Subtyping Recursive Types

Roberto M. Amadio?

LIENS, Ecole Normale Supérieure, Paris

Abstract

Subtyping is an inclusion relation between types that
is present to some degree in many programming
languages. Subtyping is especially important in object-
oriented languages, where it is crucial for understanding
the much more complex notions of inheritance and
subclassing. Recursive types are also present in most
languages; these types are supposed to unfold
recursively to match other types.

In this paper we investigate the interaction of
unrestricted recursive types with subtyping, which we
refer to as recursive subtyping, in the context of structural
type matching. This interaction is present in some
modern languages such as Modula-3 [Cardelli Donahue Jordan
Kalsow Nelson 89] and Quest [Cardelli 89].

More precisely, we relate various notions of type
equivalence (0=B) and subtyping (0<f) in a simply
typed A-calculus with subtyping and recursive types.
These relations are induced by:

A collection of models: o=\B, oa<yP
An ordering on infinite trees: a=B, o<pP
An algorithm: a=xB, a<pB
A collection of typing rules: o=RB, o<gP

The mathematical content of the paper consists
mainly in analysing the relationships between these
notions. We show, among other properties:

o= & o=Rf & o=\B = a=P
o<rB & o<Rf & a<xf = o<yB,

We also prove a restricted form of completeness with
respect to the model.

Moreover, we show that to every pair of types in
subtype relation we can associate a term whose

10n leave from Dipartimento di Informatica, Universita di
Pisa. This author's work has been supported in part by Digital

Equipment Corporationand in part by the Stanford-CNR
Collaboration Project.

Luca Cardelli
DEC, Systems Research Center

denotation is the uniquely determined coercion map
between the two types. We then derive an algorithm
that, given a term with implicit coercions, can infer its
minimum type whenever possible.

1. Introduction

A type, as normally intended in programming
languages, is a collection of values sharing a common
structure or shape. Examples of basic types are: Unit,
the trivial type containing a single element, and Int, the
collection of integer numbers. Examples of structured
types are: Int—Int, the functions from integers to
integers; IntxInt, the pairs of two integers; and Unit+Int,
the disjoint union of Unit and Int.

A recursive type is a type that satisfies a recursive
type equation, such as the following equations for
binary trees with integer leaves and for lists of integers
(there are also useful examples of recursion involving
function spaces, which are typical of the object-oriented
style of programming):

Tree = Int+(TreexTree)
List = Unit+(IntxList)

Note that these are not definitions: these are equational
properties that Tree and List must satisfy.

We use a term such as pt.Unit+(Intxt) (the type t
that is equal to Unit+(Intxt)) to indicate the canonical
solution of a type equation, which we can show to exist.
To say that L £ ut.Unit+(Intxt) (where £ means equal by
definition) is the solution of the List equation, means
that L must provably satisfy the equation. This is
achieved via an unfolding rule:

pto = [uto/tlo

meaning that pt.o is equal to o where we replace t by
pt.o itself. In our example we have L = pt. Unit+(Intxt) =
[L/t](Unit+(Intxt)) = Unit+(IntxL), which is the
equation we expected to hold.

If types are collections of values, subtypes should be
subcollections. For example, we can introduce two new
basic types L (bottom), the collection containing only
the divergent computation, and T (top), the collection of
all values. Then L should be a subtype of every type, and
every type should be a subtype of T. We write these
relations as L<a and o<T.

Function spaces o—f have a subtyping rule that is
antimonotonic in the first argument. That is:

o-B<o—p if o' <o and B<P

Adequate subtyping rules can be found for all the
other type constructions we may have. For example, for
products we have oxB < a'xf'if o < o' and B < fB'.
Similarly, we have o+f < o'+B' if a < ' and B < f'. To
deal with recursive types, however, we must first talk
about type equivalence.

To check whether two recursive types ps.o’ and pt.p’
are equivalent, we could assume s=t, and attempt to
prove o'=B' under this assumption. Unfortunately, the
following types:

otpsInt—s B4 ptInt—>Int—t

expand both to Int—Int—Int—Int—... , but the
assumption s=t does not allow us to show Int—s =
Int—Int—t; we get stuck on the question of whether s =
Int—t.

Another attempt might involve expanding the p's,
but by unfolding alone we can get only:

o= psInt—t = Int—(us.Int—t)
Int—>Int—(us.Int—>t) = Int—>Int—o

B = ptInt>Int—>t = Int>Int—(ut.Int—Int—t)

Int—Int—p

I n

which, after unfolding, leads us back to the original
problem of determining whether o=.

However, in the process above we have found a single
context C[X] £ Int—Int—X such that a = C[a] and B = C[B];
i.e., both o and f are fixpoints of C. We shall be able to
show that all the non-trivial (formally, contractive)
type contexts C[X] have unique fixpoints over infinite
trees. Hence the necessary rule for determining type
equality can be formulated as follows:

o =Cla] A B =CIB] ACcontractive = a=§ (1)

It remains to be shown how to generate these contexts
for any two types that expand to equal infinite trees.
This can be done via an algorithm, and in fact a complete
one.

What is, then, subtyping for recursive types? The
intuition is that two recursive types o and f are in
subtype relation if their infinite unfoldings are in this
relation, in an appropriate sense.

We'll see that this informal idea can be axiomatized
via the following (finitary) rule:

(s<t = a<P) = ps.a<ptP (2)

where s occurs only in @, and t occurs only in B. That is, if
by assuming s<t we can verify a < 3, then we can deduce
the inclusion of the recursive types ps.o < pt.p. For
example, if we have Nat<Int, NatList 2
us.Unit+(Natxs), and IntList 4 put.Unit+(Intxt), then we
can safely deduce NatList<IntList from (2).

In general, rule (2) needs to interact with rule (1).
Suppose we want to check, e.g., Y<8, where:

Y £ ps.Int—s S 2 ut.Nat—Nat—t

Attempts to unfold yand § fall into the same difficulties
as before. This problem is solved by a reduction to an
equality problem, which we solve by rule (1), plus rule
(2). That is, we first show that & 2 ut.Nat—t =
pt.Nat—Nat—t = 8. After that, we can use rule (2) to
show y<§&', and hence y<3d.

2. Calculus and Tree Ordering

We consider a simply typed A-calculus with recursive
types and two ground types L (bottom) and T (top); the
latter play the roles of least and greatest elements in the
subtype relation.3

2.1 Types and Terms
In an informal BNF notation, types are defined as
follows, (t,s,... are type variables):

o=t LTI (a>p) | (uto)

Terms are denoted with M, N, ... ; the following rules
establish when a term M has type o (M:0).

(assmp) x%*:o

(=D M:B = Ax*M): a—-p
(—=E) M:o—B, N:a = (MN): B
(fold) M: [pto/tle = (foldy, , M) : pto

(unfold) ~ M:pt.o = (unfoldy, o M) : [ut.o/tlo
2.2 Subtyping Non-recursive Types

There is a well-established theory of subtyping for
the non-recursive types (i.e. types non containing p's).
Basic motivations can be found, e.g., in [Cardelli 88]. The
rule are:

1) Ll<o (var) t<t
(M a<T (=) o<, <P = asp<a—p

These rules induce a partial order on the collection of
non-recursive types.

2.3 Tree Expansions and Approximations

As we have seen in the introduction, simple unfolding
does not induce a sufficiently strong type equality. We
have also seen that it is natural to consider types with
the same infinite expansions as equivalent. Infinite ex-
pansion can be rephrased as an approximation property
such that the semantics of a type is entirely determined
by the semantics of its finite syntactic approximations.

We start formalizing this idea by explaining how to
associate a finitely branching, labeled, regular tree with
any recursive type. Paths in a tree are represented by
finite sequences of natural numbers 7,ce w*, with nc for
concatenation and nil as the empty sequence. Nodes in a
tree are labeled by a ranked alphabet L = {19, T9, 22} U
{(t I t is a type variable), where the superscripts
indicate arity. A tree Ae w*—L is a partial function from

3 Conventions: £ stands for equality by definition; = for
abbreviation or syntactic identity; F precedes a judgment that
is provable in a certain formal system; > denotes thelinguistic
implication; = is metalinguistic implication; [U/x]V denotes
the substitution of U for x in V.

(paths) ®* into (node labels) L, whose domain is non-
empty and prefix-closed, and such that each node has a
number of siblings equal to the rank of its label.

We call Tree(L) the set of such trees, with Treeg,(L)
for the finite ones. We now define a function
Te Type—Tree(L) by induction on the pair (Iml, o) where
Inl is the length of the path m in the tree associated
with o. The following schemas are meant to suggest the
correct definition:

TL & L TT AT Tt 4t
_)

Ta—B2 /\

To TR

1 if o=pty...opt.t (4t iel.n, n=0)
Tut.o &

Tlut.o/tlo. otherwise

Remarks

T induces a bijection between Treeg (L) and non-
recursive types. We denote with T-1 its inverse. This
bijection is sometimes left implicit.

Tree(L) is a complete metric space with respect to the
usual metric on trees [Arnold Nivat 80]; in fact, it is the
completion of Treeg,(L). Hence, Tree(L) has unique
solutions for recursive contractive tree equations.

Given types o, B, the problem of deciding if To = T is
reducible to the problem of the equivalence of
deterministic finite-state automata [Courcelle 83].

We now extend the partial order on finite trees
(induced by 2.2) to infinite trees, by introducing a notion
of finite approximation. We define a family of functions:
{1k € Tree(L)>Treeg, (L)} ke o Given Ae Tree(L) its cut
at the k-th level (A|,) is defined as follows (T and |
indicate divergence and convergence for partial
functions):

T if Inl >k

A(m) if Iml <k, or Inl =kand AT

L if Izl =k, A(m)}, and & is positive in A
T if Inl =k, A(mN, and 7 is negative in A

A|k(1'C) 4

where we say that « is positive (negative) in A if along
the path © from the root we select the left sibling of a
node labeled — an even (odd) number of times.

We can then extend this definition to types:

ajx & TI(To)|x) (anon-recursive type).
Definition 2.3.1 (tree ordering)
For A,B € Treeg(L): A< B © TIA<TIB (2.2)
For ABe Tree(L): A<,B & Vk (A|<aBly)
For o, € Type: o<tp e Ta<, T

Note that <, is a partial order on Tree(L), and a<pf is a
preorder on recursive types such that Vk.ou | <po.. We can
now show, e.g.: ut.T—t < pt.L—(L-t).

3. An Algorithm

In this section we show that the tree ordering we
have defined on types (2.3.1) can be decided by a rather
natural modification of the algorithm that tests directly
(that is, without reduction to a minimal form) the tree
equivalence of two types.

3.1 Canonical Forms

The first step towards formalizing the algorithm is to
introduce canonical forms for types and systems of
equations.

Next we define maps that associate with such
representations the corresponding regular trees.
Moreover, we give effective ways of going back and forth
among the representations while preserving the
represented tree.

Proviso

In order to have a simple correspondence between
recursive types and systems of regular equations, we
assume that all variables, both bound and free, in the
types o, ..., &, under consideration are distinct. When a
type is unfolded, the necessary renaming of bound
variables must be performed. For example,
(nt.t—s)—(us.t—s) should be rewritten as (Lv.v—s)—
(ur.t—r).

3.1.1 Recursive Types in Canonical Form

Henceforth, Tp denotes the collection of non-recursive
types, and puTp denotes the collection of recursive types
in canonical form, defined as follows:

o z= LITItlo-B | pto—op

where in the case pt.o—f, t must occur free in o—p.
Hence the body of a p in canonical form must
immediately start with an —; in particular, it cannot be
another p. The introduction of uTp simplifies the case
analysis in the following proofs.

It is not difficult to check that for every type o there
is a type B in canonical form such that Ta=Tf. The crucial
observation is that Tut.ps.y{t,s] = Tuv.ylv,v]. See also
4.1.3 for a proof of this fact that uses the rules for type
equivalence.

3.1.2 Regular System of Equations in Canonical Form
Systems of regular equations are a well-known tool for
representing regular trees (see for example [Courcelle 83]).
For our purposes a regular system of equations in
canonical form is an element of Tenv, that is, a finite
association of distinct type variables (members of Tvar)
with types in a specific form:

Tenv &
{e € Tvar — Tp | Dom(e) is finite and Vte Dom(g).
e®u=LITIslt; >ty
where s¢ Dom(e) and t;, tye Dom(e) }

A pair (0, €) € Tp x Tenv represents the following
system of regular equations (not necessarily in canonical
form):

ty =
s = g(s)

(ty a fresh variable)
for each se Dom(g)

It is important to observe that this system defines a
contractive functional (Gy,..., G,) over Tree(L)™1 where
n = |Dom(e) |, Dom(e) = {s;, ..., s,} and

GolAg, o AY 2 [Ap/ty, ... A /sl
Gi(Ag, - Ap) & [Ay/ty, ... Ay/s lels) (1<i<n)

Reach(o,e) denotes the variables reachable from the
free variables in o by applying the equations in €.

3.1.3 Definition (solution of a system)

We denote with Sol(e, €) the first component Bj of
the solution (By, ..., B,) in Tree(L)™! of the system
associated with (a, €).

Remark

Given a system of regular equations in canonical form,
it is possible to minimize the number of variables by a
procedure that is analogous to the one for minimizing the
number of states in a deterministic finite-state
automaton. This immediately provides an algorithm for
deciding the equality of the trees represented by two
regular systems of equations in canonical form.

3.1.4 Proposition (From rec. types to regular systems)
There is a pair of maps:
*e Type—Tvar, Ee Type—Tenv, such that:
Voe Type. Ta = Sol(a*, Ear)
Proof
It is enough to prove the result for every term in puTp.
Then the lemma follows by 3.1.1. We now define (*, E) by
induction on the structure of ye pTp.

Cases y=t, =1, and y=T . Take y*2s and Eyi{s=%}.

Case y=0—p.

We denote with plt;...t;] for pe L\{t;...t,} a type in Tp
of the form p(ul..u#P), where #p is the arity of p, and
[ul..u#p} c {ty...t).

Assume, by induction hypothesis, that
Eo={t,,;=pilty..th.1] | iel..n}, of =t , .
EB=(tn414=qjltns2-tasms1] | je1..m}, and B*=t;,5. Then Ey
is the folfowing system and y*4t;:

t1 = r1[t1"'tn+m+1] = t2—)tn+2'

ty = Boltyetyimaal = Piltyetnyg]

tn+1 =Tn+l [tl"'tn+m+1] = pn[tZ'"th]

tn+2 =Tne2 [tl'"tn+m+1] = ql[tn+2 "'tn+m+1] e

tn+m+l = 1'n+m+1[tl"'tn+m+1] = qm[tn+2 "'tn+m+1]
Case y=pt.0—p.

Let y'=[y/tla—[y/tIB (of course Ty'=Ty). As in the
previous case, assume Eo={t;,;=p;[t,...t,, ;] | iel..n},
o=ty , EB:[tn+1+j=qj[tn+2'"tn+m+1] | je1.m) and p*= n+2°
Then Eyis the following system and y*at;:

t1=1yltptpymer] = ty=>tho

ty = Boltyetnymetl = ooty T pltyetnyg]

tn+1 =Th41 [tl"'tn+m+l] = t2'_)tn+2 l pn[tZ"'th]
t=Tnaltietymegl = ty—=th,0 Iql[tn+2'"tn+m+1]
tn+m+1 = rn+m+1[tl"'tn+m+1]5t2—)tn+2 Iqm[tn+2’“tn+m+1]

By ty—ty o I pilty...ty 1] we denote ty—t, ., if pi=t, and
pilty.--t, 1] otherwise. Analogously, t;—t, . gty
thym+1] denotes ty—ty,, if gj=t, and qj [thig-tnimal
otherwise. Next proceed by induction on (17!, y) to prove
Ta(r)=Sol(a*, Ea)(n). The only difficulty arises for
y=pt.o—B. In order to apply the induction hypothesis
one needs to show, for example, Sol(t,, EY) = Sol([y/tlo,
Ely/tloy. O

3.1.5 Definition (From regular systems to rec. types)
We define a function (-, -): TpxTenv — uTp by
induction on (1 Dom(e) |, o:
(Le) s (Te)aeT
{a—B,e) & (o,e) — (B,e)
(t,e) & put.le(t),e\t) if te Dom(e)
where e\t is like € except that it is undefined on t.

(te) 2t if te Domf(e)

3.1.6 Proposition (More on commuting translations)

(1) For any system of equations, the first component of
the solution coincides with the tree expansion of the
associated recursive type:

V(o, €) € Tp % Tenv. Sol(o, €) = T{o,e)

(2) The map (,) satisfies the conditions:

1.{Le) = L
2(Te) = T
3.(t,e) = t if t¢ Dom(g)
4.T(t,e) = Te(t),e) if te Dom(e)
5.T(a—B,e) = T(o,e) — (B,e)
6.T(o*Ea) = To

Proof

(1) Show by induction on (Ixl, o) that T{a,e)n) =
Sol(o, &)(w). The interesting case arises when os=t,
te Dom(e). Then, Sol(t, €) = Sol(e(t), &) = Sol(t; —ty,e),
where g(t) = t;—t;. On the other hand, T(t,e) = Tut.(e(t),
e\t) = TI(t,e)/tl{t;>ty, e\t). In order to apply the
induction hypothesis one needs to prove T([{t,e)/tl(t;,
e\t) = T(t;, &) (i=1,2).

(2) Conditions 1, 2, 3, 5 follow by definition. Condition
4 follows from Sol(t,e) = Sol(e(t),e) and part (1).
Condition 6 follows from prop. 3.1.4 and part (1): To. =
Sol(a*, Ea) = T{o*, Ear). OO

3.2 Computational Rules

We specify the algorithm as a set of rules for
judgments (corresponding to procedure calls) of the form
e o a<P, where Z={t;<sy,..., t;<s,}. The algorithm
execution can be recovered by reading the rules
backwards from the conclusions to the assumptions. In
the following, t,s,r,u denote arbitrary variables; a,b
denote variables not in the domain of ¢; % is a finite set of
subtyping assumptions on pairs of type variables; and
o,Be Tp.

For Z=({t;<sq,..., ty<s} let:
Vars(Z) 2 {t;,5q,...,ty,8,)
Ife < Vars(Z)nDom(e)= &

A judgment Zeooa<fP satisfies the initiality
condition (or equivalently, is an initial goal) iff o=t,
P=s, & can be decomposed in €;Ue, so that te Dom(e;) and

se Dom(e,), Dom(e;)nDom(e,) = &, and Zfe.

Observe that, by the shape of canonical systems, the
expansions of variables according to ¢ is always
synchronized; that is, in X,eoo<f we never have a
situation where a is a variable in Dom(ge) and B is not, or
vice versa.

(assmp,) Ze>Dt<s if t<seX

(Lp) Zeo <P

(To) e D oa<T

(vary) %, D a<a

(>4) Zeoako, Zeodf<f =
Z,e D o—-f<a'-p'

(1) Tuftcsleoelt) <e(s) =
Teot<s if t,se Dom(g)

Note also that there are two conceptually distinct
uses of the rule (assmp,): one for the initial assumptions
contained in X, and one for the assumptions inserted
during the computation.

If one desires to treat more general systems of
equations, then it might be necessary to introduce other
p-rules that take into account situations in which just an
g-expansion on the left (or the right) is needed. In these
cases we would have rules like:

(assmp'p) Zeoo<f if a<PeX

(Wya) Zult<a'—Ble o e(t)<a' - =
Ze D t<o' > if te Dom(g)

(Hpp) Zufo'—PB'<s)e o a'—Pp'<els) =

Ze D o—p'<s if se Dom(g).
3.2.1 Generating the Execution Tree

Given a goal L O t<s, the algorithm consists in
applying the inference rules backwards, generating
subgoals in the cases (—,) and (). This process is
completely determined once we establish that (assmp,)
has priority over the other rules and (L,) has priority
over (Tp).

A tree of goals built this way is called an execution
tree. If no rules are applicable to a certain subgoal, that
branch of the execution tree is abandoned, and execution
is resumed at the next subgoal, until all subgoals are
exhausted.

3.2.2 Termination

The execution tree is always finite. Observe that if t
< s is the assumption that we add to Z, then t and s are
type variables in Dom(g). Also observe that the (—) rule
shrinks the size of the current goal by replacing it with
subexpressions of the goal, and that each application of
a p-rule enlarges X.

The bound on the depth of the execution tree for o<,
is of the order of the product of the sizes of the two
systems Ea,, Ef.

3.2.3 Algorithm Ordering

An execution tree succeeds if all the leaves
correspond to an application of one of the rules (assmp,),
(Lp), (T), and (vary). Dually, it fails if at least one
leaf is an unfulfilled goal (no rule can be applied).

We write |, X,eot<s iff X,eot<s is an initial goal
(3.2) and the corresponding execution tree succeeds.
Given recursive types o, we write:

0<pB & kD, EaUER o a¥<p*
For testing type equality, we can define:
0=pB & a<pB A B<po

Alternatively, we could directly define a (more
efficient) type equality algorithm, along the same lines
as the subtyping algorithm.

3.3 Soundness and Completeness of the Algorithm

We now show that the algorithm is sound and
complete with respect to infinite trees. First we prove
soundness and completeness for non-recursive types.
Soundness is then derived by observing that a successful
execution of the algorithm on some input must also be
successful on all the finite approximations of the input.
Completeness is proven by examining a failing execution
tree, and concluding that the trees corresponding to the
input must have been different to start with.

3.3.1 Lemma (Derived structural computational rules)
Given the assumptions in 3.1.2, 3.2 and 3.2.3 we have:
Y-weaken

If FpZge Dt<s and ZUZ' #te then FpZUZ' e O t<s.
Z-strengthen
If FAXUZ e o t<s and Reach(t—s,e)nVars(Z) = @
then FpZe o t<s.
e-weaken
If FAZ,e O t<s, Reach(t—s,e)nDom(e') = &, ZHeue',
and Dom(e)nDom(e') =@ then F,Teue' o t<s.
e-strengthen
If FpXeue's t<s and Reach(t—s,e)n"Dom(e') = &
then F5Ze o t<s.

3.3.2 Proposition (Completeness of <, for non-rec. types)
Given a,Be Tp non-recursive types then
a<rf = oa<,fB.
Proof (sketch)
Let e £ EUER. We show a<_B = VEI. Zte = FpZe o
o*<B* by induction on the structure of o and B. [

3.3.3 Proposition (Soundness of <, for non-rec. types)
Given o,fe Tp non-recursive types then:
o<sB = oc<T[3.
Proof (sketch)
We show 5,6 o o*<B* = o<_ B, where ¢ £ EqUER,
by induction on the structure of oand B. O

3.3.4 Lemma (Uniformity of <,)

Let o,Be Type. If o< then Vk.o i <aB |y -
Proof (sketch)

Given any k, from the execution tree of o<, it is
possible to extract a successful execution tree for
o x<aB k- The point is that the use of the (assmpy) rule
can be arbitrarily delayed by repeating a certain pattern
of computation. O

3.3.5 Proposition (Soundness of <,)

Let 0,Be Type; if o<B then a<TB.
Proof

From 3.3.4 we have: a<pB = Vk.o|, < B[k From
3.3.3 and the definition of <p we have: Vk.at| <gin Bl
and (x<TB. O

3.3.6 Lemma (Faithfulness of <, w.r.t. paths)

Let lead(o,e) £ Sol(o,e)(nil) be the first label of o in
e (that is, skipping initial variables in o,€).

Let Z,e o a<P be the root of an execution tree,
terminating with success or failure leaves, obtained from
the rules in 3.2. Every node Z',e > o'<f' in the execution
tree determines a path © from the root to itself, given by
considering the occurrences of (—4) and ignoring the
other rules. Then:

1) Either o' and B' are both (bound) type variables, or
neither is.

2) To(m) = lead(o',e) and TP(n) = lead(B',e).

Proof
By induction on the depth of the execution tree. [

3.3.7 Proposition (Completeness of <)

Let o,BeType; if a<TB then o<,p.
Proof

We show —o<B = = Ta<,TB.

By assumption, we have an execution tree for a<,f
which contains a failure node Z,e 5 o'<f', determining a
path as in Lemma 3.3.6. By 3.3.6.(2), Tau(r) = lead(o',€)
and TB(n) = lead(B',e). Hence we have a common path in
To and TR corresponding to the failure node. The
following table summarizes the possible cases for o',p'
where the entry indicates either failure or the rule being
applied by the algorithm; the n.a. (not applicable) cases
come from 3.3.6.(1).

oL T s b B'—p"
4 l 4 i n.a. A 1

T lfail T na fail fail

t |na na assmp-|. n.a. n.a.

a | fail T n.a. var-fail fail

o—a" | fail T n.a. fail —

Every “fail” in the algorithm corresponds to a
situation where the two trees cannot be in the inclusion
relation. O

4. Typing Rules

In this section we introduce a certain number of axioms
and rules that induce an equivalence and a preorder on
the collection of types. Moreover, we discuss the
relationship with the corresponding model, tree, and
algorithm notions.

4.1 Type Equivalence Rules

We say that a type o is contractive in the type
variable t if either t does not occur free in o, or o can be
rewritten via unfolding as a type of the shape aq—0p.
We write this fact as ault.

It is now easy to observe that the contractiveness of o
in tis a sufficient (and necessary) condition to enforce the
contractiveness of the following functional on the space
Tree(L) (2.3):

Gyt (A) £ [A/tTa AeTree(L)

([A/t]Ta denotes the substitution of the tree A for the
occurrences of t in To..)

This remark suggests the following rule that is
generalized to a larger calculus in [Cardelli Longo 90]:

[B/tle=B, [B'/tloa=P, ot = B=p

In words, if two types B and B' are fixpoints of the same
functional oft], then they are equal since contractive
functionals have unique fixpoints. This rule was also
inspired by a standard proof technique for bisimulation
[Park 81].

Finally it is convenient to identify pt.t = 1.

(contract)

Hence, in this section we consider the equivalence:
F o=B

meaning that o = can be derived in the congruence
induced by the (contract) rule, and the (fold-unfold) and
(u-1) axioms.

(or o= B)

4.1.1 Proposition (Soundness of the eq. rules w.r.t. trees)
a=R B = To=TB

Proof
Immediate by the previous considerations. O

4.1.2 Derived Rules
By means of (contract) and (fold-unfold) it is possible
to prove new interesting equivalences, for example:

(1) pts—t
(2) ptps.a

Ht.s—(s—t)
pv.[v/t,v/slo. (u-contraction)

4.1.3 Reduction to Canonical Form

It easy to show that any recursive type is provably
equivalent (=) to a type in canonical form. The strategy
can be described as follows:

- Use unfold to remove p's that do not bind variables.
- Use p-contraction to reduce sequences of s to one .
- Use P-1 to reduce to L all subtypes of the shape pt.t.

4.2 Completeness of Equivalence Rules

By the strong connection between regular trees and
recursive types we show that any time two recursive
types a, B have the same tree expansion Ta=Tp, then we
can conclude - a=p.

First we show how to solve systems of type equations.
Then we introduce the notion of equational character-
ization of a type; that is, how to characterize a type by
a system of type equations. Finally we use equational
characterizations to prove the completeness theorem.

In this section we use the following notation. If y has
free variables {uy..u,} {t;..t;}, then we write Yo...0.]
for the substitution [0y/tg ... o/t]y. In particular,
Ylt;...t,] emphasizes a superset of the free variables of ¥.

4.2.1 Lemma (A system of equations has a solution, by
iterated elimination)
Every system of n equations in n variables:
t=y[t;...t,] (iel..n)
has a solution in the congruence induced by the axiom
(fold-unfold). That is, there are ay...0p, such that
Foy=vyloy...a,] (iel..n).

4.2.2 Lemma (A system of contractive equations has a
unique solution)
Assume that, for ie 1..n, we have two sets of types o,
By, related by two systems of equations:
Fo=ylog...o] FBi=%lB;--Byl
such that y[ty...t,]\tj forije1..n. Then, for all i: F oy=;.

4.2.3 Definition

A node context plt;...t;] for peL (see 2.3) is a type of
the form p(uy..uy,), where #p is the arity of p, and
{ug.uy,} < {ty...t,). (Hence, a node context is contractive
in each t;.)

4.2.4 Definition

A type aeType is equationally characterized (eq.
char.) if there are types oy..0, with a=0;, and there
are node contexts pjlt;...t], iel..n, for which
F oy=p;loy...op].

An equation pjlt;...t,] in a system is reachable from a
variable ty if k=j, or if it is reachable from the variables
in pylty...t,] (see 3.1.2). An equation is reachable from
another if it is reachable from any of the variables in
the other.

4.2.5 Lemma (Building an equational characterization)

Every term aeType has an equational characteriza-
tion such that all equations are reachable from the first
one.

Proof (sketch)

The construction is basically the same as the one in
3.1.4. It is enough to prove that every term yepTp is
equationally characterized by induction on the structure
of v. Then the lemma follows by 4.1.3, and by the
invariance of equational characterization modulo
provable equivalence. O

4.2.6 Lemma

Assume To=Tp and F o=p(ay..04,), F B=q(Bl..B#q),
where p,q € L. Then p=qand Toy=Tp; forallie 1.#p.
Proof

By soundness, Ta=Tp(oy..04,,) and TR=Tq(B;-Byq)-
Hence, p=q and To;=Tp; by definition of T. [

4.2.7 Theorem (Completeness of type equivalence rules)
If To=TR then a=gf
Proof
The idea of the proof is as follows: given o and B such
that Ta=TpB we produce their corresponding equational
characterizations, say ec(o) and ec(B). By a collapse of
“equivalent” equations we derive a new equational char-

acterization ec(y). The solutions of the (smaller) system
associated with ec(y) can be replicated to produce
solutions for the systems associated with ec(o) and
ec(B). Hence we can apply twice Lemma 4.2.2
(uniqueness of solutions) and then transitivity to conclude
0.=RB.

Let Ta=TB; by Lemma 4.2.5, o, are equationally
characterized by oy, t;=p;[t;...t,] and Bj t=qjlt;-..tr] sO
that all equations are reachable from the first ones.

From these o;,8; we generate a sequence of pairs
(Ah Bh) where Ah,bh are equivalence classes of o; and f.
respectively. Moreover, for each h, 041,042€ AP | an
[3!},[3]-26 Bh, we shall have the invariant Toy=Toyp=TP;

Bis.

\J/\Zle start with the pair ({a},{B}). At each step we
consider all the pairs o;,f; such that oe AN and BjeBh
for some h. We indicate by o; ;v some o; depending on
both i' and i"; similarly for B(j‘,j")- If o5 = piloy 1y
O‘(i,%p,.)) and f; = q; (B(j,l)“'B(j,#qj))' we have, by Lemma
4.2.6, Pi=q; and To; 1)=TB 1y - Toa(i/#pi):TB(j,#p) We add
all the pairs o',B'e {0y 1y,B,1y -~ O, p) B p i)} in the
following way, respecting t]he invariant above:

- if a'e AP and B'e BM for some h, then nothing is done;

- else, if a'e Ab1, and B'e Bb2, with h1#h2, then we
replace the pairs (Ah1,Bh1) and (Ah2,Bh2) by
(Ahl UAhz,Bhl UBhZ);

- else, if a'e AR we replace the pair (A, Bh) by
(AR, BhU(B));

- else, if B'eBM we replace the pair (Ah,BM) by
(AhU{or),Bh);

- else we add a new pair ({o'},{B').

We stop when the list of pairs no longer changes. This
process terminates because there are at most n-m pairs to
consider.

The process above produces two partitions of ¢; and B;
of size k<n, k<m, for some k. These are total partitions
since all equations are reachable from the first ones.
These partitions determine two functions o:1..n—1..k and
m:1.m—1..k such that:

- o(i)=n(j) < aye Ah B,eBM forsome h
- 6(i1)=0(i2) & 047,046 AP for some h
- n(i1)=n(i2) & B;1,Bj€ BN for some h

Given these partitions, we now define a system of k
equations ty = ry [ty..t;], which will turn out to be
equivalent both to the p; and the qj systems. For he 1.k
we have:

tp =rplt;te] where

Toy bt] = Piltgry---tom)]

rn(])[tltk] qu tn(l)tn(m)]
We need to argue that this is a proper definition, since
we can have, for example, o(i)=n(j) for some i,j. We show
that when this happens, we also have by construction
that rgg) [ty.tl=ryglty.t]. Similarly for the other
possible conflicts: o(il)=c(i2) for some i1,i2, and
n(i1)=n(i2) for some j1,j2. To show these facts, we further
investigate the properties of ¢ and n.

- o(1) = ©(1) since o, start in the same pair (Al,B).

- if o(i) = n(j)) then p;=q; . Moreover, let o; = p;loy...0p]
Epi(a(ill)...(x(il#p)) and B] = q] [Bl"'Bm]qu(B(j,l)"'B(j,#q.) be
the i-th and j-th equations in the respective systems.
Then o;e Ah, Bje B for some h (property above); the pair
oni,Bj was considered in the process above; that is, the
pairs o 1),B,1) - a(il#p,)’B(i,#p) were also added to the
list. Therefore o(i,1)=n(j,1) ... oi,#py)=n(j,#q;), and
Pi(tg(i,l)"'to(i,#p.))z f(tn(‘,l)"'tn(j,#qj))‘ This is the same as
saymg pi[to(l)"'{c(n) Eq] tn(l)"'tn(m)]'

- if o(il) = o(i2) then p;;=p;,. Moreover, let o4 =
Pi1{01,1)--Oin #p) AN Oy = PiplQigy 1)---O4ig 4p,) be
the il-th and i2-th equations in the o system. Then
041,046 AR for some h (property above). Consider any
BjeBh ; the pairs 041,B;, 04p,; were considered in the
process above, that is the pairs OL(HJ),B(L])I O‘(iz,l)/B(',l)
were also added to the list. Therefore o(il,l):n(j,f)=
o(i2,1), and similarly up to o(il,#p;;)=0(i2,#p;,). Hence:
Pi1(toti1,1)-toti1,#p,) =Pia(to2, 1) to(i2, #p,): This is the
same as saying p;; ‘1'0(1)"'tc(n)]Epi2 toytoml-

- similarly for n(il) = w(i2).
Hence we conclude:
if o(i) = n(j) then
ro.(i) [tl "tk]Epi[tc(l)"‘t()'(n)]qu [tﬂ:(l)tn(m)]Ern(l)[tl tk]
if o(i1)=0(i2) then
Toin L1t 1=Pir [ty tomyI=Pial toqr) - tom)]
SToi2) [t]
similarly for n(j1)=n(j2)

Now by Lemma 4.2.1 we can construct a solution of the
system ty = ry [t;..t, I; that is, we can obtain 7y;..y, such
that Fy, =1 [y % 1

Then I_Yﬁ(l) =r0(i)[Y1..'Yk]Epl[yc(l)"yc(n)] for all i.
Therefore, the y's (when appropriately replicated)
satisfy the same system as the a's, and by Lemma 4.2.2
we have F 0;=Yy;) . Similarly, the y's satisfy the B's
system, and + f; =Yn(j)- Moreover, o(1) = n(1), hence
- 0=0l1 =YU(1)=YR(1)=BIEB by transitivity. O

This constructive proof is based on the one in [Salomaa
66] (see also [Milner 84]), but differs in an important point
as, in addition, we must deal with equivalence classes of
types.

4.3 Subtyping Rules

At first it is not clear how to define a rule for the
subtyping of recursive types that is sufficiently
powerful. In particular, observe that the computational
rule (L) in section 3.2 does not have any apparent
logical meaning as the assumption is always valid under
a classical reading of the entailment relation.

We now introduce a rule, (ug), whose soundness is
clear. Later, in section 4.4, we will show that in
conjunction with the type equivalence rules, (uy) leads to
a subtyping system complete with respect to the tree
ordering.

We denote with I a set {t;<sy, ..., t,<s;} of subtyping
assumptions on type variables. We write a subtype

judgment as: T" > o<f.

Define a formal system for deriving this kind of
judgments as follows; this is based on the o= congruence
in 4.1:

(eqR) a=f = I'oo<p
(transy) I'oo<B, 'oP<y = I'ooxy
(assmpg) t<se I' = I'Dt<s
(1R) I'ol<a
(Tr) 'ca<T
(=R) F'oo<a, ToB<Pf = I'oo-sB<a—p
(ug) F'uft<s)} Da<p = I'opto<upsp
with t only in o; s only in B; t,s not in T’

We say o< if we can derive @ > o<f. The last rule
was proposed in [Cardelli 86] in the specification of the
Amber programming language as a first attempt to define
a theory for the subtyping of recursive types.

4.3.1 Proposition (Soundness of the rule ordering w.r.t.
the tree ordering)

If a<gP then a<yp.
Proof

We prove the more general statement:

Iflg {ty<sy, -, ty<sy) D o<B and oy<pPy, .., o <7 B,
so that {t;,sq, .., t,,s JNFV(ay, By, .., o..By) =9
then [oy/ty, B1/sq, -, 0/t By/sylo

<t log/ty, By/sy, - 0/t B/ S,1B-

The proof goes by induction on the length of the
derivation k. The only interesting cases arise for (i)
and (eqg).

For brevity we write lists such as t;<sy, .., t,<s in
the form t;<s; for a free i.

Case (ug) {ti<s, t<s} Do<f = ({t<s;) o pt.o < ps.p
with t¢ FV(B); se FV(a); t,s # t;,5; for any i.
By induction hypothesis:
Voy<7 By, a<pBs.t. {t;,s;,t,s)NFV (o, By,0.B) = @.
Lou/t, By/s; o/ tla <p [ay/t, By/s, B/sIB
Define o221 a2 [o/t, Bi/s;, o/ tlo
oL L ™2 ay/t, By/s, B/sIB
Applying the induction hypothesis with o=an,
B=p"we obtain
a1 < B+l for every n.
For every k we can then choose an n sufficiently
large so that:
(utLog/t, Bi/silod g =g oy <p By
=1 (sLog/t, Bi/siIB) |
Hence, by definition of < for recursive types, we
have shown:
[0/t Bi/sil(ut.o) <p [oy/t;, B;/s;1(us.B)
Case (eqgr) oa=gB = ({t<s])>o<B
Since =g is a congruence, we have
[al/tl, Bi/Si](X =R [al'/ti' Bi/si]B-
By soundness of = we have
[(Xi/tir Bi/si]o“ =T [(xi/til Bi/si]B~
Finally,
[oy/t;, Bi/silo < [oy/t;, Bi/s1B

since <risa preorder. [J

4.4 Completeness of Subtyping Rules.

In proving the completeness of the subtyping rules
w.r.t. the tree ordering, it seems helpful to go through
the algorithm. The rather obvious approach of
extracting a proof from a successful execution tree is
complicated by the lack of correspondence between the
computational rule (n,) and the rule (ug), as the former
can be applied repeatedly on the same variable,
whereas the latter can be applied at most once.

So, while in the proof of completeness of the type
equivalence rules we relied on minimization techniques,
here we introduce some redundancy in order to find
equivalent systems that never expand twice the same
variable by means of (l,).

If k5 Zeot<s (see 3.2.3), we say that (the successful
execution tree of) the initial goal X,eot<s has the one-
expansion property iff the following is true: for every
te Dom(e) and for each path p of the execution tree, t is
expanded in a (1) node of p at most once.

It follows that with one-expansion, each variable can
be inserted in X in a unique way, so that for each pair of
assumptions t{<sj, t,<s; € £ we have that t{,s1,t,,s, are
pairwise distinct. Moreover, if we consider two (j1,)
nodes X,eoty<sq, L,edty<s, on the same path then
ty,s1,t,8; are pairwise distinct, and if we consider a (j14)
node Zeot;<s; and an (assmp,) node Z,eoty<s, on the
same path then either ty=t,, s;=s, or t;,s{,t,,5, are
pairwise distinct.

4.4.1 Lemma (Putting recursions in lockstep)

If FpX,eot<s then there are 6, r, u such that
FaZ,6or<u, Sol(r,0) = Sol(t,e), Sol(u,0) = Sol(s,e) and
Z,0or<u satisfies the one-expansion property.

Proof

Given the initial goal X,eot<s and the related
successful execution tree we build a new judgment X, 0or<u
such that the following properties hold:

(a) Z,0or<u is an initial goal.

(b) Sol(r,0) = Sol(t,e) and Sol(u,0) = Sol(s,e).

(c) FoZ,0or<u, and the execution tree is equal to the
one for Z,eot<s modulo variable renaming.

(d) Z,6> r<u satisfies the one-expansion property.

First we build the execution tree of X,eot<s. Then we
associate with every node of the tree a couple (r, u) (or
(u,) on negative branches) of fresh variables with the
following constraint; with every assumption leaf for t<s
we associate the same pair of variables as with the p
node where the assumption t<s has been introduced into
Z (if any).

Next generate 6 according to the following cases:

Case (u-1). Say we are in the situation: Xeolf =
¥ eot<sy where e(t)=1 . If (r,ug) is the pair of variables
associated with the p-node add the equations:

r=1

[ug/spuq/sq, ..., uy /s l(si=e(s;)) forie0.n
where uj...u, are fresh variables and s;...s,, are the
variables reachable from s; in the system g, that is

{s1...sp) = Reach(sy, e)nDom(g).
Case (p-T). Analogous.

Case (u-var). Say we are in the situation ¥',eda<a =
¥'eot<s . If (r,u) is the pair of variables associated with
the p-node, we add a pair of equations: r=a, u=a.

Case (u-—). Say we are in the situation:
Z'uft<s),eosi<ty, T'U{t<s}),eoty<s,y
= X'U{t<s},eot;>ty<s;—s, = Teot<s
where we have the fresh variables r,ry,r, for tt;,t, and
u,uq,u, for s,s;,s, (the variables associated to an —-node
are inessential) then we generate the equations r=r;—r,
and u=u;—uy.

Case (n-assmpl). Say we are in the situation: I'eoa<b
= X',edt<s where a<beZX. If (r,u) is the pair of
variables associated with the p-node, we add a pair of
equations: r=a, u=b.

Case (u-assmp?2). Finally, if we visit a node in which
we apply the rule (assmp,) w.r.t. an assumption added
during the computation then we do not generate any
equation. In fact, the equations corresponding to those
variables are defined in the corresponding p-node in
which the assumption was made.

Let us now consider the properties (a-d):
(a) Follows from the use of fresh variables.
(b) In the first place one establishes a relation R, say,
between the variables reachable from t and those
reachable from r. In general we will have a situation in
which a variable t may correspond to many variables
r1...Iy. Next, prove by induction on the lowest level of the
appearance of r in the execution tree and Irnl that (t,
r)eR implies Sol(r,0)(r) = Sol(t,e)(m).
(c) By construction at each step we can apply the same
computational rule.
(d) This is a consequence of the constraint on the
assignment of fresh variables to nodes. [

4.4.2 Lemma (From the execution tree to the proof tree)
If 5 Zeot<s (see 3.2.3) and its execution tree has the
one-expansion property, then bp > (t€) < (s,e).
Proof
We proceed by induction on the depth k of the
successful execution tree of an initial goal X,eot<s.
Depth is measured by the number of adjacent pairs of
nodes (p)-(—,) in the longest branch from the root. In
the inductive case, each subgoal is converted into an
initial goal of the same depth, in order to apply the
induction hypothesis.

Case k=0.

The tree consists of a (up) root (since the goal is
initial) and a single leaf which is either (assmpy), (L),
(Ta), or (varp). Then after the application of the (uy)
rule, with s,teDom(g), we are in a terminal case
Zuft<s),e o e(t)<e(s).

Subcase (assmpy). Tu{t<s),e o a<b, where e(t)=a,
&(s)=b, and a<beZ. Then a,b¢ Dom(e) (by definition of
Tenv), and (t,e)=pt.a=a, (s,e)=ps.b=b. By (assmpy),

a<be X = lp Z>a<b. Conclude by (eqg): g £ D ut.a<a,
Fr > b<ps.b, and (transg).

Subcase (Ly). Zuft<s},e o L<e(s), where g(t)=L. Then
(t,e)=pt.l=1 and we have g > 1 < (s,e). Conclude by
(eqp) and (transg).

Subcase (Tp). Similar.

Subcase (varyp). Zuft<s),e > a<a, where g(t)=¢(s)=a and
ag Dom(e). Then (t,e}=pt.a=a=ps.a=(s,e). We can apply
(eqgr): Z D a<a, then conclude with (eqg) and (transg).

Case k>0.

The tree has a (uy) root with a (—,) child, hence
e(t)=t;>t,, &(s)=s;—s,, where by definition of Tenv
t1,t,51,50€ Dom(g):

Zu(t<s),e D s;<ty, Zuft<s)e o ty<s,

= Zuft<s}e Dty <518,

= ZEgDt<s

We initially focus on one of the subgoals of depth k-1:

(A) Zuft<s)eoty<sy
Let us consider the following goal (B), which we intend
to subject, instead of (A), to the induction hypothesis:

(B) Zuft<s}, £> o(ty)<a(sy)
where G[t'/t, s'/s] is a substitution with fresh variables
t' and s', and €' 2o(e\t\s)uft'=t, s'=s}.

First we show that the goal (B) is initial. Since k,
¥,eot<s is initial we have:
Vars(Z)nDom(e)=J
e=g;Ugy with Dom(e;)nDom(e,)=0,
such that te Dom(g;), se Dom(e,)
Hence we also have:
t,t,e Dom(gy) (only); sq,5,€ Dom(g,) (only)
g'=g'{UE'y
where g'120(g; \t)u(t'=t}, €',20(g;\s)U(s'=s)
From which we conclude:
Vars(Zu(t<s})NDom(e")=2
Dom(e';)NDom(g'y)=0
6(ty)e Dom(e'y), because:
if ty=t then o(ty)=t' and t'e Dom(e'});
(ty=s is not possible)
if tyzt then o(ty)=t,; since tye Dom(e,),
we have o(ty)e Dom(g';)
o(sy)e Dom(e'y), similarly.

Second, let Tree(A) be the execution subtree of root
(A), and Tree(B) be the execution tree of root (B). We
show, by induction on the length of the longest path in
Tree(A), that we can build a tree T such that: (1) T has
the same depth as Tree(A); (2) T succeeds; (3) T expands
the same variables as Tree(A) in (1) nodes, with the
exception of t,s'; (4) T has the one-expansion property;
and (5) T = Tree(B). (Hence, we also have -, (B).)

We proceed by induction on each subgoal A =
Tut<s},eoa<f of Tree(A), for which we build a subtree
T of the shape Zu(t<s},e'>0(a)<o(B).

For the case (assmp,), by the properties of one-
expansion we only have to consider the cases when
either t=t and s=s, or t,s,t,s are pairwise distinct.

If t=t, s=s then Tree(A) is Zu{t<s},eot<s, and T is

taken to be Zu(t<s,t'<s'},e'ot<s = Zu(t<s),e'ot'<s’,
which is successful by (assmp,) and (1), and has one-
expansion. This T is longer but it still has depth 0.

If t,t,s,s are pairwise distinct then Tree(A) is
Xult<s,t<s},eot<s, and T is taken to be Tuft<s,t<s},
e¢'ot<s which is successful by (assmp,), has one-
expansion, and has depth 0.

For the case (u,) we must have, by one-expansion,
tst,s pairwise distinct. Then Tree(A) has the shape:

Tuft<s,t<s), € o e(t)<e(s) = Zuft<s),eot<s
with t,seDom(g). Now o(t)=t, o(s)=s, and since
tseDom(e') we have €'(t)=0(e(t)), e'(s)=0(e(s)). The
tree T is then chosen with the shape:

Tuit<s t<s), €'o0(e(t))<o(e(s)) = Zuft<s), eot<s
hence preserving success and depth by (i) and the
induction hypothesis. One-expansion is preserved
because, by induction hypothesis, T expands the same
variables in (u1,) node as Tree(A), which has one-
expansion; except that t',s' are expanded in the (assmp,)
case, but in the present situation t,g t',s' are distinct.

The other cases do not pose difficulties. One-
expansion for the (—,) case follows from one-expansion
of the two branches, since one-expansion is defined path-
wise.

Hence we can apply the induction hypothesis to (B),
obtaining:
Fr Zult<s) o (oty,€) < (0sy,€)
Then, by the equivalences (ot,,e')=g {t,,€\1t), (0s,,e)=1
(s5,£\s), and (eqR), (transg):
Fr Zu{t<s} o (ty,e\t) < (sy,e\s)
By a similar argument on Zu(t<s},ens<t; we obtain:
Fr Zu{t<s} o (sy,e\s) < {ty,e\t)
Finally, by (—g):
= Zu{t<s} D (ty,e\t)ty,e\t) < (s1,8\8)>(s,,e\5)
& Zuft<s) o (e(t),e\t) < (e(s),e\s)
= X O ptfe(),e\t) < ps.(e(s),e\s) (UR)
S IZo(te)<(se) O

4.4.3 Theorem (Completeness of the subtyping rules)

If a<pB then o<gp.
Proof

If o<y P then a<,B by completeness of the algorithm
(3.3.7). Consider the corresponding successful execution
tree and apply the lockstep recursion lemma 4.4.1,
obtaining a tree for o'<fB' with a=1 o' and =7 p'. By
lemma 4.4.2 we can now extract from the new execution
tree a proof of o'<g 8. Applying the completeness of the
rules for type equivalence we conclude a=go' and B=g B'.
Finally we derive a<gB by (eqg) and (transg). O

5. A Per Model

We sketch the main features of a model described in
[Amadio 89] (see also [Cardone Coppo 89] for a related work)
based on complete uniform pers over a D, A-model [Scott
72].

Per (partial equivalence relation) models provide an
interpretation of subtyping as set-theoretic containment
of the relations [Bruce Longo 88]. In addition, these
structures have very interesting categorical properties

(in particular cartesian closure and interpretation of
second-order quantification as intersection, see [Hyland
89]) that entail a satisfying interpretation of higher-
order typed A-calculi. The particular class of pers
considered here preserves the previous properties while
providing a solution of recursive domain equations up to
equality. This result is obtained by an application of
Banach's theorem on the uniqueness of the fixpoint of a
contractive operator over a complete metric space.

5.1 Realizability Structure

Consider the functor G(D) £ DD + DxD + At defined in
the category of complete partial orders (cpo's) and
embedding-projection pairs (hereafter called pairs).
The cpo At is a collection of atomic values, and + is the
coalesced sum. The morphism part of G is standard.

The cpo D, is the initial fixpoint of the functor G,
that is the colimit of the following w-diagram:

Dy 4 O _(the cpo with one element)
Dy & DpPn+DxD, + At = G(D,)

with uniquely determined pairs :
(in,n+lljn+l,n) : Dn_)Dn+1 #

Let (ij,,j,) be the pair between D, and D, Let e, &
i,(ju(e)) for eeD,,. The cpo's DmDoo and D_xD_ are
projected into D,, by means of the pairs: (i, j) and ([,], p).
The operation of application on D, is defined as usual as:
fd2j(f)(d).

5.2 Complete Uniform Pers
A per A over D, is complete and uniform?
(henceforth cuper) iff

(1) (‘LD ,J-D)e A

(L5 is the least element of the cpo D,,)
(2) If XA isdirected in D_xD_ then LXe A
(3) If (ee)e A then Vn.(ey,e)e A

We will consider the full subcategory of complete
and uniform pers, therefore the morphisms are defined
as usual as:

cuper[A, B] 2
{: D,./A—D,/B |
J¢eD,.VdeD.,.. (d,d)e A = ¢def([d],))
where [d], 2 {eeD,, | (d, e)e A},
and D,/Az({[dl5] (d, d)eA)

Let A|, 2 Ani(Dy)xi (D). Given A, B cupers we
can define as for ideals (see [MacQueen et al. 86]):

closeness:

c(A,B) 2 oo, if A=B; max{nl| A|,=B|,}, o.w.
distance:

d(A,B) & 0, if c(A,B) = 0o; 2-¢(AB) o .

5.2.1 Subtype Interpretation

Following [Cardelli 88] and [Bruce Longo 88] we say that
the cuper A is a subtype of the cuper B iff AcB. This is
easily shown to correspond to the existence of a unique
map in the category that is realized by the identity.

4A term suggested by M. Abadi and G. Plotkin.

Such maps play the role of coercions from A to B.

5.2.2 Type Interpretation

A type environment m is a map from type variables
to cupers: n: Tvar—cuper. A type interpretation of a
type o in an environment 1 is written as [o]n.

In view of the interpretation of subtyping, the
interpretation of type variables and type constants is
naturally given as follows:

[t 2 {1y, 1p)}
[T 2D xD,,=Top
[tIn & n(t)

As we already mentioned, cuper is a cartesian closed
category. In particular, given A, B cupers the exponent
BA is defined as follows:

(fg e BA & Vde(deeA = (fd, ge) e B

This interpretation of the arrow is sometime referred to
as simple.

In general, every object exp(A, B) isomorphic to the
simple interpretation will enjoy the same categorical
properties. Therefore, we assume exp is a binary operator
on cupers satisfying:

exp(A, B) = BA

However, not any choice will be satisfying from our point
of view. In order to complete the interpretation we need
two more properties of the operator exp, namely,
contractiveness and (anti-)monotonicity.

5.2.3 Contractiveness

The set of cupers endowed with the metric d is a
complete metric space. We require that the behavior of
exp at level n+1 is determined by the value of the
arguments up to level n:

exp(A, B) | ny1 =exp(A |, By Ins1

Under this condition the exponentiation operator is
contractive on the space (cuper, d) as it satisfies the
following property:

A|n=A'|nl B|n=B'ln =
exp(A, B) | nyq = exp(A’, B) | 41

It turns out that every definable type operator is either
contractive or the identity, and therefore admits a least
fixpoint. The type-interpretation w.r.t. a contractive
exponent exp(A, B) is completed as follows:

[o—PBI £ exp(ladm, [BIn) [ut.oln 2 Lfp(AA.lodn(a /1))
(Lfp=least fixpoint).

5.2.4 Soundness of the (=) subtyping rule

In order to have a sound interpretation of the (=) rule
in 2.2 it is convenient that the operator exp satisfies the
following additional condition:

A'cA, BcB' = exp(A, B) c exp(A', B)

Proviso

We write F a<p iff, given any binary operator
exp(A,B) satisfying the conditions of isomorphism with
the simple semantics (5.2.2), contractiveness (5.2.3),
and (anti-)monotonicity (5.2.4), the resulting type-
interpretation [1] satisfies [aln < [BIm for any m:
Tvar—cuper.

We also write F I © a<B. As usual this means: V.
(ME T = nF o<pP).

5.2.5 Theorem (Soundness of the tree ordering w.r.t. the
model)

Given o, B types, if a<pf then F o<f .
Proof (sketch)

Given a per A we define its completion cmpl(A) as
the least cuper that contains A:

cmpl(A) £ M {B cuper | AcB}

Given a tree A in Tree(L) we define its interpretation
as the completion of the set-theoretic union of the
interpretations of its syntactic approximants:

[Aln & empl(UyJA [In)

It is easy to observe that {[A |, In | k<w} is a growing
chain of cupers.
Now we need the following fact (see [Amadio 89]):

Vn,o. IN. V2N, [(o),In = [(o) In

where by definition [(B),In & [BIn N i (D)xi (D).

In other words, if we are interested in the
interpretation of the type o up to the n-th level of the
construction of D, , it is enough to unfold o up to a certain
level N and just consider the interpretation of this
finite part of the associated tree expansion.

Next we use the fact that [oln = cmpl(U_ [(e),In).
From this we can conclude [o]n < [Taln. =

Vice versa observe that Vk. [a| In < [aln. Hence [aln
=[Taln.

Finally, To <, TB = Vk. (o <B) = Vk.lo Inc
B In = l[oln clfin.O

5.2.6 Proposition (Soundness of the rule ordering w.r.t.
the model)

If Fp Toa<f then FT > oa<f.
Proof

For the soundness of the type equivalence rules (4.1)
one observes that the contractiveness of o in tis a
sufficient (and necessary) condition to enforce the
contractiveness of the following functional on the space

CuperD_: (5.2):
Ga,n,t (A) 4 [[(1]]7] [A/ t] Ae CuperD‘n

As for the subtyping rules (4.3) the problem is to check
the soundness of (uR). Suppose nF T'. By hypothesis we
have:

VABcuper. AcB =
Gy (A) 2 [aln[A/t] c[BIn[B/t] & Gp(B)

Therefore we have: Vn. G,"(Bot) c Gg"(Bot), where Bot

. [('LDN’ J‘Dm)}'
It can be proved (see [Amadio 89)) that for any type y:

[(pty) I 2lutyn N D xD, =Gy*(Bot) "D, xD,,

And from [ut.yIn = empl(U, _ [(ut.y) In) we have the
thesis. O

5.3 Completeness of an F-interpretation
Define an F-interpretation of — (see [Scott 76]) as:
(BAR2BANF2U (L, f), ¢, L), (, D)

where F is the embedding of the functional space D P«
into D,, and f is the embedding of a distinct symbol of At
into D,.. Roughly speaking (BA)F is built from BA by
selecting among those elements that are “functions” in
the underlying A-model D,, and by attaching to L a label
f.

We can characterize the subtypings wvalid in every
F-interpretation. Add the following axioms to the
subtyping system in 2.2:

(@1) L->T<a—>T (D2)° 0—-B<y—>T
F¢ denotes formal derivability in this new system.
Write a<gB iff kg a<B.

Next, extend the preorder <4 to recursive types by
defining an ordering <, on trees as: A <g,, B iff Vk.
(A1x<@B|k). Of course o< B iff To<g., TB.

Let Fp 0<B mean that for any F-interpretation [] and
for any type environment 1: [olm < [BIn. We build and F-
interpretation [I' and a type environment n' with the
property that, e.g., for non-recursive types o and p: [olm'
c [BI'm' iff a<gpP. Then, given recursive types o and B we
can prove:

Frp o<B iff 0<g, B.

6. Coercions

Coercions and subtyping are closely related topics; see
for example [Amadio 90], [Breazu-Tannen et al. 89]. We now
show that the standard coercions ¢, g between two types
0<p are definable in an extension of the basic calculus.
This can be interpreted as saying that subtyping does not
add any expressive power to such calculus (only conven-
ience).

Then we show that the coercions implicit in a calculus
with subsumption can be automatically synthesized.
This fact is related to an algorithm for inferring the
minimum type of a term.

6.1 Definability.

In this section we show how to associate with each
successful execution tree a A-term whose denotation in
the model is a coercion, that is, the unique map between
the corresponding types that is realized by the identity.

6.1.1 Building the A-term.

We can show that if we consider types up to tree
equivalence, =7 , then for every initial goal Z,& ot<s such
that k5 ¥,eot<s there is a term M(x, ..., x,) : {t—s,€)
where X = {t;<sq, ..., t,<s;} and x; (i=1,..,n) are the free
variables of M of type (t;—s;,¢e).

5 We need (®2) to have transitivity as a derived rule.

For the sake of readability the type labels on bound
variables and on the fold and unfold constants are often
omitted.

We recall that it is possible to define a fixpoint
combinator as follows:

Y=Af020 (AxBEt =% f((unfold x)x)) (fold(AxHtt —o f
((unfold x)x))): (a—a)—0.

Proceed by induction on the structure of the execution
tree (see 3.2.1). We refer to 3.1.6 for the properties 1..6, of
the translation (-, -):

Case (assmp) x{t=s,8),

Case (1) AxL. YOBE. x) : (L—B,e) =r L—(B,e) by1,5.
Case (T) Ax{%8, Y(AxT. x) : (a—T.e) =1 (0,8)>T by 25.
Case (var) Ax?.x : {(a—>a,) =r a—>a by 3,5.

Case (=) AH@=BE Ax(®@, & M,(f(M;(x)) :
{(o—>B)—>(a'—B),e) by 5. Where by induction
hypothesis M, : (B—p',e) and M; : {o'—>a,e).

Case (W) by induction hypothesis we have M(x{t=s.8) :
(e()—e(s), €); by 4,5 (t—s,e) =p (e(t)—e(s), €) therefore
we can type a term:

Y(hy €0 =), & M(y)) : (e(t)—e(s), €)

6.1.2 Proposition (Coercions are definable)

Let 0, B € Type and suppose a<f. Let M be the term
associated in 6.1.1 with the execution tree of &,EaUER o
o*<B* Then the denotation of the term in the model is
the unique coercion map from the interpretation of o to
the interpretation of B.

Proof.

Since we have not given the term interpretation
explicitly (see [Amadio 89]), we can only sketch an idea of
the proof.

In the first place we need some facts about the
interpretation of terms:

(a) By erasing the type information and the constants
fold, unfold from a typed term M, we obtain an untyped
A-term er(M). We denote these untyped A-terms with P,
Q, It is a basic property of these interpretations that
the interpretation of er(M) gives a representative for
the equivalence class that corresponds to the
interpretation of M. We shortly refer to this fact by
saying that er(M) is a realizer for M.

(b) Showing that the interpretation of M is a coercion
from o to B means proving that the identity map, id, is a
realizer for M. Equivalently id and er(M) are
equivalent in a—f. Note that here and in the following
for the sake of readability we simply refer to syntactic
objects but we really intend to speak of their denotations
in the model.

(c) The realizer for Y is an element Fix with
functionality: Ag. U g"(Lp).

In order to prove thé theorem by induction on the
structure of the execution tree one needs to generalize
somewhat.

In the first place one observes that if in the execution
tree of J,eot<s we never use (assmp) then the
interpretation of the associated term M : (t—s,¢) is a

coercion in (t—s,g).

However, this is not enough to make the induction go
through in the case where the term M(xZ) really depends
on the assumption variable. One has to observe that
M(x%) also enjoys a property of contractiveness.

Let us suppose that (u) is the last rule applied. By
construction assume we have a term M(x) that is a
functional from coercions to coercions. We would like to
show that Y(Ax.M(x)) is still a coercion.

Observe that after a (1) rule we always have a (—)
rule. Therefore the term M(x) has the structure
M.Ay M) (F(M1(x)y)).

Now observe that a realizer for Y(Ax.M(x)) will be
something like Ug™(1y,) for g=Ax.Af.Ay.Po(x)(f(P{(x)y))
where Pj is a realizer for M; (i=1,2). We have to show
that this realizer is equivalent to id in a type with the
structure C=(A=B)=(A'=B'), where A=B = exp(A, B).
Since the type is a complete per, it will be enough to
show that for each n g™(Lly) is equivalent to id in the
appropriate type. -

To do this we need a last remark, Denote with A |, the
approximation at the n-th level of the cuper A as in 5.2.
One observes that if (P, id)e C,,, then (g(P), id) € C,,,; -
This follows easily from the structure of g and the
assumption (5.2.3). Hence we have Vn. (g"(Lp), id)eC),
that implies (Ug"(Lp), id)eC. O B

6.2 Inference

Let A”H be the calculus in section 2. Given a term in
A7H, possibly not typeable, we are interested in the
problem of determining if it can be well-typed modulo
the insertion of appropriate coercions.

We refer to this problem as coercion inference. We
will define a simple algorithm that, given a term M,
succeeds exactly when M is typeable modulo the
insertion of coercions. In this case the algorithm returns
the least type among the types that can be assigned to
M.

A similar problem was solved in [Amadio 89b] for a
second-order lambda calculus with records, and in [Curien
Ghelli 90 for a second-order lambda calculus including a
form of bounded quantification.

All these results rely on the structural properties of
the subtype relation that are stated, in this case, as
Proposition 6.2.4.

Notation.
In this section o = B and o = f§ are shorthands for
To<,, TP and Ta=Tp.

6.2.1 Typing modulo coercions
We can formalize the idea of typing modulo
coercions in two ways:

(a) Subsumption. Add to the typing system in 2.1 and
2.2 the following rule based on the tree order <_. The
version based on <g,, is often referred to as Subsumption:

(Sub,,) M:a, osfp = M:B
We denote formal derivability in this system with b, .

(b) Explicit Coercions. Extend the term language with
a collection of constants {c,g | o, B types} and add to the
typing system in 2.2 the following rule:

(ExpCoer,,) M: 0, osp = (cqgM): B

Denote formal derivability in this new system with I,
and denote the corresponding term language with A7He,
Moreover, denote with er, (mnemonic for erase
coercions) the obvious function that takes a term in A K,
erases all the constants Copr and returns a term in A K.

The use of these rules is justified by the finitary
axiomatization of = given in section 4.

Note that in both these systems the (fold
(unfold,;; , M) terms become redundant.

ut.o M) and

6.2.2 Definition (coercion inference)

We define inductively on the structure of the term M
in A”H a function®

CI: (W°H) = (WHeU(FAIL)) (Cl=coercion inference)

that either fails or returns a well-typed term N in A7HK¢
such that er (N) = M.
It is intended that the clauses (fold), (unfold) have
priority on the clause (apl).

(var) CI(x%) & x*

(abs) CIAx*M) &
if CIM) : B then Ax*.CI(M) else FAIL

(apl) CI(MN) &
if CIM) : o' and CI(N): y then
if ' =a—p and ys o
then (cy o .8 CI(M))(CY,a CI(N))
elseif o' =L
then (cy o) CIM)) CIN)
else FAIL
else FAIL

(fold) ClI(fold, ,M)2
if CI(M): B and B =pt.a
then fold,,; 4(cg [t o/ CIM))
else FAI

(unfold) CI(unfoldm‘a M) 2
if CI(M): B and B = pta
then unfold,; ,(cg ¢ oCI(M))
else FAIL EI

Clearly CI can also be used to define an inference
algorithm for bg,y,; just consider the type of the term
synthesized by CI. We prove in 6.2.5 that this algorithm
computes the minimal type of a term (if any). To achieve
this result we need the following simple properties.

6.2.3 Proposition

Let M be a term in A7H then:
(D gy M : o iff forsomeN: F.N: o and er(N) = M.
() If CI(M): B then ero(CI(M)) = M.
Proof

(1) Every introduction of an explicit coercion cor-
responds to an application of subsumption and vice versa.

6Actually the following specification determines a class of algo-
rithms that suffices for our purposes.

(2) By induction on the definition of CI. [0

6.2.4 Proposition (Structural subtyping)
Let o, B, ... be recursive types then:
(1) If asB;—B, theneither =L or o= o0y—0,,
By = oy, and ay = B,.
(2) If oy—0y =P theneither B=T or B=B;—P,,
By = 04, and oy = Bo.
Proof
(1) o can be rewritten, by unfolding, to an equivalent
type of the shape 1, T, t or a;—a,. The definition of the
tree ordering and the hypothesis o = B;—f, lead to the
conclusion by a simple case analysis.
(2) Analogous. O

6.2.5 Theorem (Terms have a least type)

Let M be a term in A™H then k¢, u M : o implies CI(M):B
and B = o.
Proof

By induction on the structure of M.
C(N) is a meta-notation for ca, 1 o (...(caj 0 N)..),
where: N: o, n>1, o = 04, 1.
By virtue of 6.2.3.(1) we may equivalently assume the
existence of a well-typed term N in A7H¢ such that
ero(N) = M.
Observe the crucial role of property 6.2.4 in proving the
rather surprising fact that the algorithm is complete in
the sense just stated above.

Case M = xB,
If erc(N) =xB then N=CxP:0 and B= a.On the
other hand CI(xP) = xB:B.

Case M = (Axa.M').

If erc(N)=Ax®M' then N=C (Ax%N'): v, ero(N")=M’,

and N'B'. By induction hypothesis CI(M") : B and B =
B', hence by definition. CI(Ax*M') : a—p. Note that

0—p' sy by definition of N and this implies (by 6.2.4)
either y=T (and in this case we are done as a— s T) or
Y=Y—Y2, Y1 = aand B' sy, . In the latter case B= B'=

Y, implies 0—f = v.

Case M=(M{M,).

If erc(N) = M{M, then N = C(N;N,): vy, ero(N; = M;
i=1,2, Njp: vy=%, Ny:y;. By induction hypothesis
CIM)) : B; i=1,2, By =svy—Y, and B, =7y. From (6.2.4)
follows that By=L or B;=B;'>B;", 11581, Bi"s¥.In
the first case CI(M;M,) : L and we are done. In the second
CI(M1M,) : B;" as By =7y = By Finally observe: B;" =
Y2 =7

Case M= (fold,, o M').

If ero(N) =fold;; , M' then N = C(fold N'): v, ero(N")
=M, N [ut.a}’lt](xsy', Y = 7. By induction hypothesis
CI(M"): B',B'=7y. Hence by definition, CI(fold M'):
pt.oc and we have pt.o =7y svy.

Case M=(unfold,; , M.
Analogous. O

7. Conclusion

We have used a subtyping relation based on infinite
trees as the central concept of our work. In our experience
this relation has arisen naturally, giving insights about
both the subtypings valid in certain per-models and the
behavior of the Amber implementation. In fact we have
shown that this relation can be used to characterize
sound and complete theories for a certain class of per
models and that it can be simply and efficiently
implemented. We have also shown the soundness and
completeness of certain rules and the definability of
coercions within the calculus (modulo a strengthening of
the notion of type equality). Finally, we have observed
that the whole process of inferring coercions and
minimal types can be automated.

In conclusion, let us consider the problem of the
extension of our results.

The notions of tree expansion and finite
approximation (section 3) can be easily adapted to larger
languages, both with first-order type constructors like
products, sums, records and variants, and with higher-
order type constructors like second-order universal
quantification (e.g. for Quest [Cardelli 89]). The important
point is that the tree resulting from the expansion is
regular. Under this assumption it seems possible to adapt
algorithms and rules to obtain results of soundness and
completeness (sections 3, 4).

About the relationship between the tree ordering and
the model, we expect the extension of the soundness
theorem (5.2) to be straightforward. On the other hand
we expect technical problems from the completeness
theorem (5.3) when introducing higher-order type
constructors like second-order universal quantification.

The result on the definability of the coercions has
already been obtained for several calculi with records,
variants, and bounded quantification (but without
recursion). It is a reassuring result that shows that the
subtyping theory is in good harmony with the calculus.

The fact that terms have a least type has a clear
impact on the implementation of the type-checker. This
appears to be a very desirable property towards an
automatic treatment of coercions. The result, at the
present state of the art, clearly relies on the structural
properties of the subtyping relation.

Finally, we observe that challenging extensions arise
when dealing with non-ground collections of subtyping
assumptions (see [Amadio90]). In this case much work
remains to be done.

Acknowledgments
We would like to thank Martin Abadi for comments
on an early draft, and Mario Coppo for discussions.

References

[Amadio 89] R. Amadio: Recursion over realizability
structures, TR1/89 Dipartimento di Informatica,
Universita di Pisa, to appear in Info.&Comp. .

[Amadio 89b] R. Amadio: Formal theories of inheritance
for typed functional languages, TR 28/89 Dipartimento
di Informatica, Universita di Pisa.

[Amadio 90] R. Amadio: Typed equivalence, type
assignment and type containment, abstract in Proc.
CTRS90, eds. Kaplan&Okada, Montreal, June 1990.

[Arnold Nivat 80] A.Arnold, M.Nivat: The metric space
of infinite trees. Algebraic and topological properties,
Fundamenta Informaticae III pp.445-476, 1980.

[Breazu-Tannen et al. 89] V. Breazu-Tannen, C. Gunter, A.
Scedrov: Denotational semantics for subtyping between
recursive types, Report MS-CIS 89 63, Logic of
Computation 12, Dept of Computer & Information
Science, University of Pennsylvania.

[Bruce Longo 88] K. Bruce, G. Longo: A modest model of
records, inheritance and bounded quantification, IEEE-
LICS 88, Edinburgh.

[Cardelli 86] L. Cardelli: Amber, in Combinators and
Functional Programming Languages, Lecture Notes in
Computer Science n. 242, Springer-Verlag, 1986.

[Cardelli 88] L. Cardelli: A semantics of multiple
inheritance, Info.&Comp., 76, pp.138-164.

[Cardelli 89] L.Cardelli: Typeful programming, SRC
Report #45, Digital Equipment Corporation, 1989.

[Cardelli Donahue Jordan Kalsow Nelson 89] L.Cardelli,
J.Donahue, M.Jordan, B.Kalsow, G.Nelson: The
Modula-3 type system, Proc. POPL'89.

[Cardelli Longo 90] L.Cardelli, G.Longo: A semantic basis
for Quest, Proc. of LISP&FP'90, Nice.

[Cardone Coppo 89] F.Cardone, M.Coppo: Type inference
with recursive types: syntax and semantics, Diparti-
mento di Informatica, Universita di Torino.

[Courcelle 83] B.Courcelle: Fundamental properties of
infinite trees, Theoretical Computer Science, 25, pp.95-
169, 1983.

[Curien Ghelli 90] P.L. Curien, G. Ghelli: Coherence of
Subsumption, CAAP 1990, Kebenavn.

[Hyland 89] M. Hyland: A small complete category,
APAL 40, 2, pp.135-165.

[MacQueen et al. 86] D. MacQueen , G. Plotkin, R. Sethi:
An ideal model for recursive polymorphic types,
Info.&Comp., 71, 1-2.

[Milner 84] R.Milner: A complete inference system for a
class of regular behaviours, JCSS 28, pp. 439-466, 1984.
[Park 81] D.M.R.Park: Concurrency and automata on
infinite sequences, Proc. 5th GI conference, LNCS 104

pp-167-183, Springer-Verlag, 1981.

[Salomaa 66] A. Salomaa: Two complete systems for the
algebra of regular events, JACM 13,1, 1966.

[Scott 72] D. Scott : Continuous lattices, Toposes,
Algebraic Geometry and Logic, Lawvere (ed.), LNM
274, pp.97-136, Springer-Verlag, 1972.

[Scott 76] D. Scott : Data types as lattices, SIAM J. of
Comp., 5, pp.522-587.

