
Squeak: a Language for Communicating with Mice

Luca Cardelli
Rob Pike

ABSTRACT

Graphical user interfaces are difficult to implement because of the essen-

tial concurrency among multiple interaction devices, such as mice, buttons, and

keyboards. Squeak is a user interface implementation language that exploits

this concurrency rather than hiding it, helping the programmer to express

interactions using multiple devices. We present the motivation, design and

semantics of squeak . The language is based on concurrent programming con-

structs but can be compiled into a conventional sequential language; our imple-

mentation generates C code. We discuss how squeak programs can be

integrated into a graphics system written in a conventional language to imple-

ment large but regular user interfaces, and close with a description of the for-

mal semantics.

CR Categories: I3.6 Graphics languages, Interaction techniques D3.1 Formal semantics

CR General Terms: Algorithms, Theory, Languages

Additional Keywords: Concurrency, User Interfaces

Introduction

User interface implementation languages ([Buxton 83], [Thomas 83]) usually address the

construction of a user interface from building blocks such as menus, scroll bars and freehand

curves. Although it is worthwhile to automate the building of programs from such building

blocks, there is an underlying level that these languages do not address: the implementation of

the building blocks themselves. Moreover, the procedures that provide menus, graphical

potentiometers and other user interface modules tend (in our experience) to be more difficult

to write or modify and clumsier in execution than one would expect. The primitives never

seem complex in principle, but the programs that implement them are surprisingly intricate.

Providing a suitable graphical display is not especially difficult; what causes problems is

the complicated flow of control required to deal with all the possible sequences of user actions

with the input devices. One might consider a scrolling menu, for example, as a finite state

automaton reading an input token for each event generated by the user: buttons up and down,

entering and leaving the scroll bar rectangle, etc. Interaction primitives would probably be

- 2 -

simpler to write and understand if they were implemented as state machines. A translator that

converted state machine descriptions into regular programs would make the job even easier.

There are a couple of factors that limit the usefulness of this technique, however. First,

the presence of multiple input devices invalidates the notion of a single stream of tokens driv-

ing the state machine; for example, the procedure implementing a menu should not worry

about characters typed on the keyboard, even those typed while the user is using the menu.

Second, the passage of time is often important in user interfaces. Some pairs of events are

only meaningful when the individual events occur sufficiently near in time. Consider clicking

a mouse button twice: if the clicks are nearly simultaneous, they might be construed as the

single event ‘double click.’

A more powerful structure is a set of communicating finite state machines, each of which

implements the actions associated with some set of user events. If the individual machines

execute concurrently, each may be enabled when an event is available for it, so the user inter-

face need never ‘lock up’ waiting for a specific event. Another concept from concurrent pro-

gramming, the timeout , can be used to encode time-sensitive procedures.

In contrast to approaches based on parsing a single input stream [van den Bos 83], the

language we present here, called squeak , is an explicitly concurrent language, resembling CSP

[Hoare 78] and CCS [Milner 80], and with the passage of time built rigorously into the seman-

tics as in SCCS [Milner 82] and ESTEREL [Berry 84]. Processes in squeak communicate by

exchanging simple messages on multiple channels. A predefined channel is used for commun-

icating with each device.

The concurrency in a squeak program must be expanded out for squeak to be of practical

value in a conventional programming environment. Our implementation generates an open-

coded (as opposed to table driven) state machine, written in C [Kernighan 78], that expresses

all possible execution paths of the set of processes in the program. The sequence of input

events controls the path taken by the single-stream sequential execution of the program. In

practice the relatively simple programs needed to describe user interfaces are well-behaved,

although in general the state space of a set of concurrent processes can explode.

Tutorial introduction to squeak

The following sections will explain squeak in detail; this tutorial introduces and motivates

the basic ideas.

Squeak programs are composed of processes executing in parallel. A process, or perhaps

a few processes, typically deal with a particular action or external device; the composition of

processes then handles the set of actions and device events relevant to the program. Commun-

ication between processes is achieved by sending messages on channels . There are two classes

of channels: primitive and non-primitive. Primitive channels are pre-defined, and provide

access to external devices. Non-primitive channels are for ordinary message-based communi-

cation. The syntax c !exp sends the value of the expression exp on channel c ; c?var reads the

message on channel c into the variable var .

- 3 -

Our implementation of squeak defines the primitive channels DN and UP , which report

mouse button transitions; M , mouse cursor position (M !p sets the cursor position, M?p reads

it);† K , characters typed on the keyboard; T , the current absolute time; and E and L , the

mouse entering and leaving certain rectangles. The primitive channels return appropriate

values; M for example returns a point data structure. UP and DN return no value; if the

mouse had several buttons, they might return the mouse button number, or there could be a

separate channel for each button. E and L return the appropriate rectangle. Squeak does not

specify how the program announces its interest in rectangles on the display; our implementa-

tion provides C-callable functions to push and pop sets of rectangles to be watched. Events

come in meaningful order, so that UP and DN events must alternate, as must E and L of a

given rectangle.

Here is a simple squeak program that places typed text on the display at points indicated

by the mouse:

proc Mouse = DN? . M?p . moveTo!p . UP? . Mouse

proc Kbd(s) = K?c .

if c==NewLine then

typed!s . Kbd(emptyString)

else

Kbd(append(s, c))

fi

proc Text(p) =

< moveTo?p . Text(p)

:: typed?s . {drawString(s, p)}? . Text(p) >

type = Mouse & Kbd(emptyString) & Text(nullPt)

Process structure in the example program

The last line states that the generated C procedure type is the result of the parallel execution of

three processes. The Mouse process waits for the mouse button to be depressed. When it is,

the mouse coordinates are sent on channel moveTo , where they will be read by the Text pro-

cess. Mouse then waits for the mouse button to be released, and restarts. (The precise seman-

tics of these actions are discussed in the following sections.) Kbd waits for a character to be

typed. If the character is a newline, it sends the complete line on channel typed and restarts;

otherwise it appends the character to the line. The append function is a C routine defined else-

where; squeak treats its invocation as a literal expression. Note that because Mouse and Kbd

are processes, not functions, their recursive invocations do not stack; they are goto ’s, not sub-

routine calls.

† Primitive events are special: the sender of M? and the receiver of M ! are always external to the program.

- 4 -

Finally, the Text process waits for a message on channel moveTo or typed , and records

the mouse position or draws the string on the display, as appropriate. The code in brace

brackets { } is a C expression evaluated at that point in the execution of Text . Typical squeak

programs implement only the flow of control; the actual work at each state of execution is

done by such calls to external code.

This simple example is artificial, but illustrates the basic ideas of squeak . Most important,

a process monitors each input device, and each such process is independent. If a mouse but-

ton is held down while typing continues, the text will still be displayed when a newline is

typed. This works because of the concurrent execution of the Mouse and Kbd processes.

Syntax and informal semantics

A squeak program is a set of process declarations followed by a main process, which may

use the declared processes.

prog ::= decl id = main

decl ::= ε proc pid formals = prcs decl

main ::= prcs rename main \ id main & main (main)

prcs ::= pid actuals
action . prcs
wait [exp] prcs prcs
if exp then prcs else prcs fi
< prcslist >
(prcs)

action ::= id ? id ! id ? id id ! exp

prcslist ::= ε prcs prcs :: prcslist

formals ::= ε (idlist)

actuals ::= ε (explist)

rename ::= ε [id / id] rename

idlist ::= id id , idlist

explist ::= exp exp , explist

exp ::= id num exp op exp (exp)

op ::= + – * / = == < > <= >= !=

The simplest process is <> (also called stop or deadlock), which cannot perform any action.

A process of the form a !exp.p is ready to output the value of exp on the channel a , and

then execute p . The value can be read by the process a?x.p , which binds the input value to the

identifier x , with x available in (and local to) the continuation p . If no value is passed during

a communication, we can simply write a ! or a? . These are all instances of simple processes ,

which consist of an action (a !exp or a?x) and a continuation.

The action a !exp cannot execute until there is a matching a?x , and vice versa. If more

than one input is active on a channel, only one will receive the value; the others remain

- 5 -

suspended until the next input.

A process may wait for input or output simultaneously on several channels: this is a non-

deterministic choice operation among processes. For example <a?x.p 1 :: b !y.p 2 :: c?z.p 3> is

waiting for input on a and c , and for output on b . Communication may happen on any avail-

able channel, say a , and in that case p 1 becames the process continuation (the other continua-

tions p 2 and p 3 are discarded). A choice between two processes may also be written p +q ; this

is not part of the syntax, but is a convenient notation when discussing the semantics. Choice is

associative, so that <p :: q :: r > can be written ((p + q) + r), or (p + (q + r)). A choice with a

single alternative <p > is equivalent to p . A choice of zero alternatives is the deadlock <>,

which is the identity in sums, i.e. <> + p is p .

Some actions can have a timeout condition: the simple process wait [3]a?x.p q will wait

for input on channel a for a maximum of three time units. If an a communication happens

within that time, p will be executed. If communication is not achieved in time, the process

will time out and execute q ; wait [0]a?x.p q is equivalent to q .

Conditional flow of control is achieved by an if-then-else-fi construct. A boolean condi-

tion is used to decide between two possible process continuations. If the condition is true, the

then-part continuation will become the current process, otherwise the else-part will.

Processes can be defined recursively:

proc p = <c!0 . <> :: a!3 . p :: b?x . p>

proc q = <c?z . <> :: a?y . b!(y+1) . q>

example = p & q

The third line executes the processes p and q in parallel. Initially the two processes can

exchange a c action, in which case they both stop, or an a action, in which case p goes back to

the initial state, while q gets into a state where it can only do a b action (which can now be

absorbed by p) and then go back to its initial state. Note that when a process calls another

process, it is a process replacement, not a subroutine call; processes never return to the calling

process.

Every execution path of a process must encounter an action before it encounters an exe-

cution of itself. This rules out pathological cases like p = p and p = <a?x.q :: p >.

A process may have parameters, which are available as local variables within that pro-

cess. For example, consider the following counter process, which may receive an increment sig-

nal or a tellContents signal. It has a local parameter n , which is the current count:

proc counter(n) =

< increment?m . counter(n+m)

:: tellContents!n . counter(n) >

The process would be created by running counter (0). Although from appearance the

tellContents !n message can be emitted at any time, the meaning of communications is such that

there must be a matching action tellContents?v to receive the message in some other process

- 6 -

before the sending action may be executed. Similarly, the increment?m is only executed when

another process emits an increment !exp . Therefore, most of the time the counter process is

suspended waiting for a matching message to choose which path of the selection to take.

A complete squeak program is a parallel composition of processes, possibly with channel

renamings to facilitate the reuse of process definitions. A complete program can perform

external communications on predefined channels, or internal communications on user-defined

channels. Communications on user-defined channels must all be satisfied internally, or a

deadlock will result.

Example 1: Simple menus

Our implementation of squeak compiles a program into a single C function that executes

the combined state machines of the processes in the program. The passing of arguments and

return values is handled by two special primitive channels, ARG and RES . The action ARG?x

stores in x the program’s actual argument list. The variable x will in general be a data struc-

ture to implement the passing of sets of values to the program. The action RES !exp returns

the expression to the caller of the program. The way these must be implemented, of course, is

as a call and return from the function, so ARG must be the first communication received by a

program, and RES the last emitted.

To handle more complicated interactions with C code, our implementation of squeak

interprets text enclosed in brace brackets { } as literal C expressions (except that squeak process

variables may be renamed for uniqueness). Such an expression is valid wherever an ordinary

expression is valid, or in place of an input channel in an action, in which case the value of the

expression is assigned to the variable (if any) in the action. This allows a reasonably clean con-

nection to the outside world, and keeps squeak independent of the generated language.

Here is a complete example that uses ARG and RES to implement simple menus:

proc Roam(m, sel) =

< E?r . {highlight(r)}? . Roam(m, rtosel(r))

:: L?r . {lowlight(r)}? . Roam(m, – 1)

:: UP? . {erasemenu(m)}? . RES!sel . Menu >

proc Menu = ARG?menu . {drawmenu(menu)}? . Roam(menu, – 1)

simpleMenu = Menu # The generated function is called ‘simpleMenu’

A menu is an array of labeled rectangles. The external function rtosel (r) maps a rectangle to

its label, drawmenu and erasemenu create and destroy the menu’s display, highlight highlights a

rectangle and lowlight undoes the highlighting. Part of the task of drawing and undrawing the

menu is identifying to the event manager the rectangles that tile the menu, one per element.

Conceptually, the Menu process is always running, but blocked on receipt of an argument

menu to draw. (In reality, of course, Menu is not started until simpleMenu is called.) A

higher-level process invokes Menu when it detects the mouse button depressed for a

- 7 -

significant time. Menu then draws the menu and invokes Roam , which highlights the

appropriate rectangles as the mouse roams across the menu. The return result, generated

when the mouse button is released, is the label of the rectangle the mouse is in when the but-

ton is released, or – 1 if the mouse is outside the menu, indicating no selection. Its final action

is to restart the Menu process, but this is done only for clarity; RES terminates the invocation

of Menu . Note that the ARG and RES channels must be handled specially by the compiler so

that a program bracketed by ARG and RES actions behaves like a conventional C function.

Example 2: Double clicking

As an example of a squeak program using timeouts, consider the problem of detecting

clicks (mouse button down and up again in a short time) and double clicks (two clicks

separated by a longer but finite time) without losing any button transitions. Here is a squeak

process that detects single clicks on a one-button mouse:

Click =

DN? . wait[clickTime] (UP? . click! . Click) (down! . UP? . up! . Click)

When a mouse button is depressed, Click receives a DN event and waits for a corresponding

UP . When the UP is received, a click event is generated and the process restarts. If the UP

event is not received within clickTime , Click emits a non-primitive down event to indicate to

another process that the mouse button is being held down. Then it waits for the corresponding

UP and re-emits it as an up signal.

Here is a process that detects clicks and double clicks:

DoubleClick =

DN? .

wait[clickTime] UP? .

wait[doubleClickTime] DN? .

wait[clickTime] UP? . doubleClick! . DoubleClick

 click! . down! . UP? . up! . DoubleClick

 click! . DoubleClick

 down! . UP? . up! . DoubleClick

If DoubleClick receives two clicks with the proper timing, it emits a doubleClick event; otherwise

it emits click , down and up events so another process can receive them.

If clicks and double clicks did not have timeouts, DoubleClick could call Click to interpret

the single clicks. Because two timeouts are involved, though, the processes can get out of step.

Consider the following erroneous implementation of DoubleClick :

DoubleClick =

click? . wait[doubleClickTime] (click? . doubleClick! . DoubleClick)

 (click! . DoubleClick)

If the timeout occurs, the click ! action must be emitted to preserve the events, but it may

- 8 -

appear after a down event emitted by Click . The two independent timeouts on the same

stream of events have reordered the events. DoubleClick is therefore written as a single process

with nested timeouts. If timeouts are not involved (and in practice they rarely are), construct-

ing squeak programs hierarchically works well.

Compilation

A squeak program is compiled by analyzing all the possible execution sequences of the

program, and expanding them into C code. There is no scheduling on user channels: schedul-

ing and communications are ‘compiled away,’ producing efficient sequential code segments

interleaved with random choices and calls to the underlying primitive event manager. This is

made practical by two properties of the language. First, there are restrictions on its expressive

power, primarily that the syntax only allows a fixed number of processes, and all the channels

are statically known. Second, most practical programs focus their activity on the external dev-

ice channels rather than on inter-process communication. The special nature of the primitive

events in squeak are essential to its usefulness and practicality.

Primitive events are handled by three C functions that monitor the mouse, buttons, clock

and other I/O devices of the system. The event types are button transitions, mouse motion,

mouse entering or leaving a rectangle, keyboard characters typed, and clicks of the 60Hz clock.

(Our display is a Teletype DMD-5620 terminal running a simple non-preemptive multipro-

gramming system similar to that described in [Pike 83].) The function waitevent(elist) suspends

the calling process until one of the events in the list is pending. The return value is the name

of one of the pending events. The event remains pending until event(e) is called with an argu-

ment naming the desired event. Event returns a structure describing the event, including

information such as, for example, which rectangle was entered. Event will call waitevent if no

event is pending. Waitevent also allows a timeout to be specified for each of the events being

awaited. Finally, testevent(e) tests whether any of the named events are pending. The split

structure of the event code simplifies the implementation of processes awaiting multiple

events: a C switch statement selects, based on the return value of waitevent , which event to

read and which variable should receive the event’s return value. Because the type of the

return value depends on the event and two values are returned per event, it is clumsy to read

events in a single call. An event called alarm is enabled by a separate function, and is gen-

erated when the specified number of clock ticks have elapsed.

Device interrupts place event descriptors on queues. There is one queue for each device

— keyboard, mouse button, etc. — so waitevent simply examines the head of all the queues to

see what events are pending. Each event has a time stamp which is compared with the

current time when timeouts are activated on a queue. If the program examines the queues

often, timeouts are straightforward to implement. But since the program may compute for a

significant time between successive calls to waitevent , timeouts in the past must make sense.

The algorithm is this: When an event is returned to the program, its time stamp is recorded.

When the program enables a timeout, waitevent decrements the timeout period by the interval

- 9 -

between the last event returned and minimum of the present time and the time of the next

event (if any) in the queue being timed out. If the timeout period becomes negative, a timeout

is generated. Otherwise the next event is returned if it exists, or the regular timeout code is

executed if not. It is the decrement of the timeout period that lets the program catch up with

real time.

A communication on a user channel is transformed into a simple assignment. A match-

ing pair of actions a?x and a !3 becomes x =3. A nondeterministic choice between primitive

events is compiled to a call to the underlying event code. As soon as one of the events is

available, control is returned to the squeak program, which selects the appropriate process con-

tinuation for that event. A nondeterministic choice between user communications becomes a

random choice between the possible execution paths. When a choice must be made between

primitive events and user communications, testevent is called to check which primitive events

are pending, and the choice made dynamically among the possible paths.

A parallel composition of processes is compiled into all the possible interleavings of

primitive actions and communications of the component processes. This is done by advancing

one of the processes one step, and considering all the possible continuations of that and all

other processes. The state of the entire system is then restored to the initial state, and another

path considered, advancing another process or the same process by a different action. This

procedure is repeated until all possible executions have been considered. When more than one

execution path is possible at a point, the set of possible communications is pruned and

flattened to eliminate all the avoidable deadlocks and redundant nested execution paths,

according to the laws p +<> = p and ((p + q) + r) = (p + (q + r)). The remaining available paths

are compiled as a dynamic random selection of which path to take. A process identifier is sim-

ply expanded into the corresponding definition.

There are some optimizations that can be made during code generation. Note that any

legal interleavings of the actions of parallel straight-line processes that do not access primitive

events are equivalent. It is therefore unnecessary to generate all possible interleavings; one

will do. The same applies within all subsequences of selections. The compiler therefore

‘pushes’ all processes as far as they can legally go, without accessing any primitive events,

until the system is deadlocked. At this point, some processes will probably be blocked on

primitive events, so the code is generated to access the event and choose subsequent execution

depending on which event is received. For this to be successful, of course, the program must

access primitive events, but a squeak program whose execution does not depend heavily on

external inputs is probably pathological. To avoid loops in the compilation and to keep the

generated code small, at each step of the compilation the translator detects states that have

already occurred in the translation process, and generates jumps back to them, thereby folding

the executions paths together at common states.

Here is a simple example, followed by the output of the translator:

- 10 -

proc p = DN? . <a?x . <c?z . p :: d?k . UP? . p> :: b?y . p>

proc q = <a!1 . d!2 . q :: b!3 . UP? . q>

proc r = c!4 . UP? . a!5 . r

example = p & q & r

- 11 -

example(){
int x, y, z, k;

Lab0:event(DN);

Lab1:switch(nrand(2)){ /* ’a’ or ’b’ */

case 0: /* ’a’ */

x=(1);

Lab2: switch(nrand(2)){ /* ’c’ or ’d’ */

case 0: /* ’c’ */

z=(4);

switch(waitevent(DNUP)){
case DN:

event(DN);

event(UP);

Lab5: x=(5);

goto Lab2;

case UP:

event(UP);

event(DN);

goto Lab5;

}
case 1: /* ’d’ */

k=(2);

event(UP);

goto Lab0;

}
case 1: /* ’b’ */

y=(3);

switch(waitevent(DNUP)){
case DN:

event(DN);

event(UP);

goto Lab1;

case UP:

event(UP);

goto Lab0;

}
}

}

Initially, nothing can execute until p receives a DN event. It can then exchange with q either

an a message, setting x to 1, or a b message, setting y to 3. It is instructive to follow through

- 12 -

the rest of the execution tree. Note particularly the state folding at Lab 1, and where p and r

exchange an a message, setting x to 5. The assignment to x occurs in two different execution

paths that are folded together at Lab 5. The innermost switch could actually be compiled into

better code, since the order of receipt of the DN and UP events is irrelevant, but detecting

situations like this requires looking at the states of processes after actions not yet compiled

(that is, looking into the future), which our implementation does not do.

Use of squeak for complex interfaces

Although squeak was designed to program the lowest levels of a user interface, it can be

used effectively to construct the higher levels by combining squeak programs hierarchically,

treating larger events such as menu selections in the same manner as primitive events.

Consider the implementation of a hypothetical paint program on a bitmap display with a

three-button mouse. A pair of Click -like processes monitor the left and middle buttons. The

left button sets bits, the middle button clears them. When a click is received, a single instance

of the brush is placed in the picture, with boolean combination function depending on which

button was clicked. If Click generates a down event, multiple copies of the brush are laid out

along the path traced by the mouse until an UP event is generated by the mouse. A Menu

process is invoked whenever the right button is depressed, to select commands to change

brushes, read and write files, and so on. Some action, perhaps a menu selection or a double

click, invokes a high-resolution paint program that operates on individual pixels in a

magnified portion of the picture.

By coding a squeak program that takes as arguments functions to call for the left and

middle buttons, and a menu for the third button, the user interface can be made nearly identi-

cal in both painting modes: the regular paint program is instantiated with procedures to draw

the brushes and the main menu, and the action that invokes the high-resolution program calls

the same program recursively, but with arguments appropriate to painting individual pixels.

Only one user interface need be written.

Of course, it may be possible to apply these ideas to the operating system itself. The con-

currency in a squeak program is compiled out because processes are fairly expensive in a con-

ventional operating system. If process scheduling is sufficiently fast, however, as in many

real-time operating systems, it may be feasible to run squeak programs (not processes) as

operating system processes. If the primitive events are known to the scheduler, it is possible

to write a squeak program to read events from each input device and emit higher-level events.

The higher-level events can then enter the scheduler as ‘primitive’ events to be dispatched to

other processes. For example, the Click and DoubleClick processes above could interpret

mouse button transitions for a set of independent user-level programs sharing the mouse,

much as in the Blit operating system mpx [Pike 83].

- 13 -

Formal semantics: Concurrency and time flow

The interrelationships of the parallel processes and communications and timeouts lead to

intricate flows of control. We defined the formal semantics of squeak as a tool for understand-

ing the detailed behavior of squeak programs. In fact, our first attempt at a compiler failed

because we underestimated the complexity of the behavior of parallel communicating

processes. Once we had specified the formal semantics, our understanding was good enough

that the second compiler was easy to write.

The semantics of squeak is given in a language called f ormal squeak . The two languages

are very similar, but not identical. The major difference is that in f ormal squeak all delays

between actions are explicit. To give the semantics of a squeak program, we translate it into

f ormal squeak . First, all squeak actions a?x. or a !v. are converted to f ormal squeak actions a?x :

or a !v :. The latter means ‘‘do the action immediately, and at the next time unit do the rest of

the process (immediately).’’ To preserve the meaning of the original squeak program, we then

introduce explicit delays between actions where they are needed.

A process is called urgent if all its immediate actions have timeouts, and is called patient

if all its immediate actions do not have timeouts. Otherwise it is called sloppy . If the process

following an action is urgent, no delay is introduced. If the process following an action is

patient, a delay operator (δ) is introduced after the action. Finally, the top-level processes in

the main program are examined, and the patient ones are prefixed by a delay. If a sloppy pro-

cess is found, an error is reported.

We use operational semantics [Plotkin 81] to describe the meaning of f ormal squeak pro-

grams. A process in a state p can transfer to a state p ′ by a transition λ. In our case a transi-

tion can be an input action a?v , an output action a !v , a silent action (passage of one time unit),

written 1, or several simultaneous actions.

The possible state transitions are expressed by a set of in f erence rules , listed below. There

are two kinds of rules. In some situations a process can autonomously change state: these

ground rules have the form p ——>
λ

p ′. In other situations a process can change state only if a

part of it can change state according to the inference rules; these conditional rules have the

form p ——>
λ

p ′ = => q ——>
λ′

q ′. The implication sign is also written as a fraction line, with the

condition above it and the consequence below.

A process δp can spend some time doing 1 actions and then do whatever action p can

do.

A simple output process, like a !v :p , can autonomously do an a !v transition and become

p . As mentioned above, a !v :p means ‘‘do a !v immediately, then at the next time unit do p .’’

Hence a !v.p is equivalent to a !v :δp , if p does not have immediate timeouts.

If there is a timeout, such as wait [3]a !v :p q , and a silent action is performed, then the

passage of time decrements the timeout period: wait [3]a !v :p q ——>
1

wait [2]a !v :p q . If the

a !v action is not selected in time, the process will degenerate into wait [0]a !v.p q which can

- 14 -

perform only q . Input timeouts are treated similarly.

A process a?x :p can receive any value on a , hence it can perform all the actions a?v for

any possible input value v . Therefore, a?x :p is allowed to make autonomously any a?v action,

but only one of those v will be the right one — the one which is produced by a matching out-

put action. Communication therefore occurs as pairs of actions; this is discussed in detail

below.

A nondeterministic choice of processes can perform any action allowed by any of its

component processes. As soon as a component process is chosen, the others are discarded.

A parallel composition of processes can perform an action only if all its components per-

form an action. The resulting action is a composite product action of all the component actions.

For example, in p & q , p may produce a a?v action and q may produce a b !w action. The

resulting action for p & q is a?v & b !w , the simultaneous occurrence of a?v and b !w . Note

that if a component of a parallel composition deadlocks, the whole composition deadlocks.

There are rules for simplifying these action products. A product of the form a?v & a !v

reduces to 1, which models the exchange of a value v on channel a between exactly two

processes. Moreover, the silent action is absorbed in products: a?v & 1 is a?v . Because two

complementary actions reduce to 1, the named channel has been used for communication, and

the matching two actions are no longer available to other processes.

How does communication happen? According to the rules for input and output actions,

it seems that inputs and outputs on a channel can happen independently and need not happen

simultaneously, or transmit the same value. However, as one of many possible situations,

input and output actions may match.

The restriction rule, labeled [Restr] in the list of rules below, is used to prune those situa-

tions in which inputs and outputs do not match: communications which may happen are

f orced to happen. When two communications match, the resulting action for the whole system

is a 1. Hence, to force possible internal communications to happen, a subsystem is forced to

exhibit only 1 transitions, or external communications. The notation p R , where p is a pro-

cess and R a set of actions, prevents p from emitting those actions not contained in R ,

although such actions may still be reduced to 1 within p . The notation used in the syntax is

p \ a , which is equivalent to p R where R is the complement of the set containing all the sin-

gle or composite actions having an a component; that is, p \ a prevents p from exporting any

action containing a .

For semantic purposes, a main program p in the syntax should be intended as p Prim ,

which can perform only primitive actions in the set Prim , which by definition always contains

1. All the other user-defined actions that p may want to perform are inhibited by p Prim ;

note that this is stronger that just filtering them away. Hence all the user-defined actions that

components of p may perform must be matched by other components of p and reduced to 1;

otherwise a deadlock will occur.

- 15 -

The following are the operational semantic rules for interpreting f ormal squeak . There

are no rules for reducing expressions; we simply assume that expressions are already reduced

to their final value wherever they occur. The letter v will be used to denote values.

[Delay] δp ——>
1

δp
δ p ——>

λ
p ′

p ——>
λ

p ′
_ ___________

[Wait] wait[n +1]p q ——>
1

wait[n]p q

wait[n +1]p q ——>
λ

p ′

p ——>
λ

p ′
_ _______________________

wait[0]p q ——>
λ

q ′

q ——>
λ

q ′
_ ____________________

[Input] a?id :proc ——>
a?v

proc {v ⁄id }

[Output] a !v :proc ——>
a !v

proc

[If]
if true then proc 0 else proc 1 fi ——>

λ
proc 0

′

proc 0 ——>
λ

proc 0
′

_ ___

if false then proc 0 else proc 1 fi ——>
λ

proc 1
′

proc 1 ——>
λ

proc 1
′

_ ___

[Choice]
proc 0+proc 1 ——>

λ
proc 0

′

proc 0 ——>
λ

proc 0
′

_ _____________________

proc 0+proc 1 ——>
λ

proc 1
′

proc 1 ——>
λ

proc 1
′

_ _____________________

[Par]

proc 0 & proc 1 ——>
λ0& λ1

proc 0
′ & proc 1

′

proc 0 ——>
λ0

proc 0
′ proc 1 ——>

λ1

proc 1
′

_ __________________________________

[Rename]

proc {id ⁄id ′} ——>
λ {id ⁄id ′}

proc ′

proc ——>
λ

proc ′

[Restr]
proc R ——>

λ
proc ′ R

proc ——>
λ

proc ′
_ _____________________ if λεR

[Def]
pid (actuals) ——>

λ
proc ′

proc {actuals ⁄f ormals } ——>
λ

proc ′
_ ______________________________ where pid (f ormals)=proc ε Defn

where De f n is the set of process definitions for a particular squeak program.

- 16 -

A simple example may clarify how the semantics works. Consider the following process

(where we have taken some syntactic liberties to match the semantic rules):

proc p = a?x : <>

proc q = a!3 : <> + b?y : <>

simple = (p & q) Prim

All possible actions of the components from the bottom up must be computed to determine the

actions of the whole. The p component can do all actions of the form a?v . The q component

can perform a !3 and all actions b?w . Their parallel composition can perform all the possible

products of a?v with a !3 and of a?v with b?w . These product actions are: (a? 3 & a !3) = 1,

(a?v & a !3) for v ≠ 3, and (a?v & b?w) for all v and w . But of all these actions, only 1 is in

the Prim set. Hence (p & q) Prim can do only a 1 action, which corresponds to the com-

munication of 3 on channel a between p and q .

Conclusions

Squeak is a concurrent language for specifying interactive user interfaces. It can express

complex time-dependent interfaces in a compact notation. Although squeak could be developed

into a full-blown language, we use it to express subroutines which are then integrated in larger

programs written in a conventional sequential language (C).

The integration of concurrent subsystems in sequential programs is achieved by compil-

ing concurrency into sequential code whose execution is controlled by the sequencing of exter-

nal device events. It is interesting that in the restricted domain of squeak programs, the context

switches between concurrent processes can be compiled out.

The real-time behavior of squeak is subtle, and we have found it helpful to express the

language’s semantics formally, using the methods of operational semantics.

References

[Berry 84] Berry, G., ‘‘The ESTEREL synchronous programming language and its mathematical

semantics,’’ Proc. of the NSF/SERC workshop on concurrency, CMU, 1984.

[van den Bos 83] van den Bos, J., Plasmeijer, M.J. and Hartel, P.H., ‘‘Input-Output Tools: A

Language Facility for Interactive and Real-Time Systems,’’ IEEE Trans. Soft. Eng., SE-9(3), pp.

247-259, 1983.

[Buxton 83] Buxton, W., Lamb, M. R., Sherman, D. and Smith, K.C., ‘‘A User Interface Manage-

ment System,’’ USENIX Conf. Proc., June 1983, pg. 177.

[Hoare 78] Hoare, C.A.R., ‘‘Communicating Sequential Processes,’’ Comm. ACM 21(8), pp. 666-

678, 1978.

[Kernighan 78], Kernighan, B.W. and Ritchie, D.M., The C Programming Language, Prentice-Hall

1978.

- 17 -

[Milner 80] Milner, R., ‘‘A Calculus of Communicating Systems,’’ Lecture Notes in Computer Sci-

ence, nr.92, Springer-Verlag, 1980.

[Milner 82] Milner, R., ‘‘Four combinators for concurrency,’’ ACM SIGACT-SIGOPS Symp. on

Princ. of Distributed Computing, Ottawa, Canada, 1982.

[Pike 83] Pike, R., ‘‘The Blit: A Multiplexed Graphics Terminal,’’ AT&T Bell Labs Tech. J., 63(8),

part 2, pp. 1607-1631

[Plotkin 81] Plotkin, G.D., ‘‘A Structural Approach to Operational Semantics,’’ Internal Report

DAIMI FN-19, Computer Science Department, Aarhus University, September 1981.

[Thomas 83] Thomas, J.J. and Hamlin, G., ‘‘Graphical Input Interaction Technique Workshop

Summary,’’ Computer Graphics, January 1983, pp. 5-30.

