
Page 1

ACM Transactions on Programming Languages and Systems, 15(4), pp. 575-631, 1993.

Subtyping Recursive Types

Roberto M. Amadio1 Luca Cardelli
CNRS-CRIN, Nancy DEC, Systems Research Center

Abstract
We investigate the interactions of subtyping and recursive types, in a simply

typed λ-calculus. The two fundamental questions here are whether two (recursive)
types are in the subtype relation, and whether a term has a type.

To address the first question, we relate various definitions of type equivalence
and subtyping that are induced by a model, an ordering on infinite trees, an
algorithm, and a set of type rules. We show soundness and completeness between
the rules, the algorithm, and the tree semantics. We also prove soundness and a
restricted form of completeness for the model.

To address the second question, we show that to every pair of types in the
subtype relation we can associate a term whose denotation is the uniquely
determined coercion map between the two types. Moreover, we derive an
algorithm that, when given a term with implicit coercions, can infer its least type
whenever possible.

1This author's work has been supported in part by Digital Equipment Corporation and in part by the Stanford-CNR Collaboration Project.

Page 2

Contents

1. Introduction
1.1 Types
1.2 Subtypes
1.3 Equality of Recursive Types
1.4 Subtyping of Recursive Types
1.5 Algorithm outline
1.6 Formal development

2. A Simply Typed λ-calculus with Recursive Types
2.1 Types
2.2 Terms
2.3 Equations

3. Tree Ordering
3.1 Subtyping Non-recursive Types
3.2 Folding and Unfolding
3.3 Tree Expansion
3.4 Finite Approximations

4. An Algorithm
4.1 Canonical Forms
4.2 Computational Rules
4.3 Soundness and Completeness of the Algorithm
4.4 An Implementation

5. Typing Rules
5.1 Type Equivalence Rules
5.2 Completeness of Equivalence Rules
5.3 Subtyping Rules
5.4 Completeness of Subtyping Rules

6. A Per Model
6.1 Realizability Structure
6.2 Complete Uniform Pers
6.3 Completeness of an F-interpretation

7. Coercions
7.1 Definability
7.2 Inference

8. Conclusion
9. Acknowledgments
References

Page 3

1. Introduction
Subtyping is an inclusion relation between types that is present to some degree in many

programming languages. Subtyping is especially important in object-oriented languages, where it
is crucial for understanding the much more complex notions of inheritance and subclassing.

Recursive types are also present in most languages. These types are supposed to unfold
recursively to match other types. Moreover, unfolding must preserve typing soundness and not
cause the compiler to diverge.

In this paper we investigate the interaction of unrestricted recursive types with subtyping.
This interaction is present in some modern languages based on structural type matching (where
type equality or subtyping is determined by some abstract type structure, and not by how types
are syntactically presented). In the past, recursive types have often been restricted by other
language features; for example by explicit unfolding in ML, and by name matching in Modula-2.
Algol68 was the first language to rely on a structural type equality algorithm for recursive types.
Thereafter name matching became popular, largely because it is easier to implement but also
because it prevents accidental matches based on type structure.

Name-matching determines type equality by relying, at least partially, on the names assigned
to types in a given program, instead of on their structure. With name matching, recursive analysis
can stop at occurrences of type names. Unfortunately there is no general definition of name
matching; each language, and sometimes each compiler, implements it slightly differently. Types
with the same meaning (in the eye of the programmer) may or may not be equated in different
runs of the compiler, depending on irrelevant textual perturbations that affect the name matching
rules.

The inconsistency of name-matching rules becomes a problem in distributed environments,
where type definitions and data may migrate outside the compiler or program run in which they
are created. Types and data should have a meaning independent of particular runs, hence
languages such as Modula-3 [22] and other experimental languages such as Amber [10] and
Quest [9, 12] concerned with data persistence and data migration, have again adopted structural
matching. Since these languages also rely on subtyping, structural subtyping becomes an issue.
Because of various language design issues, Modula-3 restricts itself to structural equivalence
plus a limited form of structural subtyping; in this paper we deal with the unrestricted
combination of recursion and subtyping, which forms the basis of Amber and Quest.

With this motivation, we investigate type systems with recursive types and subtyping, and the
related problems of structural matching and structural subtyping. Structural matching techniques
are well known, and have strong connections with well-understood theoretical concepts.
Structural subtyping is a much newer subject. We provide the first complete theory of recursive
subtypes that leads naturally to an effective type theory and to typechecking algorithms. In
practice it is easy to adapt algorithms for structural typing to structural subtyping (although to
our knowledge, this was first done in Amber), but formalizing the type rules and the proofs of
correctness of the algorithms is more challenging. We show that both our algorithm and our type
rules are complete with respect to a natural notion of subtyping.

Page 4

In the rest of the introduction we provide the basic intuitions about recursive subtypes, and
we illustrate the main problems along with several non-solutions. Section 2 formalizes the syntax
of a basic calculus with recursive types and section 3 introduces a subtyping relation based on a
tree ordering. Section 4 describes a subtyping algorithm, and section 5 describes the correspon-
ding type rules. A partial equivalence relation model is given in section 6. Finally, section 7
relates subtyping to type coercions.

 1.1 Types
A type, as normally intended in programming languages, is a collection of values sharing a

common structure or shape. Examples of basic types are: Unit, the trivial type containing a single
element, and Int, the collection of integer numbers. Examples of structured types are: Int→Int,
the functions from integers to integers; Int×Int, the pairs of two integers; and Unit+Int, the
disjoint union of Unit and Int consisting of either a unit value marked “left” or an integer marked
“right” (given two arbitrary but distinct marks).

A recursive type is a type that satisfies a recursive type equation. Common examples are:

Tree = Int + (Tree×Tree)

the collection of binary trees with integer leaves, and:

 List = Unit + (Int×List)

the collection of lists of integers. Note that these are not definitions of Tree and List; they are
equational properties that any definition of Tree and List must satisfy.

There are also useful examples of recursion involving function spaces, typical of the object-
oriented style of programming:

Cell = (Unit→Int) × (Int→Cell) × (Cell→Cell)

A Cell is interpreted as the collection of integer-containing memory cells, implemented as triples
of functions read: Unit→Int, write: Int→Cell, and add: Cell→Cell. In each of these functions the
current cell is implicit, so for example add needs only to receive another cell in order to perform
a binary addition.

Recursive types can hence be described by equations, and we shall see that in fact they can be
unambiguously defined by equations. To see this, we need some formal way of reasoning about
the solutions of type equations. These formal tools become particularly useful if we start
examining problematic equations such as t = t, s = s×s, r = r→r, etc., for which it is not clear
whether there are solutions or whether the solutions are unique.

It is appealing to set up sufficient conditions so that type equations have canonical solutions.
Then, if we have an equation such as t = Unit+(Int×t), we can talk about the solution of the
equation. Such a canonical solution can then be indicated by a term such as µt.Unit+(Int×t); the
type t that is equal to Unit+(Int×t). Here µt.α is a new type construction just introduced for
denoting canonical solutions.

To say that L @ µt.Unit+(Int×t) (where @ means equal by definition) is the solution of the
List equation, implies that L must satisfy the equation; that is, L = Unit+(Int×L) must be

Page 5

provable. This requirement suggests the most important rule for the µt.α construction, which
amounts to a one-step unfolding of the recursion:

µt.α = [µt.α/t]α

meaning that µt.α is equal to α where we replace t by µt.α itself. In our example we have:

L = µt.Unit+(Int×t) = [L/t](Unit+(Int×t)) = Unit+(Int×L)

which is the equation we expected to hold.
Having discussed recursive types, we now need to determine when a value belongs to a

recursive type. The rule above for µt.α allows us to expand recursive types arbitrarily far, for a
finite number of expansions. Hence, we can postulate that a finite value belongs to a recursive
type if it belongs to one of its finite expansions according to the ordinary typing rules. That is,
we push the troublesome µ's far enough until we no longer need to consider them.

However, if the values are not finite, for example if they are defined recursively, we may not
be able to push the µ's out of the way. In that case, we need to provide adequate notions of finite
approximations of values and types, and postulate that a value belongs to a type when every
approximation of the value belongs to some approximation of the type. An approximation αn of a
type expression α is an appropriate truncation of α at depth n, hence it is different from an
unfolding. This will be made precise in later sections.

1.2 Subtypes
If types are collections of values, subtypes should be subcollections. For example, we can

introduce two new basic types ® (bottom), the collection containing only the divergent
computation, and © (top), the collection of all values. Then ® should be a subtype of every type,
and every type should be a subtype of ©. We write these relations as ®≤α and α≤©.

Function spaces α→β have a subtyping rule that is antimonotonic in the first argument. That
is,

α→β ≤ α'→β' if α' ≤ α and β ≤ β'

For example, if Nat ≤ Int, and f: Int→Cell stores an integer into a cell, then f is also willing to
store a natural number into a cell, that is f: Nat→Cell. Hence, it is sound to have Int→Cell ≤
Nat→Cell, but not the opposite. This antimonotonic rule is familiar in object-oriented
programming, where it is one of the main considerations for the correct typechecking of
methods.

Adequate subtyping rules can be found for all the other type constructions we may have. For
example, for products we have α×β ≤ α '×β' if α≤α ' and β≤β'. Similarly, for disjoint unions we
have α+β ≤ α'+β' if α≤α ' and β≤β'.

What is, then, subtyping for recursive types? The intuition we adopt is that two recursive
types α and β are in the subtype relation if their infinite unfoldings also are in this relation, in
some appropriate sense. We might at first just consider finite unfoldings α+ of a type α , and
require that “α ≤ β if for every α+ of α there is a β+ of β with α+ ≤ β+”. However, we shall see
shortly that this condition is not strong enough. Hence, we insist on inclusion of infinite

Page 6

unfoldings. This is made precise by the notion, mentioned above, of finite approximations αn of
a type α , and by defining “α ≤ β if, for every n, αn ≤ βn ”.

Unfortunately, the formal subtyping rules for recursive types and the related algorithms
cannot rely on approximations, since “αn≤βn for every n” involves testing an infinite number of
conditions. The subtyping rules should rely instead on “finitary” rules, and it is therefore not so
obvious how to invent a collection of rules that achieve the desired effect. For example, a first
idea might be simply to say that:

if α ≤ β then µt.α ≤ µt.β (1)

where t may occur free in α and β. By this we can show that, for example, µt. ©→t ≤ µt. ®→t,
just from the assumption that t≤t. Unfortunately we also have:

(1) implies α @ µt. t→® ≤ µt. t→© @ β

and this is quite wrong. By unfolding both α and β twice we get:

(1) implies (α→®)→® ≤ (β→©)→©

and these are not subtypes: the first ® on the left and the first © on the right are in the wrong
inclusion relation (©≤®), being in antimonotonic position.

The problem with rule (1) comes from the negative occurrences (on the left of an odd number
of →'s) of the recursion variable. In fact rule (1) is sound for types that are monotonic in the
recursion variable.

A correct (and finitary) rule for inclusion of recursive types is instead the following:

(s≤t ⇒ α ≤ β) ⇒ µs.α ≤ µt.β (2)

where s occurs only in α , and t occurs only in β. That is, if by assuming the inclusion of the
recursive variables we can verify the inclusion of the bodies, then we can deduce the inclusion of
the recursive types. (It is interesting to check how subtyping now fails on the example above.)

Going back to the List example, if we have Nat≤Int and:

 NatList @ µs. Unit+(Nat×s)
 IntList @ µt. Unit+(Int×t)

then we can safely deduce NatList≤IntList from rule (2) since s≤t implies Unit+(Nat×s) ≤ Unit+ -
(Int×t).

On the other hand, the Cell example does not work as smoothly.

NatCell @ µs. (Unit→Nat) × (Nat→s) × (s→s)
IntCell @ µt. (Unit→Int) × (Int→t) × (t→t)

Here we cannot conclude NatCell≤IntCell from rule (2), because of antimonotonicity: both the
inclusion of the second component (write) and the inclusion of the third (add) fail. This is
however not a deficiency of rule (2); such a conclusion would be unsound. For example, a
NatCell might have a write function of type Nat→NatCell that fails on negative numbers. If such
a cell were considered as an IntCell, it would be possible to pass a negative integer to this write
and cause it to fail. These issues are related to the typechecking of object types in object-oriented
languages, and are discussed at length in [15] and [8].

Page 7

1.3 Equality of Recursive Types
We need now to consider strong notions of equality of recursive types. This is necessary

because the rule (2) above is weak in some areas; for example, we cannot deduce directly from it
that:

µt.t→t ≤ µs.s→s

because this would require assuming both s≤t and t≤s. The combination of rule (2) and equality
rules will finally give us all the power we need.

To check whether two recursive types µs.α' and µt.β' are equivalent, we could assume s=t,
and attempt to prove α '=β' under this assumption. This would work for µt. t→t and µs. s→s. But
now consider the types:

α @ µs.Int→s β @ µt.Int→Int→t

They both expand infinitely into Int→Int→Int→Int→ ..., and they also have the same set of
values (for example, recursive terms like µf. λx:Int. f). However, the assumption s=t does not
show Int→s = Int→Int→t; we get stuck on the question whether s = Int→t.

Another attempt might involve expanding the µ's, but unfortunately we cannot expand them
out of existence. By unfolding alone we can get only:

α = µs.Int→s = Int→(µs.Int→s) = Int→Int→(µs.Int→s) = Int→Int→α
β = µt.Int→Int→t = Int→Int→(µt.Int→Int→t) = Int→Int→β

which after a few unfoldings leaves us with the original problem of determining whether α=β.
This is what we meant earlier by the insufficiency of “α ≤ β if for every expansion α+ of α there
is a β+ of β with α+ ≤ β+”.

In fact, we seem to have made some progress here; we have come back to the original
question α=β only after analyzing the entire structure of α and β. It seems that we should then be
able to conclude that α=β, because a complete analysis of α and β has found no contradiction.
This kind of reasoning is possible but it has to be carefully justified, and in general we need to
determine the conditions under which this stronger notion of equality does not lead to a circular
argument.

Note that in the process above we have found a single context C[X] @ Int→Int→X such that
α = C[α] and β = C[β]; that is, both α and β are fixpoints of C. We shall be able to show that all
the non-trivial (formally, contractive) type contexts C[X] have unique fixpoints over infinite
trees, and therefore if they have two fixpoints these must be equal. Hence, the necessary rule for
determining type equality can be formulated as follows:

α = C[α] ∧ β = C[β] ∧ C contractive ⇒ α = β (3)

It remains to be shown how to generate contractive contexts that allow us to equate any two
types that have equal infinite expansions. This can be done via an algorithm, and in fact a natural
one. We will show that this algorithm is sound (it will not equate types with different infinite
expansions) and complete (it will equate all types that have equal infinite expansions). Such
proofs of correctness of algorithms are among our major goals here, but first we need to carefully
develop a formal framework.

Page 8

1.4 Subtyping of Recursive Types
The problem of equating recursive types such as α and β above can be related to well-known

solvable problems, such as the equivalence of finite-state automata. However, the similar
problem for subtyping has no well-known parallel. Take, for example:

γ @ µs.Int→s δ @ µt.Nat→Nat→t

Again, looking at the infinite expansions we obtain γ = Int→Int→..., and δ = Nat→Nat→..., from
which we would like to deduce γ≤δ by antimonotonicity. But what are the exact rules? Attempts
to unfold γ and δ fall into the same difficulties as before.

The strategy here is to reduce the subtyping problem to an equality problem, which we solve
by rule (3), plus rule (2). That is, we first show that δ' @ µt.Nat→t = µt.Nat→Nat→t 7 δ. After
that, we can use rule (2) to show γ≤δ', and hence γ≤δ.

Initially, this strategy suggests a two-step algorithm that first synchronizes the recursions in
some appropriate way, and then uses rule (2) without additional folding/unfolding. Instead, we
present an algorithm that tests subtyping of recursive types directly; the correspondence between
the algorithm and the rules is then less obvious.

The example above involves two distinct recursive types for which the rule (2) alone is not
sufficient to determine subtyping. This example may seem artificial, however this situation can
easily happen in practice. As a slightly more plausible example, suppose we define the type of
lists of alternating integers and naturals:

IntNatList @ µt.Unit+Int×(Unit+Nat×t)

This definition could arise more naturally from a mutual recursion construct in some
programming language, for example:

Let Rec IntNatList = Unit+Int×NatIntList
and NatIntList = Unit+Nat×IntNatList

One would certainly expect NatList ≤ IntNatList to hold. But,

NatList @ µs.Unit+Nat×s

hence we have first to show that NatList = µs.Unit+Nat×(Unit+Nat×s), and only then can we
apply rule (2) successfully.

1.5 Algorithm outline
We describe the algorithm informally and we show some sample runs. This is only an

approximation of the algorithm analyzed in the formal part, but it should explain the main ideas.
A more detailed description is given in section 4.4.

A recursive type of the form µt. ...t... can be represented in memory as a cyclic linked
structure such that every occurrence of t in the recursive body is represented by the address of the
corresponding µt structure, i.e., by a back-pointer. Otherwise, all subexpressions of a type
expression, including µ subexpressions, are uniquely determined by their address in memory.
Every time the algorithm reaches a µ structure, possibly through a back-pointer, it has the option
of analyzing the interior of the structure ("unfolding" the recursive type) or to compare its

Page 9

address with other addresses as a termination condition. The algorithm for α≤β operates on a pair
of linked structures and a trail. A trail is a set of address pairs that records the pairs of addresses
that have been jointly encountered when following a pair of paths in the two linked structures. To
avoid diverging on cyclic structures, the algorithms registers a local successful termination when
it reaches a pair of addresses that have already been seen, that is, a pair of addresses that are
contained in the trail.

The algorithm to determine whether α≤β starts with an empty trail and proceeds through the
following steps in sequence. We only consider basic types, function types, and recursive types.

[1] Succeed if the pair of addresses of α and β (in this order) is contained in the trail.
(In this situation, we have completely explored a pair of cyclic paths and found no
subtyping failures; hence we declare success for these paths.)

[2] Succeed if α and β are type constants that are equal or in the subtype relation.
(This is the base case for the given collection of basic types and basic inclusions.)

[3] When α is α '→α" and β is β '→β", recur on β'≤α ' and on α"≤β". Succeed if both
recursions succeed.
(This is the case for function types; note the swapping of inclusion on the domains
because of antimonotonicity of →; no such swapping would occur for data type
constructors such as × and +).

[4.1] When α is µt.α ' and β is µs.β', add the pair of addresses of α and β (in this order) to
the trail, and recur on α '≤β'. Succeed if the recursion succeeds.
(The presence of µ's signals potential cyclic paths, hence we store the current pair of
addresses in the trail so that case [1] can prevent looping. We use an ordered pair of
addresses because inclusion is, obviously, not symmetric; this detail differs from the
standard trail algorithms for type equivalence. The next two cases are similar.)

[4.2] When α is µt.α ', add the pair of addresses of α and β to the trail, and recur on α'≤β.
Succeed if the recursion succeeds.

[4.3] When β is µs.β', add the pair of addresses of α and β to the trail, and recur on α≤β'.
Succeed if the recursion succeeds.

[5] Otherwise, fail. (This means we have found a pair of incomparable type expressions,
such as a function type and a base type.)

A faithful description of a run of this algorithm would involve assigning arbitrary addresses
to subexpressions of type expressions; this would only obscure the exposition. Instead, we
display the type expressions and we leave their addresses implicit: the reader is urged to keep
this in mind.

The diagrams below represent execution trees. The starting goal is at the bottom, the
branching represents recursive calls, and the leaves represent termination conditions. The trail is
shown in curly brackets; its elements are written as t≤s, and represent pairs of addresses of type
expressions. We indicate in square bracket the step of the algorithm used in each line to obtain
the line above it.

The first sample run involves two types with matching µ structures; their inclusion is non-
trivial because of antimonotonicity.

Page 10

{t≤s} t ≤ s [1] {t≤s} ® ≤ t [2]
{t≤s} s→® ≤ t→t [3] {t≤s} ® ≤ © [2]

{t≤s} (t→t)→® ≤ (s→®)→© [3]
 {} µt.((t→t)→®) ≤ µs.((s→®)→©) [4.1]

The second sample run involves two types with mismatching µ structures. This mismatch
introduces the need to examine a cyclic path more that once. For this, we use a loopback step,
which corresponds to following a cyclic structure back to its original entry point (an artificial
loopback step is needed only because, as we said, we keep the address information implicit). In
the algorithm above, a loopback situation corresponds to a failure of step [1] followed by some
dereferencing of back-pointers that leads to step [4].

{t≤s, t≤®→s} ® ≤ © [2] {t≤s, t≤®→s} t ≤ s [1]
 {t≤s, t≤®→s} ©→t ≤ ®→s [3]

{t≤s} µt.(©→t) ≤ ®→s [4.2]
{t≤s} ® ≤ © [2] {t≤s} t ≤ ®→s [loopback]

{t≤s} ©→t ≤ ®→(®→s) [3]
 {} µt.(©→t) ≤ µs.(®→(®→s)) [4.1]

Hence, in this run we go around the µt loop twice in order to go around the µs loop once.
For other interesting examples, check how µt.(t→t) ≤ µs.(s→s) succeeds, and how µt.(t→®)

≤ µs.(s→©) fails.
One of the main aims of this paper is to show that the algorithm above is consistent with, and

in fact equivalent to, the rules (2) and (3) of sections 1.2 and 1.3. For this we need to place both
the rules and the algorithm in a more formal framework.

1.6 Formal development
Having explained most of the problems and the unsatisfactory solutions arising from

subtyping recursive types, we can now proceed to the formal treatment.
So far we have discussed rules for the subtyping of recursive types which are motivated by

some operational intuition. In the following we will broaden our perspective and consider
various notions of type equivalence, α=β, and subtyping, α≤β. These are induced by:

a) An ordering on infinite trees: α=Tβ, α≤Tβ (Section 3)
b) An algorithm: α=Aβ, α≤Aβ (Section 4)
c) A collection of typing rules: α=Rβ, α≤Rβ (Section 5)
d) A collection of per models: α=Mβ, α≤Mβ (Section 6)

The mathematical content of the paper consists mainly in analyzing the relationships between
these notions. For a simply typed lambda calculus with recursive types (described in Section 2)
we show, among other properties:

α=Tβ ⇔ α=Aβ ⇔ α=Rβ ⇒ α=Mβ
α≤Tβ ⇔ α≤Aβ ⇔ α≤Rβ ⇒ α≤Mβ

Moreover, we prove a restricted form of completeness with respect to the model (6.3), we
show the definability in the calculus of certain maps that interpret coercions (7.1), and we give

Page 11

an algorithm for computing the minimal type of a term with respect to ≤T (7.2). All these results
support the relevance of the theory for the subtyping of recursive types sketched in this
introduction.

2. A Simply Typed λ-calculus with Recursive Types
We consider a simply typed λ-calculus with recursive types and two ground types ® (bottom)

and © (top); the latter play the roles of least and greatest elements in the subtype relation.
Although this calculus is very simple, it already embodies the most interesting problems for
which we can provide solutions sufficiently general to extend to other domains. In the
conclusions we comment on which techniques can be applied to more complex calculi.2

2.1 Types
In an informal BNF notation, types are defined as follows:

t,s, ... type variables and type constants, indifferently
α ::= t | ® | © | α→β | µt.α

Types are identified up to renaming of bound variables. We use parentheses to determine
precedence; in their absence, → associates to the right, and the scoping of µ extends to the right
as far as possible. For simplicity we omit the other type constructors considered in the
introduction.

2.2 Terms
Terms are denoted with M, N, ... ; the following rules establish when a term M has type α

(written M:α).

(assmp) xα : α
(→I) M : β ⇒ (λxα.M) : α→β
(→E) M : α→β, N : α ⇒ (MN) : β
(fold) M : [µt.α/t]α ⇒ (foldµt.α M) : µt.α
(unfold) M : µt.α ⇒ (unfoldµt.α M) : [µt.α/t]α

Hence terms are either typed variables, typed λ-abstractions, applications, or fold and unfold
coercions. The latter should be subscripted with the intended recursive type, to facilitate type
inference, but these subscripts are sometime omitted. The fold/unfold coercions are technical
devices to explicitly contract or expand the recursive type of a term; that is, such contractions
and expansions do not happen automatically.

2.3 Equations
Here are some fundamental equations for the calculus. In particular, notice that the constants

“fold” and “unfold” establish an isomorphism between a recursive type and its unfolding.

2Conventions: @ stands for equality by definition; 7for abbreviation or syntactic identification; ∫ precedes a judgment provable in a certain

formal system; ⊃ is the linguistic implication; ⇒ is the metalinguistic implication; [U/x]V denotes the substitution of U for x in V.

Page 12

(β) (λxα.M)N = [N/xα]M
(µ) fold(unfold x) = x unfold(fold x) = x

In section 6 we will consider a model in which many more types and terms are equated, for
example the following will be valid equations:

(fold-unfold) [µt.α/t]α = µt.α
(η) λxα.Mxα = M if xαÌFV(M)
(®) x® = y®

(©) x©= y©

3. Tree Ordering
There is a well-established theory of subtyping for the non-recursive types. Basic motivations

can be found, for example, in [11]. The notion of non-recursive type is merely syntactic; it means
that the type does not contain µ's. The purpose of this section is to extend this theory to the
recursive types, by defining a notion of approximation on infinite trees.

3.1 Subtyping Non-recursive Types
We have the following simple rules. There is a least type ® and a greatest type ©; the operator

→ is antimonotonic in the first argument and monotonic in the second. The relation ≤ is reflexive
by virtue of (var) and (→) below.

(®) ® ≤ α
(©) α ≤ ©
(var) t ≤ t
(→) α ' ≤ α, β ≤ β' ⇒ α→β ≤ α'→β'

It is fairly easy to prove that the relation), defined as α)β iff α≤β is derivable in the system
above, is a partial order on the collection of non-recursive types. In particular, one has to show
that the transitivity rule:

 (trans) α) β, β) γ ⇒ α) γ

is derived. This can be proven by defining a collection of rewriting rules on proofs that have the
property that, when applied to a proof using transitivity, produce a (trans)-free proof of the same
judgment. More abstractly one can look at the rules as the clauses of an inductive definition of a
binary relation) and show that such a relation is transitive (see 3.4.4).

3.2 Folding and Unfolding
Should the types [µt.α/t]α and µt.α be considered as equivalent? In general they are provably

isomorphic in the calculus via fold and unfold. However, in most languages fold and unfold are
implicit, and most implementations do not generate run-time code for them. So it seems
reasonable to require that [µt.α/t]α ≤ µt.α and µt.α ≤ [µt.α/t]α , thereby making unfolding
transparent.

Page 13

In fact, we will exhibit a model of the calculus in which µt.α and [µt.α/t]α are equated
because recursive domain equations are solved up to equality. However, a theory of type
equivalence based only on the congruence closure of:

(fold-unfold) [µt.α/t]α ≤ µt.α µt.α ≤ [µt.α/t]α

turns out to be too weak; for example, the types µt.s→s→t and µt.s→t are not equivalent.
Once we assume the transparency of unfolding, it seems natural to consider types with the

same infinite expansions as equivalent. Infinite expansion can be rephrased as an approximation
property such that the semantics of a type is completely determined by the semantics of its finite
syntactic approximations. In fact, this is a very desirable property in the semantics of
programming languages (see, for example, the approximation theorem in [29]).

3.3 Tree Expansions
As we have seen, simple unfolding does not induce a sufficiently strong notion of type

equivalence. A stronger condition of approximation seems required to deal with infinite
expansions. Let us first explain how to associate a finitely branching, labeled, regular tree with
any recursive type.

Paths in a tree are represented by finite sequences of natural numbers π,σ∈ω *, with πσ for
concatenation and nil as the empty sequence.

Nodes in a tree are labeled by a ranked alphabet L = {®0, ©0, →2} ∪ {t0 | t is a type
variable}, where the superscripts indicate arity.

A tree A∈ω *îïÕL is a partial function from (paths) ω* into (node labels) L, whose domain is
non-empty and prefix-closed, and such that each node has a number of children equal to the rank
of the associated label.

Formally, let A(π)ß indicate that π is in the domain of A (and A(π)¶ indicate the opposite).
Then the collection Tree(L) of finitely-branching labeled trees over L, is given by the partial
maps:

A: ω*îïÕ L such that:
A(nil)ß
A(πσ)ß ⇒ A(π)ß
A(π) = pi ⇒ Ó0≤j<i. A(πj)ß

We can now define a function T: Type → Tree(L) from recursive types (as defined in 2.1) to
Tree(L). Let hµ be the function that counts the number of µ's in the head position of a type. We
define T(α)(π) by induction on (|π|, hµ(α)):

T(®)(nil) @ ® T(©)(nil) @ © T(t)(nil) @ t

T(α→β)(nil) @ → T(α→β)(0π) @ T(α)(π) T(α→β)(1π) @ T(β)(π)

T(µt.α)(nil) @ ® if α has the shape µt1....µtn.t (ti≠t, iÏ1..n, n≥0)

T(µt.α)(π) @ T([µt.α/t]α)(π) if α does not have the shape above

T(α)(π) @ ¶ in all other cases

Note that the α→β case reduces |π|, and second µt.α case preserves |π| while reducing hµ(α); this
entails that the definition is well-founded.

Page 14

Here are some simple examples; the tree on the right repeats itself after the "..." :

T(s→µt.t) = → T(µt.®→(©→t)) = →
 / \ / \

 s ® ® →
 / \
 ©

...

Finally, define the collection of finite trees, Treefin(L), as follows:

Treefin(L) @ {A Ï Tree(L) | Ôk. ∀π∈ω *. |π|>k ⇒ A(π)¶}

Remarks

3.3.1 T induces a bijection between Treefin(L) and non-recursive types. We denote its
inverse with T-1.

3.3.2 Tree(L) is a complete metric space with respect to the usual metric on trees [4]. In
fact it is the completion of the space of finite trees Treefin(L). We recall:

- A metric space is complete iff every Cauchy sequence converges.
- A map f:M→M over a metric space M with distance d is contractive iff there is a real
number q<1 such that Óa,bÏM: d(f(a),f(b)) ≤ q†d(a,b).
- Banach's fixpoint theorem asserts that a contractive map over a complete metric space
has a unique fixpoint.
- The distance d(A,B) on Tree(L) is defined as either 0 if A=B; or else 2–c(A,B), where
c(A,B) is either ∞ if A=B, or else it is the length of a shortest path that distinguishes A
from B.

3.3.3 For every α , Tα is a regular tree, that is, a tree with a finite number of different
subtrees. Every tree is completely specified by the language of its occurrences, where if pÏL
and A∈ Tree(L) then the occurrences are Occ(p,A) @ {π∈ω * | A(π) = p}. In particular, every
regular tree A has an associated set {πp | π∈ Occ(p,A), pÏL} which is a regular language
[16].

From this it follows that given types α, β, the problem of deciding if Tα = Tβ is reducible
to the problem of the equivalence of deterministic finite-state automata.

3.3.4 Going back to the example in 3.2, observe that T(µt.s→s→t) = T(µt.s→t).

3.4 Finite Approximations
Finite trees are in one-one correspondence with the non-recursive types, therefore they have a

partial order as defined in 3.1. The problem we are going to consider now is how to extend this
partial order on finite trees to Tree(L).

Hence, we introduce the notion of finite approximation of a tree. It is crucial to keep in mind
the antimonotonic behavior of the → in its first argument.

We define a family of functions:

{ | k : Tree(L)→Treefin(L)}k∈ω
Given AÏTree(L) its cut at the k-th level is defined as follows:

Page 15

 ↑ if |π| > k

A| k(π) @ A(π) if |π| < k, or |π| = k and A(π)¶
 ® if |π| = k, A(π)ß, and π is positive in A
 © if |π| = k, A(π)ß, and π is negative in A

where we say that π is positive (negative) in A if along the path π from the root we select the left
sibling of a node labeled → an even (odd) number of times.

We can extend this definition to types:

α | k @ T-1((Tα)| k) (a non-recursive type)

Convention
The bijection T,T-1 between Treefin(L) and non-recursive types is from now on often omitted.

That is, given any finite tree AÏTreefin(L), we ambiguously identify it with the corresponding
non-recursive type. Similarly, for AÏTree(L), we denote with A| k both its cut and the
corresponding non-recursive type.

We are now ready to introduce a notion of tree ordering.

3.4.1 Definition (tree ordering)
For A,B Ï Treefin(L): A ≤fin B ⇔ T-1A≤T-1B (as finite types; see 3.1)
For A,B Ï Tree(L): A ≤∞ B ⇔ Ók. (A| k≤finB| k)
For α,β Ï Type: α≤Tβ ⇔ Tα ≤∞ Tβ

Remarks

3.4.2 ≤∞ is a partial order on Tree(L).

3.4.3 α≤Tβ is a preorder on recursive types, and is such that for all k α| k≤Tα . We can
now show, for example, α @ µt.©→t ≤T µt.®→(®→t) @ β; consider the tree expansions:

Tα = → Tβ = →
/ \ / \

 © → ® →
 / \ / \
 ©

... ®
...

Observe that © and ® always occur in negative position so from ®≤© we can conclude Ók.
α | k≤β| k and this gives us the statement.

3.4.4 One can think of other tree orderings; for example, consider the following
inductive definition that gives an ordering ≤Ind on Tree(L).

≤Ind is the least reflexive relation such that, ÓA,B,A',B' Ï Tree(F):

 → →
®≤IndA; A≤Ind©; A'≤IndA, B≤IndB' ⇒ / \ ≤Ind / \

A B A' B'

Equivalently, ≤Ind = ên<ω ≤n where:

Page 16

≤0 = {(®,A), (A,©) | AÏTree(L)} ∪ IdTree(L)

 → →
≤n+1 = ≤n ∪ {(/ \ , / \) | A'≤nA, B≤nB'}

 A B A' B'

It is not difficult to prove by induction on n that ≤Ind is a partial order on Tree(L), it
conservatively extends the ordering on Treefin(L) and it is contained in ≤∞ . Moreover, such
containment is strict as shown by the example in 3.4.3. In fact, ≤Ind lacks the crucial
approximation property possessed by ≤∞ .

4. An Algorithm
In this section we show that the tree ordering we have defined on types (3.4.1) can be decided

by a rather natural modification of the algorithm that tests directly (that is, without reduction to a
minimal form) the tree equivalence of two types.

4.1 Canonical Forms
The first step towards formalizing the algorithm is to introduce canonical forms for types and

systems of equations.
Canonical forms of types allow us to ignore the trivial type equivalences due to redundant

uses of µ binders. For example, the recursive type (µt.µs.t→s)→ ((µt.t)→(µt.©)) can be
simplified to the canonical form (µv.v→v)→(®→©) without changing the denoted tree. In a
canonical form, the body of each µ is an → type, and each µ variable is used in its µ body. Note,
however, that different canonical forms may generate the same tree, for example µt.s→t,
s→µt.s→t, and µt.s→s→t.

Implementations of the subtyping algorithm manipulate cyclic linked data structures in
computer memory. We represent these data structures abstractly as special sets of equations.
Informally, each equation relates a memory address, represented by a variable, to a node of the
data structure, represented by a type constant or a type constructor applied to variables. For
example, here is a simple type with a corresponding equational representation and a possible
memory representation:

Type Equations A memory representation
(v0 is the root) Addr. Node Child1 Child2

µt.®→t v0=v1→v0 0: → 1 0
v1=® 1: ® - -

Sets of equations in this stylized form are called canonical. In this section we show that a
canonical set of equations, along with a root variable, determines a unique tree which is called
the solution of the equations. Moreover, we give effective ways of going from a type to a
canonical set of equations, and vice versa, while preserving the represented tree.

Page 17

Proviso
In order to have a simple correspondence between recursive types and systems of regular

equations, we assume that all variables, both bound and free, in the types α1, ..., αn under
consideration are distinct. When a type is unfolded, the necessary renaming of bound variables
must be performed. For example, (µt.t→s)→(µs.t→s) should be rewritten as
(µv.v→s)→(µr.t→r).

4.1.1 Recursive Types in Canonical Form
Henceforth, Tp denotes the collection of non-recursive types, and µTp denotes the collection

of recursive types in canonical form, defined as follows:

α ::= ® | © | t | α→β | µt.α→β

where in the case µt.α→β, t must occur free in α→β. Hence the body of a µ in canonical form
must immediately start with an →; in particular, it cannot be another µ. The introduction of µTp
simplifies the case analysis in the following proofs.

4.1.2 Proposition (existence of canonical forms)
For every type α there is a type β in canonical form such that Tα=Tβ.

Proof
The crucial observation is that Tµt.µs.γ[t,s] = Tµv.γ[v,v]. See also 5.1.3 for a proof of this

fact that uses the rules for type equivalence. M

4.1.3 Regular System of Equations in Canonical Form
Systems of regular equations are a well-known tool for representing regular trees (see for

example [16], [17]).
For our purposes a regular system of equations in canonical form is an element of Tenv, that

is, a finite association of distinct type variables (members of Tvar) with types in a specific form:

Tenv @
{ ε Ï Tvar îïÕ Tp | Dom(ε) is finite and ÓtÏDom(ε) we have that
 ε(t) is one of ®, ©, t1, t2→t3, where t1ÌDom(ε) and t2, t3ÏDom(ε) }

A pair (α , ε) Ï Tp × Tenv represents the following system of regular equations (not
necessarily in canonical form because α may be complex):

tα = α (tα a fresh variable)
t = ε(t) for each tÏDom(ε)

It is important to observe that, by the definition of Tenv, this system defines a contractive
functional (G0,..., Gn) over Tree(L)n+1 (see remark 3.3.2) where n = |Dom(ε)|, Dom(ε) = {t1, ...,
tn} and:

G0(A0, ..., An) @ [A0/tα, A1/t1, ..., An/tn]Tα
Gi(A0, ..., An) @ [A0/tα, A1/t1, ..., An/sn]Tε(ti) (1≤i≤n)

The predicate Reach(α ,ε) denotes the variables reachable from the free variables in α by
applying the equations in ε. Formally:

Page 18

Reach(t,ε)0 @ {t}
Reach(t,ε)n+1 @ if tÌDom(ε) then {t}

if tÏDom(ε) then
if ε(t)=® or ε(t)=© then
if ε(t)=s then {s}
if ε(t)=t1→t2 then Reach(t1,ε)n∪ Reach(t2,ε)n

Reach(t,ε) @ ên∈ω Reach(t,ε)n

Reach(α ,ε) @ êt∈ FV(α)Reach(t,ε)

4.1.4 Definition (solution of a system)
We denote with Sol(α, ε) the first component B0 of the solution (B0,..., Bn) in Tree(L)n+1 of

the system associated with (α, ε). The solution is given by Banach's unique fixpoint theorem (see
remark 3.3.2).

Remark
Given a system of regular equations in canonical form, it is possible to minimize the

number of variables by a procedure that is analogous to the one for minimizing the number of
states in a deterministic finite-state automaton. This immediately provides an algorithm for
deciding the equality of the trees represented by two regular systems of equations in
canonical form.

In the rest of this section we describe maps between types and regular systems of equations
in canonical form, as summarized by the following diagram, where all the paths leading from a
node to Tree(L) commute.

Type Tvar × Tenv
Ü , á

(*, E)

Tree(L)

T Sol

4.1.5 Proposition (From recursive types to regular systems)
There is a pair of maps *ÏType→Tvar, E∈ Type→Tenv such that:

Óα∈ Type. Tα = Sol(α*, Eα)
Proof

It is enough to prove the result for every term in µTp. Then the lemma follows by 4.1.2. We
now define (*, E) by induction on the structure of γ∈µ Tp.

Cases γ7t, γ7®, and γ7© . Take γ*@s and Eγ@{s=γ}, for any s not appearing in the original type
α .

Page 19

Case γ7α→β.
We denote with p[t1...tk] for pÏL\{t1...tk} a type in Tp of the form p(u1..u#p), where #p is the

arity of p, and {u1..u#p} ⊆ {t1...tk}.
Assume, by induction hypothesis, that Eα={ti+1=pi[t2...tn+1] | iÏ1..n}, α * = t 2 ,

Eβ={tn+1+j=qj[tn+2...tn+m+1] | jÏ1..m}, and β*=tn+2. (We require here that t1 , t2...tn+1, and
tn+2...tn+m+1 are disjoint variables not appearing in the original α ; otherwise a consistent
renaming must be performed.) Then Eγ is the following system and γ*@t1:

t1 = r1[t1...tn+m+1] 7 t2→tn+2,
t2 = r2[t1...tn+m+1] 7 p1[t2...tn+1] ...
tn+1 = rn+1[t1...tn+m+1] 7 pn[t2...tn+1]
tn+2 = rn+2[t1...tn+m+1] 7 q1[tn+2...tn+m+1] ...
tn+m+1 = rn+m+1[t1...tn+m+1] 7 qm[tn+2...tn+m+1]

The property Sol(γ*, Eγ)=Sol(t1, Eγ)=Sol(t2→tn+2, Eγ)=Sol(t2, Eα)→Sol(tn+2, Eβ)=Tγ follows
easily from the induction hypothesis.

Case γ7µt.α→β.
Let γ '=[γ/t]α→[γ/t]β (of course Tγ '=Tγ). As in the previous case, assume

Eα={ti+1=pi[t2...tn+1] | iÏ1..n}, α*=t2 , Eβ={tn+1+j=qj[tn+2...tn+m+1] | jÏ1..m} and β*=tn+2. Then
Eγ is the following system and γ*@t1:

t1 = r1[t1...tn+m+1] 7 t2→tn+2
t2 = r2[t1...tn+m+1] 7 t2→tn+2|p1[t2...tn+1] ...
tn+1 = rn+1[t1...tn+m+1] 7 t2→tn+2|pn[t2...tn+1]
tn+2 = rn+2[t1...tn+m+1] 7 t2→tn+2|q1[tn+2...tn+m+1] ...
tn+m+1 = rn+m+1[t1...tn+m+1] 7 t2→tn+2|qm[tn+2...tn+m+1]

By t2→tn+2|pi[t2...tn+1] we denote t2→ tn+2 if pi7 t, and pi[t2...tn+1] otherwise. Analogously,
t2→tn+2|qj[tn+2...tn+m+1] denotes t2→tn+2 if qj7t, and qj[tn+2...tn+m+1] otherwise. Next proceed
by induction on (|π|, γ) to prove Tγ(π)=Sol(γ*, Eγ)(π). The only difficulty arises for γ7µt.α→β.
In order to apply the induction hypothesis one needs a lemma. Following the notation above we
show, for instance, Sol(t2, Eγ) = Sol([γ/t]α*, E[γ/t]α). See 4.1.7 for a proof of a related fact that
gives the main insights while being slightly simpler. M

Here is an example of the procedure described in the proof above. Consider:
γ @ µt.t→®.

For the base cases t and ® we have (cunningly choosing the names t2 and t3):
t* = t2; Et = {t2=t}
®* = t3; E® = {t3=®}

From the µ case of the proof we obtain:
γ* = t1; Eγ = {t1 = t2→t3, t2 = t2→t3, t3 = ®}

Note the first two equations of the system Eγ; the redundancy facilitates the uniform treatment of
the µ case.

4.1.6 Definition (From regular systems to recursive types)
We define a function Ü - , - á : Tp×Tenv → Type by induction on (|Dom(ε)|, α):

Page 20

Ü®,εá @ ®
Ü©,εá @ ©

 Üα→β,εá @ Üα,εá → Üβ,εá
Üt,εá @ t if tÌDom(ε)
Üt,εá @ µt.Üε(t),ε\tá if tÏDom(ε)

where ε\t is like ε except that it is undefined on t.

Continuing the example above, we have:

Üγ*,Eγá = Üt1,{t1 = t2→t3, t2 = t2→t3, t3 = ®}á
= µt1.Üt2→t3,{t2 = t2→t3, t3 = ®}á
= µt1.Üt2,{t2 = t2→t3, t3 = ®}á → Üt3,{t2 = t2→t3, t3 = ®}á
= µt1.(µt2.Üt2→t3,{t3 = ®}á) → (µt3.Ü®,{t2 = t2→t3}á)
= µt1.(µt2.Üt2,{t3 = ®}á → Üt3,{t3 = ®}á) → (µt3.®)
= µt1.(µt2.t2→(µt3.Ü®,{}á)) → (µt3.®)
= µt1.(µt2.t2→(µt3.®)) → (µt3.®)

The last line is equivalent to the original type γ = µt.t→®, as established in general by the
following proposition.

4.1.7 Proposition (More on commuting translations)
(1) For any system of equations, the first component of the solution coincides with the tree

expansion of the associated recursive type:
Ó(α , ε) Ï Tp × Tenv. Sol(α, ε) = TÜα,εá (we abbreviate T(Üα,εá) as TÜα,εá)

(2) The map Ü , á satisfies the conditions:
1. Ü®,εá = ®
2. Ü©,εá = ©
3. Üt,εá = t if tÌDom(ε)
4. TÜt,εá = TÜε(t),εá if tÏDom(ε)
5. TÜα→β,εá = T(Üα,εá → Üβ,εá)
6. TÜα*,Eαá = Tα

Proof

(1) Show by induction on (|π|, α) that TÜα,εá(π) = Sol(α, ε)(π).
The interesting case arises when α7t, tÏDom(ε), ε(t) = t1→t2.
Then, Sol(t, ε) = Sol(ε(t), ε) = Sol(t1→t2,ε);
and, TÜt,εá = Tµt.Üε(t), ε\tá = T[Üt,εá/t]Üt1→t2, ε\tá.
In order to apply the induction hypothesis and complete this case
one needs to prove TÜti, εá = T([Üt,εá/t]Üti, ε\tá) (i=1,2).
To obtain the latter, we show the following lemma:

For any canonical system ε, and type variables, t, t',
we have TÜt', εá = T([Üt,εá/t]Üt', ε\tá) .

We proceed by induction on the depth of the path π, and by case analysis, to show:
TÜt', εá(π) = T([Üt,εá/t]Üt', ε\tá)(π) .

Case t7t': [Üt,εá/t]Üt', ε\tá = [Üt,εá/t] t' = Üt,εá = Üt',εá.

Page 21

Case t=t':
Subcase tÏDom(ε), t'ÏDom(ε):

Say: ε(t) = t1→t2, ε(t') = t'1→t'2 .
Then: α 7 Üt',εá = µt'. Üt'1,ε\t'á→Üt'2,ε\t'á.
and Tα = →

 / \
T([Üt',εá/t']Üt'1,ε\t'á T([Üt',εá/t']Üt'2,ε\t'á

Also: β 7 [Üt,εá/t]Üt', ε\tá = [Üt,εá/t]µt'. Üt'1,ε\t\t'á→Üt'2,ε\t\t'á =
= [Üt,εá/t] ([Üt',ε\tá/t'](Üt'1,ε\t\t'á→Üt'2,ε\t\t'á)).

So: Tβ = →
 / \

T[Üt,εá/t] ([Üt',ε\tá/t'](Üt'1,ε\t\t'á)) T[Üt,εá/t] ([Üt',ε\tá/t'](Üt'2,ε\t\t'á))

If nπ is the current path, we can apply the inductive hypothesis on the shorter path π w.r.t.:
(i) the variables t', t'i, (i=1,2) and the system ε to show:

TÜt'i,εá(π) = T([Üt',εá/t']Üt'i,ε\t'á(π) .
(ii) the variables t', t'i, (i=1,2) and the system ε\t to show:

TÜt'i,ε\tá(π) = T[Üt',ε\tá/t'](Üt'i,ε\t\t'á)(π) .
(iii) the variables t, t'i, (i=1,2) and the system ε to show:

T[Üt,εá/t]Üt'i,ε\tá(π) = TÜt'i,εá(π).
Finally we use the substitutivity of the T operation, T[γ/t]δ = [Tγ/t]Tδ, to conclude Tα=Tβ.

Subcase tÏDom(ε), t'ÌDom(ε):
Say: ε(t) = t1→t2.
Then: TÜt', εá = t'

T([Üt,εá/t]Üt', ε\tá) = T([Üt,εá/t] t' = t'.
Subcase tÌDom(ε), t'ÏDom(ε):

Say: ε(t') = t'1→t'2 .
Then: T([Üt,εá/t]Üt', ε\tá) = T([t/t]Üt', ε\tá) = TÜt', ε\tá = TÜt', εá.

Subcase tÌDom(ε), t'ÌDom(ε):
Then: T([Üt,εá/t]Üt', ε\tá) = T [t/t] t' = Tt' = TÜt', εá

(2) Conditions 1, 2, 3, 5 follow by definition.
Condition 4 follows from Sol(t,ε) = Sol(ε(t),ε) and part (1).
Condition 6 follows from prop. 4.1.5 and part (1): Tα = Sol(α*, Eα) = TÜα*, Eαá. M

4.2 Computational Rules
The subtyping algorithm described in this section is based on the canonical sets of equations

described in the previous section (again, these equations can be interpreted as linked data
structures in memory). The algorithm involves a single set of equations ε, with two distinct roots
α and β representing the types to be compared. It also involves a trail Σ of the form {t1≤s1,...,
tn≤sn}, which records inclusions of variables discovered as the algorithm progresses. An
invocation of the algorithm with parameters Σ, ε, α and β, is written as the judgment Σ,ε ⊃ α≤β.

The algorithm is not expressed as an ordinary procedure, but as a collection of rules that
resembles a Prolog program. The typical rule is written as a logical implication of judgments:

Page 22

Σ1,ε1⊃α 1≤β1, Σ2,ε2⊃α 2≤β2 ⇒ Σ,ε⊃α≤β

Operationally, this means that in order to determine whether Σ,ε⊃α≤β holds, we must invoke the
"subroutines" Σ1,ε1⊃α 1≤β1 and Σ2,ε2⊃α 2≤β2 and check whether they hold. In general, given a
logical deduction in this system of rules, the algorithm execution can be recovered by reading the
rules backwards from the conclusion to the assumptions.

In the following, t,s,r,u denote arbitrary variables; a,b denote variables not in the domain of ε;
Σ is a finite set of subtyping assumptions on pairs of type variables; and α,β∈ Tp.

The algorithm can then be written as follows:

(assmpA) Σ,ε ⊃ t≤s if t≤s∈Σ
(®A) Σ,ε ⊃ ®≤β
(©A) Σ,ε ⊃ α≤©
(varA) Σ,ε ⊃ a≤a
(→A) Σ,ε ⊃ α'≤α, Σ,ε ⊃ β≤β' ⇒ Σ,ε ⊃ α→β ≤ α '→β'
(µA) Σ∪ {t≤s},ε ⊃ ε(t) ≤ ε(s) ⇒ Σ,ε ⊃ t ≤ s if t,sÏDom(ε)

The initial judgment Σ,ε⊃α≤β that starts an execution of the algorithm must obey a special
condition expressing some reasonable assumptions. This condition says that the initial type
structures α ,β are simple root variables denoting disjoint structures, and that Σ has not yet come
into play. For Σ={t1≤s1,..., tn≤sn}, define:

Vars(Σ) @ {t1,s1,...,tn,sn}
Σπε ⇔ Vars(Σ)∩Dom(ε)=

Then, a judgment Σ,ε⊃α≤β satisfies the initiality condition (or equivalently, is an initial goal) iff
α7t, β7s, ε can be decomposed in ε1∪ε 2 so that tÏDom(ε1) and sÏDom(ε2), Dom(ε1)∩Dom(ε2)
= , and Σπε.

By the way canonical systems are constructed, and by the fact of starting with an initial goal,
the expansions of variables according to ε, as in (µA), is always synchronized. That is, in a call to
Σ,ε⊃α≤β during the execution of the algorithm we never have a situation where α is a variable in
Dom(ε) and β is not, or vice versa; hence (µA) covers all the cases that may arise. If one desires
to treat more general systems of equations, then it may be necessary to introduce other µ-rules
that take into account situations in which just an ε-expansion on the left (or the right) is needed.
In these cases we would have rules like:

(assmp'A) Σ,ε ⊃ α≤β if α≤β∈Σ
(µlA) Σ∪ {t≤α '→β'},ε ⊃ ε(t)≤α '→β' ⇒ Σ,ε ⊃ t≤α'→β' if tÏDom(ε)
(µrA) Σ∪ {α '→β'≤s},ε ⊃ α'→β'≤ε(s) ⇒ Σ,ε ⊃ α'→β'≤s if sÏDom(ε).

Note also that there are two conceptually distinct uses of the rule (assmpA) in the algorithm:
one for the initial assumptions contained in Σ, which represent known inclusions on type
constants, and one for the assumptions inserted during the computation, which come from the
unfolding of µ's.

Page 23

4.2.1 Generating the Execution Tree
Given a goal Σ,ε ⊃ t≤s, the algorithm consists in applying the inference rules backwards,

generating subgoals in the cases (→A) and (µA). This process is completely determined once we
establish that (assmpA) has priority over the other rules and (®A) has priority over (©A).

A tree of goals built this way is called an execution tree. If no rules are applicable to a certain
subgoal, that branch of the execution tree is abandoned, and execution is resumed at the next
subgoal, until all subgoals are exhausted.

4.2.2 Termination
The execution tree is always finite. Observe that if t ≤ s is the assumption that we add to Σ,

then t and s are type variables in Dom(ε). Also observe that the (→) rule shrinks the size of the
current goal by replacing it with subexpressions of the goal, and that each application of a µ-rule
enlarges Σ.

The bound on the depth of the execution tree for α≤Aβ is of the order of the product of the
sizes of the two systems Eα, Eβ.

4.2.3 Algorithm Ordering
An execution tree succeeds if all the leaves correspond to an application of one of the rules

(assmpA), (®A), (©A), and (varA). Dually, it fails if at least one leaf is an unfulfilled goal (no rule
can be applied).

We write ∫AΣ,ε⊃ t≤s iff Σ,ε⊃ t≤s is an initial goal (4.2) and the corresponding execution tree
succeeds.

Given recursive types α,β we write:

α≤Aβ ⇔ ∫A , Eα∪ Eβ ⊃ α*≤β*

For testing type equality, we can define:

α=Aβ ⇔ α≤Aβ ∧ β≤Aα

Alternatively, we could directly define a (more efficient) type equality algorithm, along the same
lines as the subtyping algorithm.

4.3 Soundness and Completeness of the Algorithm
We now show that the subtyping algorithm described in the previous section is sound and

complete with respect to the infinite-tree interpretation of types. That is, the algorithm precisely
embodies our intuition of recursive types as infinite trees.

First we prove soundness and completeness for non-recursive types. Soundness is then
derived by observing that a successful execution of the algorithm on some input must also be
successful on all the finite approximations of the input. Completeness is proven by examining a
failing execution tree, and concluding that the trees corresponding to the input must have been
different to start with.

4.3.1 Lemma (Derived structural computational rules)
Given the definition of Tenv in 4.1.3, the algorithm in 4.2, and the ordering in 4.2.3, we have:

Page 24

Σ-weaken
If ∫AΣ,ε ⊃ t≤s and Σ∪Σ ' π ε then ∫AΣ∪Σ ',ε ⊃ t≤s.

Σ-strengthen
If ∫AΣ∪Σ ',ε ⊃ t≤s and Reach(t→s,ε)∩Vars(Σ') = then ∫AΣ,ε ⊃ t≤s.

ε-weaken
If ∫AΣ,ε ⊃ t≤s, Reach(t→s,ε)∩Dom(ε') = , Σ π ε∪ε ',
and Dom(ε)∩Dom(ε') = then ∫AΣ,ε∪ε ' ⊃ t≤s.

ε-strengthen
If ∫AΣ,ε∪ε '⊃ t≤s and Reach(t→s,ε)∩Dom(ε') =
then ∫AΣ,ε ⊃ t≤s.

4.3.2 Proposition (Completeness of ≤A for non-recursive types)
Given α,β∈ Tp non-recursive types then α≤Tβ ⇒ α≤Aβ.

Proof
Let ε @ Eα∪ Eβ. We show α≤

T
β ⇒ ÓΣ. Σπε ⇒ ∫AΣ,ε ⊃ α *≤β* by induction on the

structure of α and β.

Case α7®. Then ε = {α*=®}∪ Eβ. Take any Σ s.t. Σπε:
 ⇒ Σ∪ {α*≤β*},ε ⊃ ε(α*)≤ε(β*) by (®A) since ε(α*)=®
 ⇒ Σ,ε ⊃ α*≤β* by (µA) since α*,β*ÌVars(Σ)

Cases α7©, α7a. Similar.

Case α7α'→α". Since α≤
T
β, we have either:

Case β7©, similar to the case α7®.

Case β7β'→β", with β'≤
T
α' and α"≤

T
β".

Then ε = {α*=α'*→α"*}∪ {β*=β'*→β"*}∪ε '∪ ε" where
ε' @ Eα'∪ Eβ' and ε" @ Eα"∪ Eβ".

By induction hypothesis ÓΣ'.Σ'πε' ⇒ ∫AΣ',ε' ⊃ β'*≤α'*
and ÓΣ". Σ"πε" ⇒ ∫AΣ",ε" ⊃ α"*≤β"*.

Take any Σ such that Σπε then:
∫AΣ,ε' ⊃ β'*≤α'* and ∫AΣ,ε" ⊃ α"*≤β"*.

By ε-weaken (note Σπε ⇒ Σπε'∪ε "):
∫AΣ,ε'∪ε " ⊃ β'*≤α'* and ∫AΣ,ε'∪ ε" ⊃ α"*≤β"*.

By Σ-weaken:
∫AΣ∪ {α*≤β*},ε'∪ ε" ⊃ β'*≤α'* and ∫AΣ∪ {α*≤β*},ε'∪ ε" ⊃ α"*≤β"*.

Hence, by applying (→A) and (µA) we can conclude ∫AΣ,ε⊃α *≤β*. M

4.3.3 Proposition (Soundness of ≤A for non-recursive types)
Given α,β∈ Tp non-recursive types then α≤Aβ ⇒ α≤

T
β.

Proof
We show ∫A,ε ⊃ α*≤β* ⇒ α≤

T
β, where ε @ Eα∪ Eβ, by induction on the structure of α

and β.

Page 25

Case α7®. Then ®≤Aβ by (®A) ((assmpA) does not apply), and also ®≤
T
β.

Cases α7©, α7a. Similar.

Case α7α'→α". Assume ∫A,ε ⊃ α*≤β*; then the first step is either:

Case (©A). Similar to the case α7®.

Case (µA). Then the second step is (→A), that is also β7β'→β"
with {α*≤β*},ε ⊃ β'*≤α'* and {α*≤β*},ε ⊃ α"*≤β"*,
where ε = {α*=α'*→α"*}∪ {β*=β'*→β"*}∪ε '∪ ε" and
ε' @ Eα'∪ Eβ' and ε" @ Eα"∪ Eβ".
Since α,β contain no µ, Reach(β'*→α'*,ε)∩(Dom(ε")∪ {α*,β*})=.
By a simple analysis we have: ∫A{α*≤β*},ε'∪ ε"⊃β '*≤α '*.
By ε-strengthen ∫A{α*≤β*},ε'⊃β '*≤α'*. Similarly, ∫A{α*≤β*},ε"⊃α "*≤β"*.
Now, by Σ-strengthen ∫A,ε' ⊃ β'*≤α'* and ∫A,ε" ⊃ α"*≤β"*.
By induction hypothesis β'≤

T
α ' and α"≤

T
β"; hence α'→α"≤

T
β'→β". M

4.3.4 Lemma (Uniformity of ≤A)
Let α ,β∈ Type. If α≤Aβ then Ók.α| k≤Aβ| k .

Proof (sketch)
Given any k, from the execution tree of α≤Aβ it is possible to extract a successful execution

tree for α | k≤Aβ| k. The point is that the use of the (assmpA) rule can be arbitrarily delayed by
repeating a certain pattern of computation.

For example, consider µt.©→t ≤A µs.®→s, which gives raise to:

ε @ ε1∪ε 2, ε1 @ {t1=t2→t1, t2=©}, ε2 @ {s1=s2→s1, s2=®}.

The execution tree of the initial goal ,ε⊃ t1≤s1 is:

(®A)
⇒ {t1≤s1,s2≤t2},ε⊃ ®≤© (assmpA)

⇒ {t1≤s1},ε⊃ s2≤t2 ⇒ {t1≤s1},ε⊃ t1≤s1
⇒ {t1≤s1},ε⊃ t2→t1≤s2→s1

⇒ ,ε⊃ t1≤s1

The goal under (assmpA) can be replaced by a copy of the entire tree, appropriately renamed. At
the same time, ε must be appropriately expanded:

ε @ ε1∪ ε2, ε1 @ {t1=t2→u1, t2=©, u1=u2→u1, u2=©},
ε2 @ {s1=s2→v1, s2=®, v1=v2→v1, v2=®}.

(®A)
⇒ {t1≤s1,u1≤v1,v2≤u2},ε⊃ ®≤© (assmpA)

(®A) ⇒ {t1≤s1,u1≤v1}, ε⊃ v2≤u2 ⇒ {t1≤s1,u1≤v1},ε⊃ u1≤v1
⇒ {t1≤s1,s2≤t2},ε⊃ ®≤© ⇒ {t1≤s1,u1≤v1},ε⊃ u2→u1≤v2→v1

⇒ {t1≤s1}, ε⊃ s2≤t2 ⇒ {t1≤s1},ε⊃ u1≤v1
⇒ {t1≤s1},ε⊃ t2→u1≤s2→v1

⇒ ,ε⊃ t1≤s1

Page 26

This is now the execution tree of a different initial goal, which might have originated from the
problem ©→(µt.©→t) ≤A ®→µs.(®→s), which is equivalent to the original problem.

In a similar way, this execution tree can be further transformed into one for ©→(©→®) ≤A
®→(®→®) by replacing the (assmpA) leaf with a (®A) leaf. By repeating this process we can
obtain an execution tree for α | k≤Aβ| k , for an arbitrarily large k. M

4.3.5 Proposition (Soundness of ≤A)
Let α ,β∈ Type; if α≤Aβ then α≤

T
β.

Proof
From 4.3.4 we have: α≤Aβ ⇒ Ók.α| k ≤A β| k.

From 4.3.3 and the definition of ≤
T

 we have: Ók.α | k ≤fin β| k and α≤
T
β. M

4.3.6 Lemma (Faithfulness of ≤A w.r.t. paths)
Let lead(α,ε) @ Sol(α,ε)(nil) be the first label of α in ε (that is, skipping initial variables in

α ,ε).
Let Σ,ε ⊃ α≤β be the root of an execution tree, terminating with success or failure leaves,

obtained from the rules in 4.2. Every node Σ',ε ⊃ α'≤β' in the execution tree determines a path π
from the root to itself, given by considering the occurrences of (→A) and ignoring the other
rules. Then:

1) Either α ' and β' are both (bound) type variables, or neither is.
2) Tα(π) = lead(α ',ε) and Tβ(π) = lead(β',ε).

Proof
By induction on the depth of the execution tree. M

4.3.7 Proposition (Completeness of ≤A)
Let α ,β∈ Type; if α≤

T
β then α≤Aβ.

Proof
We show ¬ α≤Aβ ⇒ ¬ Tα≤∞Tβ.
By assumption, we have an execution tree for α≤Aβ which contains a failure node Σ,ε ⊃

α '≤β', determining a path π as in Lemma 4.3.6. By 4.3.6.(2), Tα (π) = lead(α ',ε) and Tβ(π) =
lead(β',ε). Hence we have a common path in Tα and Tβ corresponding to the failure node. The
following table summarizes the possible cases for α ',β' where the entry indicates either failure or
the rule being applied by the algorithm; the n.a. (not applicable) cases come from 4.3.6.(1).

α'\β' ® © s b β'→β"
® ® ® n.a. ® ®
© fail © n.a. fail fail
t n.a. n.a. assmp-µ n.a. n.a.
a fail © n.a. var-fail fail

α '→α" fail © n.a. fail →

Every “fail” in the algorithm corresponds to a situation where the two trees cannot be in the
inclusion relation. M

Page 27

4.4 An Implementation
In order to facilitate the proofs, the representation of data structures and algorithms given in

4.1 and 4.2 was rather abstract. In this section we show the beginning of a similar treatment for
more concrete and traditional representations.

The computational rules in 4.2 can be converted into a straightforward and practical
algorithm, based on the method of trails [28]. To reflect more closely actual implementations, we
adopt the additional rules (assmp'A), (µlA), and (µrA) described in 4.2. This results in the
algorithm discussed informally in 1.5, but differs slightly from the one treated formally in 4.2
and 4.3 where the additional rules are not needed because the systems of equations are taken in
canonical form.

A member α of µTp is represented as a directed cyclic graph l,S where the nodes in S are
uniquely labeled (for example by memory addresses), and where l is the starting label. Each µ in
α corresponds to a cycle in S.

More concretely, using an informal programming notation, S is a Store, where Store @
LabelîïÕNode are the partial functions from labels to nodes (from memory addresses to memory
locations). Then Graph @ Label×Store, where Label @ Nat, and Node @ Bot+Top+Var(Tvar)+
Arrow(Label×Label)+Rec(Label).

An allocator transforms a type into a graph structure:

Alloc: µTp×Store×(Tvar→Label) → Graph

Let new(S) be a label l (for example the least one) such that l Ì dom(S). We denote by S[l=Bot] a
store that is just like S except that S(l)=Bot.

Alloc(®, S, e) @
let l = new(S) in l,S[l=Bot]

Alloc(©, S, e) @
let l = new(S) in l,S[l=Top]

Alloc(t, S, e) @
if tÏdom(e) then e(t),S
else let l=new(S) in l,S[l=Var(t)]

Alloc(α→β, S, e) @
let l',S' = Alloc(α, S, e)
and l",S" = Alloc(β, S', e)
let l=new(S") in l,S"[l=Arrow(l',l")]

Alloc(µt.α, S, e) @
let l = new(S)
let l',S' = Alloc(α, S[l=Bot], e[t=l])
in l,S'[l=Rec(l')]

The allocation of µt.α is done by reserving a new memory location l, then allocating the body
α by binding every occurrence of t to l, and finally storing a Rec node containing the allocation
of α back into l. The store S[l=Bot] is used in the recursion to prevent l from being returned
again by new.

Page 28

Given a path in ω*, we can define a (partial) access function that returns the node
corresponding to that path in a graph, but skipping over Rec nodes:

GT : Graph→Tree(L) (Where Tree(L) = ω*îïÕL, section 3.3)

GT(l,S)(nil) @
if S(l) = Rec(l') then GT(l', S)(nil)
if S(l) = Bot then ®
if S(l) = Top then ©
if S(l) = Var(t) then t
if S(l) = Arrow(l',l") then →

GT(l, S)(0.s) @
if S(l) = Rec(l') then GT(l', S)(0.s)
if S(l) = Arrow(l',l") then GT(l',S)(s)
else ¶

GT(l,S)(1.s) @
if S(l) = Rec(l') then GT(l',S)(1.s)
if S(l) = Arrow(l',l") then GT(l",S)(s)
else ¶

GT(l,S)(n+2.s) @ ¶

We now show that Alloc is correct, and that the initial state S is irrelevant.

4.4.1 Proposition
Óα∈µ Tp. ÓS,l',S'.

Alloc(α,S,[]) = l',S' ⇒ GT(l',S')=Tα
Proof (sketch)

If lÌdom(S) then S[l=v] is a single extension of S. S' is an extension of S if it is S, or if it is
the single extension of an extension of S.

We indicate by S+ an arbitrary (finite) extension of S. Note that:

If lÏdom(S) then S(l) = S+(l).
If Alloc(α, S, e) = l',S' then l'Ïdom(S') and S' is an extension of S.
ÓS+. lÏdom(S) ⇒ GT(l,S) = GT(l,S+).

To obtain the proposition, we need to prove a stronger statement:

Óα∈µ Tp. Ón≥0. ÓS,m1..mn,α1..αn,l',S',π.
Alloc(α,S,[ti=mi]) = l',S' ∧
(Óπ' s.t. |π'|≤|π|. ÓS+. GT(mi,S+)(π')=Tαi(π') for all iÏ1..n) ⇒
ÓS'+. GT(l',S'+)(π)=T([αi/ti]α)(π)

The proof is then by induction on |π|; the hard case is π=i.s, iÏ{0,1}, and α 7 µt.α'→α".
M

Page 29

In the implementation of the algorithm, the assumption set Σ is represented as a trail, that is,
a set of label pairs. This has the task of remembering the pairs of labels in the cyclic graphs that
have been jointly visited.

From two types α and β we produce two graphs lα,Sα, lβ,Sαβ such that Sαβ extends Sα.
Then Alg(,Sαβ,lα,lβ) proceeds as follows, mimicking the rules in 4.2:

Alg(Tr, S, l, l') @
if Ül,l'á Ï Tr then ok

 else if S(l) = Bot ok
else if S(l') = Top then ok
else if S(l) = Var(t) and S(l') = Var(t) then ok
else if both S(l) =Arrow(l1,l2) and S(l') = Arrow(l1',l2') then

Alg(Tr, S, l1', l1); Alg(Tr, S, l2, l2')
else if S(l) = Rec(l1) and S(l') ≠ Rec(l1') then

Alg(Tr∪ Ül,l'á, S, l1, l')
else if S(l) ≠ Rec(l1) and S(l') = Rec(l1') then

Alg(Tr∪ Ül,l'á, S, l, l1')
else if S(l) = Rec(l1) and S(l') = Rec(l1') then

Alg(Tr∪ Ül,l'á, S, l1, l1')
else fail

An alternative approach is to avoid Rec nodes completely, and have the allocator construct
direct loops in the graph. This leads to an algorithm where trails must be kept of every pair of
nodes, instead of every pair of nodes of which one is a Rec node. This algorithm is closer to the
formulation of the rules in 4.2, while the present algorithm, which in practice produces much
shorter trails, uses the equivalent of the (µlA) and (µrA) rules described there.

4.4.2 Definition
α≤Cβ ⇔ ÓS,l',S',l",S".

Alloc(α,S,[])=l',S' ∧ Alloc(β,S',[])=l",S" ⇒ Alg(,S",l',l") = ok

From this point on it seems possible to mimic sections 4.3.4-4.3.7, modulo the use of the
(µlA) and (µrA) rules, and show α≤Cβ iff α≤ Tβ, but we have not checked the cumbersome
details.

5. Typing Rules
In this section we introduce a certain number of axioms and rules for type equality and

subtyping. These are intended as natural rules for a language based on subtyping, and as a
specification of a subtyping algorithm for such a language. In section 4 we have studied such a
subtyping algorithm; here we see that the algorithm and the rules match each other perfectly, by
relating them both to trees.

Page 30

5.1 Type Equivalence Rules
 We say that a type α is contractive in the type variable t if either t does not occur free in α, or
α can be rewritten via unfolding as a type of the shape α1→α2. We write this fact as αßt.

It is now easy to observe that the contractiveness of α in t is a sufficient (and necessary)
condition to enforce the contractiveness of the following functional on the space Tree(L) (3.3):

Gα,t(A) @ [A/t]Tα AÏTree(L)

([A/t]Tα denotes the substitution of the tree A for the occurrences of t in Tα.)
This remark suggests the following rule that is generalized to a larger calculus in [13]:

(contract) [β/t]α = β, [β'/t]α = β', αßt ⇒ β = β'

In words, if two types β and β' are fixpoints of the same functional α[t], then they are equal since
contractive functionals have unique fixpoints. This rule was also inspired by a standard proof
technique for bisimulation [23].

Moreover, it is convenient to identify µt.t = ®.

In this section we consider the equivalence:

∫ α=β (or α=
R
β)

meaning that α = β can be derived in the congruence induced by the (contract) rule and the (fold-
unfold) and (µ-®) axioms below. Here is the complete axiomatization:

(refl) α = α
(symm) α = β ⇒ β = α
(trans) α = β, β = γ ⇒ α = γ
(→-congr) α = α', β = β' ⇒ α→β = α'→β'
(µ-congr) α = β ⇒ µt.α = µt.β
(µ-®) µt.t = ®
(fold-unfold) [µt.α/t]α = µt.α
(contract) [β/t]α = β, [β'/t]α = β', αßt ⇒ β = β'

5.1.1 Proposition (Soundness of the equivalence rules w.r.t. the trees)
α =R β ⇒ Tα=Tβ

Proof
Immediate by the previous considerations. M

5.1.2 Derived Rules
By means of (contract) and (fold-unfold) it is possible to prove new interesting equivalences,

for example:

(1) µt.s→t = µt.s→(s→t)
(2) µt.µs.α = µv.[v/t,v/s]α (µ-contraction)

We make explicit a free variable by writing, for example, α[t].
Then we have:

Page 31

(1) Consider γ[r] = s→(s→r).
µt.s→t = s→ (µt.s→t) = s→ (s→(µt.s→t)) = γ[µt.s→t].
µt.s→(s→t) = s→ (s→(µt.s→(s→t))) = γ[µt.s→(s→t)].

(2) Let: α 7 µt.µs.γ[t,s], α' 7 µs.γ[α ,s] = α, β 7 µv.γ[v,v].
Consider γ[w,w]. Then: γ[α,α] = γ[α ,α'] = α ' = α and γ[β,β] = β.

5.1.3 Reduction to Canonical Form
It easy to show that any recursive type is provably equivalent (=

R
) to a type in canonical

form. The strategy can be described as follows:

(a) Use unfold to get rid of all µ's that do not bind any variable.
(b) Use µ-contraction to reduce sequences of µ's to one µ.
(c) Use µ-® to reduce to ® all subtypes of the shape µt.t.

5.2 Completeness of Equivalence Rules
By the strong connection between regular trees and recursive types we show that any time

two recursive types α, β have the same tree expansion Tα=Tβ, then we can conclude ∫ α=β.
First we show how to solve systems of type equations. Then we introduce the notion of

equational characterization of a type; that is, how to characterize a type by a system of type
equations. Finally we use equational characterizations to prove the completeness theorem.

In this section we use the following notation. If γ has free variables {u1..up} ⊆ {t1..tn}, then
we write γ[α1...αn] for the substitution [α1/t1 ... α n/tn]γ. In particular, γ[t1...tn] emphasizes a
superset of the free variables of γ.

5.2.1 Lemma (A system of equations has a solution, by iterated elimination)
Every system of n equations in n variables:

ti=γi[t1...tn] (iÏ1..n)
has a solution in the congruence induced by the axiom (fold-unfold). That is, there are α1...αn
such that ∫ α i=γi[α1...αn] (iÏ1..n).
Proof

By induction on n.
Case n=1. Given the equation t=γ[t] just take µt.γ[t].
Case n≥2. Given the equations ti=γi[t1...tn] (iÏ1..n) take αn'[t1...tn-1] 7 µtn.γn[t1...tn].
Consider the system of n-1 equations: ti=γi[t1...tn-1 αn'[t1...tn-1]] (iÏ1..n-1)
which by inductive hypothesis has solution α1...αn-1, that is :

α i=γi[α1...αn-1 µtn.γn[α1...αn-1tn]] (iÏ1..n-1)
Now take αn 7 µtn.γn[α1...αn-1tn] and check that α1...αn

 is a solution for the original system. M

5.2.2 Lemma (A system of contractive equations has a unique solution)
Assume that, for iÏ1..n, we have two sets of types α i, βi, related by two systems of equations:

∫ α i=γi[α1...αn] ∫ βi=γi[β1...βn]
such that γi[t1...tn]ßtj for i,jÏ1..n. Then, for all i: ∫ αi=βi.

Page 32

Proof
By induction on n.

Case n=1. We have ∫ α=γ[α] and ∫ β=γ[β]. Consider the context γ[t], by (contract) we have ∫
α=β.

Case n≥2. Consider the n-th equation. We have, by (fold-unfold),
∫ µtn.γn[α1...αn-1 tn]=γn[α1...αn-1 µtn.γn[α1...αn-1 tn]]
∫ µtn.γn[β1...βn-1 tn]=γn[β1...βn-1 µtn.γn[β1...βn-1 tn]]

Hence, by (contract) on tn, ∫ αn=µtn.γn[α1...αn-1 tn], ∫ βn=µtn.γn[β1...βn-1 tn].
Take γ'[t1...tn-1] 7 µtn.γn[t1...tn]. We can now construct a system of size n-1:

ti=γi[t1...tn-1 γ '[t1...tn-1]] (iÏ1..n-1)
and check that both α1...αn-1

 and β1...βn-1
 are solutions. Hence, by inductive hypothesis ∫ α i=βi

for iÏ1..n-1. Moreover, by congruence we obtain ∫ αn=βn. M

5.2.3 Definition
A node context p[t1...tn] for pÏL\{t1...tn} (see 3.3 and proof 4.1.5) is a type of the form

p(u1..u#p), where #p is the arity of p, and {u1..u#p} ⊆ {t1...tn}.
Node contexts provide a convenient meta-notation for nodes whose children are all type

variables. For example, the type →(r,r) can be denoted by the node context →[r] or (redundantly)
by →[r,s,t], and the type →(r,s) by →[s,r] among others.

Note that a node context p[t1...tn] is contractive in each ti, because either ti is prefixed by p or
does not occur in the type.

5.2.4 Definition
A type α∈ Type is equationally characterized (eq. char.) if there are types α1..αn with α7α1,

and there are node contexts pi[t1...tn], iÏ1..n, for which ∫ αi=pi[α1...αn].

An equation, tj=pj[t1...tn], in a system is reachable from a variable tk if k=j, or if it is
reachable from the variables in pk[t1...tn] (see 4.1.3). An equation is reachable from another if it
is reachable from any of the variables in the other.

5.2.5 Lemma (Building an equational characterization)
Every term α∈ Type has an equational characterization such that all equations are reachable

from the first one.
Proof

The construction is basically the same as the one in 4.1.5. It is enough to prove by induction
on the structure of γ that every term in µTp is equationally characterized. Then the lemma
follows by 5.1.3, and by the invariance of equational characterization modulo provable
equivalence. M

5.2.6 Lemma
Assume Tα=Tβ and ∫ α=p(α1..α#p), ∫ β=q(β1..β#q), where p,q Ï L. Then p=q and

Tαi=Tβi for all i Ï 1..#p.

Page 33

Proof
By soundness, Tα=Tp(α1..α#p) and Tβ=Tq(β1..β#q). Hence, p=q and Tα i=Tβi by definition

of T. M

5.2.7 Theorem (Completeness of type equivalence rules)
If Tα=Tβ then α=Rβ

Proof
The idea of the proof is as follows: given α and β such that Tα=Tβ we produce their

corresponding equational characterizations, say ec(α) and ec(β). By a collapse of “equivalent”
equations we derive a new equational characterization ec(γ). The solutions of the (smaller)
system associated with ec(γ) can be replicated to produce solutions for the systems associated
with ec(α) and ec(β). Hence we can apply twice Lemma 5.2.2 (uniqueness of solutions) and then
transitivity to conclude α=Rβ.

Let Tα=Tβ; by Lemma 5.2.5, α ,β are equationally characterized by αi, ti=pi[t1...tn] and
βj, tj=qj[t1...tm] so that all equations are reachable from the first ones.

From these α i,βj we generate a sequence of pairs (Ah,Bh) where Ah,Bh are equivalence
classes of αi and βj respectively. Moreover, for each h, α i1,α i2ÏAh, and βj1,βj2ÏBh, we shall have
the invariant Tαi1=Tα i2=Tβj1=Tβj2.
We start with the pair (A1,B1) 7 ({α},{β}). At each step we consider all the pairs αi,βj such that
α iÏAh and βjÏBh for some h. We indicate by α (i',i") some α i depending on both i' and i";
similarly for β(j',j"). If αi = pi(α (i,1)...α (i,#pi)

) and βj = qj(β(j,1)...β(j,#qj)
), we have, by Lemma

5.2.6, pi=qj and Tα(i,1)=Tβ(j,1) ... Tα(i,#pi)
=Tβ(j,#pi)

. We add all the pairs (α',β')Ï{(α (i,1),β(j,1)),...,
(α (i,#pi)

,β(j,#pi)
)} in the following way, respecting the invariant above:

- if α 'ÏAh and β'ÏBh for some h, then nothing is done;
 - else, if α 'ÏAh1, and β'ÏBh2, with h1≠h2, then we replace the pairs

(Ah1,Bh1) and (Ah2,Bh2) by (Ah1∪ Ah2,Bh1∪ Bh2);
- else, if α 'ÏAh we replace the pair (Ah,Bh) by (Ah,Bh∪ {β'});
- else, if β'ÏBh we replace the pair (Ah,Bh) by (Ah∪ {α '},Bh);
- else we add a new pair ({α'},{β'}).

We stop when the list of pairs no longer changes. This process terminates because there are at
most n†m pairs to consider.

The process above produces two partitions of αi and βj of size k≤n, k≤m, for some k. These
are total partitions since all equations are reachable from the first ones. These partitions
determine two functions σ:1..n→1..k and π:1..m→1..k such that:

- σ(i)=π(j) ⇔ αiÏAh βjÏBh for some h
- σ(i1)=σ(i2) ⇔ αi1,α i2ÏAh for some h
- π(i1)=π(i2) ⇔ βi1,βi2ÏBh for some h

Given these partitions, we now define a system of k equations th = rh[t1..tk], which will turn
out to be equivalent both to the pi and the qj systems. For hÏ1..k we have:

Page 34

th = rh[t1..tk] where
rσ(i)[t1..tk] 7 pi[tσ(1)...tσ(n)]
rπ(j)[t1..tk] 7 qj[tπ(1)...tπ(m)]

We need to argue that this is a proper definition, since we can have, for example, σ(i)=π(j) for
some i,j. We show that when this happens, we also have by construction that
rσ(i)[t1..tk]7rπ(j)[t1..tk]. Similarly for the other possible conflicts: σ(i1)=σ(i2) for some i1,i2, and
π(i1)=π(i2) for some j1,j2. To show these facts, we further investigate the properties of σ and π.

- σ(1) = π(1) since α,β start in the same pair (A1,B1).

- if σ (i) = π(j) then pi7qj. Moreover, let α i = pi[α1...αn]7pi(α (i,1)...α (i,#pi)
) and

βj = qj[β1...βm]7qj(β(j,1)...β(j,#qj)) be the i-th and j-th equations in the respective systems.
Then α iÏAh, βjÏBh for some h (property above); the pair α i,βj was considered in the
process above; that is, the pairs α (i,1),β(j,1) ... α (i,#pi)

,β(j,#pi)
were also added to the list.

Therefore σ(i,1)=π(j,1) ... σ(i,#pi)=π(j,#qj), and pi(tσ(i,1)...tσ(i,#pi)
)7qj(tπ(j,1)...tπ(j,#qj)

). This
is the same as saying pi[tσ(1)...tσ(n)]7qj[tπ(1)...tπ(m)].

- if σ (i1) = σ (i2) then pi17pi2. Moreover, let α i1 = pi1(α (i1,1)...α (i1,#pi1)) and
α i2 = pi2(α (i2,1)...α (i2,#pi2)) be the i1-th and i2-th equations in the α system. Then
α i1,α i2ÏAh for some h (property above). Consider any βjÏBh; the pairs αi1,βj, αi2,βj were
considered in the process above, that is the pairs α(i1,1),β(j,1), α(i2,1),β(j,1) were also added
to the list. Therefore σ(i1,1)=π(j,1)=σ(i2,1), and similarly up to σ(i1,#pi1)=σ(i2,#pi2).
Hence: pi1(tσ(i1,1)...tσ(i1,#pi1))7pi2(tσ(i2,1)...tσ(i2,#pi2)). This is the same as saying
pi1[tσ(1)...tσ(n)]7pi2[tσ(1)...tσ(n)].

- similarly for π(i1) = π(i2).

Hence we conclude:

- if σ(i) = π(j) then rσ(i)[t1..tk]7pi[tσ(1)...tσ(n)]7qj[tπ(1)...tπ(m)]7rπ(j)[t1..tk]
- if σ(i1)=σ(i2) then rσ(i1)[t1..tk]7pi1[tσ(1)...tσ(n)]7pi2[tσ(1)...tσ(n)]7rσ(i2)[t1..tk]
- similarly for π(j1)=π(j2)

Now by Lemma 5.2.1 we can construct a solution of the system th = rh[t1..tk]; that is, we can
obtain γ1..γk such that ∫ γh = rh[γ1..γk].

Then ∫ γσ(i)=rσ(i)[γ1..γk]7pi[γσ(1)...γσ(n)] for all i. Therefore, the γ 's (when appropriately
replicated) satisfy the same system as the α 's, and by Lemma 5.2.2 we have ∫ α i=γσ(i). Similarly,
the γ 's satisfy the β 's system, and ∫ β j=γπ(j). Moreover, σ (1) = π(1), hence
∫ α7α1=γσ(1)=γπ(1)=β17β by transitivity. M

This constructive proof is based on the one in [25] (see also [21]), but differs in an important
point as, in addition, we must deal with equivalence classes of types.

5.2.8 Example
In this example, arising from a discussion with Mario Coppo, we consider the types:

α @ µt.t→(t→t) β @ µt.(t→t)→t

Page 35

We have Tα=Tβ, but note that there is no single context that can prove them equivalent by the
(contract) rule. We must find a third type γ which is independently provably equal to α and β by
(contract), and then we can obtain ∫ α=β by transitivity. To find this γ, we instantiate the proof
of 5.2.7.

We start with two equational characterizations for α and β:

α1 @ α β1 @ β
α2 @ α→α β2 @ β→β
p1[t1,t2] @ t1→t2 q1[t1,t2] @ t2→t1
p2[t1,t2] @ t1→t1 q2[t1,t2] @ t1→t1

That is, the following are provable, by (fold-unfold):

α1 = α1→α2 β1 = β2→β1
α2 = α1→α1 β2 = β1→β1

Starting with the list ({α1},{β1}), we must match the equations for α1 and β1. This involves
equating the pairs α1,β2 (obtaining ({α1},{β1,β2}), and α 2,β1 (obtaining ({α1,α2},{β1,β2}).
Matching the newly inserted pairs does not further modify the situation, hence we have reached
termination with the partitions:

({α1,α2},{β1,β2}) with k=1 and σ=π={1÷ïñ1, 2÷ïñ1}

The associated system of one equation is t1 = r1[t1], where:

 rσ(1)[t1] 7 p1[tσ(1),tσ(2)]
r1[t1] = rσ(2)[t1] 7 p2[tσ(1),tσ(2)] = t1→t1 rπ(1)[t1] 7 q1[tπ(1),tπ(2)]

 rπ(2)[t1] 7 q2[tπ(1),tπ(2)]

We now generate a solution for this system:

γ1 @ µt.t→t such that ∫ γ1 = γ1→γ1 = r1[γ1]

We can verify that (γ1,γ1) solves the α and β systems:

∫ γ1=p1[γ1,γ1] ∫ γ1=q1[γ1,γ1]
∫ γ1=p2[γ1,γ1] ∫ γ1=q2[γ1,γ1]

Hence a proof of ∫ α1=γ1 can be constructed by Lemma 5.2.2 (more simply, by unfolding ∫ α1 =
α1→(α1→α1) and ∫ γ1 = γ1→γ1 = γ1→(γ1→γ1), hence ∫ α1 = γ1 by (contract)). Similarly, ∫ γ1 =
β1. Hence by transitivity, ∫ α1 = β1.

5.3 Subtyping Rules
At first it is not clear how to define a rule for the subtyping of recursive types that is

sufficiently powerful. In particular, observe that the computational rule (µA) in section 4.2 does
not have any apparent logical meaning as the premise is always valid under a classical reading of
the entailment relation.

We now introduce a rule, (µR), whose soundness is clear. Later, in section 5.4, we will show
that in conjunction with the type equivalence rules, (µR) leads to a subtyping system complete
with respect to the tree ordering.

Page 36

We denote with Γ a set {t1≤s1, ..., tn≤sn} of subtyping assumptions on type variables. We
write a subtype judgment as: Γ ⊃ α≤β.

Define a formal system for deriving this kind of judgments as follows; this is based on the α
= β congruence in 5.1:

(eqR) α = β ⇒ Γ ⊃ α≤β
(transR) Γ ⊃ α≤β, Γ ⊃ β≤γ ⇒ Γ ⊃ α≤γ
(assmpR) t≤sÏ Γ ⇒ Γ ⊃ t≤s
(®R) Γ ⊃ ® ≤ α
(©R) Γ ⊃ α ≤ ©

 (→R) Γ ⊃ α'≤ α, Γ ⊃ β ≤ β' ⇒ Γ ⊃ α→β ≤ α'→β'
(µR) Γ∪ {t≤s} ⊃ α≤β ⇒ Γ ⊃ µt.α ≤ µs.β

 with t only in α; s only in β; t,s not in Γ

We say α≤Rβ if we can derive ⊃ α≤β. The last rule was proposed in [10] in the
specification of the Amber programming language as a first attempt to define a theory for the
subtyping of recursive types.

5.3.1 Proposition (Soundness of the rule ordering w.r.t. the tree ordering)
If α≤Rβ then α≤Tβ.

Proof
We prove the more general statement:

If ∫R {t1≤s1, .., tn≤sn} ⊃ α≤β
and α1≤Tβ1, .., αn≤Tβn so that {t1,s1, .., tn,sn}∩FV(α1,β1, .., αn,βn) =
then [α1/t1, β1/s1, .., αn/tn, βn/sn]α ≤T [α1/t1, β1/s1, .., αn/tn, βn/sn]β.

The proof goes by induction on the length of the derivation ∫R. The only interesting cases
arise for (µR) and (eqR).

For brevity we write lists such as t1≤s1, ..., tn≤sn in the form ti≤si for a free i.

Case (µR) {ti≤si, t≤s} ⊃ α≤β ⇒ {ti≤si} ⊃ µt.α ≤ µs.β
with tÌFV(β); sÌFV(α); t,s ≠ ti,si for any i.

By induction hypothesis:
Óα i≤Tβi, α≤Tβ such that {ti,si,t,s}∩FV(αi,βi,α ,β) = .

[α i/ti, βi/si, α /t]α ≤T [α i/ti, βi/si, β/s]β
Define α0 @ ® αn+1 @ [α i/ti, βi/si, αn/t]α

β0 @ ® βn+1 @ [α i/ti, βi/si, βn/s]β
Applying the induction hypothesis with α=αn, β=βn we obtain
αn+1 ≤T

 βn+1 for every n.
For every k we can then choose an n sufficiently large so that:

(µt.[αi/ti, βi/si]α)| k =T αn| k ≤T βn| k =T (µs.[αi/ti, βi/si]β)| k
(such n is found by examining how t and s occur in α and β).
Hence, by definition of ≤T for recursive types, we have shown:

[α i/ti, βi/si](µt.α) ≤T [α i/ti, βi/si](µs.β)

Page 37

Case (eqR) α=Rβ ⇒ {ti≤si} ⊃ α≤β
Since =R is a congruence, we have [αi/ti, βi/si]α =R [α i/ti, βi/si]β.
By soundness of =R we have [αi/ti, βi/si]α =T [α i/ti, βi/si]β. Finally,
[α i/ti, βi/si]α ≤T [α i/ti, βi/si]β since ≤T is a preorder. M

Remarks

5.3.2 It is easy to observe that if we prove something in the system without using (eqR)
and (transR) then all the assumptions, t≤s, inserted in Γ when applying the rule (µR) can be
used only with respect to a pair of positive occurrences of t in α and s in β.

5.3.3 Then one may wonder whether the following rule suffices for our purposes [5]:

α≤β, Monotonic(t,α), Monotonic(t,β) ⇒ µt.α ≤ µt.β
where Monotonic(t,α) iff t does not occur negatively in α.

Unfortunately it does not, as we cannot prove inclusions involving negative occurrences, as
in µt.t→t ≤µt.®→t.

Moreover, one must be careful in defining “t does not occur negatively in α” for
recursive types, in order to ensure that α is really monotonic in t (for example, µs.s→t is not
monotonic in t):

PosAlso(t,t) @ True, PosAlso(t,s) @ False (s≠t)
PosAlso(t,®) @ False, PosAlso(t,©) @ False
PosAlso(t,α→β) @ NegAlso(t,α) ∨ PosAlso(t,β)
PosAlso(t,µs.α) @ (NegAlso(s,α) ∧ tÏFV(α)) ∨ PosAlso(t,α) (s≠t)

NegAlso(t,s) @ False (even when s=t)
NegAlso(t,®) @ False, NegAlso(t,©) @ False
NegAlso(t,α→β) @ PosAlso(t,α) ∨ NegAlso(t,β)
NegAlso(t,µs.α) @ (NegAlso(s,α) ∧ tÏFV(α)) ∨ NegAlso(t,α) (s≠t)

Monotonic(t, α) @ ¬ NegAlso(t, α)

Under these conditions, it is possible to show that the rule above is provable from the
system in 5.3.

5.4 Completeness of Subtyping Rules.
In proving the completeness of the subtyping rules w.r.t. the tree ordering, it seems helpful to

go through the algorithm. The rather obvious approach of extracting a proof from a successful
execution tree is complicated by the lack of correspondence between the computational rule (µA)
and the rule (µR), as the former can be applied repeatedly on the same variable, whereas the latter
can be applied at most once.

One may wonder if it is possible to rearrange the regular systems, while preserving type
equivalence, so that during the execution we never have to expand twice the same variable by
means of (µA).

Naively this corresponds to a controlled unfolding of the recursive types so that the
corresponding µ's appear at the same time in the visit of the trees. For example, to prove µt.t→t

Page 38

≤R µ s.(µs'.©→s')→s, we unfold the first type to µ t.(µt'.t'→t')→t; note that this is not the
unfolding given by the (fold-unfold) rule.

If ∫A Σ,ε⊃ t≤s (see 4.2.3), we say that (the successful execution tree of) the initial goal
Σ,ε⊃ t≤s has the one-expansion property iff the following is true: for every tÏDom(ε) and for
each path p of the execution tree, t is expanded in a (µA) node of p at most once.

It follows that with one-expansion, each variable can be inserted in Σ in a unique way, so that
for each pair of assumptions t1≤s1, t2≤s2 Ï Σ we have that t1,s1,t2,s2 are pairwise distinct.
Moreover, if we consider two (µA) nodes Σ,ε⊃ t1≤s1, Σ,ε⊃ t2≤s2 on the same path then t1,s1,t2,s2
are pairwise distinct, and if we consider a (µA) node Σ,ε⊃ t1≤s1 and an (assmpA) node Σ,ε⊃ t2≤s2
on the same path then either t17t2, s17s2 or t1,s1,t2,s2 are pairwise distinct.

5.4.1 Lemma (Putting recursions in lockstep)
If ∫AΣ,ε⊃ t≤s then there are θ, r, u such that ∫AΣ,θ⊃ r≤u, Sol(r,θ) = Sol(t,ε), Sol(u,θ) =

Sol(s,ε) and Σ,θ⊃ r≤u satisfies the one-expansion property.
Proof

Given the initial goal Σ,ε⊃ t≤s and the related successful execution tree we build a new
judgment Σ,θ⊃ r≤u such that the following properties hold:

(a) Σ,θ⊃ r≤u is an initial goal.
(b) Sol(r,θ) = Sol(t,ε) and Sol(u,θ) = Sol(s,ε).
(c) ∫AΣ,θ⊃ r≤u, and the execution tree is equal to the one

for Σ,ε⊃ t≤s modulo variable renaming.
(d) Σ,θ⊃ r≤u satisfies the one-expansion property.

First we build the execution tree of Σ,ε⊃ t≤s. Then we associate with every node of the tree a
couple (r, u) (or (u, r) on negative branches) of fresh variables with the following constraint; with
every assumption leaf for t≤s we associate the same pair of variables as with the µ node where
the assumption t≤s has been introduced into Σ (if any).

Next generate θ according to the following cases:

Case (µ-®). Say we are in the situation: Σ',ε⊃ ®≤β ⇒ Σ',ε⊃ t≤s0 where ε(t)=® . If (r,u0) is the
pair of variables associated with the µ-node add the equations:

r=®
[u0/s0,u1/s1, ..., un/sn](si=ε(si)) for iÏ0..n

where u1...un are fresh variables and s1...sn are the variables reachable from s0 in the system ε,
that is {s1...sn} = Reach(s0, ε)∩Dom(ε).

Case (µ-©). Analogous.

Case (µ-var). Say we are in the situation Σ',ε⊃ a≤a ⇒ Σ ',ε⊃ t≤s . If (r,u) is the pair of variables
associated with the µ-node, we add a pair of equations: r=a, u=a.

Case (µ-→). Say we are in the situation:
Σ'∪ {t≤s},ε⊃ s1≤t1, Σ'∪ {t≤s},ε⊃ t2≤s2
⇒ Σ'∪ {t≤s},ε⊃ t1→t2≤s1→s2 ⇒ Σ',ε⊃ t ≤ s

Page 39

where we have the fresh variables r,r1,r2 for t,t1,t2 and u,u1,u2 for s,s1,s2 (the variables associated
to an →-node are inessential) then we generate the equations r=r1→r2 and u=u1→u2.

Case (µ-assmp1). Say we are in the situation: Σ',ε⊃ a≤b ⇒ Σ',ε⊃ t≤s where a≤b∈Σ . If (r,u) is
the pair of variables associated with the µ-node, we add a pair of equations: r=a, u=b.

Case (µ-assmp2). Finally, if we visit a node in which we apply the rule (assmpA) w.r.t. an
assumption added during the computation then we do not generate any equation. In fact, the
equations corresponding to those variables are defined in the corresponding µ-node in which the
assumption was made.

Let us now consider the properties (a-d):
(a) Follows from the use of fresh variables.
(b) In the first place one establishes a relation R, say, between the variables reachable from t and
those reachable from r. In general we will have a situation in which a variable t may correspond
to many variables r1...rn. Next, prove by induction on the lowest level of the appearance of r in
the execution tree and |π| that (t, r)ÏR implies Sol(r,θ)(π) = Sol(t,ε)(π).
(c) By construction at each step we can apply the same computational rule.
(d) This is a consequence of the constraint on the assignment of fresh variables to nodes. M

5.4.2 Example
Consider the types: µt.©→t ≤T ®→(µs.s→s). These types are in minimal form, i.e. they are

the smallest types that can describe the corresponding regular trees, but still the recursions are
not in lockstep; we need to transform them into more redundant forms, in order to synchronize
them. In the following we pedantically apply the procedure described in the proof of the previous
lemma.

Let us assume that the types are described by the canonical system ε:

ε @ ε1∪ε 2, ε1 @ {t1=t2→t1, t2=©}, ε2 @ {s1=s2→s3, s2=®, s3=s3→s3}.

The following describes the successful execution tree associated to the initial goal ,ε⊃ t1≤s1 :

(©A) (assmpA)
⇒ {t1≤s1,t1≤s3},ε⊃ s3≤t2 ⇒ {t1≤s1,t1≤s3},ε⊃ t1≤s3

(®A) ⇒ {t1≤s1,t1≤s3},ε⊃ t2→t1≤s3→s3
⇒ {t1≤s1},ε⊃ s2≤t2 ⇒ {t1≤s1},ε⊃ t1≤s3

⇒ {t1≤s1},ε⊃ t2→t1≤s2→s3
⇒ ,ε⊃ t1≤s1

Observe that this execution tree does not have the one-expansion property as the variable t1 is
expanded twice. Hence we start associating fresh variables to each node according to the rules
described in the proof. The following describes which rule is being applied at each node of the
execution tree, and which pair of fresh variables we associate to each node.

Page 40

(©A) (u6,r6) (assmpA) (r3,u3)
(→A) (r5,u5)

(®A) (u4,r4) (µA) (r3,u3)
(→A) (r2,u2)
 (µA) (r1,u1)

We now compute the new type environment θ = θ1∪θ 2, where:

θ1 = {r1=r4→r3, r4=©, r3=r6→r3, r6=©},
θ2 = {u1=u4→u3, u4=®, u3=u6→u3, u6=u6→u6}

Observe here that the equation u6=u6→u6 is generated by calculating: [u6/s3](s3=ε(s3)). No more
equations are needed as s3 is the only variable reachable from s3. Verify that:

T(µt.©→t) = Sol(t1,ε) = Sol(r1,θ), T(®→(µs.s→s)) = Sol(s1,ε) = Sol(u1,θ).

We finally compute the successful execution tree, with one expansion property, associated to the
initial goal ,θ⊃ r1≤u1 :

(©A) (assmpA)
⇒ {r1≤u1,r3≤u3},θ⊃ u6≤r6 ⇒ {r1≤u1,r3≤u3},θ⊃ r3≤u3

(®A) ⇒ {r1≤u1,r3≤u3},θ⊃ r6→r3≤u6→u3
⇒ {r1≤u1},θ⊃ u4≤r4 ⇒ {r1≤u1},θ⊃ r3≤u3

⇒ {r1≤u1},θ⊃ r4→r3≤u4→u3
⇒ ,θ⊃ r1≤u1

5.4.3 Lemma (From the execution tree to the proof tree)
If ∫A Σ,ε⊃ t≤s (see 4.2.3) and its execution tree has the one-expansion
property, then ∫R Σ ⊃ Üt,εá ≤ Üs,εá.

Proof
We proceed by induction on the depth k of the successful execution tree of an initial goal

Σ,ε⊃ t≤s (see 4.2). Depth is measured by the number of adjacent pairs of nodes (µA)-(→A) in the
longest branch from the root. In the inductive case, each subgoal is converted into an initial goal
of the same depth, in order to apply the induction hypothesis.

Case k=0.
The tree consists of a (µA) root (since the goal is initial) and a single leaf which is either

(assmpA), (®A), (©A), or (varA). Then after the application of the (µA) rule, with s,tÏDom(ε), we
are in a terminal case Σ∪ {t≤s},ε ⊃ ε(t)≤ε(s).

Subcase (assmpA). Σ∪ {t≤s},ε ⊃ a≤b, where ε(t)=a, ε(s)=b, and a≤b∈Σ .
Then a,bÌDom(ε) (by definition of Tenv), and Üt,εá=µt.a=a, Üs,εá=µs.b=b.
By (assmpR), a≤b∈Σ ⇒ ∫R Σ ⊃ a≤b.
Conclude by (eqR): ∫R Σ ⊃ µt.a≤a, ∫R Σ ⊃ b≤µs.b, and (transR).

Subcase (®A). Σ∪ {t≤s},ε ⊃ ®≤ε(s), where ε(t)=®.
Then Üt,εá=µt.®=® and we have ∫R Σ ⊃ ® ≤ Üs,εá.
Conclude by (eqR) and (transR).

Page 41

Subcase (©A). Similar.

Subcase (varA). Σ∪ {t≤s},ε ⊃ a≤a, where ε(t)=ε(s)=a and aÌDom(ε).
Then Üt,εá=µt.a=a=µs.a=Üs,εá. We can apply (eqR): Σ ⊃ a≤a,
then conclude with (eqR) and (transR).

Case k>0.
The tree has a (µA) root with a (→A) child, hence ε(t)=t1→t2, ε(s)=s1→s2, where by

definition of Tenv t1,t2,s1,s2ÏDom(ε):
 Σ∪ {t≤s},ε ⊃ s1≤t1, Σ∪ {t≤s},ε ⊃ t2≤s2

⇒ Σ∪ {t≤s},ε ⊃ t1→t2 ≤ s1→s2
⇒ Σ,ε ⊃ t≤s

We initially focus on one of the subgoals of depth k-1:
(A) Σ∪ {t≤s},ε⊃ t2≤s2

Let us consider the following goal (B), which we intend to subject, instead of (A), to the
induction hypothesis:

(B) Σ∪ {t≤s}, ε'⊃ σ(t2)≤σ(s2)
where σ@[t'/t, s'/s] is a substitution with fresh variables t' and s', and ε' @ σ(ε\t\s)∪ {t'=t, s'=s}.

First we show that the goal (B) is initial. Since ∫A Σ,ε⊃ t≤s is initial we have:
Vars(Σ)∩Dom(ε)=
ε=ε1∪ε 2 with Dom(ε1)∩Dom(ε2)=, such that tÏDom(ε1), sÏDom(ε2)

Hence we also have:
t1,t2ÏDom(ε1) (only); s1,s2ÏDom(ε2) (only)
ε'=ε'1∪ε '2 where ε'1@σ(ε1\t)∪ {t'=t}, ε'2@σ(ε2\s)∪ {s'=s}

From which we conclude:
Vars(Σ∪ {t≤s})∩Dom(ε ')=
Dom(ε'1)∩Dom(ε'2)=
σ(t2)ÏDom(ε'1), because:

if t27t then σ(t2)7t' and t'ÏDom(ε'1); (t27s is not possible)
if t2?t then σ(t2)7t2; since t2ÏDom(ε1), we have σ(t2)ÏDom(ε'1)

σ(s2)ÏDom(ε'2), similarly.

Second, let Tree(A) be the execution subtree of root (A), and Tree(B) be the execution tree of
root (B). We show, by induction on the length of the longest path in Tree(A), that we can build a
tree T such that: (1) T has the same depth as Tree(A); (2) T succeeds; (3) T expands the same
variables as Tree(A) in (µA) nodes, with the exception of t',s'; (4) T has the one-expansion
property; and (5) T = Tree(B). (Hence, we also have ∫A (B).)

We proceed by induction on each subgoal A = Σ∪ {t≤s},ε⊃ α≤β of Tree(A), for which we
build a subtree T of the shape Σ∪ {t≤s},ε'⊃σ (α)≤σ(β).

For the case (assmpA) we have Σ∪ {t≤s},ε⊃ t≤s with t≤sÏΣ∪ {t≤s}. By the properties of one-
expansion noted in 5.4, we only need to consider the cases when either t7t and s7s, or t,s,t,s are
pairwise distinct.

Page 42

If t7t, s7s then Tree(A) is Σ∪ {t≤s},ε⊃ t≤s, and T is taken to be Σ∪ {t≤s,t'≤s'},ε'⊃ t≤s ⇒
Σ∪ {t≤s},ε'⊃ t'≤s', which is successful by (assmpA) and (µA), and has one-expansion. This T is
longer but it still has depth 0.

If t,t,s,s are pairwise distinct then Tree(A) is Σ∪ {t≤s,t≤s},ε⊃ t≤s, and T is taken to be
Σ∪ {t≤s,t≤s},ε'⊃ t≤s which is successful by (assmpA), has one-expansion, and has depth 0.

For the case (µA) we must have, by one-expansion, t,t,s,s pairwise distinct. Then Tree(A) has
the shape:

 Σ∪ {t≤s,t≤s}, ε ⊃ ε(t)≤ε(s) ⇒ Σ∪ {t≤s},ε⊃ t≤s with t,sÏDom(ε).
Now σ(t)7t, σ(s)7s, and since t,sÏDom(ε') we have ε'(t)=σ(ε(t)), ε'(s)=σ(ε(s)). The tree T is then
chosen with the shape:

 Σ∪ {t≤s,t≤s}, ε' ⊃ σ(ε(t))≤σ(ε(s)) ⇒ Σ∪ {t≤s}, ε'⊃ t≤s
hence preserving success and depth by (µA) and the induction hypothesis. One-expansion is
preserved because, by induction hypothesis, T expands the same variables in (µA) node as
Tree(A), which has one-expansion; except that t',s' are expanded in the (assmpA) case, but in the
present situation t,s,t',s' are distinct.

The other cases do not pose difficulties. One-expansion for the (→A) case follows from one-
expansion of the two branches, since one-expansion is defined path-wise.

Hence we can apply the induction hypothesis to (B), obtaining:
∫R Σ∪ {t≤s} ⊃ Üσt2,ε'á ≤ Üσs2,ε'á

Then, by the equivalences Üσt2,ε'á=RÜt2,ε\tá, Üσs2,ε'á=RÜs2,ε\sá, and (eqR), (transR):
∫R Σ∪ {t≤s} ⊃ Üt2,ε\tá ≤ Üs2,ε\sá

By a similar argument on Σ∪ {t≤s},ε⊃ s1≤t1 we obtain:
∫R Σ∪ {t≤s} ⊃ Üs1,ε\sá ≤ Üt1,ε\tá

Finally:
 ⇒ Σ∪ {t≤s} ⊃ Üt1,ε\tá→Üt2,ε\tá ≤ Üs1,ε\sá→Üs2,ε\sá (→R)
 ⇔ Σ∪ {t≤s} ⊃ Üε(t),ε\tá ≤ Üε(s),ε\sá
 ⇒ Σ ⊃ µt.Üε(t),ε\tá ≤ µs.Üε(s),ε\sá (µR)
 ⇔ Σ ⊃ Üt,εá ≤ Üs,εá M

5.4.4 Example
We describe how to associate a proof tree to the execution tree with one expansion property

built in 5.4.2, by repeatedly applying the inductive proof just presented. For convenience we
rewrite here the execution tree:

(©A) (assmpA)
⇒ {r1≤u1,r3≤u3},θ⊃ u6≤r6 ⇒ {r1≤u1,r3≤u3},θ⊃ r3≤u3

(®A) ⇒ {r1≤u1,r3≤u3},θ⊃ r6→r3≤u6→u3
⇒ {r1≤u1},θ⊃ u4≤r4 ⇒ {r1≤u1},θ⊃ r3≤u3

⇒ {r1≤u1},θ⊃ r4→r3≤u4→u3
⇒ ,θ⊃ r1≤u1

where θ = θ1∪θ 2, with:

Page 43

θ1 = {r1=r4→r3, r4=©, r3=r6→r3, r6=©},
θ2 = {u1=u4→u3, u4=®, u3=u6→u3, u6=u6→u6}

Proceeding from the root we first fall on an inductive case. Hence we reapply the procedure
to the modified subgoals:

{r1≤u1},θ'⊃ u4≤r4 {r1≤u1},θ'⊃ r3≤u3

where: θ' = θ'1∪θ '2, σ = [r'/r1, u'/u1],

θ'1 = σ(θ1\r1) ∪ {r'=r1} = {r4=©, r3=r6→r3, r6=©, r'=r1},
θ'2 = σ(θ2\u1) ∪ {u'=u1} = {u4=®, u3=u6→u3, u6=u6→u6, u'=u1}.

The first modified subgoal, {r1≤u1},θ'⊃ u4≤r4, leads to a subcase (®A). Hence we have:

∫R {r1≤u1} ⊃ <u4,θ'> ≤ <r4,θ'>, <u4,θ'> = ®, <r4,θ'> = © (a)

The second modified subgoal, {r1≤u1},θ'⊃ r3≤u3, leads again to an inductive case. Hence we
generate two new modified subgoals:

{r1≤u1,r3≤u3},θ"⊃ u6≤r6 {r1≤u1,r3≤u3},θ"⊃ r3≤u3

where: θ" = θ"1∪θ "2, σ = [r"/r3, u"/u3],

θ"1 = σ(θ'1\r3) ∪ {r"=r3} = {r4=©, r6=©, r'=r1, r"=r3},
θ"2 = σ(θ'2\u3) ∪ {u"=u3} = {u4=®, u6=u6→u6, u'=u1, u"=u3} .

The first modified subgoal, {r1≤u1,r3≤u3},θ"⊃ u6≤r6, leads to a subcase (©A). Hence we have:

∫R {r1≤u1,r3≤u3} ⊃ <u6,θ"> ≤ <r6,θ">, (b)
<u6,θ"> = µu6.u6→u6, <r6,θ"> = ©

The second modified subgoal, {r1≤u1,r3≤u3},θ"⊃ r3≤u3, leads to a subcase (assmpA). Hence we
have:

∫R {r1≤u1,r3≤u3} ⊃ <r3,θ"> ≤ <u3,θ">, (c)
<r3,θ"> = r3, <u3,θ"> = u3

We can now build the proof tree, bottom up, using the proofs (a), (b), (c) as leaves:

{r1≤u1,r3≤u3} ⊃ µu6.u6→u6 ≤ © {r1≤u1,r3≤u3} ⊃ r3 ≤ u3
{r1≤u1,r3≤u3} ⊃ ©→r3 ≤ (µu6.u6→u6)→u3

{r1≤u1} ⊃ ®≤© {r1≤u1} ⊃ µr3.(©→r3) ≤ µu3.((µu6.u6→u6)→u3)
{r1≤u1} ⊃ (©→µr3.(©→r3)) ≤ (®→µu3.((µu6.u6→u6)→u3))
 ⊃ µr1.(©→µr3.(©→r3)) ≤ µu1.(®→µu3.((µu6.u6→u6)→u3))

It just remains to observe the following equivalences to get back to the types we started with in
5.4.2:

µr1.(©→µr3.(©→r3)) =R ©→µr3.(©→r3) =R µr3.(©→r3), and
µu1.(®→µu3.((µu6.u6→u6)→u3)) =R ®→µu3.((µu6.u6→u6)→u3) =R
®→(µu6.u6→u6) . M

Page 44

5.4.5 Theorem (Completeness of the subtyping rules)
If α≤Tβ then α≤Rβ.

Proof
If α≤Tβ then α≤Aβ by completeness of the algorithm (4.3.7). Consider the corresponding

successful execution tree and apply the lockstep recursion lemma 5.4.1, obtaining a tree for
α '≤Aβ' with α=Tα ' and β=Tβ'. By lemma 5.4.3 we can now extract from the new execution tree a
proof of α '≤Rβ'. Applying the completeness of the rules for type equivalence we conclude α=Rα '
and β=Rβ'. Finally we derive α≤Rβ by (eqR) and (transR). M

6. A Per Model
We sketch the main features of a model described in [1] (see also [14] for a related work)

based on complete uniform pers over a D∞ λ-model [26].
Per (partial equivalence relation) models provide an interpretation of subtyping as set-

theoretic containment of the relations [7]. In addition, these structures have very interesting
categorical properties (in particular cartesian closure and interpretation of second-order
quantification as intersection, see [19]) that entail a satisfying interpretation of higher-order
typed λ-calculi. The particular class of pers considered here preserves the previous properties
while providing a solution of recursive domain equations up to equality. This result is obtained
by an application of Banach's theorem on the uniqueness of the fixpoint of a contractive operator
over a complete metric space.

6.1 Realizability Structure
Consider the functor G(D) @ DD + D×D + At defined in the category of complete partial

orders (cpo's) and projection pairs. The cpo At is a collection of atomic values, and + is the
coalesced sum. The morphism part of G is standard.

The cpo D∞ is the initial fixpoint of the functor G, that is the colimit of the following ω-
diagram:

D0 @ O (O is the initial object; the cpo with one element)
Dn+1 @ Dn

Dn + Dn×Dn + At = G(Dn)

with uniquely determined projection pairs (in,n+1,jn+1,n) : Dn→Dn+1.
Let (in,jn) be the projection pair between Dn and D∞. Let en @ in(jn(e)) for eÏD∞. We have

$n<ω{en} = e, where “$” denotes, as usual, the join. The cpo's D∞D∞ and D∞×D∞ are projected
into D∞ by means of the projection pairs: (i, j) and ([,], p). The operation of application on D∞
is defined as usual as: fd@j(f)(d).

6.2 Complete Uniform Pers
A per A over D∞ is complete and uniform3 (henceforth cuper) iff

(1) (®D∞
, ®D∞

) Ï A (®D∞
is the least element of the cpo D∞)

(2) If X⊆ A is directed in D∞×D∞ then $XÏA

3A term suggested by M. Abadi and G. Plotkin.

Page 45

(3) If (e,e') Ï A then Ón. (en, e'n) Ï A

We will consider the full subcategory of complete and uniform pers, therefore the morphisms
are defined as usual as:

cuper[A, B] @ {f: D∞/A→D∞/B | Ôφ∈ D∞.ÓdÏD∞. (d,d)ÏA ⇒ φdÏf([d]A) }
where [d]A @ {eÏD∞ | (d, e)ÏA}, and D∞/A @ {[d]A| (d, d)ÏA}

Let A|n @ A ∩ in(Dn)×in(Dn). Given A, B cupers we can define as for ideals (see [20]):

closeness: c(A,B) @ ∞, if A=B; max{n| A|n=B|n}, o.w.
distance: d(A,B) @ 0, if c(A,B) = ∞; 2-c(A,B), o.w.

6.2.1 Subtype Interpretation
Following [11] and [7] we say that the cuper A is a subtype of the cuper B iff A⊆ B. This is

easily shown to correspond to the existence of a unique map in the category that is realized by
the identity. Such maps play the role of coercions from A to B.

6.2.2 Type Interpretation
A type environment η is a map from type variables to cupers: η: Tvar→cuper. A type

interpretation of a type α in an environment η is written as [α]η.
In view of the interpretation of subtyping, the interpretation of type variables and type

constants is naturally given as follows:

 [®]η @ {(®D∞
, ®D∞

)} [©]η @ D∞×D∞ 7 Top [t]η @ η(t)

As we already mentioned, cuper is a cartesian closed category. In particular, given A, B cupers
the exponent BA is defined as follows:

(f, g) Ï BA ⇔ Ó d,e. (d, e) ÏA ⇒ (fd, ge) Ï B

This interpretation of the arrow is sometime referred to as simple.
In general, every object exp(A, B) isomorphic to the simple interpretation will enjoy the

same categorical properties. Therefore, we assume exp is a binary operator on cupers satisfying:

exp(A, B) 5 BA

However, not any choice will be satisfying from our point of view. In order to complete the
interpretation we need two more properties of the operator exp, namely, contractiveness and
(anti-)monotonicity.

6.2.3 Contractiveness
The set of cupers endowed with the metric d is a complete metric space. We require that the

behavior of exp at level n+1 is determined by the value of the arguments up to level n:

exp(A, B)|n+1 = exp(A|n, B|n)|n+1

Under this condition the exponentiation operator is contractive on the space (cuper, d) as it
satisfies the following property:

Page 46

A|n=A'|n , B|n=B'|n ⇒ exp(A, B)|n+1 = exp(A', B')|n+1.

It turns out that every definable type operator is either contractive or the identity, and therefore
admits a least fixpoint. The type-interpretation w.r.t. a contractive exponent exp(A, B) is
completed as follows:

[α→β]η @ exp([α]η, [β]η) [µt.α]η @ Lfp(λA.[α]η[A/t]) (Lfp7least fixpoint).

6.2.4 Soundness of the (→) subtyping rule
In order to have a sound interpretation of the (→) rule in 3.1 it is convenient that the operator

exp satisfies the following additional condition:

A'⊆ A, B⊆ B' ⇒ exp(A, B) ⊆ exp(A', B')

Proviso
We can summarize our discussion as follows. We assume to have a binary operator, exp:

cuper×cuper→cuper, satisfying the following three properties, for any A, A', B, B':

exp(A, B) 5 BA

exp(A, B)|n+1 = exp(A|n, B|n)|n+1
A'⊆ A, B⊆ B' ⇒ exp(A, B) ⊆ exp(A', B')

The simple interpretation defined above provides an example of such operator. The F-
interpretation discussed in 6.3 provides yet another example.

We can interpret the types parametrically in the operator exp as follows:

 [®]η @ {(®D∞
, ®D∞

)} [©]η @ D∞×D∞ 7 Top [t]η @ η(t)

[α→β]η @ exp([α]η, [β]η) [µt.α]η @ Lfp(λA.[α]η[A/t]) (Lfp7least fixpoint).

The three conditions above are also sufficient to obtain the following soundness theorem. We
write ª α≤β iff, given any operator exp, with relative type-interpretation [], we have [α]η ⊆ [β]η
for any η: Tvar→cuper.

We also write ª Γ ⊃ α≤β. As usual this means: Óη . (ηª Γ ⇒ ηª α≤β).

6.2.5 Theorem (Soundness of the tree ordering w.r.t. the model)
Given α, β types, if α≤Tβ then ª α≤β .

Proof (sketch)
Given a per A we define its completion cmpl(A) as the least cuper that contains A:

cmpl(A) @ ë {B cuper | A⊆ B}

Given a tree A in Tree(L) we define its interpretation as the completion of the set-theoretic
union of the interpretations of its syntactic approximants:

[A]η @ cmpl(êk<ω[A| k]η)

It is easy to observe that {[A| k]η | k<ω} is a growing chain of cupers.
Now we need the following fact (see [1]):

Page 47

Ón,α. ÔN. Ók≥N. [(α)n]η = [(α| k)n]η

where by definition [(β)n]η @ [β]η ∩ in(Dn)×in(Dn).
In other words, if we are interested in the interpretation of the type α up to the n-th level of

the construction of D∞ , it is enough to unfold α up to a certain level N and just consider the
interpretation of this finite part of the associated tree expansion.

Next we use the fact that [α]η = cmpl(ên<ω[(α)n]η). From this we can conclude [α]η ⊆
[Tα]η.

Vice versa observe that Ók. [α | k]η ⊆ [α]η. Hence [α]η = [Tα]η.
Finally, Tα ≤∞ Tβ ⇒ Ók. (α| k ≤ β| k) ⇒ Ók. [α| k]η ⊆ [β| k]η ⇒ [α]η ⊆ [β]η. M

6.2.6 Proposition (Soundness of the rule ordering w.r.t. the model)
If ∫R Γ ⊃ α≤β then ª Γ ⊃ α≤β.

Proof
For the soundness of the type equivalence rules (5.1) one observes that the contractiveness of

α in t is a sufficient (and necessary) condition to enforce the contractiveness of the following
functional on the space cuperD∞

(6.2):

Gα,η,t(A) @ [α]η[A/t] AÏcuperD∞

As for the subtyping rules (5.3) the problem is to check the soundness of (µR). Suppose ηª Γ.
By hypothesis we have:

ÓA,B cuper. A ⊆ B ⇒ Gα(A) @ [α]η[A/t] ⊆ [β]η[B/t] @ Gβ(B)

Therefore we have: Ón. Gαn(Bot) ⊆ Gβn(Bot), where Bot = {(®D∞
, ®D∞

)}.
It can be proved (see [1]) that for any type γ :

[(µt.γ)n]η @ [µt.γ]η ∩ Dn×Dn = Gγn(Bot) ∩ Dn×Dn

And from [µt.γ]η = cmpl(ên<ω[(µt.γ)n]η) we have the thesis. M

6.3 Completeness of an F-interpretation
We now consider an F-interpretation of → (see [27]) that is isomorphic to the simple

interpretation and still satisfies the properties in 6.2.3 and 6.2.4. We will also use this
interpretation for the completeness theorem 6.3.4.

Define: (BA)F @ BA ∩ F2 ∪ {(®, f), (f, ®), (f, f)}

where F is the embedding of the functional space D∞D∞ into D∞ and f is the embedding of a
distinct symbol of At into D∞.

Roughly speaking (BA)F is built from BA by selecting among those elements that are
“functions” in the underlying λ-model D∞ and by attaching to ® a label f. We introduce the label
f in order to distinguish the functional type ©→® from ® (see lemma 6.3.3). As an exercise one
can try to give the complete rules for the “pure” version of the F-interpretation: (BA)F' @ BA ∩
F2. A more difficult exercise is to define a complete system for the simple semantics. In this case
further identifications like µt.t→t = © take place.

Page 48

6.3.1 F-theory of subtyping
Rather than giving some abstract definition of model that naively reflects the conditions for

the soundness theorem and look for some ad hoc completeness result, we prefer to concentrate
on a specific interpretation.

As a typical example, we characterize the subtypings valid in every F-interpretation. We
write ªF α≤β iff for any type structure M constructed as just described, we have [α]η ⊆ [β]η (or
equivalently ηªF α≤β) with respect to the induced F-interpretation and for any type environment
η.

In order to prove the completeness of the theory it will be enough to use the elementary
substructure of ideals. Ideals are cupers with just one equivalence class; they are closed w.r.t. the
standard operations over cupers.

Consider the type α→©. Both in the simple interpretation and in the F-interpretation its
meaning is essentially independent from α (this is not clearly the case for the tree equivalence).

In particular in the F-interpretation one has:

(Φ) α→β ≤ γ→©

where γ→© plays the role of supertype of all the functional types as:

 [γ→©]η = [®→©]η = F2 ∪ {(®, f), (f, ®), (f, f)}

Add to the subtyping system in 3.1 the axiom (Φ). Denote with ∫Φ formal derivability in this
new system. Write α≤Φβ iff ∫Φ α≤β.

By examining the twenty five possible combinations of rules and axioms it turns out that the
relation ≤Φ on the collection of non-recursive types is a preorder (as in 3.1, one shows the
transitive rule is derived by case analysis).

Next, extend the preorder ≤Φ to recursive types by defining an ordering ≤Φ∞
on trees as: A

≤Φ∞ B iff Ók. (A| k≤ΦB| k). Also define: α≤ΦT
β iff Tα≤Φ∞Tβ.

6.3.2 Lemma
Let α be a recursive type and η be a type environment. If Tα≠© and for each type variable t

free in α we have η(t)≠ Top then [α]η ≠ Top.
Proof

By induction on the structure of α . In particular, if α 7 µt.β then either Tα=® and the
interpretation is the least cuper, or Tα=t and we can use the hypothesis on η, or the interpretation
is a cuper A that solves the equation:

A = (G1(A)G2(A))F for some definable operators G1 and G2 .

This forces A⊂ Top. M

6.3.3 Lemma (Separation)
Suppose D∞ is an algebraic cpo. There is a type environment η such that whenever α (β)

matches an element of the column (row) then [α]η ⊆ [β]η iff the situation described at the
corresponding intersection occurs:

≤ ® © s ®→© α '→β' (β'≠©)

Page 49

® yes yes yes yes yes
© no yes no no no
t no yes if t7s no no

®→© no yes no yes no
α→β (β≠©) no yes no yes α '≤α,β≤β'

Proof
As we already mentioned, it will be enough to consider ideals, that is, subsets of D∞ with

particular closure properties.
Let us choose an environment η s.t. η(t) = {®, λt} where λt is an element of the flat cpo At. Of
course t≠s ⇒ λt≠λs and λt≠ f.

The only interesting problem is to show that in the case (α→β,α'→β') the condition α'≤α,
β≤β' is in fact necessary.
First observe that [β]η ⊆ [β']η . Otherwise pick up d∈ [β]η\[β']η and consider the constant map
λx.d that belongs to [α→β]η\[α '→β']η.

On the other hand, since β'≠© by lemma 6.3.2 ÔeÏTop\[β']η . If the set [α']η\[α]η is not
empty then it contains a compact element do. Consider the continuous function stepdo,e that
evaluates to e for elements greater than or equal to do, and to ® otherwise. Then such a function
belongs to [α→β]η\[α'→β']η.
Note that we use the downward closure property of ideals to prove that the elements greater than
or equal to do do not belong to [α]η. M

6.3.4 Proposition (Completeness for ≤ΦT)
Given recursive types α and β, ªF α≤β iff α≤ΦT

β.
Proof

The soundness follows from the discussion in 6.3.1 and the more general soundness result
presented in 6.2.5.

For showing completeness, consider the type structure and the type environment η in lemma
6.3.3. Given α,β, we want to show Ók. α| k ≤Φ β| k whenever η ª α≤β.

Observe that the relation ≤ΦT
 is invariant under unfolding and under transformations of types

of the shape α→© to ®→©.
Fix k and unfold the types so that no µ appears before the k-th level. Transform all the

subtypes of the shape α→© in ®→©.
Proceed by induction on k to show that the conditions in the table 6.3.3 force α | k ≤Φ β| k. M

In the remaining part of the paper we will be concerned with the tree ordering as it is very
simple to analyze and it is valid in every interpretation satisfying the conditions of theorem 6.2.5.
However, the previous study suggests that the tree ordering is very close to the model ordering so
that, for example, the decision algorithm that we discuss in section 4 for the former can be easily
adapted to the latter.

Page 50

7. Coercions
Coercions and subtyping are closely related topics; see for example [3], [6]. We now show

that the standard coercions cα,β between two types α≤β are definable in an extension of the basic
calculus. This can be interpreted as saying that subtyping does not add any expressive power to
such calculus (only convenience).

Then we show that the coercions implicit in a calculus with subsumption can be
automatically synthesized. This fact is related to an algorithm for inferring the minimum type of
a term.

7.1 Definability.
In this section we show how to associate with each successful execution tree a λ-term whose

denotation in the model is a coercion, that is, the unique map between the corresponding types
that is realized by the identity.

7.1.1 Building the λ-term.
We can show that if we consider types up to tree equivalence, =T , then for every initial goal

Σ,ε ⊃ t≤s such that ∫AΣ,ε⊃ t≤s there is a term M(x1, ..., xn) : Üt→s,εá where Σ = {t1≤s1, ..., tn≤sn}
and xi (i=1,..,n) are the free variables of M of type Üti→si,εá.

For the sake of readability the type labels on bound variables and on the fold and unfold
constants are often omitted.

We recall that it is possible to define a fixpoint combinator as follows:
í7λfα→α .(λxµt.t→α. f((unfold x)x)) (fold(λxµt.t→α. f ((unfold x)x))): (α→α)→α.

Proceed by induction on the structure of the execution tree (see 4.2.1). We refer to 4.1.7 for
the properties 1..6, of the translation Ü - , - á:

Case (assmp) xÜt→s,εá.

Case (®) λx®. í(λxÜβ,εá. x) : Ü®→β,εá =T ®→Üβ,εá by 1,5.

Case (©) λxÜα,εá. í(λx©. x) : Üα→©,εá =T Üα,εá→© by 2,5.

Case (var) λxa. x : Üa→a,εá =T a→a by 3,5.

Case (→) λfÜα→β,εá. λxÜα',εá. M2(f(M1(x))) : Ü(α→β)→(α'→β'),εá by 5.
where by induction hypothesis M2 : Üβ→β',εá and M1 : Üα'→α,εá.

Case (µ) by induction hypothesis we have M(xÜt→s,εá) : Üε(t)→ε(s), εá;
by 4, 5 Üt→s,εá =T Üε(t)→ε(s), εá therefore we can type a term:

í(λyÜε(t)→ε(s), εá. M(y)) : Üε(t)→ε(s), εá =T Üt→s,εá, by 4.

Remark
In a similar fashion one can associate a λ-term with a proof of the judgment Γ⊃α≤β in

the system in 5.3 . The only difficulty arises for the rule (µ
R

). Suppose we have inductively
built a term M(xt→s) : α(t)→β(s) then it is possible to transform it into a term M'(xµt.α→µs.β)
: [µ t.α/t]α→[µs.β/s]β. The term associated with the conclusion of the (µ

R
) rule can be

defined as:
í(λxµt.α→µs.β. λyµt.α. (fold (M''(x)(unfold y))))

Page 51

7.1.2 Proposition (Coercions are definable)
Let α, β Ï Type and suppose α≤Aβ. Let M be the term associated in 7.1.1 with the execution

tree of ,Eα∪ Eβ ⊃ α*≤β*. Then the denotation of the term in the model is the unique coercion
map from the interpretation of α to the interpretation of β.
Proof.

Since we have not given the term interpretation explicitly (see [1]), we can only sketch an
idea of the proof.

In the first place we need some facts about the interpretation of terms:
(a) By erasing the type information and the constants fold, unfold from a typed term M, we
obtain an untyped λ-term er(M). We denote these untyped λ-terms with P, Q, It is a basic
property of these interpretations that the interpretation of er(M) gives a representative for the
equivalence class that corresponds to the interpretation of M. We shortly refer to this fact by
saying that er(M) is a realizer for M.
(b) Showing that the interpretation of M is a coercion from α to β means proving that the identity
map, id, is a realizer for M. Equivalently id and er(M) are equivalent in α→β. Note that here and
in the following for the sake of readability we simply refer to syntactic objects but we really
intend to speak of their denotations in the model.
(c) The realizer for í is an element Fix with functionality: λg. $ gn(®D∞

).
In order to prove the theorem by induction on the structure of the execution tree one needs to

generalize somewhat.
In the first place one observes that if in the execution tree of ,ε⊃ t≤s we never use (assmp)

then the interpretation of the associated term M : Üt→s,εá is a coercion in Üt→s,εá.
However, this is not enough to make the induction go through in the case where the term

M(xΣ) really depends on the assumption variable. One has to observe that M(xΣ) also enjoys a
property of contractiveness.

Let us suppose that (µ) is the last rule applied. By construction assume we have a term M(x)
that is a functional from coercions to coercions. We would like to show that í(λx.M(x)) is still a
coercion.

Observe that after a (µ) rule we always have a (→) rule. Therefore the term M(x) has the
structure λf.λy.M2(x)(f(M1(x)y)).

Now observe that a realizer for í (λ x.M(x)) will be something like $gn(®D∞
) for

g=λx.λf.λy.P2(x)(f(P1(x)y)) where Pi is a realizer for Mi (i=1,2). We have to show that this
realizer is equivalent to id in a type with the structure C7(A⇒ B)⇒ (A'⇒ B'), where A⇒ B 7
exp(A, B). Since the type is a complete per, it will be enough to show that for each n gn(®D∞

) is
equivalent to id in the appropriate type.

To do this we need a last remark, Denote with A|n the approximation at the n-th level of the
cuper A as in 6.2. One observes that if (P, id)Ï C|n then (g(P), id) Ï C|n+1 . This follows easily
from the structure of g and the assumption (6.2.3). Hence we have Ón. (gn(®D∞

), id)ÏC|n that
implies ($gn(®D∞

), id)ÏC. M

Page 52

7.2 Inference
Let λ→µ be the calculus in section 2. Given a term in λ→µ, possibly not typeable, we are

interested in the problem of determining if it can be well-typed modulo the insertion of
appropriate coercions.

We refer to this problem as coercion inference. We will define a simple algorithm that, given
a term M, succeeds exactly when M is typeable modulo the insertion of coercions. In this case
the algorithm returns the least type among the types that can be assigned to M.

A similar problem was solved in [2] for a second-order lambda calculus with records, and in
[18] for a second-order lambda calculus including a form of bounded quantification.

All these results rely on the structural properties of the subtype relation that are stated, in this
case, as Proposition 7.2.4.

Notation.
In this section α 8 β and α 3 β are shorthands for Tα≤∞Tβ and Tα=Tβ.

7.2.1 Typing modulo coercions
We can formalize the idea of typing modulo coercions in two ways:

(a) Subsumption. Add to the typing system in 2.2 and 3.1 the following rule based on the
tree order ≤∞. The version based on ≤fin is often referred to as Subsumption:

(Sub∞) M: α , α8β ⇒ Μ: β
We denote formal derivability in this new system with ∫Sub.

(b) Explicit Coercions. Extend the term language with a collection of constants {cα,β | α , β
types} and add to the typing system in 3.1 the following rule:

(ExpCoer∞) M: α , α8β ⇒ (cα,βΜ): β
Denote formal derivability in this new system with ∫c , and denote the corresponding term
language with λ→µc. Moreover, denote with erc (mnemonic for erase coercions) the obvious
function that takes a term in λ→µc, erases all the constants cα,β, and returns a term in λ→µ.

The use of these rules is justified by the finitary axiomatization of 8 given in section 5.
Note that in both these systems the (foldµt.α M) and (unfoldµt.α M) terms become redundant.

7.2.2 Definition (coercion inference)
We define inductively on the structure of the term M in λ→µ a function4

CI: (λ→µ) → (λ→µc ∪ {FAIL}) (CI for coercion inference)
that either fails or returns a well-typed term N in λ→µc such that erc(N) 7 M.
The clauses (fold), (unfold) have priority on the clause (apl).

(var) CI(xα) @ xα

(abs) CI(λxα.M) @ if CI(M) : β then λxα.CI(M) else FAIL

(apl) CI(MN) @
if CI(M) : α ' and CI(N): γ then

4Actually the following specification determines a class of algorithms that suffices for our purposes.

Page 53

if α ' 3 α→β and γ 8 α then (cα',α→β CI(M))(cγ,α CI(N))
else if α ' 3 ® then (cα',α→® CI(M)) CI(N) else FAIL

else FAIL

(fold) CI(foldµt.α M) @
if CI(M): β and β 8 µt.α then

foldµt.α(cβ,[µt.α /t]αCI(M))
else FAIL

(unfold) CI(unfoldµt.α M) @
if CI(M): β and β 8 µt.α then

unfoldµt.α(cβ,µt.αCI(M))
else FAIL M

 Clearly CI can also be used to define an inference algorithm for ∫Sub; just consider the type
of the term synthesized by CI. We prove in 7.2.5 that this algorithm computes the minimal type
of a term (if any). To achieve this result we need the following simple properties.

7.2.3 Proposition
Let M be a term in λ→µ then:

(1) ∫Sub M : α iff for some N: ∫c N : α and erc(N) 7 M.
(2) If CI(M): β then erc(CI(M)) 7 M.
Proof

(1) Every introduction of an explicit coercion corresponds to an application of subsumption
and vice versa.

(2) By induction on the definition of CI. M

7.2.4 Proposition
Let α , β, ... be recursive types then:

(1) If α 8 β1→β2 then either α 3 ® or α 3 α1→α2, β1 8 α1, and α2 8 β2.
(2) If α1→α2 8 β then either β 3 © or β 3 β1→β2, β1 8 α1, and α2 8 β2.
Proof

(1) α can be rewritten, by unfolding, to an equivalent type of the shape ®, ©, t or α1→α2. The
definition of the tree ordering and the hypothesis α 8 β1→β2 lead to the conclusion by a simple
case analysis.

(2) Analogous. M

7.2.5 Theorem (Terms have a least type)
Let M be a term in λ→µ then ∫Sub M : α implies CI(M):β and β 8 α.

Proof
By induction on the structure of M.

C(N) is a meta-notation for cαn-1,αn (...(cα1,α2 N)..), where: N: α1, n≥1, αi 8 α i+1.
By virtue of 7.2.3.(1) we may equivalently assume the existence of a well-typed term N in λ→µc

such that erc(N) 7 M.

Page 54

Observe the crucial role of property 7.2.4 in proving the rather surprising fact that the algorithm
is complete in the sense just stated above.

Case M 7 xβ.
If erc(N) 7 xβ then N 7 C xβ : α and β 8 α . On the other hand CI(xβ) 7 xβ:β.

Case M 7 (λxα.M').
If erc(N)7λxα.M' then N7C (λxα.N'): γ, erc(N')7M', and N':β'.
By induction hypothesis CI(M') : β and β 8 β', hence by definition. CI(λxα.M') : α→β. Note
that α→β' 8 γ by definition of N and this implies (by 7.2.4) either γ 3 © (and in this case we are
done as α→β 8 ©) or γ 3 γ1→γ2, γ1 8 α and β' 8 γ2 .
In the latter case β 8 β' 8 γ2 implies α→β 8 γ.

Case M7(M1M2).
If erc(N) 7 M1M2 then N 7 C(N1N2): γ, erc(Ni) 7 Mi i=1,2, N1: γ1→γ2, N2:γ1.
By induction hypothesis CI(Mi) : βi i=1, 2 , β1 8 γ1→γ2 and β2 8 γ1.
From (7.2.4) follows that β1 3 ® or β1 3 β1'→β1", γ1 8 β1', β1" 8 γ2 .
In the first case CI(M1M2) : ® and we are done.
In the second CI(M1M2) : β1" as β2 8 γ1 8 β1'.
Finally observe: β1" 8 γ2 8 γ.

Case M7 (foldµt.α M').
If erc(N) 7 foldµt.α M' then N 7 C(fold N'): γ, erc(N') 7 M', N': [µt.α/t]α7γ ', γ ' 8 γ. By
induction hypothesis CI(M'): β' , β' 8 γ '. Hence by definition, CI(fold M'): µt.α and we have
µt.α 3 γ ' 8 γ.

Case M7(unfoldµt.α M').
Analogous. M

Remarks

7.2.6 One can think of substituting the explicit coercions with the definable coercions
constructed in section 7.1. The resulting term is now typeable in an extension of the calculus
in section 2 including the rule: M:α, α=β ⇒ M:β.
We recall that this rule is soundly interpreted by the model.

7.2.7 Observe that in general there are many possible well-typed terms of the same type
to which the erase-coercions map assigns the same term, that is:

∫c N1 : α , ∫c N2 : α and erc(N1) 7 erc(N2)
However, N1 and N2 receive the same interpretation in the model.

It is an appealing aspect of our semantic approach to the interpretation of subtyping that
many hard coherence problems (see [18]) simply disappear by recalling the uniqueness of the
coercion in the model.

7.2.8 The following is a trivial example of a term that can be typed in the type system
with subsumption but not in the system described in 2.2: ∫Sub λ ft→s. λxt. (λy©. x)(f x):
(t→s)→t .

Page 55

8. Conclusion
We have used a subtyping relation based on infinite trees as the central concept of our work.

In our experience this relation has arisen naturally, giving insights about both the subtypings
valid in certain per-models and the behavior of the Amber implementation. In fact we have
shown that this relation can be used to characterize sound and complete theories for a certain
class of per models and that it can be simply and efficiently implemented. We have also shown
the soundness and completeness of certain rules and the definability of coercions within the
calculus (modulo a strengthening of the notion of type equality). Finally, we have observed that
the whole process of inferring coercions and minimal types can be automated.

In conclusion, let us consider the problem of the extension of our results.
The notions of tree expansion and finite approximation (section 3) can be easily adapted to

larger languages, both with first-order type constructors like products, sums, records and
variants, and with higher-order type constructors like second-order universal quantification. The
important point is that the tree resulting from the expansion is regular. Under this assumption it
seems possible to adapt algorithms and rules to obtain results of soundness and completeness
(sections 4, 5). Caution is necessary in extensions to bounded quantification since some of those
systems are undecidable [24].

About the relationship between the tree ordering and the model, we expect the extension of
the soundness theorem (6.2) to be straightforward. On the other hand we expect technical
problems from the completeness theorem (6.3) when introducing higher-order type constructors
like second-order universal quantification. In particular, in this case, it is not clear how to extend
the separation lemma (6.3.3).

The result on the definability of the coercions has already been obtained for several calculi
with records, variants, and bounded quantification (but without recursion). It is a reassuring
result that shows that the subtyping theory is in good harmony with the calculus.

The fact that terms have a least type has a clear impact on the implementation of the type-
checker. This appears to be a very desirable property towards an automatic treatment of
coercions. The result, at the present state of the art, clearly relies on the structural properties of
the subtyping relation.

Finally, we observe that challenging extensions arise when dealing with non-ground
collections of subtyping assumptions (see [3]). In this case much work remains to be done.

9. Acknowledgments
We would like to thank Martín Abadi for comments on an early draft, and the referees for

their efforts in improving the presentation of the paper.

Page 56

References

[1] Amadio, R. Recursion over realizability structures, Information and Computation., 91, 1,
pp 55-85, 1991. Preliminary version appeared as TR1/89, Dipartimento di Informatica,
Università di Pisa.

[2] Amadio, R. Formal theories of inheritance for typed functional languages, TR 28/89,
Dipartimento di Informatica, Università di Pisa, 1989.

[3] Amadio, R. Typed equivalence, type assignment and type containment, in Proc.
Conditional and Typed Rewriting Systems 90, eds. Kaplan&Okada, Lecture Notes in
Computer Science, vol. 516, Springer-Verlag.

[4] Arnold, A., and Nivat, M. The metric space of infinite trees. Algebraic and topological
properties, Fundamenta Informaticae III, pp 445-476, 1980.

[5] Breazu-Tannen, V., Coquand T., Gunter, C., and Scedrov, A. Inheritance as implicit
coercion, Information and Computation, Vol 93, pp 172-221, 1991.

[6] Breazu-Tannen, V., Gunter, C., and Scedrov, A. Denotational semantics for subtyping
between recursive types, Report MS-CIS 89 63, Logic of Computation 12, Dept of
Computer & Information Science, University of Pennsylvania, 1989.

[7] Bruce, K., and Longo, G. A modest model of records, inheritance and bounded
quantification, Information and Computation, Vol 87, No 1/2, pp 196-240, 1990.

[8] Canning, P., Cook, W., Hill, W., Olthoff, W., and Mitchell, J.C. F-bounded polymorphism
for object-oriented programming, in Proc. Functional Programming and Computer
Architecture 89, 1989.

[9] Cardelli, L., and Wegner, P. On understanding types, data abstraction and
polymorphism, Computing Surveys, 17, 4, pp 471-522, December 1985.

[10] Cardelli, L. Amber, Combinators and Functional Programming Languages, Proc. of the
13th Summer School of the LITP, Le Val D'Ajol, Vosges (France), May 1985. Lecture Notes
in Computer Science, vol. 242, Springer-Verlag.

[11] Cardelli, L. A semantics of multiple inheritance, Info.&Comp., 76, pp138-164
(Preliminary version in LNCS 173, Springer-Verlag, 1984).

[12] Cardelli, L. Typeful programming, in Formal Description of Programming Concepts,
E.J.Neuhold and M.Paul Eds., pp 431-507, Springer-Verlag, 1991.

[13] Cardelli, L., and Longo, G. A semantic basis for Quest, Journal of Functional
Programming, Vol 1, Part 4, pp 417-458, Cambridge University Press, Oct 1991.

Page 57

[14] Cardone, F., and Coppo, M. Type inference with recursive types: syntax and semantics,
Info.&Comp., 92, 1, pp 48-80.

[15] Cook, W. A denotational semantics of inheritance, Ph.D. thesis, Brown University, 1989.

[16] Courcelle, B. Fundamental properties of infinite trees, Theoretical Computer Science, 25,
pp 95-169, 1983.

[17] Courcelle, B. Equivalence and transformation of regular systems - applications to
recursive program schemes and grammars, Theoretical Computer Science, 42, pp 1-122,
1986.

[18] Curien, P.-L., and Ghelli, G. Coherence of Subsumption, minimum typing and type-
checking in F≤, Mathematical Structures in Computer Science, vol 2, pp 55-91, 1992.

[19] Hyland, M. A small complete category, Annals of Pure and Applied Logic 40, 2, pp 135-
165, 1989.

[20] MacQueen, D., Plotkin, G., and Sethi, R. An ideal model for recursive polymorphic
types, Info.&Comp., 71, 1-2,1986.

[21] Milner, R. A complete inference system for a class of regular behaviours, Journal of
Computer and System Science, 28, pp. 439-466, 1984.

[22] G.Nelson (ed.): Systems Programming with Modula-3, Prentice Hall, 1991.

[23] Park, D.M.R. Concurrency and automata on infinite sequences, Proc. 5th GI conference,
Lecture Notes in Computer Science, vol. 104, pp. 167-183, Springer-Verlag, 1981.

[24] Pierce, B.C. Bounded Quantification is Undecidable, Proc ACM Symposium on
Principles of Programming Languages, pp 305-315, 1992.

[25] Salomaa, A. Two complete systems for the algebra of regular events, Journal of ACM,
13,1, 1966.

[26] Scott, D. Continuous lattices, Toposes, Algebraic Geometry and Logic, Lawvere (ed.),
Lecture Notes in Mathematics 274, pp 97-136, Springer-Verlag, 1972.

[27] Scott, D. Data types as lattices, SIAM J. of Computing, 5, pp 522-587, 1976.

[28] van Wijngaarden et al. ed., Revised report on the algorithmic language Algol68, pp 103-
107, Springer-Verlag, 1976.

[29] Wadsworth, C. The relation between computational and denotational properties for
Scott's D∞ models of the lambda-calculus, SIAM J. of Computing, 5, pp 488-521, 1976.

