
Secrecy and Group Creation

Luca Cardelli 1 Giorgio Ghelli 2 Andrew D. Gordon 1

Abstract

We add an operation of group creation to the typed π-calculus, where a group is
a type for channels. Creation of fresh groups has the effect of statically preventing
certain communications, and can block the accidental or malicious leakage of secrets.
Intuitively, no channel belonging to a fresh group can be received by processes
outside the initial scope of the group, even if those processes are untyped. We
formalize this intuition by adapting a notion of secrecy introduced by Abadi, and
proving a preservation of secrecy property.

Key words: π-calculus, secrecy, security types

1 Introduction

Group creation is a natural extension of the sort-based type systems devel-
oped for the π-calculus. However, group creation has an interesting and subtle
connection with secrecy. We start from the untyped π-calculus, where an op-
eration to create fresh communication channels can be interpreted as creating
fresh secrets. Under this interpretation, though, secrets can be leaked. We then
introduce the notion of groups, which are types for channels, together with an
operation for creating fresh groups. We explain how a fresh secret belonging to
a fresh group can never be communicated to anybody who does not know the
group in the first place. In other words, our type system prevents secrets from
being leaked. Crucially, groups are not values, and cannot be communicated;
otherwise, this secrecy property would fail.

1 Microsoft Research, Roger Needham Building, 7 Thomson Ave, Cambridge, UK
2 Università di Pisa, Dipartimento di Informatica, Via Buonarroti 2, Pisa, Italy

Preprint submitted to Elsevier Science 29 November 2004

1.1 Leaking Secrets

Consider the following configuration, where P is a private subsystem (a player)
running in parallel with a potentially hostile adversary O (an opponent).

O | P

Suppose that the player P wants to create a fresh secret x. For example, x
could be a private communication channel to be used only between subsystems
of P . In the π-calculus this can be done by letting P evolve into a configuration
(νx)P ′, which means: create a new channel x to be used in the scope of P ′.

O | (νx)P ′

The channel x is intended to remain private to P ′. This privacy policy is going
to be violated if the system then evolves into a situation such as the following,
where p is a public channel known to the opponent (p(y) is input of y on p,
and p〈x〉 is output of x on p):

p(y).O′ | (νx)(p〈x〉 | P ′′)

In this situation, the name x is about to be sent by the player over the public
channel p and received by the opponent. In order for this communication to
happen, the rules of the π-calculus, described in Section 2, require first an
enlargement (extrusion) of the scope of x (otherwise x would escape its lexical
scope). We assume that x is different from p, y, and any other name in O′, so
that the enlargement of the scope of x does not cause name conflicts. After
extrusion, we have:

(νx)(p(y).O′ | p〈x〉 | P ′′)

Now, x can be communicated over p into the variable y, while keeping x
entirely within the scope of (νx). This results in:

(νx)(O′{y←x} | P ′′)

where the opponent has acquired the secret.

2

1.2 Preventing Leakage

The private name x has been leaked to the opponent by a combination of two
mechanisms: the output instruction p〈x〉, and the extrusion of (νx). Can we
prevent this kind of leakage of information? We have to consider that such a
leakage may arise simply because of a mistake in the code of the player P , or
because P decides to violate the privacy policy of x, or because a subsystem
of P acts as a spy for the opponent.

It seems that we need to restrict either communication or extrusion. Since
names are dynamic data in the π-calculus, it is not easy to say that a situation
such as p〈x〉 (sending x on a channel known to the opponent) should not arise,
because p may be dynamically obtained from some other channel, and may
not occur at all in the code of P .

The other possibility is to try to prevent extrusion, which is a necessary step
when leaking names outside their initial scope. However, extrusion is a funda-
mental mechanism in the π-calculus: blocking it completely would also block
innocent communications over p. In general, attempts to limit extrusion are
problematic, unless we abandon the notion of “fresh channel” altogether.

A natural question is whether one could somehow declare x to be private, and
have this assertion statically checked so that the privacy policy of x cannot
be violated. To this end, we may consider typed versions of the π-calculus. In
these systems, we can classify channels into different groups (usually called
sorts in the literature). We could have a group G for our private channels
and write (νx:G)P ′ to declare x to be of sort G. Unfortunately, in standard π-
calculus type systems all the groups are global, so the opponent could very well
mention G in an input instruction. Global groups do not offer any protection,
because leakage to the opponent can be made to typecheck:

p(y:G).O′ | (νx:G)(p〈x〉 | P ′′)

In order to guarantee secrecy, we would want the group G itself to be secret, so
that no opponent can input names of group G, and that no part of the player
can output G information on public channels. A first idea is to partition groups
into public ones and secret ones, with the static constraints that members of
secret groups cannot be communicated over channels of public groups [9]. But
this would work only for systems made of two (or a fixed number of) distrustful
components; we aim to find a more general solution.

3

1.3 Group Creation

In general, we want the ability to create fresh groups on need, and then to
create fresh elements of those groups. To this end, we extend the π-calculus
with an operator, (νG)P , to dynamically create a new group G in a scope P .
This is a dynamic operator because, for example, it can be used to create a
fresh group after an input:

q(y:T).(νG)P

Although group creation is dynamic, the group information can be tracked
statically to ensure that names of different groups are not confused. More-
over, dynamic group creation can be very useful: we can dynamically spawn
subsystems that have their own pool of shared resources that cannot interfere
with other subsystems (compare with applet sandboxing).

Our troublesome example can now be represented as follows, where G is a new
group, G[] is the type of channels of group G, and a fresh x is declared to be a
channel of group G (the type structure will be explained in more detail later):

p(y:T).O′ | (νG)(νx:G[])p〈x〉

Here an attempt is made again to send the channel x over the public channel p.
Fortunately, this process cannot be typed: the type T would have to mention
G, in order to receive a channel of group G, but this is impossible because G is
not known in the global scope where p would have to have been declared. The
construct (νG) has extrusion properties similar to (νx), which are needed to
permit legal communications over channels unrelated to G channels, but these
extrusion rules prevent G from being confused with any group mentioned in
the type T .

1.4 Untyped Opponents

Let us now consider the case where the opponent is untyped or, equivalently,
not well-typed. This is intended to cover the situation where an opponent can
execute any instruction available in the computational model without being
restricted by static checks such as typechecking or bytecode verification. For
example, the opponent could be running on a separate, untrusted, machine.

We first make explicit the type declaration of the public channel, p:U , which
had so far been omitted. The public channel must have a proper type, because
that type is used in checking the type correctness of the player, at least. This

4

type declaration could take the form of a channel declaration (νp:U) whose
scope encloses both the player and the opponent, or it could be part of some
declaration environment shared by the player and the opponent and provided
by a third entity in the system (e.g., a name server).

Moreover, we remove the typing information from the code of the opponent,
since an opponent does not necessarily play by the rules. The opponent now
attempts to read any message transmitted over the public channel, no matter
what its type is.

(νp:U)(. . . p(y).O′ | (νG)(νx:G[])p〈x〉)

Will an untyped opponent, by cheating on the type of the public channel, be
able to acquire secret information? Fortunately, the answer is still no. The
fact that the player is well-typed is sufficient to ensure secrecy, even in the
presence of untyped opponents. This is because, in order for the player to
leak information over a public channel p, the output operation p〈x〉 must be
well-typed. The name x can be communicated only on channels whose type
mentions G. So the output p〈x〉 cannot be well-typed, because then the type
U of p would have to mention the group G, but U is not in the scope of G.

The final option to consider is whether one can trust the source of the decla-
ration p:U . This declaration could come from a trusted source distinct from
the opponent, but in general one has to mistrust this information as well. In
any case, we can assume that the player will be typechecked with respect to
this questionable information, p:U , within a trusted context. Even if U tries
to cheat by mentioning G, the typing rules will not confuse that G with the
one occurring in the player as (νG), and the output operation p〈x〉 will still
fail to typecheck. The only important requirement is that the player must be
typechecked with respect to a global environment within a trusted context,
which seems reasonable. This is all our secrecy theorem (Section 3) needs to
assume.

1.5 Secrecy

We have thus established, informally, that a player creating a fresh group G
can never communicate channels of group G to an opponent outside the initial
scope of G, either because a (well-typed) opponent cannot name G to receive
the message, or, in any case, because a well-typed player cannot use public
channels to communicate G information to an (untyped) opponent:

Channels of group G are forever secret
outside the initial scope of (νG).

5

So, secrecy is reduced in a certain sense to scoping and typing restrictions.
But the situation is fairly subtle because of the extrusion rules associated with
scoping, the fact that scoping restrictions in the ordinary π-calculus do not
prevent leakage, and the possibility of untyped opponents. As we have seen,
the scope of channels can be extruded too far, perhaps inadvertently, and
cause leakage, while the scope of groups offers protection against accidental
or malicious leakage, even though it can be extruded as well.

We organise the remainder of the paper as follows. Section 2 defines the syntax,
reduction semantics, and type system of our typed π-calculus with groups. In
Section 3 we present Abadi’s notion of secrecy in terms of the untyped π-
calculus. We also state the main technical result of the paper, Theorem 1,
that a well-typed process preserves the secrecy of a fresh name of a fresh
group, even from an untyped opponent. We outline the proof of Theorem 1
in Section 4; the main idea of the proof is to separate trusted data (from
the typed process) and untrusted data (from the untyped opponent) using
an auxiliary type system defined on untyped processes. Finally, Section 5
concludes. Appendixes contain proofs omitted from the body of the paper.

A preliminary version of part of this work appears as a conference paper [6].

2 A Typed π-Calculus with Groups

We present here a typed π-calculus with groups and group creation. Mil-
ner’s sort system [13,14] is the earliest type system for the π-calculus. Sorts
are like groups in that each name belongs to a sort, but Milner’s system
has no construct for sort creation. In our calculus, a replicated process
!(νG)(νx:G[T])(P | Q) makes an unbounded number of copies of the pair of
processes P and Q, and our type system guarantees each pair exclusive access
to a fresh channel x. Such exclusion does not follow from Milner’s system,
as it is limited to a fixed set of sorts. On the other hand, his system allows
recursive definitions of sorts; we would need to add recursive types to our sys-
tem to mimic such definitions. Subsequent type systems introduce a variety
of channel type constructors and subtyping [15,16].

2.1 Syntax and Operational Semantics

Types specify, for each channel, its group and the type of the values that can
be exchanged on that channel.

6

Types:

T ::= channel type
G[T1, . . . , Tn] polyadic channel in group G

We study an asynchronous, choice-free, polyadic typed π-calculus. The calcu-
lus is defined as follows. We identify processes up to capture-avoiding renaming
of bound variables.

Expressions and Processes:

x, y, p, q names, variables
P, Q,R ::= process

x(y1:T1, . . . , yk:Tk).P channel input
x〈y1, . . . , yk〉 channel output
(νG)P group creation
(νx:T)P restriction
P | Q composition
!P replication
0 inactivity

In a restriction, (νx:T)P , the name x is bound in P , and in an input,
x(y1:T1, . . . , yk:Tk).P , the names y1, . . . , yk are bound in P . In a group cre-
ation (νG)P , the group G is bound with scope P . Let fn(P) be the set the
names free in a process P , and let fg(P) and fg(T) be the sets of groups free
in a process P and a type T , respectively.

In the next two tables, we define a reduction relation P → Q in terms of
an auxiliary notion of structural congruence P ≡ Q. Structural congruence
allows a process to be re-arranged so that reduction rules may be applied.
Each reduction derives from an exchange of a tuple on a named channel.

Our rules for reduction and structural congruence are standard [14] apart from
the inclusion of new rules for group creation, and the exclusion of the usual
garbage collection rules such as 0 ≡ (νx:T)0 or x /∈ fn(P) ⇒ (νx:T)P ≡ P .
Such rules are unnecessary for calculating reduction steps; their inclusion
would not create major problems, but they would slightly complicate the
statement of subject reduction.

Structural Congruence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ (νx:T)P ≡ (νx:T)Q (Struct Res)

7

P ≡ Q⇒ (νG)P ≡ (νG)Q (Struct GRes)
P ≡ Q⇒ P | R ≡ Q | R (Struct Par)
P ≡ Q⇒ !P ≡ !Q (Struct Repl)

P ≡ Q⇒ x(y1:T1, . . . , yn:Tn).P ≡ x(y1:T1, . . . , yn:Tn).Q (Struct Input)

P | 0 ≡ P (Struct Par Zero)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P | !P (Struct Repl Par)

x1 6= x2 ⇒ (νx1:T1)(νx2:T2)P ≡ (νx2:T2)(νx1:T1)P (Struct Res Res)

x /∈ fn(P)⇒ (νx:T)(P | Q) ≡ P | (νx:T)Q (Struct Res Par)

(νG1)(νG2)P ≡ (νG2)(νG1)P (Struct GRes GRes)

G /∈ fg(T)⇒ (νG)(νx:T)P ≡ (νx:T)(νG)P (Struct GRes Res)

G /∈ fg(P)⇒ (νG)(P | Q) ≡ P | (νG)Q (Struct GRes Par)

Reduction: P → Q

x〈y1, . . . , yn〉 | x(z1:T1, . . . , zn:Tn).P → P{y1←z1} · · · {yn←zn} (Red I/O)
P → Q⇒ P | R→ Q | R (Red Par)
P → Q⇒ (νG)P → (νG)Q (Red GRes)
P → Q⇒ (νx:T)P → (νx:T)Q (Red Res)
P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

The new rules for group creation are the congruence rules (Struct GRes) and
(Red GRes) and the scope mobility rules are (Struct GRes GRes), (Struct
GRes Res), and (Struct GRes Par). The latter rules are akin to the standard
scope mobility rules for restriction, (Struct Res Res) and (Struct Res Par).

2.2 The Type System

Environments declare the names and groups in scope during type-checking;
we define environments, E, by E ::= ∅ | E, G | E, x:T . We define dom(E) by
dom(∅) = ∅, dom(E, G) = dom(E)∪{G}, and dom(E, x:T) = dom(E)∪{x}.

We define four typing judgments: first, E ` � means that E is well-formed,
that is, that no name or group appears twice, and that every type in E is
well-formed; second, E ` T means that every free group in T is defined in
E; third, E ` x : T means that x:T is in E, and that E is well-formed; and,
fourth, E ` P means that P is well-formed in the environment E.

8

Throughout the paper, any antecedent of the form E ` J1, . . . , E ` Jn means
E ` � when n = 0.

Typing Judgments:

E ` � good environment
E ` T good channel type T
E ` x : T good name x of channel type T
E ` P good process P

Typing Rules:

(Env ∅)

∅ ` �

(Env x)

E ` T x /∈ dom(E)

E, x:T ` �

(Env G)

E ` � G /∈ dom(E)

E, G ` �

(Type Chan)

G ∈ dom(E) E ` T1 · · · E ` Tn

E ` G[T1, . . . , Tn]

(Exp x)

E ′, x:T,E ′′ ` �

E ′, x:T, E ′′ ` x : T

(Proc GRes)

E, G ` P

E ` (νG)P

(Proc Res)

E, x:T ` P

E ` (νx:T)P

(Proc Zero)

E ` �

E ` 0

(Proc Par)

E ` P E ` Q

E ` P | Q

(Proc Repl)

E ` P

E ` !P

(Proc Input)

E ` x : G[T1, . . . , Tn] E, y1:T1, . . . , yn:Tn ` P

E ` x(y1:T1, . . . , yn:Tn).P

(Proc Output)

E ` x : G[T1, . . . , Tn] E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉

The rules for good environments ensure that the names and groups declared
in an environment are distinct, and that all the types mentioned in an envi-
ronment are good. The rule for a good type ensures that all the groups free
in a type are declared. The rule for a good name looks up the type of a name
in the environment. The rules (Proc Input) and (Proc Output) for well-typed
processes ensure that names occurring in inputs and outputs are used accord-

9

ing to their declared types. The rules (Proc GRes) and (Proc Res) allow fresh
groups and names, respectively, to be used inside their scope but not outside.
The other rules (Proc Zero), (Proc Par), and (Proc Repl) define a compos-
ite process to be well-typed provided its components, if any, are themselves
well-typed.

2.3 Subject Reduction

Subject reduction is a property stating that well-typed processes reduce nec-
essarily to well-typed processes, thus implying that “type errors” are not gen-
erated during reduction. As part of establishing this property, we need to
establish a subject congruence property, stating that well-typing is preserved
by congruence. Subject congruence is essential for a type system based on the
π-calculus: two congruent processes are meant to represent the same compu-
tation so they should have the same typing properties.

As we shall see shortly, a consequence of our typing discipline is the ability to
preserve secrets. In particular, the subject reduction property, together with
the proper application of extrusion rules, has the effect of preventing certain
communications that would leak secrets. For example, consider the discussion
in Section 1.3, regarding the process:

p(y:T).O′ | (νG)(νx:G[])P

In order to communicate the name x (the secret) on the public channel p,
we would need to reduce the initial process to a configuration containing the
following:

p(y:T).O′′ | p〈x〉

If subject reduction holds then this reduced term has to be well-typed, which
is true only if p : H[T] for some H, and T = G[]. However, in order to get to
the point of bringing the input operation of the opponent next to an output
operation of the player, we must have extruded the (νG) and (νx:G[]) binders
outward. The rule (Struct GRes Par), used to extrude (νG) past p(y:T).O′′,
requires that G /∈ fg(T). This contradicts the requirement that T = G[].

We prove the following lemma and proposition in Appendix A.

Lemma 1 (Subject Congruence) If E ` P and P ≡ Q then E ` Q.

Proposition 2 (Subject Reduction) If E ` P and P → Q then E ` Q.

10

Subject reduction allows us to prove secrecy properties such as the following.

Proposition 3 Let the process P = p(y:T).O′ | (νG)(νx:G[T1, . . . , Tn])P ′. If
E ` P , for some E, then no process deriving from P includes a communication
of x along p. Formally, there is no process P ′′ and no context C[] such that
P ≡ (νG)(νx:G[T1, . . . , Tn])P ′′, P ′′ →∗ C[p〈x〉], where p and x are not bound
by C[].

Proof Assume that P ′′ and C[] exist. Subject reduction implies
the judgment E, G, x:G[T1, . . . , Tn] ` C[p〈x〉], which implies that
E, G, x:G[T1, . . . , Tn], E ′ ` p〈x〉 for some E ′, by induction on the size of
the context. Hence, p has a type H[G[T1, . . . , Tn]]. But this is impossible,
since p is defined in E, and hence is outside the scope of G. 2

In the following section we generalize this result, and extend it to a situation
where the opponent is not necessarily well-typed.

3 Secrecy in the Context of an Untyped Opponent

We formalize the idea that in the process (νG)(νx:G[T1, . . . , Tn])P , the name
x of the new group G is known only within P (the scope of G) and hence is
kept secret from any opponent able to communicate with the process (whether
or not the opponent respects our type system). We give a precise definition
of when an untyped process (νx)P preserves the secrecy of a restricted name
x from an opponent (the external process with which it interacts). Then we
show that the untyped process obtained by erasing type annotations and group
restrictions from a well-typed process (νG)(νx:G[T1, . . . , Tn])P preserves the
secrecy of the name x.

3.1 Review: The Untyped π-Calculus

In this section, we describe the syntax and semantics of an untyped calculus
that corresponds to the typed calculus of Section 2. The process syntax is the
same as for the typed calculus, except that we drop type annotations and the
new-group construct.

Processes:

x, y, p, q names, variables
P, Q,R ::= process

x(y1, . . . , yn).P polyadic input
x〈y1, . . . , yn〉 polyadic output

11

(νx)P restriction
P | Q composition
!P replication
0 inactivity

As in the typed calculus, the names y1, . . . , yn are bound in an input
x(y1, . . . , yn).P with scope P , and the name x is bound in (νx)P with scope
P . We identify processes up to capture-avoiding renaming of bound names.
We let fn(P) be the set of names free in P .

Every typed process has a corresponding untyped process obtained by eras-
ing type annotations and group creation operators. We confer a reduction
semantics on untyped processes that corresponds to the reduction semantics
for typed processes. To describe the possible external interactions of a process
we recall standard definitions of labelled input and output transitions.

Reduction: P → Q

x〈y1, . . . , yn〉 | x(z1, . . . , zn).P → P{z1←y1} · · · {zn←yn} (Red I/O)
P → Q⇒ P | R→ Q | R (Red Par)
P → Q⇒ (νx)P → (νx)Q (Red Res)
P ′ ≡ P, P → Q,Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Structural Congruence: P ≡ Q

P ≡ P (Struct Refl)
Q ≡ P ⇒ P ≡ Q (Struct Symm)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans)

P ≡ Q⇒ (νx)P ≡ (νx)Q (Struct Res)
P ≡ Q⇒ P | R ≡ Q | R (Struct Par)
P ≡ Q⇒ !P ≡ !Q (Struct Repl)
P ≡ Q⇒ x(y1, . . . , yn).P ≡ x(y1, . . . , yn).Q (Struct Input)

P | 0 ≡ P (Struct Par Zero)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P | !P (Struct Repl Par)

(νx)(νy)P ≡ (νy)(νx)P (Struct Res Res)
x /∈ fn(P)⇒ (νx)(P | Q) ≡ P | (νx)Q (Struct Res Par)

12

From any typed process, we obtain an untyped π-calculus process by erasing
type annotations and group restrictions.

Erasures of type annotations and group restrictions:

erase((νG)P)
∆
= erase(P) erase((νx:T)P)

∆
= (νx)erase(P)

erase(0)
∆
= 0 erase(P | Q)

∆
= erase(P) | erase(Q)

erase(!P)
∆
= !erase(P) erase(x〈y1, . . . , yn〉) ∆

= x〈y1, . . . , yn〉
erase(x(y1:T1, . . . , yn:Tn).P)

∆
= x(y1, . . . , yn).erase(P)

The following proposition shows that although type annotations and group
restrictions affect type-checking, they do not affect the dynamic behaviour of
a process. We omit the proof; it proceeds along the same lines as a similar
result for a related calculus [8].

Proposition 4 (Erasure) For all typed processes P and Q, P → Q implies
erase(P) → erase(Q) and erase(P) → R implies there is a typed process Q
such that P → Q and R ≡ erase(Q).

Finally, we define input and output transitions to describe the interactions
between an untyped process and an untyped opponent running alongside in
parallel. An input transition P

x−→ (y1, . . . , yn)Q means that P is ready to
receive an input tuple on the channel x in the variables y1, . . . , yn, and then
continue as Q. (The variables y1, . . . , yn are bound with scope Q.) An output

transition P
x−→ (νz1, . . . , zm)〈y1, . . . , yn〉Q means that P is ready to transmit

an output tuple 〈y1, . . . , yn〉 on the channel x, and then continue as Q. The set
{z1, . . . , zm} ⊆ {y1, . . . , yn} consists of freshly generated names whose scope
includes both the tuple 〈y1, . . . , yn〉 and the process Q. The names z1, . . . , zm

are unknown to the opponent beforehand, but are revealed by the interaction.

Labelled transitions such as these are most commonly defined inductively
by a structural operational semantics; for the sake of brevity, the following
definitions are in terms of structural congruence.

• Let P
x−→ (y1, . . . , yn)Q if and only if the names y1, . . . , yn are pairwise

distinct, and there are processes P1 and P2 and pairwise distinct names
z1, . . . , zm such that P ≡ (νz1, . . . , zm)(x(y1, . . . , yn).P1 | P2) and Q ≡
(νz1, . . . , zm)(P1 | P2) where x /∈ {z1, . . . , zm}, and {y1, . . . , yn} ∩ ({z1, . . .,
zm} ∪ fn(P2)) = ∅.

• Let P
x−→ (νz1, . . . , zm)〈y1, . . . , yn〉Q if and only if the names z1, . . . , zm are

pairwise distinct, and we have P ≡ (νz1, . . . , zm)(x〈y1, . . . , yn〉 | Q) where
x /∈ {z1, . . . , zm} and {z1, . . . , zm} ⊆ {y1, . . . , yn}.

13

We define a (strong, synchronous) bisimilarity on processes as usual [14]: let
∼ be the largest symmetric relation such that P ∼ Q implies:

(1) whenever P → P ′ there is Q′ with Q→ Q′ and P ′ ∼ Q′;
(2) whenever P

x−→ (y1, . . . , yn)P ′ there is Q′ with Q
x−→ (y1, . . . , yn)Q′ and

for all z1, . . . , zn, P ′{y1←z1} · · · {yn←zn} ∼ Q′{y1←z1} · · · {yn←zn};
(3) whenever P

x−→ (νz1, . . . , zm)〈y1, . . . , yn〉P ′ there is Q′ with Q
x−→ (νz1,

. . . , zm)〈y1, . . . , yn〉Q′ and P ′ ∼ Q′.

By standard arguments, bisimilarity is a congruence.

3.2 A Secrecy Theorem

The following definition is inspired by Abadi’s definition of secrecy [2] in the
untyped spi calculus [4]. Abadi attributes the underlying idea to Dolev and
Yao [10]: that a name is kept secret from an opponent if after no series of
interactions is the name transmitted to the opponent. (In the presence of
encryption, the definition is rather more subtle than this.) An alternative we
do not pursue here is to formulate secrecy using testing equivalence [1,4].

We model the external opponent simply by the finite set of names S known to
it. The four rules displayed below define a relation (P, S) RX (P ′, S ′) to mean
that starting from a process P and an opponent knowing S, we may reach a
state in which P has evolved into P ′, with fresh names disjoint from the finite
set X, and with the opponent now knowing S ′. The frame X represents the
initial knowledge of the process; it is an upper bound on the set of names that
are not fresh, and always includes fn(P) (see Lemma 30).We abbreviate the
common case X = fn(P) by defining (P, S) R (P ′, S ′) to mean (P, S) Rfn(P)

(P ′, S ′).

(1) If fn(P) ⊆ X then (P, S) RX (P, S).
(2) If (P, S) RX (P ′, S ′) and P ′ → P ′′ then (P, S) RX (P ′′, S ′).
(3) If (P, S) RX (P ′, S ′), P ′

x−→ (y1, . . . , yn)P̂ , x ∈ S ′, and ({z1, . . . , zn} −
S ′) ∩X = ∅ then (P, S) RX (P̂{y1←z1} · · · {yn←zn}, S ′ ∪ {z1, . . . , zn}).

(4) If (P, S) RX (P ′, S ′), P ′
x−→ (νz1, . . . , zm)〈y1, . . . , yn〉P̂ and x ∈ S ′ and

{z1, . . . , zm} ∩ (S ′ ∪X) = ∅ then (P, S) RX (P̂ , S ′ ∪ {y1, . . . , yn}).

Clause (1) says that (P, S) is reachable from itself.

Clause (2) allows the process component to evolve on its own.

Clause (3) allows the process to input the tuple 〈z1, . . . , zn〉 from the opponent,
provided the channel x is known to the opponent. The names {z1, . . . , zn}−S ′

are freshly created by the opponent; the condition ({z1, . . . , zn}−S ′)∩X = ∅

14

ensures these fresh names are not confused with names in the frame X.

Clause (4) allows the process to output the tuple 〈y1, . . . , yn〉 to the opponent,
who then knows the names S ∪ {y1, . . . , yn}, provided the channel x is known
to the opponent. The names {z1, . . . , zm} (included in {y1, . . . , yn}) are freshly
created by the process; the condition {z1, . . . , zm}∩(S ′∪X) = ∅ ensures these
fresh names are not confused with names currently known by the opponent or
in the frame X.

We now define when a process may reveal a name to an opponent, and its
logical negation, when a process preserves the secrecy of a name:

• P may reveal x to S if and only if there exist P ′ and S ′ such that (P, S) R
(P ′, S ′) and x ∈ fn(P) ∩ (S ′ − S);
• P preserves the secrecy of x from S if and only if for all P ′ and S ′, (P, S) R

(P ′, S ′) implies that x /∈ fn(P) ∩ (S ′ − S).

By definition, if P may reveal x to S then x ∈ fn(P) and x /∈ S. Conversely,
if either x /∈ fn(P) or x ∈ S then P preserves the secrecy of x from S.
Intuitively, a process cannot reveal a name if the opponent already knows it,
or if the process does not itself know it.

A preliminary version version of this paper [6] formulates name revelation
using the condition x ∈ fn(S ′) instead of the condition x ∈ fn(P) ∩ (S ′ − S)
above. According to this variation, a process P may reveal x to S even though
x /∈ fn(P); for example, P = y(z).0 may reveal x to S = {y} because we can
derive (y(z).0, {y}) R (0, {x, y}), where in effect the opponent is allowed to
pick x as a fresh name. Let Q = (νw)w〈x〉. We have that Q ∼ 0 and therefore
that P | Q ∼ P . But P | Q does not reveal x to S because x ∈ fn(Q) and
therefore the opponent cannot pick it as a fresh name. This example shows
that the definition with the condition x ∈ S ′ instead of x ∈ fn(P) ∩ (S ′ − S)
is not preserved by bisimilarity. Preservation by bisimilarity seems a useful
guide when formulating secrecy. The intermediate condition x ∈ fn(P) ∩ S ′,
which allows x to be known initially to the opponent, also fails to preserve
bisimilarity; we would have that P does not reveal x to {x} (because x is not
free in P) but P | Q does reveal x to {x} (because x is free in Q).

The next proposition, proved in Appendix B, is that the definitions displayed
above of revelation and secrecy preservation are indeed invariant with respect
to bisimilarity.

Proposition 5 Suppose that P ∼ Q. If P may reveal x to S then so does Q.
Dually, if P preserves the secrecy of x from S then so does Q.

Our main technical result formalizes the secrecy property of group creation
discussed in Section 1.

15

Theorem 1 (Secrecy) Let S be the names occurring in dom(E). Suppose
that G ∈ fg(T) and E ` (νG)(νx:T)P , and hence that x /∈ S. Then the
untyped process erase(P) preserves the secrecy of x from S.

We give the proof in the next section. The group restriction (νG) is essential.
A typing E ` (νx:T)P with G ∈ fg(T) does not in general imply that the
erasure erase(P) preserves the secrecy of x. For example, consider the typing
∅, G, y:G[G[]] ` (νx:G[])y〈x〉. Then the erasure y〈x〉 reveals x to S = {y}.

Still, inspired by a result of Sangiorgi and Walker, we can rephrase Theorem 1
without group restriction as follows. Sangiorgi and Walker’s result [18, The-
orem 9.3.1], in a sorted polyadic π-calculus without sort creation, uses sorts
to show the secrecy of a restricted name relative to a well-sorted opponent.
Our Theorem 1 is stronger, not only in that it deals with group creation, but
also in that it establishes secrecy relative to an untyped opponent. By refor-
mulating the premise of Sangiorgi and Walker’s result in our π-calculus, we
obtain the following corollary of Theorem 1. In fact, Corollary 1 is effectively
a restatement of Theorem 1, as each is a corollary of the other.

Corollary 1 Let S be the names occurring in dom(E). Suppose G ∈ fg(T)
but for every entry x′:T ′ in E, that G /∈ T ′. If E ` (νx:T)P then the untyped
process erase(P) preserves the secrecy of x from S.

Proof From E ` (νx:T)P it follows that E ` T , and since G ∈ fg(T), it
must be that E = E ′, G, E ′′. From E ′, G, E ′′ ` (νx:T)P and our assumption
that G appears in no type listed in E, we can conclude E ′, E ′′, G ` (νx:T)P by
repeated use of the exchange lemmas, Lemmas 13 and 14 in Appendix A. By
(Proc GRes), E ′, E ′′ ` (νG)(νx:T)P . Hence, Theorem 1 implies that erase(P)
preserves the secrecy of x from S. 2

4 Proof of Secrecy

The proof of the secrecy theorem is based on an auxiliary type system that
partitions channels into untrusted channels, with type Un, and trusted ones,
with type Ch[T1, . . . , Tn], where each Ti is either a trusted or untrusted type.
The type system insists that names are bound to variables with the same trust
level (that is, the same type), and that no trusted name is ever transmitted
on an untrusted channel. Hence an opponent knowing only untrusted channel
names will never receive any trusted name.

For any fixed group G, we can translate group-based types into the auxiliary
type system as follows: any type that does not contain G free becomes Un,
while a type H[T1, . . . , Tn] that contains G free is mapped onto Ch[T ′1, . . . , T

′
n],

16

where the types T ′1, . . . , T ′n are the translations of the types T1, . . . , Tn,
respectively. This translation is proved to preserve typability. This implies
that an opponent knowing only names whose type does not contain G free,
will never be able to learn any name whose type contains G free. This is the
key step in proving the secrecy theorem.

Types:

T ::= channel type
Ch[T1, . . . , Tn] trusted polyadic channel
Un untrusted name

Judgments:

E ` � good environment
E ` x : T good name x of type T
E ` P good process P

Rules:

(Env ∅)

∅ ` �

(Env x)

E ` � x /∈ dom(E)

E, x:T ` �

(Exp x)

E ′, x:T, E ′′ ` �

E ′, x:T,E ′′ ` x : T

(Proc Res)

E, x:T ` P

E ` (νx)P

(Proc Zero)

E ` �

E ` 0

(Proc Par)

E ` P E ` Q

E ` P | Q

(Proc Repl)

E ` P

E ` !P

(Proc Ch Input)

E ` x : Ch[T1, . . . , Tn] E, y1:T1, . . . , yn:Tn ` P

E ` x(y1, . . . , yn).P

(Proc Ch Output)

E ` x : Ch[T1, . . . , Tn] E ` y1 : T1 · · · E ` yn : Tn

E ` x〈y1, . . . , yn〉

(Proc Un Input)

E ` x : Un E, y1:Un, . . . , yn:Un ` P

E ` x(y1, . . . , yn).P

17

(Proc Un Output)

E ` x : Un E ` y1 : Un · · · E ` yn : Un

E ` x〈y1, . . . , yn〉

The auxiliary type system is defined on untyped processes. Any untrusted
opponent may be type-checked, as follows. This property makes this system
suitable to reason about a system where trusted and untrusted processes co-
exist. The proof is by induction on the size of P .

Lemma 6 For all P , if fn(P) = {x1, . . . , xn} then ∅, x1:Un, . . . , xn:Un ` P .

The auxiliary type system enjoys subject congruence and subject reduction.
The proofs are in Appendix C.

Lemma 7 (Subject Congruence) If E ` P and P ≡ Q then E ` Q.

Proposition 8 (Subject Reduction) If E ` P and P → Q then E ` Q.

The following proposition, proved in Appendix D, is the crux of the proof of
Theorem 1: an opponent who knows only untrusted names cannot learn any
trusted one.

Proposition 9 Suppose that ∅, y1:Un, . . . , yn:Un, x:T ` P where T 6= Un.
Then the process P preserves the secrecy of the name x from {y1, . . . , yn}.

Next, we translate the types and environments of the π-calculus with groups
into our auxiliary system, and state that erasure preserves typing.

Translations of types and environments:

[[H[T1, . . . , Tn]]]G
∆
=

 Ch[[[T1]]G, . . . , [[Tn]]G] if G ∈ fg(H[T1, . . . , Tn])

Un otherwise

[[∅]]G
∆
= ∅

[[E, H]]G
∆
= [[E]]G

[[E, x:T]]G
∆
= [[E]]G, x:[[T]]G

Appendix D contains a proof of the following:

Proposition 10 If E ` P then [[E]]G ` erase(P).

We can now prove Theorem 1. We need the following lemma, whose proof is
by a routine induction on the derivation of E, x:T,E ′ ` P .

18

Lemma 11 If E, x:T, E ′ ` P and E ` y : T then E, E ′ ` P{x←y}.

Restatement of Theorem 1 Let S be the names occurring in dom(E).
Suppose that G ∈ fg(T) and E ` (νG)(νx:T)P , and hence that x /∈ S. Then
the untyped process erase(P) preserves the secrecy of x from S.

Proof Since E ` (νG)(νx:T)P must have been derived using (Proc
GRes) and (Proc Res), we have E, G, x:T ` P , with G /∈ dom(E). Hence,
[[E]]G = ∅, z1:Un, . . . , zn:Un where S = {z1, . . . , zn}. Proposition 10 implies
that ∅, z1:Un, . . . , zn:Un, x:[[T]]G ` erase(P). Since G ∈ fg(T), [[T]]G 6= Un.
So Proposition 9 implies that erase(P) preserves the secrecy of x from S. 2

5 Conclusion

We proposed a typed π-calculus in which each name belongs to a group,
and in which groups may be created dynamically by a group creation opera-
tor. Typing rules bound the communication of names of dynamically created
groups, hence preventing the accidental or malicious revelation of secrets. We
explained these ideas informally, proposed a formalization based on Abadi’s
notion of name secrecy, and explained the ideas underlying the proof.

The idea of name groups and a group creation operator arose in our recent
work on type systems for regulating mobile computation in the ambient calcu-
lus [7]. The new contributions of the present paper are to recast the idea in the
simple setting of the π-calculus and to explain, formalize, and prove the se-
crecy properties induced by group creation. The typed π-calculus of Section 2
is extended with an effect system to establish a formal connection between
group creation and the letregion construct of Tofte and Talpin’s region-based
memory management [20] in another paper [8]. That other paper general-
izes our subject congruence, subject reduction, and erasure results (Lemma 1,
Propositions 2 and 4) to the system of types and effects for the π-calculus.
We conjecture that the main secrecy result of this paper, Theorem 1, would
also hold for that extended system, but we have not studied the details.

The idea of proving a secrecy property for a type system by translation into
a mixed trusted and untrusted type system appears to be new. Our work
develops the idea of a type system for the π-calculus that mixes trusted and
untrusted data, and the idea that every opponent should be typable in the
sense of Lemma 6. These ideas first arose in Abadi’s type system for the spi
calculus [1]. In that system, each name belongs to a global security level, such
as Public or Secret, but there is no level creation construct akin to group
creation.

19

A related paper [5] presents a control flow analysis for the π-calculus that can
also establish secrecy properties of names. There is an intriguing connection,
that deserves further study, between the groups of our system, and the chan-
nels and binders of the flow analysis. One difference between the studies is
that the flow analysis has no counterpart of the construct for group creation
of this paper. Another is that an algorithm is known for computing flow anal-
yses for the π-calculus, whereas we have not investigated algorithmic aspects
of our type system. It would be interesting to consider whether algorithms for
Milner’s systems of sorts [12,21] extend to our calculus.

A recent paper [3] presents a type system for establishing secrecy properties in
a relative of the spi calculus without groups but equipped with primitives for
public key cryptography. It presents a useful new definition of name secrecy
based on a reduction relation rather than the labelled transitions of this paper.

Other related work on the π-calculus includes type systems for guaranteeing
locality properties [17,19]. These systems can type-check whether a name may
leak outside a particular locality.

In summary, group creation is a powerful new construct for process calculi. Its
study is just beginning; we expect that its secrecy guarantees will help with
the design and semantics of new programming language features, and with
the analysis of security properties of individual programs.

A Type Preservation for the Main Type System

This appendix contains proofs of subject congruence (Lemma 1) and subject
reduction (Proposition 2) for the main type system.

Lemma 12 If E, n:T,m:T ′, E ′ ` J then E, m:T ′, n:T,E ′ ` J.

Lemma 13 If E, G, n:T,E ′ ` J and G /∈ fn(T) then then E, n:T, G, E ′ ` J.

Lemma 14 If E, G, G′, E ′ ` J then E, G′, G, E ′ ` J.

Lemma 15 If E, x:T, E ′ ` J and x /∈ fn(J) then E, E ′ ` J.

Lemma 16 If E, G, E ′ ` J and G /∈ fn(J) ∪ fn(E ′) then E, E ′ ` J.

Lemma 17 If E, E ′ ` J and E, x : T, E ′ ` J′ then E, x : T, E ′ ` J.

Lemma 18 If E, E ′ ` J and E, G, E ′ ` J′ then E, G, E ′ ` J.

Lemma 19 E, E ′ ` J then E ` �.

20

Lemma 20 If E, x:T, E ′ ` J and E ` y : T then E, E ′ ` J{x←y}.

Lemma 21 If E ` x : T and E ` x : T ′ then T = T ′.

Restatement of Lemma 1 If E ` P and P ≡ Q then E ` Q.

Proof The lemma follows by showing that P ≡ Q implies:

(1) If E ` P then E ` Q.
(2) If E ` Q then E ` P .

We proceed by induction on the derivation of P ≡ Q.

(Struct Refl) Trivial.
(Struct Symm) Then Q ≡ P . For (1), assume E ` P . By induction hypoth-

esis (2), Q ≡ P implies that E ` Q. Part (2) is symmetric.
(Struct Trans) Then P ≡ R, R ≡ Q for some R. For (1), assume E ` P .

By induction hypothesis (1), E ` R. Again by induction hypothesis (1),
E ` Q. Part (2) is symmetric.

(Struct Res) Then P = (νx:T)P ′ and Q = (νx:T)Q′, with P ′ ≡ Q′. For
(1), assume E ` P . This must have been derived from (Proc Res), with
E, x:T ` P ′. By induction hypothesis (1), E, x:T ` Q′. By (Proc Res),
E ` (νx:T)Q′. Part (2) is symmetric.

(Struct GRes) Then P = (νG)P ′ and Q = (νG)Q′, with P ′ ≡ Q′. For (1),
assume E ` P . This must have been derived from (Proc GRes), with E, G `
P ′. By induction hypothesis (1), E, G ` Q′. By (Proc GRes), E ` (νG)Q′.
Part (2) is symmetric.

(Struct Par) Then P = P ′ | R, Q = Q′ | R, and P ′ ≡ Q′. For (1), assume
E ` P ′ | R. This must have been derived from (Proc Par), with E ` P ′,
E ` R. By induction hypothesis (1), E ` Q′. By (Proc Par), E ` Q′ | R.
Part (2) is symmetric.

(Struct Repl) Then P = !P ′, Q = !Q′, and P ′ ≡ Q′. For (1), assume E ` P .
This must have been derived from (Proc Repl), with E ` P ′. By induction
hypothesis (1), E ` Q′. By (Proc Repl), E ` !Q′. Part (2) is symmetric.

(Struct Input) In this case, we have P = x(y1:T1, . . . , yk:Tk).P
′, Q =

x(y1:T1, . . . , yk:Tk).Q
′, and P ′ ≡ Q′. For (1), assume E ` P . This must

have been derived from (Proc Input), with E, y1:T1, . . . , yk:Tk ` P ′, E ` x :
G[T1, . . . , Tn], for some G. By induction hypothesis, E, y1:T1, . . . , yk:Tk ` Q′.
By (Proc Input), E ` x(y1:T1, . . . , yk:Tk).Q

′. Part (2) is symmetric.
(Struct Par Zero) Then P = P ′ | 0 and Q = P ′.

For (1), assume E ` P ′ | 0. This must have been derived from (Proc Par)
with E ` P ′.

For (2), assume E ` P ′. By Lemma 19, E ` �. By (Proc Zero), E ` 0 By
(Proc Par), E ` P ′ | 0

(Struct Par Comm) Then P = P ′ | P ′′ and Q = P ′′ | P ′.
For (1), assume E ` P ′ | P ′′. This must have been derived from E ` P ′

21

and E ` P ′′. By (Proc Par), E ` P ′′ | P ′. Hence, E ` Q.
Part (2) is symmetric.

(Struct Par Assoc) Then P = (P ′ | P ′′) | P ′′′ and Q = P ′ | (P ′′ | P ′′′).
For (1), assume E ` (P ′ | P ′′) | P ′′′. This must have been derived from

(Proc Par) twice, with E ` P ′, E ` P ′′, and E ` P ′′′. By (Proc Par) twice,
E ` P ′ | (P ′′ | P ′′′). Hence E ` Q.

Part (2) is symmetric.
(Struct Repl Par) Then P = !P ′ and Q = P ′ | !P ′. For (1), assume E ` !P ′.

This must have been derived from (Proc Repl), with E ` P ′. By (Proc Par),
E ` P ′ | !P ′. Hence, E ` Q.

For (2), assume E ` P ′ | !P ′. This must have been derived from (Proc
Par), with E ` P ′ and E ` !P ′. Hence, E ` P .

(Struct Res Res) In this case we have P = (νx1:T1)(νx2:T2)P
′ and Q =

(νx2:T2)(νx1:T1)P
′ with x1 6= x2.

For (1), assume E ` (νx1:T1)(νx2:T2)P
′. This must have been derived

from (Proc Res) twice, with E, x1:T1, x2:T2 ` P ′. By Lemma 12, we have
E, x2:T2, x1:T1 ` P ′. By (Proc Res) twice we have E ` (νx2:T2)(νx1:T1)P

′.
Part (2) is symmetric.

(Struct Res Par) Then P = (νx:T)(P ′ | P ′′) and Q = P ′ | (νx:T)P ′′, with
x /∈ fn(P ′).

For (1), assume E ` P . This must have been derived from (Proc Res),
with E, x:T ` P ′ | P ′′. and from (Proc Par), with E, x:T ` P ′ and E, x:T `
P ′′. By Lemma 15, since x /∈ fn(P ′), we have E ` P ′. By (Proc Res) we
have E ` (νx:T)P ′′. By (Proc Par) we have E ` P ′ | (νx:T)P ′′, that is,
E ` Q.

For (2), assume E ` Q. This must have been derived from (Proc Par),
with E ` P ′ and E ` (νx:T)P ′′, and from (Proc Res), with E, x:T ` P ′′. By
Lemma 17, E, x:T ` P ′. By (Proc Par), E, x:T ` P ′ | P ′′. By (Proc Res),
E ` (νx:T)(P ′ | P ′′), that is, E ` P .

(Struct GRes GRes) Then P = (νG1)(νG2)P
′ and Q = (νG2)(νG1)P

′.
For (1), assume E ` (νG1)(νG2)P

′. This must have been derived from
(Proc GRes) twice, with E, G1, G2 ` P ′. By Lemma 14 we have E, G2, G1 `
P ′. By (Proc Res) twice we have E ` (νG2)(νG1)P

′.
Part (2) is symmetric.

(Struct GRes Res) Then P = (νG)(νx:T)P ′ and Q = (νx:T)(νG)P ′ with
G /∈ fg(T).

For (1), assume E ` (νG)(νx:T)P ′. This must have been derived from
(Proc GRes), with E, G ` (νx:T)P ′, and from (Proc Res), with E, G, x:T `
P ′. Since G /∈ fg(T) by hypothesis, by Lemma 13 we have E, x:T, G ` P ′.
Then, by (Proc GRes) and (Proc Res) we have E ` (νx:T)(νG)P ′.

Part (2) is symmetric.
(Struct GRes Par) Then P = (νG)(P ′ | P ′′) and Q = P ′ | (νG)P ′′, with

G /∈ fg(P ′).
For (1), assume E ` P . This must have been derived from (Proc GRes),

with E, G ` P ′ | P ′′, and from (Proc Par), with E, G ` P ′ and E, G ` P ′′.

22

By Lemma 16, since G /∈ fg(P ′), we have E ` P ′. By (Proc GRes) we have
E ` (νG)P ′′. By (Proc Par) we have E ` P ′ | (νG)P ′′, that is, E ` Q.

For (2), assume E ` Q. This must have been derived from (Proc Par),
with E ` P ′ and E ` (νG)P ′′, and from (Proc GRes), with E, G ` P ′′. By
Lemma 18, E, G ` P ′. By (Proc Par), E, G ` P ′ | P ′′. By (Proc GRes),
E ` (νG)(P ′ | P ′′), that is, E ` P . 2

Restatement of Proposition 2 If E ` P and P → Q then E ` Q.

Proof By induction on the derivation of P → Q.

(Red I/O) Then P = x〈y1, . . . , yk〉 | x(z1:T1, . . . , zk:Tk).P
′ and Q =

P ′{z1←y1} · · · {zk←yk}. Assume E ` P . This must have been derived from
(Proc Par) with E ` x(z1:T1, . . . , zk:Tk).P

′ and E ` x〈y1, . . . , yk〉. The for-
mer must have been derived from (Proc Input) with E ` x : G[T1, . . . , Tk],
E, z1:T1, . . . , zk:Tk ` P ′. The latter judgment E ` x〈y1, . . . , yk〉 must have
been derived from (Proc Output) with E ` x : G[T ′1, . . . , T

′
k] E ` yi : T ′i for

each i ∈ 1..k. By Lemma 21, Ti = T ′i for each i ∈ 1..k. By k applications of
Lemma 20, we get E ` P ′{z1←y1} · · · {zk←yk}.

(Red Par) Here P = P ′ | R and Q = Q′ | R with P ′ → Q′. Assume E ` P .
This must have been derived using (Proc Par) from E ` P ′ and E ` R. By
induction hypothesis, E ` Q′. By (Proc Par), E ` Q′ | R, that is, E ` Q.

(Red GRes) Here P = (νG)P ′ and Q = (νG)Q′ with P ′ → Q′. Assume
E ` P . This must have been derived using (Proc GRes) from E, G ` P ′.
By induction hypothesis, E, G ` Q′. By (Proc GRes), E ` (νG)Q′, that is,
E ` Q.

(Red Res) Here P = (νx:T)P ′ and Q = (νx:T)Q′ with P ′ → Q′. Assume
E ` P . This must have been derived using (Proc Res) from E, x:T ` P ′.
By induction hypothesis, E, x:T ` Q′. By (Proc Res), E ` (νx:T)Q′, that
is, E ` Q.

(Red ≡) Here P ≡ P ′, P ′ → Q′, and Q′ ≡ Q. Assume E ` P . By Lemma 1,
E ` P ′. By induction hypothesis, E ` Q′. By Lemma 1, E ` Q. 2

B Facts Needed in Proof That Bisimilarity Preserves Secrecy

This appendix contains a proof of Proposition 5, together with auxiliary lem-
mas. For the sake of brevity, in this appendix we often use vector notations
for name sequences, such as ~y for y1, . . . , yn.

We assert three basic lemmas, which may be proved by routine inductions on
the length of inference of (P, S) RX (P ′, S ′). In the first, we can interpret the
equation S ′ = S] SP] SN as meaning that in the final state, the knowledge
S ′ of the opponent consists of S, the names it knew to begin with, plus SP ,

23

names known only to P initially, but now revealed, plus SN , fresh names
generated either by P or the opponent. The second and third lemmas state
that in some circumstances adding or removing a name y to the frame does
not affect reachability.

Lemma 22 If (P, S) RX (P ′, S ′) then (1) fn(P) ⊆ X and (2) fn(P ′) ⊆
fn(P) ∪ S ′ and (3) S ′ = S] SP] SN with SP ⊆ fn(P) and SN ∩X = ∅.

Lemma 23 If (P, S) RX (P ′, S ′) and either y /∈ S ′ or y ∈ S then
(P, S) RX∪{y} (P ′, S ′).

Lemma 24 If (P, S) RX∪{y} (P ′, S ′) and y /∈ fn(P) then (P, S) RX (P ′, S ′).

Next, we give a lemma saying that a freshly generated name y can always be
renamed to a fresh name z.

Lemma 25 If (P, S) RX (P ′, S ′] {y}) and y /∈ S ∪X and z /∈ X ∪ S ′ then
(P, S) RX (P ′{y←z}, S ′] {z}).

Proof By induction on the length of inference of (P, S) RX (P ′, S ′] {y}).
By hypothesis, y /∈ S ∪X and z /∈ X ∪ S ′, and we may assume z 6= y (or else
the claim is trivial) and consider four cases:

(1) We have (P, S) RX (P ′, S ′] {y}) from P = P ′, S = S ′] {y}, and
fn(P) ⊆ X. But this contradicts the assumption that y /∈ S ∪X.

(2) We have (P, S) RX (P ′, S ′] {y}) from (P, S) RX (P ′′, S ′] {y}) and
P ′′ → P ′. By induction hypothesis, (P, S) RX (P ′′{y←z}, S ′] {z}). Sub-
stitution preserves reduction, so we have P ′′{y←z} → P ′{y←z}. Hence,
we derive (P, S) RX (P ′{y←z}, S ′] {z}).

(3) We have (P, S) RX (Q{~y←~z}, S ′′ ∪ {~z}) from P ′′
x−→ (~y)Q, x ∈ S ′′, and

({~z} − S ′′) ∩ X = ∅, and (P, S) RX (P ′′, S ′′), where y ∈ S ′′ ∪ {~z} but
z /∈ X ∪ S ′′ ∪ {~z}. We may assume that the bound variables ~y do not
include y or z.

Either y ∈ S ′′ or not. If so, we have S ′′ = S ′′′] {y} and S ′′′ ⊆ S ′.
By induction hypothesis, (P, S) RX (P ′′{y←z}, S ′′′] {z}). Substitution

preserves transitions, so P ′′{y←z} x{y←z}−→ (~y)(Q{y←z}). We calculate:
• x{y←z} ∈ S ′′′] {z} (because x ∈ S ′′ = S ′′′] {y})
• ({~z{y←z}} − S ′′{y←z}) ∩ X = ∅ (because ({~z} − S ′′) ∩ X = ∅ and

z /∈ X)
• Q{y←z}{~y←~z{y←z}} = Q{~y←~z}{y←z}
• (S ′′′] {z}) ∪ ~z{y←z} = (S ′′ ∪ {~z}){y←z})
Therefore, (P, S) RX (Q{~y←~z}{y←z}, (S ′′ ∪ {~z}){y←z}), as required.

On the other hand, suppose that y /∈ S ′′, and therefore that y ∈ {~z},
but y /∈ fn(Q) (by Lemma 22, parts (1) and (2)). We have ({~z{y←z}}−
S ′′) ∩X = ∅ (because ({~z} − S ′′) ∩X = ∅ and z /∈ X). Hence, we can

24

derive (P, S) RX (Q{~y←~z{y←z}}, S ′′ ∪ {~z{y←z}}). We calculate:
• Q{~y←~z{y←z}} = Q{~y←~z}{y←z} (because y /∈ fn(Q))
• S ′′ ∪ {~z{y←z}} = (S ′′ ∪ {~z}){y←z}) (because y /∈ S ′′)
Again, we may conclude (P, S) RX (Q{~y←~z}{y←z}, (S ′′ ∪ {~z}){y←z}).

(4) We have (P, S) RX (Q,S ′′ ∪ {~y}) from (P, S) RX (P ′′, S ′′), P ′′
x−→

(ν~z)〈~y〉Q, x ∈ S ′′, and {~z} ∩ (S ′′ ∪ X) = ∅, with y ∈ S ′′ ∪ {~y} but
z /∈ S ′′ ∪ {~y}.

Either y ∈ S ′′ or not. If so, note that neither y nor z
is among the variables ~z. By induction hypothesis, we have
(P, S) RX (P ′′{y←z}, S ′′{y←z}). Substitution preserves transitions,

so P ′′{y←z} x{y←z}−→ (ν~z)〈~y{y←z}〉(Q{y←z}). We have x{y←z} ∈
S ′′{y←z} (because x ∈ S ′′). We have {~z} ∩ (S ′′{y←z} ∪ X) = ∅
(because {~z} ∩ (S ′′ ∪ X) = ∅ and neither y nor z is among ~z). We
have S ′′{y←z} ∪ {~y{y←z}} = (S ′′ ∪ {~y}){y←z}. Hence, we can derive
(P, S) RX (Q{y←z}, (S ′′ ∪ {~y}){y←z}) as desired.

On the other hand, suppose that y /∈ S ′′ so that y ∈ {~y}. By
Lemma 22, fn(P ′′) ⊆ S ∪ X, and by definition {~y} ⊆ fn(P ′′) ∪ {~z}.
Since y /∈ S ∪ X it must be that y ∈ {~z}. By fresh renaming, we have

P ′′
x−→ (ν~z{y←z})〈~y{y←z}〉(Q{y←z}). We have {~z{y←z}} ∩ (S ′′ ∪

X) = ∅ (because {~z} ∩ (S ′′ ∪ X) = ∅ and z /∈ S ′′ ∪ X). We have
S ′′ ∪ {~y{y←z}} = (S ′′ ∪ {~y}){y←z} (because y /∈ S ′′). Hence, we can
again derive (P, S) RX (Q{y←z}, S ′′ ∪ {~y{y←z}}). 2

Using the previous lemmas, we show that adding any name to the frame
preserves reachability in the following sense:

Lemma 26 Suppose (P, S) RX (P ′, S ′). Then for any y there are P ′′, S ′′ such
that (P, S) RX∪{y} (P ′′, S ′′) and X ∩ S ′ = X ∩ S ′′.

Proof We can assume y /∈ X or else the lemma is trivial. By Lemma 23,
if either y /∈ S ′ or y ∈ S we get (P, S) RX∪{y} (P ′, S ′), and so we are done.

Otherwise, we have S ′ = Ŝ] {y} for some S ′′, and y /∈ S ∪X. By Lemma 25,
we pick some z /∈ X ∪S ′, and obtain (P, S) RX (P ′{y←z}, Ŝ] {z}). We have
y /∈ S ′]{z}, so Lemma 23, implies (P, S) RX∪{y} (P ′{y←z}, Ŝ] {z}). Finally,

since neither y ∈ X nor z ∈ X, we have X ∩ (Ŝ] {y}) = X ∩ (Ŝ] {z}). 2

An intuition for the next lemma is that the set of names revealed by a tran-
sition (P, S) RX (P ′, S ′), could be defined equally in terms of either fn(P) or
X.

Lemma 27 If (P, S) RX (P ′, S ′) then fn(P) ∩ (S ′ − S) = X ∩ (S ′ − S).

Proof By Lemma 22, fn(P) ⊆ X and there are SP and SN such that
S ′ = S] SP] SN with SP ⊆ fn(P) and SN ∩X = ∅. Now S ′ − S = SP] SN

so fn(P) ∩ (S ′ − S) = SP = X ∩ (S ′ − S). 2

25

The frame X appearing in the definition of reachability (P, S) RX (P ′, S ′) is a
finite set of names, including fn(P), that cannot be chosen as fresh names. In
our definition of name revelation, we take X = fn(P). The following lemma,
in the style of Gabbay and Pitts’ result about their freshness quantifier [11],
shows that the exact choice of X does not matter so long as X ⊇ fn(P).

Lemma 28 These are equivalent:

(1) P may reveal x to S
(2) ∃X ⊇ fn(P).∃P ′, S ′.(P, S) RX (P ′, S ′) ∧ x ∈ fn(P) ∩ (S ′ − S)
(3) ∀X ⊇ fn(P).∃P ′, S ′.(P, S) RX (P ′, S ′) ∧ x ∈ fn(P) ∩ (S ′ − S)

Proof We may assume that x ∈ fn(P) and x /∈ S for otherwise (1), (2),
and (3) are false. Hence, it suffices to show equivalence of the following:

(R) ∃P ′, S ′.(P, S) Rfn(P) (P ′, S ′) ∧ x ∈ S ′

(E) ∃n, y1, . . . , yn /∈ fn(P).∃P ′, S ′.(P, S) Rfn(P)∪{y1,...,yn} (P ′, S ′) ∧ x ∈ S ′

(A) ∀n, y1, . . . , yn /∈ fn(P).∃P ′, S ′.(P, S) Rfn(P)∪{y1,...,yn} (P ′, S ′) ∧ x ∈ S ′

We can obtain (E) from (R) by putting n = 0, and obtain (R) from (E) by n
applications of Lemma 24. Moreover, we can obtain (R) from (A) by putting
n = 0, and obtain (A) from (R) by n applications of Lemma 26, establishing
that (P, S) Rfn(P)∪{y1,...,yn} (P ′′, S ′′) and fn(P) ∩ S ′ = fn(P) ∩ S ′′, and hence
that x ∈ S ′′. So all three properties are equivalent. 2

We note the following, a corollary by negation:

Lemma 29 These are equivalent:

(1) P preserves the secrecy of x from S
(2) ∀X ⊇ fn(P).∀P ′, S ′.(P, S) RX (P ′, S ′)⇒ x /∈ fn(P) ∩ (S ′ − S)
(3) ∃X ⊇ fn(P).∀P ′, S ′.(P, S) RX (P ′, S ′)⇒ x /∈ fn(P) ∩ (S ′ − S)

The heart of the proof of Proposition 5, below, is that bisimilarity preserves
reachability, in the following sense:

Lemma 30 If (P, S) RX (P ′, S ′) and P ∼ Q and fn(P) ∪ fn(Q) ⊆ X then
there is Q′ such that (Q,S) RX (Q′, S ′) and P ′ ∼ Q′.

Proof By induction on the length of the derivation of (P, S) RX (P ′, S ′).

(1) We have (P, S) RX (P, S) from fn(P) ⊆ X. Since fn(Q) ⊆ X we also
have (Q, S) RX (Q,S).

(2) We have (P, S) RX (P ′′, S ′) from (P, S) RX (P ′, S ′) and P ′ → P ′′. By
induction hypothesis, (Q,S) RX (Q′, S ′) for some Q′ with P ′ ∼ Q′. Hence,
Q′ → Q′′ for some Q′′ with P ′′ ∼ Q′′. So we can derive (Q,S) RX (Q′′, S ′).

(3) We have (P, S) RX (P̂{~y←~z}, S ′ ∪ {~z}) from (P, S) RX (P ′, S ′), P ′
x−→

26

(~y)P̂ , x ∈ S ′, and ({~z}−S ′)∩X = ∅. By induction hypothesis, (Q, S) RX

(Q′, S ′) for some Q′ with P ′ ∼ Q′. Hence, Q′
x−→ (~y)Q̂ for some Q̂ with

P̂{~y←~z} ∼ Q̂{~y←~z}. So we can derive (Q,S) RX (Q̂{~y←~z}, S ′ ∪ {~z}).
(4) We have (P, S) RX (P̂ , S ′ ∪ {~y}) from (P, S) RX (P ′, S ′), P ′

x−→
(ν~z)〈~y〉P̂ and x ∈ S ′ and {~z} ∩ (S ′ ∪X) = ∅. By induction hypothesis,

(Q,S) RX (Q′, S ′) for some Q′ with P ′ ∼ Q′. Hence, Q′
x−→ (ν~z)〈~y〉Q̂ for

some Q̂ with P̂ ∼ Q̂. So we can derive (Q,S) RX (Q̂, S ′ ∪ {~y}). 2

Restatement of Proposition 5 Suppose that P ∼ Q. If P may reveal x
to S then so does Q. Dually, if P preserves the secrecy of x from S then so
does Q.

Proof For the first part, let X = fn(P) ∪ fn(Q). By Lemma 28(1,3), there
are P ′ and S ′ such that (P, S) RX (P ′, S ′) and x ∈ fn(P) ∩ (S ′ − S). By
Lemma 27, x ∈ X ∩ (S ′ − S). By Lemma 30, P ∼ Q implies there is Q′ such
that (Q,S) RX (Q′, S ′) and P ′ ∼ Q′. By Lemma 27, x ∈ fn(Q)∩ (S ′− S). By
Lemma 28(1,2), Q may reveal x to S.

The second part is a corollary of the first by negation and symmetry. 2

C Type Preservation for the Auxiliary Type System

This appendix contains proofs of subject congruence (Lemma 7) and subject
reduction (Proposition 8) for the auxiliary type system.

Lemma 31 If P ≡ Q then P{x←y} ≡ Q{x←y}.

Lemma 32 If E ` J then E ` �.

Lemma 33 If E ′, n:T ′, m:T ′′, E ′′ ` J then E ′, m:T ′′, n:T ′, E ′′ ` J.

Lemma 34 If E ′, x:T, E ′′ ` J and x /∈ fn(J) then E ′, E ′′ ` J.

Lemma 35 If E ` J and E, E ′ ` � then E, E ′ ` J.

Lemma 36 If E ` x : T and E ` x : T ′ then T = T ′.

Restatement of Lemma 7 If E ` P and P ≡ Q then E ` Q.

Proof The lemma follows by showing that P ≡ Q implies:

(1) If E ` P then E ` Q.
(2) If E ` Q then E ` P .

27

We proceed by induction on the derivation of P ≡ Q.

(Struct Refl) Trivial.
(Struct Symm) Then Q ≡ P . For (1), assume E ` P . By induction hypoth-

esis (2), Q ≡ P implies that E ` Q. Part (2) is symmetric.
(Struct Trans) Then P ≡ R, R ≡ Q for some R. For (1), assume E ` P .

By induction hypothesis (1), E ` R. Again by induction hypothesis (1),
E ` Q. Part (2) is symmetric.

(Struct Res) Then P = (νx)P ′ and Q = (νx)Q′, with P ′ ≡ Q′. For (1),
assume E ` P . This must have been derived from (Proc Res), with E, x:T `
P ′, for some T. By induction hypothesis (1), E, x:T ` Q′. By (Proc Res),
E ` (νx)Q′. Part (2) is symmetric.

(Struct Par) Then P = P ′ | R, Q = Q′ | R, and P ′ ≡ Q′. For (1), assume
E ` P ′ | R. This must have been derived from (Proc Par), with E ` P ′,
E ` R. By induction hypothesis (1), E ` Q′. By (Proc Par), E ` Q′ | R.
Part (2) is symmetric.

(Struct Repl) Then P = !P ′, Q = !Q′, and P ′ ≡ Q′. For (1), assume E ` P .
This must have been derived from (Proc Repl), with E ` P ′. By induction
hypothesis (1), E ` Q′. By (Proc Repl), E ` !Q′. Part (2) is symmetric.

(Struct Input) In this case, we have P = x(y1, . . . , yk).P
′, Q =

x(y1, . . . , yk).Q
′, and P ′ ≡ Q′. For (1), assume E ` P . This must have

been derived either from (Proc Ch Input) or from (Proc Un Input). In
the (Proc Ch Input) case, we have that E ` x : Ch[T1, . . . , Tn], for
some T1, . . . , Tn, and E, y1:T1, . . . , yk:Tk ` P ′. By induction hypothesis,
E, y1:T1, . . . , yk:Tk ` Q′. By (Proc Ch Input), E ` x(y1, . . . , yk).Q

′.
In the (Proc Un Input) case, we have that E ` x : Un,

E, y1:Un, . . . , yn:Un ` P ′. By induction hypothesis, E, y1:Un, . . . , yk:Un `
Q′. By (Proc Ch Input), E ` x(y1, . . . , yk).Q

′.
Part (2) is symmetric.

(Struct Par Zero) Then P = P ′ | 0 and Q = P ′.
For (1), assume E ` P ′ | 0. This must have been derived from (Proc Par)

with E ` P ′.
For (2), assume E ` P ′. By Lemma 32, E ` �. By (Proc Zero), E ` 0 By

(Proc Par), E ` P ′ | 0
(Struct Par Comm) Then P = P ′ | P ′′ and Q = P ′′ | P ′.

For (1), assume E ` P ′ | P ′′. This must have been derived from E ` P ′

and E ` P ′′. By (Proc Par), E ` P ′′ | P ′. Hence, E ` Q.
Part (2) is symmetric.

(Struct Par Assoc) Then P = (P ′ | P ′′) | P ′′′ and Q = P ′ | (P ′′ | P ′′′).
For (1), assume E ` (P ′ | P ′′) | P ′′′. This must have been derived from

(Proc Par) twice, with E ` P ′, E ` P ′′, and E ` P ′′′. By (Proc Par) twice,
E ` P ′ | (P ′′ | P ′′′). Hence E ` Q.

Part (2) is symmetric.
(Struct Repl Par) Then P = !P ′ and Q = P ′ | !P ′. For (1), assume E ` !P ′.

This must have been derived from (Proc Repl), with E ` P ′. By (Proc Par),

28

E ` P ′ | !P ′. Hence, E ` Q.
For (2), assume E ` P ′ | !P ′. This must have been derived from (Proc

Par), with E ` P ′ and E ` !P ′. Hence, E ` P .
(Struct Res Res) In this case we have P = (νx1)(νx2)P

′ and Q =
(νx2)(νx1)P

′ with x1 6= x2.
For (1), assume E ` (νx1)(νx2)P

′. This must have been derived from
(Proc Res) twice, with E, x1:T1, x2:T2 ` P ′, for some T1, T2. By Lemma 33,
we have E, x2:T2, x1:T1 ` P ′. By (Proc Res) twice we have E ` (νx2)(νx1)P

′.
Part (2) is symmetric.

(Struct Res Par) Then P = (νx)(P ′ | P ′′) and Q = P ′ | (νx)P ′′, with
x /∈ fn(P ′).

For (1), assume E ` P . This must have been derived from (Proc Res),
with E, x:T ` P ′ | P ′′, for some T , and from (Proc Par), with E, x:T ` P ′

and E, x:T ` P ′′. By Lemma 34, since x /∈ fn(P ′), we have E ` P ′. By
(Proc Res) we have E ` (νx)P ′′. By (Proc Par) we have E ` P ′ | (νx)P ′′,
that is, E ` Q.

For (2), assume E ` Q. This must have been derived from (Proc Par),
with E ` P ′ and E ` (νx)P ′′, and from (Proc Res), with E, x:T ` P ′′, for
some T . By Lemma 17, E, x:T ` P ′. By (Proc Par), E, x:T ` P ′ | P ′′. By
(Proc Res), E ` (νx)(P ′ | P ′′), that is, E ` P . 2

Restatement of Proposition 8 If E ` P and P → Q then E ` Q.

Proof By induction on the derivation of P → Q.

(Red I/O) Then P = x〈y1, . . . , yk〉 | x(z1, . . . , zk).P
′ and Q = P ′{z1←y1}

· · · {zk←yk}. Assume E ` P . This must have been derived from (Proc Par)
with E ` x(z1, . . . , zk).P

′ and E ` x〈y1, . . . , yk〉. The former must have been
derived either from (Proc Ch Input) or from (Proc Un Input). In the (Proc
Ch Input) case, we have that E ` x : Ch[T1, . . . , Tk], for some T1, . . . , Tk,
and E, z1:T1, . . . , zk:Tk ` P ′. E ` x : Ch[T1, . . . , Tk], and Lemma 36, imply
that the latter judgment E ` x〈y1, . . . , yk〉 must have been derived from
(Proc Ch Output), with E ` yi : Ti for each i ∈ 1..k. By k applications of
Lemma 11, we get E ` P ′{z1←y1} · · · {zk←yk}.

In the (Proc Un Input) case, we have E ` x : Un, and
E, z1:Un, . . . , zk:Un ` P ′. E ` x : Un, and Lemma 36, imply that the
latter judgment E ` x〈y1, . . . , yk〉 must have been derived from (Proc Un
Output), with E ` yi : Un for each i ∈ 1..k. By k applications of Lemma 11,
we get E ` P ′{z1←y1} · · · {zk←yk}.

(Red Par) Here P = P ′ | R and Q = Q′ | R with P ′ → Q′. Assume E ` P .
This must have been derived using (Proc Par) from E ` P ′ and E ` R. By
induction hypothesis, E ` Q′. By (Proc Par), E ` Q′ | R, that is, E ` Q.

(Red Res) Here P = (νx)P ′ and Q = (νx)Q′ with P ′ → Q′. Assume E ` P .
This must have been derived using (Proc Res) from E, x:T ` P ′, for some
T . By induction hypothesis, E, x:T ` Q′. By (Proc Res), E ` (νx)Q′, that

29

is, E ` Q.
(Red ≡) Here P ≡ P ′, P ′ → Q′, and Q′ ≡ Q. Assume E ` P . By Lemma 7,

E ` P ′. By induction hypothesis, E ` Q′. By Lemma 7, E ` Q. 2

D Facts Needed in Proof of the Secrecy Theorem

This appendix contains proofs of Proposition 9 and Proposition 10, used in
the proof of Theorem 1, together with several auxiliary lemmas.

Lemma 37 Suppose E ` P .

(1) If P
x−→ (y1, . . . , yn)Q and E ` x : Un and E ` y′i : Un for each i ∈ 1..n

then E ` Q{y1←y′1} · · · {yn←y′n}.
(2) If P

x−→ (νz1, . . . , zm)〈y1, . . . , yn〉Q and E ` x : Un and {z1, . . . , zm} ∩
dom(E) = ∅ then E, z1:Un, . . . , zm:Un ` yi : Un for each i ∈ 1..n, and
E, z1:Un, . . . , zm:Un ` Q.

Proof Suppose E ` P .

(1) By definition, P
x−→ (y1, . . . , yn)Q means that the names y1, . . . , yn

are pairwise distinct, and there are processes P1 and P2 and pairwise
distinct names z1, . . . , zm with P ≡ (νz1, . . . , zm)(x(y1, . . . , yn).P1 |
P2) and Q ≡ (νz1, . . . , zm)(P1 | P2) where x /∈ {z1, . . . , zm} and
{y1, . . . , yn} ∩ ({z1, . . . , zm} ∪ fn(P2)) = ∅. Since the names z1, . . . ,
zm are bound, we may assume that {z1, . . . , zm} ∩ {y′1, . . . , y′n} = ∅. By
Lemma 31, this and {y1, . . . , yn}∩({z1, . . . , zm}∪fn(P2)) = ∅, imply that
Q{y1←y′1} · · · {yn←y′n} ≡ (νz1, . . . , zm)(P1{y1←y′1} · · · {yn←y′n} | P2).
By Lemma 7, E ` P and P ≡ (νz1, . . . , zm)(x(y1, . . . , yn).P1 | P2)
imply that E ` (νz1, . . . , zm)(x(y1, . . . , yn).P1 | P2). Hence, there
are types T1, . . . , Tm with E ′ ` x(y1, . . . , yn).P1 and E ′ ` P2 where
E ′ = E, z1:T1, . . . , zm:Tm. By assumption and Lemma 35, E ′ ` x : Un.
So, only (Proc Un Input) can derive E ′ ` x(y1, . . . , yn).P1. Hence,
we have E ′′ ` P1 where E ′′ = E ′, y1:Un, . . . , yn:Un. By assumption,
E ` y′i : Un for each i ∈ 1..n. Hence, by Lemmas 35 and 11 we get
that E ′ ` P1{y1←y′1} · · · {yn←y′n}. By (Proc Par) and (Proc Res), this
and E ′ ` P2 imply that E ` (νz1, . . . , zm)(P1{y1←y′1} · · · {yn←y′n} | P2).
Finally, by Lemma 7 we get E ` Q{y1←y′1} · · · {yn←y′n}.

(2) By definition, P
x−→ (νz1, . . . , zm)〈y1, . . . , yn〉Q means that the names z1,

. . . , zm are pairwise distinct with P ≡ (νz1, . . . , zm)(x〈y1, . . . , yn〉 | Q)
where x /∈ {z1, . . . , zm} and {z1, . . . , zm} ⊆ {y1, . . . , yn}. By Lemma 7,
E ` P and P ≡ (νz1, . . . , zm)(x〈y1, . . . , yn〉 | Q) imply that E `
(νz1, . . . , zm)(x〈y1, . . . , yn〉 | Q). Given this and {z1, . . . , zm}∩dom(E) =
∅, there are types T1, . . . , Tm such that E ′ ` x〈y1, . . . , yn〉 and E ′ ` Q

30

where E ′ = E, z1:T1, . . . , zm:Tm. By assumption and Lemma 35, E ′ ` x :
Un. Therefore only (Proc Un Input) can derive E ′ ` x〈y1, . . . , yn〉 with
E ′ ` yi : Un for each i ∈ 1..n. Since {z1, . . . , zm} ⊆ {y1, . . . , yn} it fol-
lows that Ti = Un for each i ∈ 1..m. So E ′ = E, z1:Un, . . . , zm:Un, and
therefore we have E, z1:Un, . . . , zm:Un ` yi : Un for each i ∈ 1..n, and
E, z1:Un, . . . , zm:Un ` Q as required. 2

Lemma 38 Consider any process P0 and any set S0. Suppose there is E0 such
that E0 ` P0 and dom(E0) = fn(P0) ∪ S0 and E0 ` x : Un for each x ∈ S0.
If (P0, S0) R (P ′, S ′) there is E ′ such that E0, E

′ ` P ′ and dom(E0, E
′) =

fn(P0) ∪ S ′ and E0, E
′ ` x : Un for each x ∈ S ′.

Proof We assume there is E0 such that E0 ` P0 and dom(E0) = fn(P0)∪S0

and E0 ` x : Un for each x ∈ S0. We proceed by induction on the derivation
of (P0, S0) R (P ′, S ′). There are four cases to consider.

(1) We have (P0, S0) R (P0, S0). Take E ′ = ∅ and by assumption we have
that E0, E

′ ` P0 and dom(E0, E
′) = fn(P0) ∪ S0 and E0, E

′ ` x : Un for
each x ∈ S0.

(2) We have (P0, S0) R (P ′, S ′) from (P0, S0) R (P, S ′) and P → P ′. By
induction hypothesis, (P0, S0) R (P, S ′) implies there is E ′ such that
E0, E

′ ` P and dom(E0, E
′) = fn(P0) ∪ S ′ and E0, E

′ ` x : Un for each
x ∈ S ′. By Proposition 8, P → P ′ implies E, E ′ ` P ′.

(3) We have (P0, S0) R (Q{y1←z1, . . . , yn←zn}, S ∪ {z1, . . . , zn}) derived
from (P0, S0) R (P, S), P

x−→ (y1, . . . , yn)Q, x ∈ S, and ({z1, . . . , zn} −
S) ∩ fn(P0) = ∅. By induction hypothesis, (P0, S0) R (P, S) implies
there is E such that E0, E ` P and dom(E0, E) = fn(P0) ∪ S and
E0, E ` x′ : Un for each x′ ∈ S. Let {z′1, . . . , z′m} = {z1, . . . , zn} − S and
let E ′ = E, z′1:Un, . . . , z′m:Un. We have {z′1, . . . , z′m} ∩ fn(P0) = ∅. From
dom(E0, E) = fn(P0) ∪ S it follows that {z′1, . . . , z′m} ∩ dom(E0, E) = ∅,
and therefore that E0, E

′ ` �. By Lemma 35, this and E0 ` P im-
ply E0, E

′ ` P . Since x ∈ S, we have E0, E ` x : Un, and hence
by Lemma 35, that E0, E

′ ` x : Un. By Lemma 37(1), E0, E
′ ` P

and P
x−→ (y1, . . . , yn)Q and E0, E

′ ` x : Un and E0, E
′ ` zi : Un

for each i ∈ 1..n then E0, E
′ ` Q{y1←z1} · · · {yn←zn}. We have

dom(E0, E
′) = dom(E0, E) ∪ {z′1, . . . , z′m} = fn(P0) ∪ S ∪ {z′1, . . . , z′m} =

fn(P0) ∪ S ∪ {z1, . . . , zn}. Finally, we have E0, E
′ ` x′ : Un for each

x′ ∈ S ∪ {z1, . . . , zn}.
(4) We have (P0, S0) R (Q,S ∪ {y1, . . . , yn}) from (P0, S0) R (P, S) and

P
x−→ (νz1, . . . , zm)〈y1, . . . , yn〉Q and x ∈ S and {z1, . . . , zm} ∩ (S ∪

fn(P0)) = ∅. By induction hypothesis, (P0, S0) R (P, S) implies
there is E such that E0, E ` P and dom(E0, E) = fn(P0) ∪ S and
E0, E ` x′ : Un for each x′ ∈ S. Let E ′ = E, z1:Un, . . . , zm:Un.
By Lemma 35, we get that E0, E

′ ` x′ : Un for each x′ ∈ S. By

Lemma 37(2), P
x−→ (νz1, . . . , zm)〈y1, . . . , yn〉Q and E0, E ` x : Un

31

and {z1, . . . , zm} ∩ dom(E0, E) = ∅ imply E0, E
′ ` yi : Un for each

i ∈ 1..n, and E0, E
′ ` Q. It follows that {y1, . . . , yn} ⊆ dom(E0, E

′) =

fn(P0)∪S ∪ {z1, . . . , zm}. Now, P
x−→ (νz1, . . . , zm)〈y1, . . . , yn〉Q implies

{z1, . . . , zm} ⊆ {y1, . . . , yn}. So fn(P0) ∪ S ∪ {z1, . . . , zm} = fn(P0) ∪ S ∪
{y1, . . . , yn}. Hence, we have dom(E0, E

′) = fn(P0) ∪ S ∪ {z1, . . . , zm} =
fn(P0) ∪ S ∪ {y1, . . . , yn}. 2

Restatement of Proposition 9 Suppose that ∅, y1:Un, . . . , yn:Un, x:T `
P where T 6= Un. Then the process P preserves the secrecy of the name x
from {y1, . . . , yn}.

Proof We may assume x ∈ fn(P), or else vacuously P preserves its secrecy.
Let E = ∅, y1:Un, . . . , yn:Un, x:T and S = {y1, . . . , yn} so that E ` P and
dom(E) = fn(P) ∪ S (since x ∈ fn(P)) and E ` y : Un for each y ∈ S.
Consider any process P ′ and S ′ such that (P, S) R (P ′, S ′). By Lemma 38,
there is E ′ such that E, E ′ ` P ′ and dom(E, E ′) = fn(P0) ∪ S ′ and E, E ′ `
y : Un for each y ∈ S ′. We know that E, E ′ ` x : T and T 6= Un. Therefore,
it cannot be that x ∈ S ′, or else we would get that E, E ′ ` x : Un, which by
Lemma 36 is incompatible with E, E ′ ` x : T . Hence, the process P preserves
the secrecy of the name x from {y1, . . . , yn}. 2

Lemma 39 If E ` � then [[E]]G ` �.

Proof A routine induction on the derivation of E ` �. 2

Lemma 40 If E ` x : T then [[E]]G ` x : [[T]]G.

Proof Since E ` x : T can only derive using (Exp x), E takes the form
E ′, x:T,E ′′ and E ` �. By Lemma 39, [[E]]G ` �. By definition, we have
[[E]]G = [[E ′]]G, x:[[T]]G, [[E ′′]]G. So, by (Exp x), we get that [[E]]G ` x : [[T]]G. 2

Restatement of Proposition 10 If E ` P then [[E]]G ` erase(P).

Proof By induction on the derivation of E ` P .

(Proc GRes) Then E ` (νH)P derives from E, H ` P . By induction hy-
pothesis, [[E, H]]G ` erase(P). Since [[E, H]]G = [[E]] and erase((νH)P) =
erase(P), we obtain [[E]] ` erase((νH)P).

(Proc Res) Then E ` (νx:T)P derives from E, x:T ` P . By induction hy-
pothesis, [[E]]G, x:[[T]]G ` erase(P). By (Proc Res), [[E]]G ` (νx)erase(P).
Since erase((νx:T)P) = (νx)erase(P) we get that [[E]]G ` erase((νx:T)P).

(Proc Par) Then E ` P | Q derives from E ` P and E ` Q. By induction
hypothesis, [[E]]G ` erase(P) and [[E]]G ` erase(Q). By (Proc Par), [[E]]G `
erase(P) | erase(Q). Since erase(P | Q) = erase(P) | erase(Q) we get that
[[E]]G ` erase(P | Q).

(Proc Repl) Then E ` !P derives from E ` P . By induction hypothesis,

32

[[E]]G ` erase(P). By (Proc Repl), [[E]]G ` !erase(P). Since erase(!P) =
!erase(P) we get that [[E]]G ` erase(!P).

(Proc Input) Then E ` x(y1:T1, . . . , yk:Tn).P derives from the judgments
E ` x : H[T1, . . . , Tn] and E, y1:T1, . . . , yn:Tn ` P . By Lemma 40,
we get [[E]]G ` x : [[H[T1, . . . , Tn]]]G. By induction hypothesis, we get
[[E, y1:T1, . . . , yn:Tn]]G ` erase(P), that is, [[E]]G, y1:[[T1]]G, . . . , yn:[[Tn]]G `
erase(P).

If G ∈ fg(H[T1, . . . , Tn]) then [[H[T1, . . . , Tn]]]G = Ch[[[T1]]G, . . . , [[Tn]]G].
Hence, by (Proc Ch Input) we obtain that [[E]]G ` x(y1, . . . , yn).P .

Otherwise, we have G /∈ fg(H[T1, . . . , Tn]) and hence G /∈ fg(Ti) for each
i ∈ 1..n. Therefore, [[H[T1, . . . , Tn]]]G = Un and also [[Ti]] = Un for each
i ∈ 1..n. Hence, by (Proc Un Input) we obtain that [[E]]G ` x(y1, . . . , yn).P .

(Proc Output) Then E ` x〈y1, . . . , yn〉 derives from E ` yi : Ti for each
i ∈ 1..n and from E ` x : H[T1, . . . , Tn]. By Lemma 40, we get that [[E]]G `
yi : [[Ti]]G for each i ∈ 1..n and [[E]]G ` x : [[H[T1, . . . , Tn]]]G.

If G ∈ fg(H[T1, . . . , Tn]) then [[H[T1, . . . , Tn]]]G = Ch[[[T1]]G, . . . , [[Tn]]G].
Hence, by (Proc Ch Output) we obtain that [[E]]G ` x〈y1, . . . , yn〉.

Otherwise, we have G /∈ fg(H[T1, . . . , Tn]) and hence G /∈ fg(Ti) for each
i ∈ 1..n. Therefore, [[H[T1, . . . , Tn]]]G = Un and also [[Ti]] = Un for each
i ∈ 1..n. Hence, by (Proc Un Output) we get [[E]]G ` x〈y1, . . . , yn〉. 2

Acknowledgements

We thank Rocco de Nicola, Roberto Gorrieri, Tony Hoare, and the anonymous
reviewers for useful suggestions, and also Mart́ın Abadi and Bruno Blanchet
who pointed out an error in the conference version of this paper. Giorgio Ghelli
was supported by Microsoft Research, and by “Ministero dell’Università e della
Ricerca Scientifica e Tecnologica”, project DATA-X.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, September 1999.

[2] M. Abadi. Security protocols and specifications. In Foundations of Software
Science and Computation Structures (FOSSACS’99), volume 1578 of Lecture
Notes in Computer Science, pages 1–13. Springer, 1999.

[3] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication.
Theoretical Computer Science, 298(3):387–415, 2003.

[4] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148:1–70, 1999.

33

[5] C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. Control flow analysis for
the π-calculus. In Concurrency Theory (Concur’98), volume 1466 of Lecture
Notes in Computer Science, pages 84–98. Springer, 1998.

[6] L. Cardelli, G. Ghelli, and A.D. Gordon. Secrecy and group creation. In
C. Palamidessi, editor, CONCUR 2000—Concurrency Theory, volume 1877 of
Lecture Notes in Computer Science, pages 365–379. Springer, 2000.

[7] L. Cardelli, G. Ghelli, and A.D. Gordon. Types for the ambient calculus.
Information and Computation, 177:160–194, 2002.

[8] S. Dal Zilio and A.D. Gordon. Region analysis and a π-calculus with groups.
Journal of Functional Programming, 12(3):229–292, 2002.

[9] D. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5):236–242, 1976.

[10] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IC–29(12):198–208, 1983.

[11] M. J. Gabbay and A.M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

[12] S. J. Gay. A sort inference algorithm for the polyadic pi-calculus. In 20th ACM
Symposium on Principles of Programming Languages (POPL’93), 1993.

[13] R. Milner. The polyadic π-calculus: a tutorial. In Proceedings of
the International Summer School on Logic and Algebra of Specification,
Marktoberdorf, 1991. Available as Technical Report ECS–LFCS–91–180,
Department of Computer Science, University of Edinburgh, October 1991.
Reprinted in Logic and Algebra of Specification, ed. F. L. Bauer, W. Brauer,
and H. Schwichtenberg, Springer, 1993.

[14] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

[15] M. Odersky. Polarized name passing. In Foundations of Software Technology
and Theoretical Computer Science, volume 1026 of Lecture Notes in Computer
Science. Springer, 1995.

[16] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–454, 1996.

[17] J. Riely and M. Hennessy. A typed language for distributed mobile processes.
In 25th ACM Symposium on Principles of Programming Languages (POPL’98),
pages 378–390, 1998.

[18] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001.

[19] P. Sewell. Global/local subtyping and capability inference for a distributed
π-calculus. In 25th International Colloquium on Automata, Languages, and
Programming (ICALP’98), volume 1443 of Lecture Notes in Computer Science,
pages 695–706. Springer, 1998.

34

[20] M. Tofte and J.-P. Talpin. Region-based memory management. Information
and Computation, 132(2):109–176, 1997.

[21] V. T. Vasconcelos and K. Honda. Principal typing-schemes in a polyadic π-
calculus. In CONCUR’93—Concurrency Theory, volume 715 of Lecture Notes
in Computer Science, pages 524–538. Springer, 1993.

35

