
Service Combinators for Web Computing

Luca Cardelli

Digital Equipment Corporation
Systems Research Center�

Rowan Davies

Carnegie�Mellon University
School of Computer Science

Abstract

The World�Wide Web is rich in content and services� but access to these

resources must be obtained mostly through manual browsers� We would like to

be able to write programs that reproduce human browsing behavior� including

reactions to slow transmission�rates and failures on many simultaneous links�

We thus introduce a concurrent model that directly incorporates the notions of

failure and rate of communication� and then describe programming constructs

based on this model�

� Introduction

The World�Wide Web ��� is a uniform� highly interconnected collection of computa�
tional resources� and as such it can be considered as forming a single global computer�
But� what kind of computer is the Web� exactly� And what kind of languages are
required for programming such a computer� Before approaching the second question�
we must answer the 	rst� In other words� what is the Web
s model of computation�

��� Some Kind of Computer

We can quickly scan a checklist of possibilities� Is the Web a Von Neumann computer�
Of course not� there is no stored program architecture� and no single instruction
counter� Is the Web a collection of Von Neumann computers� Down below yes� but
each computer is protected against outside access� its Von Neumann characteristics are
not exploitable� Is the Web a 	le system� No� because there is no universally available
�write
 instruction �for obvious good reasons�� Is the Web a distributed database� In
many ways yes� it certainly contains a huge amount of information� But� on the one
hand the Web lacks all the essential properties of distributed databases� such as precise
data schemas� uniform query languages� distributed coherence� consistent replication�

�Current A�liation� Microsoft Research� Cambridge UK�

�

crash recovery� etc� On the other hand� the Web is more than a database� because
answers to queries can be computed by non�trivial algorithms�

Is the Web a distributed object system� Now we are getting closer� Unfortunately
the Web lacks some of the fundamental properties of traditional �in�memory� or local�
area� object systems� The 	rst problem that comes to mind is the lack of referential
integrity� a pointer �URL�� on the Web does not always denote the same value as it
did in a previous access� Even when a pointer denotes the same value� it does not
always provide the same quality of access as it did in a previous access� Moreover�
these pointers are subject to intermittent failures of various duration� while this is
unpleasant� these failures are tolerated and do not negate the usefulness of the Web�

Most importantly� though� the Web does not work according to the Remote Pro�
cedure Call �RPC� semantics that is at the basis of distributed object systems� For
example� if we could somehow replace HTTP� requests with RPC requests� we would
drastically change the �avor of Web interactions� This is because the Web communi�
cation model relies on streaming data� A request results in a stream of data that is
displayed interactively� as it is downloaded� It is not that case that a request blocks
until it produces a complete result �as in RPC��

At a more abstract level� here are the main peculiarities of a Web computer� with
respect to more familiar computational models� Three new classes of phenomena
become observable�

� Wide�area distribution� Communication with distant locations involves a no�
ticeable delay� and behavior may be location�dependent� This is much more
dramatic than the distribution observable on a multiprocessor or a local�area
network� It is not possible to build abstractions that hide this underlying real�
ity� if only because the speed of light is a physical limit�

� Lack of referential integrity� A URL is a kind of network pointer� but it does not
always point to the same entity� and occasionally it does not point at all� This
is quite di�erent from a pointer in a programming language�

� Quality of service� A URL is a �pointer with a bandwidth
� The bandwidth of
connections varies widely with time and route� and may in�uence algorithmic
behavior�

A Web programmer will need to take these new observables into account� This
calls for new programming models� and eventually new languages�

Therefore� there are no good names for describing the computational aspects of
the Web� We might as well name such a computer a �Berners�Lee computer
� after
the inventor of HTTP� The model of computation of the Web is implicit in the HTTP
protocol and in the Web
s hardware and software infrastructure� but the implications

�Uniform Resource Locator ��� �	

�The HyperText Transfer Protocol is the Web�s communication protocol ��� �� �	
�

�

of the interaction of the protocol and the infrastructure are not easy to grasp� The
protocol is actually quite simple� but the infrastructure is likely to slow down� speed
up� crash� stop� hang� and revive unpredictably� When the Web is seen as a computer�
e�g�� for the purpose of programming it� it is a very unusual computer�

��� Some Kind of Algorithmic Behavior

What kind of activities can one carry out on such a strange computer� Here is an
example of a typical behavior a user might exhibit�

Hal carries out a preliminary search for some document� and discovers that the
document �say� a big postscript 	le� is available at four servers� in Japan� Australia�
North America� and Europe� Hal does not want to start a parallel four�way download
at 	rst� it would be antisocial and� in any case� it might saturate his total incoming
bandwidth� Hal 	rst tries the North American server� but the server is overloaded and
slow in downloading the data� So� he opens another browser window and contacts the
European server� This server is much faster� initially� but suddenly the transfer rate
drops to almost zero� Will the North American server catch up with it in the end�
While he waits to 	nd out� Hal remembers that it is night in Japan and Australia�
so the servers should be unloaded and the intercontinental link should not be too
congested� So he starts two more downloads� Japan immediately fails� but Australia
starts crawling along� Now Hal notices that the European download has been totally
idle for a few minutes so he kills it� and waits to see who wins out between Australia
and North America�

What is described above is an instance of an �algorithmic
 behavior that is used
frequently for retrieving data� The decisions that determine the �ow of the algorithm
are based on the observable semantic properties of the Web� load� bandwidth� and even
local time� The question is� what language could one use to comfortably program such
an algorithm� An important criterion is that the language should be computationally
complete with respect to the observable properties of the Web�

Every algorithmic behavior should be scriptable�

That is� if a user sitting in front of �say� a browser carries out a set of observations�
decisions� and actions that are algorithmically describable� then it should be possible
to write a program that emulates the same observation� decisions� and actions�

��� Some Kind of Run�Time System

The Web is one vast run�time system that� if we squint a bit� has many of the features
of more conventional run�time systems�

There are atomic data structures �images� sounds� video�� and compound data
structures �HTML� documents� forms� tables� multipart data�� as described by various

�HyperText Markup Language �	� �

�

Internet standards� There are pointers �URLs� into a universal address space�
There are tree and graph structures �XML� and MIME� multipart�related format�

that can be used to transmit complex data� There are standardized type systems
for data layout �XML DTD
s and MIME media types�� There are subroutine calls
and parameter passing conventions �HTTP and CGI��� There are plenty of available
processors �Web servers� that can be seen as distributed objects that protect and
dispense encapsulated data �e�g�� local databases�� Finally� there are some nice visual
debuggers �Web browsers��

What programming language features could correspond to this run�time system�
What could a �Web language
 look like� Let
s try to imagine it�

A �value
 in a Web language would be a pair of a MIME media type and an
appropriate content� �For example� the media type may be image�jpeg and the content
would be a jpeg�encoded image�� These values could be stored in variables� passed to
procedures� etc� Note that the contents of such values may be in the process of being
fetched� so values are naturally concurrently evaluated� Other kinds of values would
include gateways and scripts �see below��

The syntax of a programming language usually begins with the description of the
�literals
� the entities directly denoting a value� e�g�� a numeral or a string� A �media
literal
 would be a pair of a media type and a URL indicating the corresponding
content� Such a literal would be evaluated to a value by fetching the URL content
�and verifying that it corresponds to the claimed media type��

A �gateway literal
 would be a pair of a Gateway Type and a URL indicating a
gateway �e�g�� a CGI gateway�� The gateway type indicates the parameter passing
conventions expected by the gateway �e�g�� GET� POST� or ISINDEX� and the media
types for the requests and replies� A gateway literal evaluates to a gateway value�
which just sits there waiting to be activated�

A gateway value can be activated by giving it its required parameters� The syntax
for such an activation would look like a normal procedure call� g�a�� � � � � an� where g
is a literal� variable� or expression that produces a gateway value� and the arguments
are �normally� media values� The e�ect of this call is to package the arguments
according to the conventions of the gateway� ship them through the appropriate HTTP
connection� get the result� and convert it back to a value� The 	nal value may be
rendered according to its type� As an example� g might be a constant URL that refers
to the Altavista search engine� in which case the arguments would include a phrase
for the search engine to look up� The result would most likely be of type text�html�
which could be either displayed or processed further�

We now have primitive data structures �media literals� and primitive control struc�
tures �gateway calls�� With this much we can already write �scripts
� These scripts
could be stored on the Web as Internet Media� so that a script can refer to another

�Extensible Markup Language ���

�Multi
purpose Internet Mail Extension ��� �

�Common Gateway Interface ��

�

one through a URL� The syntax for script calls would be the same as above� Scripts
would have to be closed �i�e� no free variables� except for URLs�� for security and
network transparency�

This is arguably a Web language� The scripts are for the Web �not for a particular
operating system or 	le system� and in the Web �not stored in a particular address
space or 	le�� Such a language uses the Web as its run�time system�

��� Other Issues

Two major issues remain to be addressed�
The 	rst issue is output parsing� Because of the prominence of browsers and

browser�ready content on the Web� the result of a query is almost always returned
as an entity of type text�html �a page�� even when its only purpose is to present�
say� a single datum of type image�jpeg� The output has to be parsed to extract the
information out of the HTML� Although the structure of HTML pages is relatively
well de	ned� the parsing process is delicate� error�prone� and can be foiled by cosmetic
changes in the pages� In order to make Web programming possible on a large scale�
one needs some uniform way of describing the protocol of a gateway and� by extension�
of a script� This problem is in the process of being solved by the XML standards for
data description� and by sophisticated pattern�matching languages for web pages �����
We will not discuss this topic any further in this paper�

The second issue is the design of control structures able to survive the �aky con�
nectivity of the Web� This is the topic of the rest of the paper�

� Service Algebra

Suppose we want to write a program that accesses and manipulates data on the Web�
An obvious starting point is an HTTP library� embedded in some programming lan�
guage� that gives us the ability to issue HTTP calls� Each HTTP call can fail with
fairly high probability� therefore� error�handling code must be written using the error�
handling primitives of the language� If we want to write code that reacts concurrently
to network conditions and network failures in interesting ways� then the error�handling
code ends up dominating the information�processing code� The error�handling and
concurrency primitives of common languages are not very convenient when the excep�
tional code exceeds the normal code�

An alternative is to try to use high�level primitives that incorporate error handling
and concurrency� and that are optimized for Web programming� In this section we
introduce such primitives� A service is an HTTP information provider wrapped in
error�detection and handling code� A service combinator is an operator for composing
services� both in terms of their information output and of their error output� and
possibly involving concurrency� The error recovery policy and concurrency are thus
modularly embedded inside each service�

�

The idea of handling failures with combinators comes� in a sequential context� from
LCF tactics ���� Perhaps not surprisingly� our combinators have some similarities to
those found in concurrent� real�time languages for programming �reactive systems
�
such as Esterel ���� One major di�erence is that our combinator language includes
the concept of the �rate of progress
� We have also tried to concentrate only on
those features that allow the easy expression of common web browsing algorithms� so
our language is very small and simple� Our language does not appear to allow every
possible algorithmic behavior to be expressed� to achieve that goal� we suggest that
it would probably be necessary to start with a language like Esterel� and explicitly
include the concept of �rate of progress
 in programs� Our combinators could then
be provided as a library to allow easy expression of many common web browsing
algorithms�

��� Services

AWeb server is an unreliable provider of data� any request for a service has a relatively
high probability of failing or of being unacceptably slow� Di�erent servers� though�
may provide the same or similar services� Therefore it should be possible to combine
unreliable services to obtain more reliable �virtual services
�

A service� when invoked� may never initiate a response� If it initiates a response�
it may never complete it� If it completes a response� it may respond �service denied
�
or produce a real answer in the form of a stream of data�

In the period of time between a request and the end of a response� the main
datum of interest is the �transmission rate
� counted as bytes per second averaged
over an interval� It is interesting to notice that the basic communication protocol of
the Internet does not provide direct data about the transmission rate� this must be
estimated from the outside� We might also be interested in what percentage of the
total service has been completed� Unfortunately� many web servers have historically
not provided information on the length of the document they are sending� so we were
forced to omit this aspect from our language�

��� Service Combinators

We now describe the syntax and informal semantics of the service combinators in
our language� The combinators were chosen to allow common manual Web�browsing
techniques to be reproduced with simple programs�

The syntax for our language is given below in BNF�like notation� We use curly
brackets f g for grouping� square brackets � � for zero or one occurrences� post	x � for
zero or more occurrences� post	x � for one or more occurrences� in	x j for disjunction�
and simple juxtaposition for concatenation� We use ��
 to indicate an occurrence of
� in the language itself� For lexical items� �c� � c�� indicates a character in the range
c� � c��

�

Services
S ��� url�String� j S� � S� j S� ��
 S� j timeout�Real� S� j

limit�Real�� Real�� S� j repeat�S� j stall j fail j
index�String�� String�� j
gateway G �String� fId�Stringg � �

Gateway types
G ��� get j post

Lexical items
String ���
 StringChar �

StringChar ��� any single legal character other than � � �

or one of the pairs of characters �� �� ��

Id ��� �A� Z� j �a� z� j ��� ���
Real ��� ��� Digit� �� Digit��
Digit ��� ��� ��

The basic model for the semantics of services is as follows� a service may be invoked
at any time� and may be invoked multiple times� An invocation will either succeed and
return a result after some time� or fail after some time� or continue forever� At each
point in time it has a rate which is a real number indicating how fast it is progressing�

Basic Service

url�String�
The service url�String� fetches the resource associated with the URL indicated

by the string� The result returned is the content fetched� The service fails if the fetch
fails� and the rate of the service while it is running is the rate at which the data for
the resource is being received� measured in kilobytes per second�

Gateways

index�String� String��
gateway get �String� Id��String� � � � Idn�Stringn�
gateway post �String� Id��String� � � � Idn�Stringn�

Each of these services is similar to the service url�String�� except that the URL
String should be associated with a CGI gateway having the corresponding type �index�
get or post�� The arguments are passed to the gateway according to the protocol for
this gateway type�

Sequential Execution

S� � S�

�

The ��
 combinator allows a secondary service to be consulted in the case that the
primary service fails for some reason� Thus� the service S� � S� acts like the service
S�� except that if S� fails then it acts like the service S��

Concurrent Execution

S� j S�
The ��
 combinator allows two services to be executed concurrently� The service

S� j S� starts both services S� and S� at the same time� and returns the result of
whichever succeeds 	rst� If both S� and S� fail� then the combined service also fails�
The rate of the combined service is always the maximum of the rates of S� and S��

Time Limit

timeout�t� S�
The timeout combinator allows a time limit to be placed on a service� The service

timeout�t� S� acts like S except that it fails after t seconds if S has not completed
within that time�

Rate Limit

limit�t� r� S�
This combinator provides a way to force a service to fail if the rate ever drops

below a certain limit r� A start�up time of t seconds is allowed� since generally it takes
some time before a service begins receiving any data�

In our original design� this start�up time was applied to the whole service S� We
later realized that this design leads to an unfortunate interaction with some of the
other combinators� This is demonstrated by the example� limit�t� r� �S� � S���� The
problem here is that if S� fails after the 	rst t seconds� then S� is initiated but is not
allowed any start�up time� so quite likely the whole service fails�

This motivates the following semantics� The service limit�t� r� S� acts like the
service S� except that each physical connection is considered to have failed if the rate
ever drops below r Kbytes�sec after the 	rst t seconds of the connection� Physical
connections are created by invocations of url� index and gateway combinators�

In general� a rate limit can be described as a function f from time to rate� and a
combinator limit�f� S� could be used� the current combinator could then be de	ned
via a step function� The more general combinator is supported by our semantics� but
we decided to adopt the current� simpler� de	nition�

We have found this semantics for rate to be useful in many situations� but ad�
mittedly it may seem surprising to some users� and appear to have some strange
interactions with other combinators� In fact� these interactions are quite simple� the
limit combinator distributes through all combinators other than physical connections�

�

Repetition

repeat�S�
The repeat combinator provides a way to repeatedly invoke a service until it suc�

ceeds� The service repeat�S� acts like S� except that if S fails� repeat�S� starts
again�

Unlike many traditional language constructs� the repeat combinator does not
include a condition for terminating the loop� Instead� the loop can be terminated in
other ways� e�g�� timeout�t� repeat�S���

Non�termination

stall

The stall combinator never completes or fails and always has a rate of zero� The
following examples show how this can be useful�

timeout	
�� stall� � S

This program waits �� seconds before starting S�

repeat	url	�http
��www�cs�cmu�edu��rowan�� �

timeout	
�� stall��

This program repeatedly tries to fetch the URL� but waits �� seconds between at�
tempts�

Failure

fail

The fail combinator fails immediately� It is hard to construct examples in our
small language where this is useful� though we include it anyway for completeness� and
because we expect it to be useful when the language is extended to include conditionals
and other more traditional programming language constructs�

��� Examples

We now show some simple examples to illustrate the expressiveness of the service com�
binators� It is our intention that our service combinators be included as a fragment of
a larger language� so for these examples �and in our implementation� we include some
extensions� We use �let
 to make top�level bindings� and we use �fun�x� body
 and
�function	argument�
 for function abstraction and application� It is not completely
clear how to de	ne the semantics for these extensions in terms of the service model
used above� If we are going to be very Web�oriented� then perhaps functions should be
implemented as gateways� and bound variables should actually refer to dynamically
allocated URLs� Regardless� for the simple examples which follow� the meaning should

be clear� since all function declarations could be expanded out� The actual implemen�
tation allows more �exible use of functions than this� but we will not elaborate here�
since we are not yet sure of exactly what status functions should have in our language�
We would also like to point out that by embedding our language in a host language�
as we have done with Java �see Section ��� we need only make use of the abstraction
mechanisms provided by the host language�

Example �

url	�http
��www�cs�cmu�edu���

This program simply attempts to fetch the named URL�

Example �

gateway get	�http
��www�altavista�digital�com�cgi�bin�query��

pg��q� what��web� q��java��

This program looks up the word �java
 on the AltaVista search engine�

Example �

url	�http
��www�cs�umd�edu��pugh�popl����� �

url	�http
��www�diku�dk�popl�����

This program attempts to fetch the POPL
 � conference page from one of two
alternate sites� Both sites are attempted concurrently� and the result is that from
whichever site successfully completes 	rst�

Example �

repeat	limit	
�
� url	�http
��www��conf�au����� �

	timeout	��� stall� �

url	�http
��www�cs�cmu�edu��rowan�failed�txt��

This program attempts to fetch the WWW� conference page from Australia� If the
fetch fails or the rate ever drops below � Kbytes�sec� then it starts again� If the page
is not successfully fetched within �� seconds� then a site known to be easily reachable
is used to retrieve a failure message�

Example �

let av � fun	x�

gateway get	�http
��www�altavista�digital�com�cgi�bin�query��

pg��q� what��web� q�x�

��

let hb � fun	x�

gateway get	�http
��www�HotBot�com�search�html��

��� MT�x ��� �

let avhb � fun	x� av	x� � hb	x�

avhb	�java��

This program de	nes two functions for looking up search strings on AltaVista
and HotBot� and a single function which tries both concurrently� returning whichever
succeeds 	rst� It then uses this function to lookup the word �java
� to see which engine
performs this task the fastest� There are a large number of other constant parameters
required by the HotBot gateway� which we have omitted above�

Example �

let dbc � fun	ticker�

gateway post	�http
��www�dbc�com�cgi�bin�htx�exe�squote��

source��dbcc� TICKER�ticker format��decimals�

tables��table��

let grayfire � fun	ticker�

index	�http
��www�grayfire�com�cgi�bin�get�price�� ticker�

let getquote � fun	ticker�

repeat	grayfire	ticker� � dbc	ticker��

getquote	�CPQ��

This program de	nes two functions for looking up stock quotes based on two di�er�
ent gateways� It then de	nes a very reliable function which makes repeated attempts
in the case of failure� alternating between the gateways� It then uses this function to
lookup the quote for Compaq Computer�

� Formal Semantics

We now give a formal semantics for the service combinators�

��� The Meaning Function

The basic idea of the semantics is to de	ne the status of a service at a particular time
u� given the starting time t� Possible values for this status are hrate� ri� hdone� ci� and
hfaili� where r is the rate of a service in progress� and c is the content returned by a
successful service� The particular value of r is not used in the semantics� but we have
retained it here since the application which initiates a service might want to make
use of this parameter� e�g� to display it to the user� It might also be of use when
considering extending the language with new combinators�

��

The limit combinator does not immediately 	t into this framework� We handle it
by introducing an additional parameter in the semantics that is a function from a time
interval to a rate� This function takes as argument the duration since a connection
was started and indicates the minimum rate that satis	es all applicable rate limits�

Thus our semantics is based on a meaning function M with four arguments� a
service� a start time� a status time� and a rate limit function�

The meaning function implicitly depends on the state of the Web at any time�
Instead of building a mathematical model of the whole Web� we assume that a url
query returns an arbitrary but 	xed result that� in reality� depends on the state of the
Web at the time of the query�

A complication arises from the fact that Web queries started at the same time with
the same parameters may not return the same value� For example� two identical url
queries could reach a server at di�erent times and fetch di�erent versions of a page�
moreover� two identical gateway queries may return pages that contain di�erent hit
counters� For simplicity� to makeM deterministic� we assume the existence of an �in�
stantaneous caching proxy
 that caches� for an instant� the result of any query initiated
at that instant� That is� we assume that url�String� j url�String� � url�String��
while we do not assume that timeout�t� stall� � url�String� � url�String� for any
t � ��

The meaning function is de	ned compositionally on the 	rst argument as follows�

M�stall� t� u� f� � hrate� �i

M�fail� t� u� f� � hfaili

M�S� � S�� t� u� f� �
M�S�� v�� u� f� if M�S�� t� u� f� � hfaili
M�S�� t� u� f� otherwise
where v� � inffv j M�S�� t� v� f� � hfailig �i�e� the time at which S� fails�

M�S� j S�� t� u� f� �
hrate�max�r�� r��i if s� � hrate� r�i and s� � hrate� r�i
hrate� r�i if s� � hrate� r�i and s� � hfaili
hrate� r�i if s� � hrate� r�i and s� � hfaili
hdone� c�i if s� � hdone� c�i

and �s� � hrate� r�i or s� � hfaili or v� � v��
hdone� c�i if s� � hdone� c�i

and �s� � hrate� r�i or s� � hfaili or v� � v��
hfaili if s� � hfaili and s� � hfaili
where s� � M�S�� t� u� f�
and s� � M�S�� t� u� f�
and v� � inffv j M�S�� t� v� f� � hdone� c�ig
and v� � inffv j M�S�� t� v� f� � hdone� c�ig

M�timeout�v� S�� t� u� f� �

��

M�S� t� u� f� if u� t � v

hdone� ci if u� t � v and M�S� t� t� v� f� � hdone� ci
hfaili otherwise

M�limit�v� r� S�� t� u� f� �M�S� t� u� g�
where g�v�� � max�f�v��� h�v���
and h�v�� � � if v� � v

r if v� � v

M�repeat�S�� t� u� f� �
M�S� vn� u� f� if vn � u � vn��
hrate� �i if u � vn for all n � �
where v� � t

and vm�� � inffv j v � vm and M�S� vm� v� f� � hfailig
�with inffg ���

M�url�String�� t� u� f� �
hdone� ci if a connection fetching the URL String at time t

succeeds before time u with content c�

hfaili if there exists u� s�t� u� � t and u� � u and a connec�
tion fetching the URL String at time t fails at time
u� or has rate r� at time u�� with r� � f�u� � t�

hrate� ri otherwise� if a connection fetching the URL String

at time t has rate r at time u

The semantics for gateway is essentially the same as for url� except that the pa�
rameters are passed when opening the connection�

A basic property of this semantics� which can be proven by structural induction�
is that if M�S� t� u� f� � R� with R � hfaili or R � hdone� ci for some c� then for all
u� � u� M�S� t� u�� f� � R�

��� Algebraic Properties

Our semantics can be used to prove algebraic properties of the combinators� In turn�
these properties could be used to transform and optimize Web queries� although we
have not really investigated these possibilities�

We de	ne�
S � S� i� �t� u � t� f �M�S� t� u� f� � M�S�� t� u� f�
Simple properties can be easily derived� for example�

fail � S � S � fail � S

fail j S � S j fail � S

stall � S � stall

S � stall � S j stall

��

An interesting observation is that our semantics equates the services repeat	fail�
and stall� However� it is still useful to include stall in the language� since the
obvious implementation will be ine!cient for the service repeat	fail�� Conversely�
we could consider eliminating fail in favor of timeout	�� stall��

stall � repeat	fail�

fail � timeout	�� S�

A range of other equations can be derived� each by an easy but tedious case analysis�

	S � S� � S

	S� � S�� � S� � S� � 	S� � S��

	S� � S�� � S� � S� � 	S� � S��

repeat	S� � S � repeat	S� � repeat	S � S�

� repeat	S � ��� � S�

repeat	S� � repeat	S� � S�

timeout	t� limit	u� r� S�� � timeout	t� S� if t u

limit	t� r� S � S�� � limit	t� r� S� � limit	t� r� S��

limit	t� r� S � S�� � limit	t� r� S� � limit	t� r� S��

limit	t� r� timeout	u� S�� � timeout	u� limit	t� r� S��

limit	t� r� repeat	S�� � repeat	limit	t� r� S��

limit	t� r� stall� � stall

limit	t� r� fail� � fail

Other �intuitive
 properties can be checked against the semantics� and sometimes
we may discover they are not satis	ed� For example� S � S� �� S� � S� because the
operator asymmetrically picks one result if two results are obtained at exactly the
same time�

� Implementation

We have implemented an interpreter for the language of service combinators� including
top�level de	nitions and functions as used in the examples� This implementation is
written in Java ����

The implementation also provides an easy interface for programming with service
combinators directly from Java� This essentially provides an embedding ��� of our
language in Java� Services are de	ned by the abstract class Service� declared as follows�

public abstract class Service �

public Content getContent	FuncTime tf��

public float getRate	��

public void stop	�� �

��

To invoke a service� the getContent method is passed a function of time which
determines the minimum rate for physical connections� exactly as in the formal se�
mantics� At the top�level� the function ZeroThreshold is normally used� indicating
no minimum rate� This method returns the content when the service completes� or
returns null when the service fails� During the invocation of the service� the current
rate of the service can be found using a concurrent call to the getRate method� which
might be used to display a rate to the user� Also� the current invocation can be aborted
by calling the stop method�

The various service combinators are provided as Java classes� whose constructors
take sub�services as arguments� For example� the following Java code corresponds to
example ��

new Par	

new Media	�http
��www�cs�umd�edu��pugh�popl������

new Media 	�http
��www�diku�dk�popl������

In some sense the implementation is only an approximation to the formal semantics
because the semantics ignores interpretation overhead� However� it is quite a close ap�
proximation� since interpretation overhead is very small for most programs compared
to the time for data to be transmitted�

The rate of a basic service is de	ned to be the average over the previous two
seconds� as calculated by samples done 	ve times a second� This appears to give good
results in practice� though admittedly it is somewhat ad hoc�

The implementation uses the Sun Java classes to fetch URLs� A small modi	cation
was made to them so that failures are correctly detected� since they normally catch
failures and instead return an error page� Concurrency is implemented using Java
threads� which required a surprisingly large amount of work� Functions are imple�
mented essentially by manipulating the abstract syntax prior to the actual initiation
of a service� A programmer could of course write their own subclasses of service�
which could call arbitrary Java code�

� Conclusions and Future Directions

We have shown that a simple language allows easy expression of common strategies
for handling failure and slow communication when fetching content on the Web� We
have de	ned such a language based on service combinators� implemented it� and given
a formal semantics for it�

Our intention was that our language will be extended to a more powerful Web�
scripting language� Such a language would include some common language features
such as functions and conditionals� It should also include additional features for
Web�programming beyond our service combinators� for example special constructs

��

for manipulating HTML content� possibly linked to a browser� Another direction is
to allow scripts themselves to be stored on the Web� and in our implementation we
have experimented with this� It should also be possible to write scripts which provide
content on the Web� and perhaps even export a function as a CGI gateway� A full
Web�scripting language might even allow a thread of execution to migrate via the
Web�

A language with all these features would certainly be very powerful and useful�
Partially inspired by our work� Kistler and Marais have designed a language called
�WebL
 ���� which includes some of these features� in particular constructs for manip�
ulating HTML� as well as our service combinators� This language has been released
to the public� and is becoming relatively popular�

In this paper we have concentrated only on one particular aspect which is unique to
the Web� namely its unreliable nature� By 	rst considering the fundamental properties
of the Web we have built a small language whose computation model is tailored for Web
programming� We hope that this language and model will serve as a 	rm foundation for
larger Web scripting languages� Elements of our language design and formal semantics
should also be useful to designers of other domain speci	c languages in domains which
include real�time concerns or where failures are common�

� Acknowledgements

Luca Cardelli would like to thank David Je�erson and a group of people at Digital
Palo Alto who met to discuss Web�related issues� Those discussions provided the
initial stimulus for this work�

Rowan Davies would like to thank Digital SRC� including all its sta�� for provid�
ing the opportunity to work in a exceptionally stimulating and pleasant environment
during the summer of � ��

Mart"in Abadi� Paul McJones� and Benjamin Pierce reviewed early drafts�

References

��� T� Berners�Lee� R� Cailliau� A� Luotonen� H� F� Nielsen� and A� Secret� �The
World�Wide Web
� CACM� ��������#��� � ��

��� T� Berners�Lee and D� Connolly� Hypertext Markup Language � ���� RFC �����
MIT�W�C� November � ��

��� T� Berners�Lee� R� Fielding� and H� Frystyk� Hypertext Transfer Protocol �
HTTP����� RFC � ��� MIT�UC Irvine� May � ��

��

��� G� Berry and G� Gonthier� �The Esterel Synchronous Programming Lan�
guage� Design� Semantics� Implementation
� Science of Computer Programming�
� ������#���� � ��

��� N� Borenstein and N� Freed� MIME �Multipurpose Internet Mail Extensions	 Part
One
 Mechanisms for Specifying and Describing the Format of Internet Message
Bodies� RFC ����� Bellcore� Innosoft� September � ��

��� M� Gordon� R� Milner� and C� Wadsworth� Edinburgh LCF� Number �� in Lecture
Notes in Computer Science� Springer�Verlag� � � �

��� J� Gosling� B� Joy� and G� Steele� The Java Language Speci�cation� Addison�
Wesley� � ��

��� P� Hudak� �Modular Domain Speci	c Languages and Tools
� In Fifth Inter�
national Conference on Software Reuse� pages ���#���� Victoria� Canada� June
� ��

� � Internet Engineering Task Force� Internet Standards� The Internet Society�
http
��www�isoc�org� � ��

���� T� Kistler and H� Marais� �WebL � a programming language for the web
� Com�
puter Networks and ISDN Systems� ����#����� #���� April � �� Proceedings of
the WWW� Conference�

���� World Wide Web Consortium� Extensible markup language �XML� ���� W�C
Recommendation ���February�� �� http
��w�c�org��

���� World Wide Web Consortium� Http � hypertext transfer protocol�
http
��www�w��org�pub�WWW�Protocols�� � ��

��

