

Sticks & Stones:

An Applicative VLSI Design Language

by
Luca Cardelli

July 1981

University of Edinburgh

Department of Computer Science

—_
.

Introduction
Pictures
2.1, Forms
2.2. Restriction
2.3. Renaming
2.4, Composition
Bunching
Iteration

Table of Contents

Paths and geometric renaming

Figures
Commands

Modules and externals

Efficiency

10. Acknowledgements

I.

II. Predefined Functions

Syntax

List of Figures

Figure 2-1: A Blue Square
Figure 2-2: An n-MOS Inverter
Figure 2-3: Restriction
Figure 2-4: Renaming

Figure 2-5: Composition
Figure 3-1: Bunching

Figure 4-1: "times" Iteration
Figure 4-2: "for" Iteration
Figure 4-3: Double Iteration
Figure 4-4: A Selector

Figure 5-1: A Blue Cross
Figure 5-2: Geometric Renaming
Figure 5-3: Bunch Renaming

WO VTWW =

13

19
20
22
22
23
27

P G 3
~NOVIW =00V ONOO =W

Abstract
A great deal of activity is currently being devoted to the development of
design systems for VLSI, mainly because this seems to be the oniy way we can
go about exploiting the amazing technologies that are becoming available [Mead
80]. We are concerned here about a design language for the hierarchical and
topological description of stick diagrams and geometric layouts, with

particular attention to syntactic clarity, expressiveness and flexibility.

1. Introduction

The most important attribute of a flexible design language for VLSI is
perhaps its ability to parameterise a picture in any possible aspect, e.g.
size, number and type of components and distance between them. This suggests
that the language should be mainly text oriented (with graphic facilities), as
in this case parameterisation can be easily achieved by procedure parameter
passing. A display oriented language has instead severe problems in this
respect: it is very easy to assemble figures on a screen by some pointing
device, but it is difficult to express how these figures are actually meant to

change as a function of some parameters.

Textual languages for graphics, however, suffer from severe drawbacks as
the identification of text and image can be very difficult. Any such language
should then be highly interactive with immediate visual feedback, and the
syntax should recall as far as possible the structure of the picture, i.e. its
topological properties. This contrasts sharply for example with graphic

packages, in their use as extensions to existing host languages.

The kind of language we are interested in, should be able to express
naturally VLSI circuits by their hierarchical structure and their topological
properties [Buchanan 80, Rowson 80, Williams 77]. It should be mainly
oriented towards describing stick diagrams, as this 1is the language MOS
designers use to communicate ideas, and the structure of the circuits should

appear through the text of the descriptions.

Here we present a language, called Sticks & Stones, based on these ideas,
which admits a precise interpretation in terms of geometric layout. A purely
topological version of the language can be used to specify and communicate
stick diagrams in textual form. A more concrete and implementable version,
obtained by adding the strictly necessary geometric details, can be used as an

effective high-level design tool to prepare masks for VLSI processing.

In Sticks&Stones, pictures are handled just like an abstract data type

within a general purpose programming language, so that every picture is

denoted by a program which builds it. The operations over pictures have been
inspired by Milner's Flow Algebra operators [Milner T79] because of their
syntactical clarity and expressiveness and of their algebraic properties.
These operations are topological in nature and give rise to programs which are
suggestive of the pictures they represent. Pictures are embedded in an
applicative higher-order language, which is based on a subset of Edinburgh ML
[Gordon 79]. The control structures of the language can be freely used to

define arbitrary parameterisations and conditional assemblies of pictures.

The language is applicative in two of the senses commonly attributed to
this word; it is expression oriented and free from side-effects. Expressions
seem to be more suited than statements to an interactive language. They
improve and enforce the structured description of complex pictures and help in
keeping information local. Every picture is taken to be an unmodifiable and
unbreakable object, which can only be used to make larger pictures, and which
can only be manipulated through its set of named ports. Picture composition
is then done by port names (and not by geometrical position or displacement)

with automatic translations and rotations.

Side effects might be needed to edit a picture, but we regard this problem
as completely distinct from that of picture construction. Editing a picture
i3 also very different from editing a text or a tree, as in the former case
there may be very troublesome context dependent effects, like those resulting
from increasing the size of a subcomponent. In this context, editing by
rebuilding can be much more convenient than editing by modifying, especially

if an adequate structure of program modules is provided.

If side effects are forbidden, a "correctness by construction"™ approach can
be applied. We might be able to show that a picture enjoies some property P
(e.g. absence of geometric rules violations) if its basic components have the
property P and if picture operations preserve the property P. Thus, the amount

of checking to be done when composing two pictures can be drastically reduced.

Sticks&Stones has been designed by Gordon Plotkin and me. This paper

describes the geometry-oriented implementation running on the ERCC DEC-10 at
the University of Edinburgh; graphic output can be produced on Charles colour
graphics terminals, HP-7221A plotters and Tektronix 4010 terminals. A more

abstract discussion on VLSI design can be found in [Cardelli 81].

2. Pictures
A picture 1is either an elementary picture (called a form) or the
composition of smaller pictures. Pictures form an abstract data type and are

first-class objects in the language.

2.1. Forms
A form is made of a set of figures (boxes, polygons, etc.) with a sort. The
sort of a picture is a list of ports, and ports are used to connect pictures

together.

- let bluesquare =
form(b.S : W port [070,0,1];
b.E : W port [170,90,1];
b.N : Woport [171,180,1];
b.W : W port [071,270,11)
B box [070,1711];

e oo o

with

bluesquare = O : (b.S:W; b.E:W; b.N:W; b, W:W) : [1,1]

A phrase 1like "let bluesquare = ... ;" 1is used to define the variable
"bluesquare" at the top level (the string "- " preceding it, 1is the
Sticks&Stones prompt). The answer from the system is "bluesquare = —-", where

"-—" is the result of the evaluation of ".,..". In this case the result is a
"¢>" (i.e. a picture whose structural details have been omitted) of sort "(

...)" and of size 1,1 which is the size of the minimum enclosing rectangle.

The figure bluesquare (Figure 2-1) is a form (an elementary picture) made
of a single B (blue) box with lower left corner at the point 070, and upper
right corner at the point 171, It has four ports "b.S", "b.E", "b.N" and
"hLW", ‘

A port name can be any list of identifiers and numbers (starting with an

identifier) separated by dots, like "a" or "aaa.bbb.l.c'.3"; these identifiers

by S

Figure 2-1: A Blue Square
and numbers are called atomic parts of a compound port name. Port names have
no semantic significance, but they will often suggest the function of their

associated port (e.g. "b.E" will stand for "blue East").

The port "b.S" is a W (white) port starting at 070 in direction 0 degrees
anticlockwise from the x axis, for a length of 1, The starting point of a
port is its tail, and the other end is its tip. A port is looked at as a

vector whose north is in the tail-to-tip direction.

A more complete example is this n-mos inverter (Figure 2-2):

- let inverter =
form (b.E:B port [575,90,4];

b.W:B port [179,270,41;
g.5:G port [270,0,2];
r.E:R port [6%1,90,2];

E:G port [674,90,2];

.E:R port [677,90,2];

N:G port [4715,180,2];

.W:R port [073,270,2])

with B box [174,5%10]

and G box [070,678; 278,4715]

g.
r'
g
r

and R box [077,6715; 071,6"3]
and Y box [0.575.5,5.5716.5]
and C box [275,479];

inverter = <& : (b.E:B; b.W:B; g.S:G; r.E:R; g.E:G;
r'.E:R; g.N:G; r.Ww:R) : [6,16.5]

Figure 2-2: An n-MOS Inverter

Ports of type B (blue) G (green) and R (red) are drawn in the respective
colour. Ports of any other type are also admitted, and are drawn in the

foreground colour (depending on the graphic'device).

Boxes can be of colour B (blue) G (green) R (red) Y (yellow) C (black) and
W (white), and may overlap; other colours are syntactically admitted and are
drawn in the foreground colour. Note that a 1list of rectangles can be

specified after the keyword "box".

Ports should always be oriented anticlockwise around a picture. This is not
mandatory, but picture composition is made connecting ports on their east
sides (tail to tip and tip to tail), and the anticlockwise convention ensures
that pictures are joined on their outer sides. A picture may have no ports

and/or no figures. The empty picture is simply:
- form;

<o () ¢ [o,0]

2.2. Restriction
Restriction is used to forget about some of the ports of a picture; the
syntax is: expression, followed by "\", followed by a list of port names (see

Figure 2-3):

- inverter \ bW !.E g.7?;

<> ¢ (r.W:R) @ [6,16.51]

PR
Wiz 4
G

SNSNNNNNNY

N

r. W

Figure 2-3: Restriction

Question marks and exclamation marks are used to pattern match port names.
Any variable beginning with an exclamation mark (1like npm, "Lt Wlape™ or
"13") matches with a single atomic part of a compound port name, while any
variable beginning with a question mark matches with an arbitrary number (zero

included) of atomic parts.

In the example above we withdraw the port b.W, all the E(ast) ports and all
the g(reen) ports from the inverter. The inverter itself is not affected by

this operation and a truly new picture is generated.

2.3. Renaming

The renaming operation performs a simultaneous substitution over the ports
of a picture; the syntax is: expression, followed by "{", followed by a list
of single renamings separated by ";", followed by "}", A single renaming "a\b"

means "a becomes b" (see Figure 2-4).
- inverter {r'.E\inv.r'.E; !.W\inv,!.W};

g€.5:G; r.E:R; g.E:G; inv.r' E:R;
: [6,16.5]

AR
74

%,
&

00. - Y,

NOANONNNANNAN

Figure 2-U4: Renaming

Match variables instantiated in the left part of a substitution can be used
in the right part to get group renamings 1like "!.W\inv.!.W" which is an
abbreviation for "b.W\inv.b.W; r.W\inv.r.W". Note that "!,!" matches "a.a"
but does not match "a.b", which is matched by "!,1t", "1,2", "1,11,2" or "2",
but not by "!" or "1, 11, 111", You can go as far as "!.1, 01,2 \ 1,.1.2.2.01",
which renames "a.a.b.3.5" into "b.a.3.5.3.5.b". A question mark in the left
hand side can only appear as the last atomic part, otherwise the matching
might be ambiguous., A matching variable in the right hand side which does not

appear in the left hand side is illegal.

2.4, Composition
Having two pictures, we can compose them by port names; the syntax is:
expression, "[:", list of single links separated by ";", ":]", expression. A

single link has the form: portname, "--", portname.
- redsquare [: r.E —— g.W :] greensquare;

<> : (r.S:W; g.S:W; g.E:W; g.N:W; r.N:W; r.W:wW) : [2,1]

where redsquare and greensquare are defined similarly to bluesquare. This
composition produces two adjacents squares (Figure 2-5), where the ports r.E

of redsquare and g.W of greensquare have been connected and forgotten.

r. N g-N
%;/// NNNNNNNNNNNNY
r. W NNNNNANNNNNNY

ANNANNNNNNNNNNY
7 ANNNNNNNNNNNY
NONNNNNNNNNNNY
ANNNNNNNNNNNY
ARRRRRR R RRNSS
INANNANNNNANNANY

INANNANNANNANNNNNNY
oy
AN
:‘\\\\\\\\\\\}}\ g. E

r.S g S

Figure 2-5: Composition

Several 1links can be specified inside the composition brackets, separating
them by semicolons. All the ports involved in a connection are forgotten in
the result, whose sort 1is otherwise the union of the sorts of the composing
pictures. Pattern matching 1s not allowed in composition; experience has

shown that its use leads to unclear programs.

Composition is a symmetric operation (in the sense: P[l:p(i)--q(1):]Q =
Ql:q(i)--p(1):1P), and as an infix operator associates to the left. Every pair
of ports which are being linked in a composition must have the same type and
the same size., Composition with the empty picture by any pair of ports leaves

a picture unchanged.

Connection of two ports is made tail to tip and tip to tail with no
distance between them, In case of connection of several pairs of ports, the
main link is connected first, and all the other pairs of ports iust face each
other, maybe with a gap in the middle. The main 1link i3 defined as the first

link on the left, inside the composition brackets.

3. Bunching
Every port is actually a bunch, or collection of collinear vectors. Up to
now we only considered single-vector ports, but a port can also be a list of

vectors:

R port [070,0,1; 270,0,1; 570,0,1]

Every vector in a bunch must have the same type, orientation and size, and

they must be collinear, but they can be differently spaced. Bunches may also

be interleaved. When two ports are composed, every vector in one port must

match with a corresponding vector in the other port.

Bunches usually arise from composition: when two pictures are composed, the

ports with equal names which are not being linked get bunched together:
- bluesquare(:b.E--b,W:]bluesquare;

<> : (b,S3:B; b,E:B; b.N:B; b, W:B) : [2,1]

here b.S and b.N are two bunches of two, which are drawn as a single arrow in
Figure 3-1. Again bunching only succeeds for collinear ports of the same size;

otherwise an error is reported.

b. N

b. E

F —»

b.S

Figure 3-1: Bunching

Bunches allow to compose regular arrays of pictures without having to index
by renaming every picture in the array. They keep low the total number of

ports in a picture making composition simpler and more efficient.
4, Iteration
Iteration is used to make regular arrays of cells, like in:
- 3 times bluesquare with [:b.E--b.W:];

<> : (b.S:W; b,E:W; b,N:W; b.W:W) : [3,1]

b.S
Figure 4-1: "times" Iteration

which is equivalent to:
- bluesquare [:b.E--b.W:]
bluesquare [:b.E--b.W:]
bluesquare;

<> : (b.S:W; b.E:W; b.N:W; b.W:W): [3,1]

Iteration is totally equivalent to some obvious recursive program one might
write in the language, but 1is more efficient and syntactically clearer,

Iteration often produces bunches.

Iteration variables are admitted in the "for" form of iteration:

- let blue = bluesquare{b,?\?}

and red = redsquare{r,?\?}

and green = greensquare{g.?\?};
blue = <> : (S:W; E:W; N:W; WeW) : [1,1]
red = <> : (S:W; E:W; N:W; WiW) 3 [1,1]
green = < : (S:W; E:W; N:W; WeW) @ [1,1]

- for square in [blue; red; green]
iter square
with [:E-—W:];

<> : (S:W; E:W; N:W; W:W) : [3,1]

Figure 4-2: "for" Iteration

which produces the picture in Figure 4-2. The iteration variable "square"

takes in turn the values in the 1list.

Double iteration can be used to produce arrays:

"

- let squares array =
for row in array
iter for item in row
iter item
with [:E--W:]
with [:S—N:1;

squares = "

NANNNNAN
NANNANNN
NANNNNAN
Hoo\\\\\\] F

Figure 4-3: Double Iteration

N

(where """ means that 'squares’ is a function). This is the definition of a
function taking a 1list of 1lists (i.e. an array) of pictures and producing a

parametric picture. It can be used as follow:

- 3quares [[blue; green; red 1;
[green; red; blue J;
[red; blue; greenl];

<> 1 (S:W; E:W; N:W; W:W) : [3,3]

Sometimes it is useful to iterate concurrently through several lists; this
feature is used in the following definition of "squares'" which substitutes a

green column every three input columns:

12

- let squares' array =
for row in array
iter for item in row and i in 1::length row
iter (i mod 3)=0 => green | item
with [:E--W:]
with [:S--N:1;

squares' = ""

where the operation "n::m" produces the 1list of all numbers from n to m, and

"3 => b | " means "if a then b else c".

A selector is a realistic example of a parametric picture with which can be
built by deuble iteration. We need first to define three basic building
blocks: 'pos' (an enhancement transistor), 'neg' (a depletion transistor) and

‘out' (a piece bf the common output):

- let pos =
(form (R port [270,0,21;

G port [672,90,21;

R port [476,180,2];

G port [074,270,21)

with R box [270,476]

and G box [072,67u1)

r.S:
g.E:
r.N:
g.W:

and neg =
(form (port [270,0,21;

R
G port [672,90,2];
R
G

e
+ES
.N:R port [476,180,2];
W:G port [074,270,21)
with R box [270,4761]
and G box [072,674]

and Y box [0.570.5,5.575.51)

r
g
r
B.W:

and out =
(form (g.S:G port [270,0,2];
g.N:G port [476,180,2];
g.W:G port [074,270,21)
with G box [270,476; 072,2741);

We now need to put these pieces together: the following program takes a number
n and produces a selector with n control inputs (the n-bunch "r.N"), n
complemented control inputs (the interleaved n-bunch "r'.N"), 2 to the n input
lines (the 2%¥*p-bunch "g.W"), one output line (the 1-bunch "g.N") and the

appropriate pattern of enhancement and depletion transistors (produced by the

auxiliary function "bit").

- let sel n =
for 1 in 1::exp(2,n)
iter (for Jj in n::1
iter bit(i-1,j-1)=0 =>
pos [:g.E--g.W:] (neg{r.?2\r'.?}) |
neg [:g.E--g.W:] (pos{r.?\r'.?})
with [:g.E--g.W:])
[:g.E-—g.W:] out
[with [:r.S—-r.N; r',S—r'".N; g.S—g.N:]

; whererec bit(i,j) =
\ §=0 => 1 mod 2 | bit(i//2,3-1);

where 'exp' is exponentiation and '//' is integer division.

~~N r’.Ng.N
7 7 N°
7 < B ¥ ;dt\\\
g- W R/ W R/ S EANN
5
N N
3
)
SN
NN
- nY
T‘.SI"I.S 9.8

Figure U-U: A Selector

5. Paths and geometric renaming

A path can be generated by taking a port and moving it around:

13

the wake of

the port forms the resulting path. The outcome of this operation is a list of

polygons (one or more for every step the port has made) and a new port (i.e.

I the old port in the new position). Hence a path is the following data type:

path = (polygon list) x port

Given a path, the following operations extend it generating a new path:

14

stay: path -> path

move: num -> path -> path
step: num -> path -> path
rotl: num -> path -> path
rotr: num -> path -> path

move': num -> path -> path
step': num -> path -> path
rotl': num -> path -> path
rotr': num -> path -> path

The operation stay leaves a path unchanged;

The operation move takes a positive number n, a path p and moves the port
of the path n units. The direction of movement is towards the east of the port
(i.e. generally outwards with respect to the picture if anticlockwise ports
are used). The new path generated is made of the new port and the old polygon

1ist with a new rectangular polygon having the old and new ports as edges.

The operation step is like move, but 'step n' means 'move n times the size
of the port' for simple ports, and 'move n times the size of the vectors in

the port' for bunches.

The operation rotl (rotate left) takes a number n (in degrees), a path p
and rotates the port of the path n degrees anticlockwise describing a circular
arc with center in the tip of the port. 1If the port is a bunch, the distances
between the vectors are respected and the result is a set of concentric paths.
The new path generated is made of the new port with the old polyvgon 1list plus
the new polygon(s) generated by the rotation.

The operation rotr (rotate right) is the same as rotl, but the rotation is

clockwise and its center is in the tail of the port.

The operations move', step', rotl' and rotr' are similar to their unprimed
versions, but they move a port without producing any path between the old and

new position. The operations move' and step' also accept negative arguments.

Functions from paths to paths are called path functionals; the following

15

are path functionals:

stay
move 2
step 5
rotl 90
rotr 270

Function composition is used to compose path functionals; in particular it is

convenient to use the inverse function composition operator "&":

(f & g) x = g(f x)

Here 1is an examnple of a composite path functional:

move 2 & rotl 90 & step 4 & rotr 90 & move 2

note that "&" behaves like an append on paths, as function composition is

associative.

How do we use path functionals? Ports are not available to the user as
data objects separated from pictures, so that path objects can never be built,
and there is nothing to apply path functionals to. The only place where 1is
possible to use path functionals is in the geometric renaming feature of the

renaming operation:
- bluesquare {?\? move 2};

<> : (b.S:W; b.,E:W; b.N:W; b.W:W) : [5,5]

The meaning of this is to rename every port in bluesquare by its own name,
moving it 2 units outwards. The result is a blue cross of size [5,5] (Figure
5-1). The path functional "move 2" is applied in turn to the paths obtained
pairing the ports of bluesquare with the empty list of polygons.

Here is a very flexible blue square which can be stretched simmetrically in

four directions by applying a path to it:

b. N

b. W

b.S
Figure 5-1: A Blue Cross
- let bluewheel path = bluesquare {7\? path};
bluewheel = ""

- bluewheel (move 2 & rotl 45 & move 15 & rotr 135 &
move 30 & rotr 45 & move 20 & rotr 270);

<> + (b.S:W; b,E:W; b.N:W; b.W:W) : [68.9,68.9]

b. N

b: E

Figure 5-2: Geometric Renaming

A limited form of routing (called river-routing) can be obtained by using

geometric renaming on bunches, like in Figure 5-3:

- sel 2 {g.W \ g.Wrotr 60 & rotl 60 & move 6} \ 7;

<O () 2 [51.32,32]

[(AAAX XY]

AAAA

Figure 5-3: Bunch Renaming

6. Figures

There 1s a variety of elementary figures. Actually many of them have no
application in VLSI and are intended mainly for graphics. All of the
following options can appear syntactically after the keyword 'with' inside

forms (in the place of boxes in the examples of the previous section).
dot [pl1; ... ;pk] draws dots at the specified points p1 ... pk.

line [11; ... ;1k] draws a set of lines 11 ... lk; every line is a list of

points 1i=[p1; ... ;pki] which are joined by straight segments.

path [11; ... ;1k] draws a set of paths 11 ... lk; every path is a list of
pairs of numbers and points 1i=[n1,p1; ... ;nki,pkil. Ad jacent points
p(J) ,p(j+1) in a path are joined by a circular arc of aperture n(j+1) degrees
(if n(j+1) is 0 or any multiple of 360, a straight segment is used) If n(j+1)
is positive, the arc 1is convex on the east of the vector p(j)->p(j+1); if

negative it is convex on the west. The first aperture n1 is not used.

spline [11; ... ;1k] draws a set of non periodic cubic B-splines 11 ... 1lk;

every spline is built from a list of control points li=[p1; ... ;pkil. The

spline does not pass through the control points (except the first and the

last), but is tangent to every segment joining two adjacent control points.

loop [11; ... ;1k] draws a set of periodic cubic B-splines 11 ... lk; every
spline is built from a list of control points li=[p1; ... ;pkil. The spline
is tangent to every segment joining two adjacent control points (the 1last

point is adjacent to the first) and describes a closed curve,

box [p1,q1; ... ;pk,qk] draws a set of boxes with lower left corner at the

point pi and upper right corner at the point qi.

poly [11; ... ;1k] draws a set of polygons 11 ... 1lk; every polygon has a
line 1i=[p1; ... ;pki] as perimeter. The last point pki is joined back to the

firat.

area [11; ... 31k] draws a set of areas 11 ... lk; every area has a path
1i=[n1,p1; ... ;nki,pki] as perimeter, where the first aperture n1 is used to

join the last point back to the first.

blob [11; ... ;1k] draws a set of blobs 11 ... lk; every blob has a loop

1i={p1; ... ;pki] as perimeter.

text [p1,s81; ... ;pk,s8k] draws a set of character strings s1 ... sk
starting respectively at the points p1 ... pk. Every string may contain
control information (following the escape character '%') according to this
code: '%r' change colour to red; '%g' change colour to green; '&b' change
colour to blue; '%y' change colour to yellow; '#B' change colour to background
(black for Charles, white for HP plotter etc.); '$4F' change colour to
foreground (white for Charles, black for HP plotter etc.); '30' ... '%9'
change text size (0=min, 9=max); '%S' halt plotting and wait for a carriage
return to continue (e.g. to change page on the HP plotter); '#x' for any other
character 'x' to actually display 'x' (e.g. '%%'). Note that the escape
character '%' is only interpreted by the plotting routines while the normal

escape character '/' should be used for any other purpose (e.g. to insert a

"')_'

7. Commands

The following commands are accepted at the top level.

mode: this command investigates the state of the environment, showing what
options are active and what are not. Options are: print: when active, the
result of every top-level evaluation is printed at the terminal. charles:
when active, the result of every top-level evaluation is drown on a Charles
colour graphic terminal, tektronix: when active, the result of every
top-level evaluation i3 shown on a Tektronix terminal. hpplot: when active,
the result of every top-level evaluation is plotted on a HP-7221A plotter.
drawnames: when a plotting device is active, draws the names of the ports at
their location. drawports: when a plotting device is active, draws the ports
at their location as 1little arrows. signature: when a plotting device is
active, puts a signature 'Sticks&Stones' in the lower right corner. page:
when a plotting device is active, plots in 'page' mode. Every picture shown
will fit incrementally the available space from top to bottom (it will try to
make pictures horizontally as large as possible). On the HP plotter, pictures
will fit an A4 sheet of paper. logfile: produces a log file 'STICKS.LOG'
containing a transcript of the terminal input. Type 'addmode logfile' to open
a new logfile (destroying the old one) and start writing on it, and 'submode

logfile' to save it and stop writing on it.
addmode m1, ... ,mn: adds the modes mi to the current mode.
submode m1, ... ,mn: subtracts the modes mi from the current mode.

print v: prints the object v; all the plotting actions are suppressed for

the duration of this command.

draw v: draws the object v on the currently active device(s). Print is
suppressed for the duration of this command. I1f vv is a picture, it is
plotted. If v is a list of n items, the screen is horizontally divided into n
viewports, and every item in the 1list i3 drawn in a viewport; if an item in v

is again a list, its viewport is divided vertically, and so on horizontally

20

and vertically to any depth. 1If v is not a picture, nothing is shown (this

should be intended recursively).
contents: shows the names of the variables defined at the top level,

undo: the result of the last expression evaluated is always kept in the top
level variable "it", The command "undo" can be used to reset "it" to its

previous value (only once).
use: loads a module (described in section "Modules and externals").

import: imports an external picture (described in section "Modules and

externals").

export: creates an external picture and generates a CIF file (described in

section "Modules and externals").

8. Modules and externals

Some modules (called library modules) are predefined in the system, as for
example "constants" (basic cells) and "pla" (pla generator). Modules can
contain data (like "constants") or programs (like "pla"), and can be used by

the command:

- use constants,pla;

which loads the definitions contained in constants and pla.

New modules can be generated by editing files with extension ".STK",
containing Sticks & Stones expressions and definitions. Every module can

"use" other modules.

Externals arise when, at the end of a session, we want to save the pictures
produced so far. If a very big and very time-consuming ALU has been produced,
it can be saved as follows:

- export ALU;

ALY exported

21

This command generates: (i) a CIF file of the ALU, called "ALU.CIF", and (ii)
a file containing boundary information about the ALU, called "ALU.STX". The

ALU can be recalled by:
- import ALU;

ALY = © ¢ s

The advantage of externals is that it is possible to use the ALU in another
session without having to build it again. To import something takes alimost no
time, as only boundary information (i.e. ports) is used (an imported picture
is drawn as a white frame with ports). Moreover the ALU can be used as a
component of a CPU, and when the CPU is exported, the system merges the
already existing ALU.CIF file with the rest of the picture. CIF files

generated by "export" can be used for plotting or for mask fabrication,

The import command is also used to interface already existing CIF files to
Sticks & Stones. Given a CIF file REG.CIF, we only have to write a file
REG.STX and then "import REG;". The STX file should contain a form describing
the ports of the REG, and should declare it to have a figure (e.g. a box) of

the right size:

let REG =

form (VddIn:B port ...; VddOut:B port ...;
GndIn:B port ...; GndOut:B port ...;
BusIn:B port ...; BusOut:B port ...:
ReadIn:R port ...; ReadOut:R port ...;
WriteIn:R port ...; WriteOut:R port ...;
ClockIn:R port ...; ClockOut:R port ...)

with W line [[070;3670;36736;0736;07011;

"export" uses a "line" to generate a white frame, like in this example,

CIF files generated by Sticks & Stones are compact, as common subpictures
are factorised into CIF symbols, and calls to these ‘symbols are generated
where necessary. Moreover they are commented: every CIF 3ymbol is associated

to the name(s) used in Sticks & Stones to denote it.

22

9. Efficiency

The composition algorithm is linear in the number of (bunch) connections
and independent of the number of ports of the sorts involved. Every
connection takes a constant time of about 1/20 sec. DEC/10 cpu (not counting

plotting time).

If possible, iteration should be used instead of recursion and the "times"
form of iteration should be preferred. 1In the latter case the iteration body
needs to be evaluated just once (because the language is applicative) instead
of n times., But what is more important, the system can use a logarithmic
algorithm instead of a 1linear one, producing at any step 1,2,4,8,16 etc.
instantiations of the iteration body and then composing them up to get the
desired number. The gain in efficiency is considerable: to produce a 16x16
array of four-port cells the "times" iteration takes 8 connections against the

255 of the "for" iteration.

Because of the absence of side-effects, it is possible to maximally share
in memory all what is shareable; hence "let" should be used to factorise
common subexpressions., An array of 16x16 cells can be produced by allocating
just one cell plus 8 connection records. If instead we put an expanded cell
definition inside a double iteration with iteration variables we can cause the

allocation of 256 identical cells plus 255 connection records.

10. Acknowledgements

Jeff Tansley and Irene Buchanan stimulated my interest in VLSI and VLSI
design. Many of the good ideas contained in this paper originated from Gordon
Plotkin, and other ones came up during discussions with Kevin Mitchell and
Mark Snir. This work was carried out under a scholarship of the National

Research Council of Italy and a scholarship of the University of Edinburgh.

23

I. Syntax

The following conventions are wused: strings between quotes (") are
terminals; identifiers are non-terminals; "{" is disjunction; "[...]" means
zero or one times "..."; "{ ... }n" means n or more times "..," (default n=0);
"{ .../ =—— }n" means n or more times ",.,." separated by "---" (default n=0);
parenthesis "(...)" are used for precedence; juxtaposition is concatenation.

topterm ::= (command | toplet | topletrec | term) ";"

command ::= mode | addmode | submode | print
draw | undo | use | begin | end |

contents | import | export

mode ::= "mode"

addmode ::= "addmode" {ide / ","}1
submode ::=z "submode" {ide / ","}1
print ::= "print" term

"draw" term

"undo"

use ::= "use" {ide / ","M

begin ::= "begin" port

end ::= "end" port

contents ::= "contents"

import :: "import" ide

export :: "export" ide

toplet ::= "let" declaration
topletrec ::= "letrec" declaration

term ::= variable | bool | string | number | point | pair |
1ist | form | composition | restriction | rename |
conditional | abstraction | application | iteration
let | letrec | where | whererec | parterm |

and | or | not | minus | cons | append | sum | diff |

times | divide | equal | great | less | greateq

lesseq | range | mod | directcomp | reverscomp

variable ::= ide

bool ::= "true" | "false"
string ::= "' " characters "' "
number ::= unsignedreal

point ::= term """ term

pair ::= term "," term

list ::= "[" {term / "3"} "]©

24
25

form ::= "form" [sort] ["with" {figure / "and"}1] append ::= term "€" term
sum ::= term "+" term

sort ::= "(" {port ":" ide ["port" term] / ";"}1 ")" diff ::= term "-" term
times term "®#" term
figure ::= ide shape term divide ::= term "/" term
equal ::= term "=" term
shape ::= "dot" | "line" | "path" | "spline" | "loop" | greater ::= term ™" term
"hox" : "poly" : "area" : "blob" : "t.ext"].ESS = term ngn term
greateq ::= term ">=" term
composition ::= term connection term . lesseq ::= term "<=" term
range ::= term "::" term
connection ::= "[:" {port "--" port / ";"}1 ":]n mod ::= term "mod" term
directcomp ::= term "o" term
restriction ::= term "\" {match}1 , reverscomp ::= term "&" term
rename ::= term "{" substitution / ";"} "}» letter 33:= "a" | ...} "zt | ovwar | ., | wzn | wn
substitution ::= match "\" match [term] | digit o= "0" | .0 | MO

match term

ide ::= letter | ide letter | ide digit

iteration ::= term "times" term "with" connection
"for" {struct "in" term / "and"}1 matchide s:= "I" | "2 | ide "!" | ide "?" |
"iter" term "with" connection matchide "!" | matchide "?" |
matchide letter | matchide digit

conditional ::= term "=>" term "|" term
integer ::= digit | integer digit
abstraction ::= """" {struct}1l """ term)

unsignedreal ::= integer ["." integer]
application ::= term term

port ::= ide | port "." ide | port "." integer
let ::= "let" declaration "in" term

match ::= matchide | port "." matchide |
letrec ::= "letrec" declaration "in" term match "." matchide | match "." ide |

match "." integer

where ::= term "where" declaration

whererec ::= term "whererec" declaration Precedence of operators. "m * n" means that the infix operator "®*" has left

declaration ::= {funstruct "=" term / "and"}1 precedence m and right precedence n. An expression "x * y #' z" associates
funstruct ::= struct } ide {struct}1 like "(x * y) *' z" if n>=m' and like "x * (y *' z)" if n<m'. Hence m<=n means
nEn
struct iz "(" MU ! ide | struct """ struct | that is left associative and m>n that it is right associative.
struct "," struct | "[" {struct / ";"} "]n |
struct " " struct | "™(" struct ")"

parterm ::= "(" term ")"

and ::= term "And" term

or ::= term "Or" term
not ::= term "Not" term
minus ::= "-" term

term "_" term

100
200
301
401
500
600
700
700
700
700
800
900
1000
1100
1100
1200
1200
1200
1300
1300
1400

And

AV AV I o
nwon

> 8
o
a

.o

RO NN m | + o
N

100
200
300
400
500
600
700
700
700
700
800
900
1000
1100
1100
1200
1200
1200
1300
1300
1400

(application)

26

II. Predefined Functions
And (infix) boolean and.
Or (infix) boolean or.
Not (infix) boolean not.

= (infix) equality over booleans, numbers, points,
pairs and 1lists only.

> (infix) greater than.
< (infix) less than.
>= (infix) greater then or equal to,

<= (infix) less than or equal to.

(prefix) number complement.

(infix) number sum.

+

- (infix) number difference.
® (infix) number product.
/ (infix) number division.
// (infix) integer division.

mod (infix) number modulo: 'a mod b' is the
remainder of 'a//b'.

1ft point left: 1ft (a"b) = a.
rht point right: rht (a"b) = b,
fst pair first: fst (a,b) = a.
snd pair second: snd (a,b) = b,
hd list head: hd [al; ... ;an] = al (n>0).
tl list tail: tl [a1; ... jan] = [a2; ... j;an) (n>0).

null 1ist null: null [] = true;
null (a1, ... ,an] = false (n>0).

_ (infix) 1list cons: a_[al; ... ;an]
= [ajal; ... jan] (n>=0),

@ (infix) 1list append: [al; ... ;an] @ [b1; ... ;bm]
= [al; ... ;an;bl; ... ;bm] (n,m>=0).

27

:: (infix) range: n::m = [nyn+1; ... im=1;m] (n<z=m);

nim

length list length: length [al; ... ;an]

[nin=-1; ... ;me15m] (n>=m).

= n (n=0).

o (infix) function composition: (f o g) a = f (g a).

& (infix) reverse function composition: (f & g) a =

g (f a).

28

[Buchanan 80]

[Cardelli 81]

[Gordon 791
[Mead 80]
[Milner 79]

[Rowson 80]

[williams 77]

REFERENCES

I.Buchanan,
Modelling and Verification in Structured Integrated Circuit

Design.
PhD thesis, University of Edinburgh, Department of Computer
Science, July, 1980.

L.Cardelli, G.Plotkin.

An Algebraic Approach to VLSI Design.

In VLSI 81 International Conference. University of Edinburgh.
Academic Press, 1981.

M.Gordon, R.Milner, C.Wadsworth.
Lecture Notes in Computer Science. Number 78: Edinburgh LCF.

Springer-Verlag, 1979.

C.Mead ,L.Conway.
Introduction to VLSI Systems.

Addison-Wesley, 1980.

R.Milner,
Flowgraphs and Flow Algebras.

Journal of the ACM 26(4), 1979.

J.A.Rowson,
Understanding Hierarchical Design.

PhD thesis, California Institute of Technology, Department of
Computer Science, April, 1980.

J.D.Williams,
Sticks -- A New Approach to LSI Design.
Master's thesis, Massachussets Institute of Technology, 1977.

