down the reaction equations leads in general to a set
of n2 equations (the reaction matrix has size 2n3 in the
worst case, but it can be sparse). Since in the process
calculus approach one describes the “compatible comple-
mentary interaction surfaces” of each species and leaves
the matching table implicit, this amounts to computing
an input/output interface of 2n, hence that of the num-
ber of elements to begin with [14].

Finally, in the process calculus approach, composition-
ality and its advantages of system size scaling are accom-
panied by its stochastic features. The interaction dy-
namics of the gates can be computed by selecting input
and output calls via the Gillespie algorithm [10, 15]. The
dynamics produced by the gates then admits to calcu-
late the stochastic traces of the system evolution. This is
illustrated in Figure 2, which shows the switching dynam-
ics of the bistable switch, as given by eq.(10). Such be-
haviour was found previously from a solution of a master
equation for the system [16]. The stochastic π-calculus
result obtained via the Gillespie algorithm is fully equiv-
alent. Inspection of the master equation as given in [16]
shows immediately, however, that it is not compositional
in our sense. In fact, writing down master equations for
more complex systems becomes rapidly a daunting task.
This is not so with the gene gates in π-calculus. The
repressilator, e.g., is easily spelled out as

neg(A, B)|neg(B, C)|neg(C, A) (11)

where the placement of input and output channels inside
each gate again fully specifies the wiring toplogy of the

FIG. 3: Stochastic repressilator output generated by variation
of the gene relaxation rate over one order of magnitude. The
parameters in the stochastic simulation are r = 1, ε = 0.1,
γ = 1 × 10−4, η = 1 × 10−5 (top), η = 1 × 10−4 (middle),
and η = 1× 10−3 (bottom).

circuit. The same holds true for networks of arbitrary
wiring complexity, and the approach then becomes even
more advantageous.

The usefulness of having a stochastic rather than a
deterministic description had been advocated before for
the bistable switch, which readily switches without the
need for any kind of nonlinearity in the inhibition, or for
explicit time-delays between inhibition and degradation
[9, 16]. In order to achieve this in a deterministic set-up,
the nonlinearity in eq.(9) must be modified according to
the replacement ε

1 + νA
→

ε

1 + νAh
(12)

with a Hill-exponent h > 1 in the denominator. A Hill
exponent h > 1 is indicative of “positive cooperativity”:
the exponent ensures that the inhibition mechanism is
sufficiently steep upon concentration changes. Micro-
scopically, cooperativity is produced by protein complex-
ation, e.g. by the formation of transcription factor dimers
in the cell, which then interact with the DNA. In the case
of the bistable switch, the presence of cooperativity is
crucial for the deterministic system: otherwise it would
not even have two stable states [17].

The effect of stochasticity on the network dynamics
is even more dramatic for the inhibitory three-gate cir-
cuit, the repressilator. In the deterministic setting, a
Hill exponent of at least h = 4/3 is needed for sustained
oscillations [18]. By contrast, the stochastic repressila-
tor readily produces oscillations without any cooperative
mechanism. Figure 3 displays three time-series gener-
ated by the repressilator kinetics; what is changed from
the top to the bottom figure is the relaxation rate of
the gene gates, by two orders of magnitude (see Figure
caption). One full oscillation cycle consists in the alter-
nation of the three different proteins, whereby always one
protein dominates over the other ones. The protein pop-
ulations stabilise at an equilibrium between transcription
and degradation. For low relaxation rates we observe an
irregular oscillation, since the relaxation of the genes then
is highly variable. As this rate is increased, the effect of
degradation plays a role in improving the regularity of
oscillations: if a gene unblocks, it is immediately blocked
again by any inhibitory proteins that have not yet de-
graded. As a result, a gene can only start transcribing
when all residual inhibitory proteins are degraded. Since
the decay curve of each protein is fairly regular, we ob-
serve an increased regularity in the oscillations. For even
higher relaxation rates, a gene can repeatedly block and
unblock many times while waiting for the residual pro-
teins to degrade. This increases the likelihood of a leaky
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FIG. 4: The effect of cooperativity on the stochastic re-
pressilator. Values indicated where different from Figure 3.
Top: cooperativity by dimerization; ε = 0.1, η = 1 × 10−3,
γ2 = 1× 10−4 (degradation of the dimer), hom2 = 1× 10 −4

(dimerization). Bottom: cooperativity by tetramerization;
same rates as for dimerization, with γ4 = 1× 10−4 (degrada-
tion of the tetramer), hom4 = 1× 10−4 (tetramerization).

transcription of proteins, which results in a stuttering ef-
fect in the oscillations, as observed in Figure 3 (bottom).

Further, we have studied the effect of cooperativity
on the stochastic repressilator, see Figure 4. In the top
graph, cooperativity is introduced by requiring the pro-
teins produced from one gate to dimerize first before be-
ing able to bind to the subsequent gate. In the bottom
graph, these dimers must also bind to form tetramers
before being able to bind the gate. In this setting, co-
operativity acts to improve the regularity of oscillations
by reducing the stuttering effects observed in Figure 3
(bottom). In the presence of cooperativity, the leaky
transcription of a gene is less likely to perturb the oscil-
lations, since at least two proteins must be produced in
order to have an effect in the case of dimerization, and at
least four proteins are required in the case of tetrameriza-
tion. Thus, cooperativity can be seen not as an essential
requirement for oscillations, but as a means of improving
the stability of oscillations over a wider range of param-
eters.

To conclude, we have presented an approach to model
gene regulatory networks which is fully compositional
and stochastic due to the use of a process calculus de-
scription of gene gates. Our application to the repres-
silator poses interesting questions on the role of cooper-
ativity in the dynamics of stochastic networks. So far,
stochastic effects in networks have been studied in the
context of their role in perturbing an underlying deter-
ministic dynamics. Also there surprising effects were ob-
served, like the occurrence of oscillatory behaviour at a
finite distance from a Hopf bifurcation, or even oscilla-
tions via a different type of bifurcation [19, 20]. In our
context stochastic effects do not act merely as perturba-
tions of an underlying deterministic dynamics. It remains
a challenge for the modeler and the experimenter alike to
find the correct abstraction level for the representation

of a real regulatory network in terms of computable ele-
ments.
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