373

MULTIPROCESSING IMPLEMENTATION OF A HIGH-LEVEL MACHINE LANRUAGE
LUCA CARDELLI", GIANFRANCO PRINI"",MARCO VANNESCHI

DEPARTMENT OF ARTIFICIAL INTELLIGENCE-UNIVERSITY OF EDINBURGH

HOPE PARK SQUARE --MEADOW LANE - EDINBURGH EH8 9Nw - SCOTLAND

ISTITUTO DI SCIENZE DELL'INFORMAZIONE- UNIVERSITA DI PISA -

CORSO ITALIA 40 - I-56100-pP1SA - ITALY

We present a high-level machine language called SMOM.

It s a conventional

sero—-address machine language containing several high—level functions for

defining and manipulating data types.

Though SMOM does not allow parallel

control regimes to be explicitly programmed, it exibits a considerable
amount of implicit parallelism, since it is an applicative language and

arguments of functions may be concurrently evaluated.

This observation s

the guideline for the definition of a new simple scheduling discipline that
allows SMOM programs to be ewecuted by several co-operating processors.

The proposed technique consists in enqueuing a function on all processors
which are still performing some subordinate computation relative to that

function (i.e. evaluation of some of its arguments).

Only one of this

processors is then enabled to actually compute the function, namely the one

which terminates the last subordinate computation.

A multiprocessor based

on the proposed technique can be actually realized with existing hardware.
The speed-up in the ewecution of SMOM programs is expected to be one order

of magnitude.

1. INTRODUCTION

Several programmning languages, such as
ALGOLW, SIMULA 67, ALGOL 68, PASCAL, ELI1
and CLU, have been designed to allow for
data extensibility, that is the ability
of declaring (vs. explicitly programming)
data types. Since most computers are
not very well suited to support extensi-
ble languages (10), designers are almost
inevitably induced to restrict the
mechanisms for declaring data types,
mostly to the purpose of minimizing
run-time type-checking. The problem of
designing and efficiently implementing

a truly general extensible language
would be greatly simplified by using
fast and sophisticated memory managers.

In (3) a machine, called SMOM, is pre-
sented which allows data types to be
specified at the machine language level,
in a way similar to (8,11). SMOM may be
considered as a powerful memory manager
which operates under the control of a
zero-address, stack-oriented machine
language. One of its explicit design
Pervenuto alla redazione: Novembre 1977

goals has been to allow for efficient
implementations of general extensible
programming languages (for a somewhat
elaborate discussion of this issue see
(3)). Here we point out how such a
machine language may be supported by a
multiprocessor architecture which sig-
nificantly speeds up the execution of
SMOM programs by concurrently evaluating
arguments of functions and by performing
most type-checking at run-time, but in
parallel with other significant computa-
tions.

Section 2 contains a short but self-con-
tained description of SMOM. In Section
3 the characteristics of parallel pro-
cessing of SMOM code, including a unique
interprocess communication discipline,
are presented. They Tead to the general
ideas underlying SMOM architecture. In
Section 4 a multiprocessor organization
is suggested which implements the ideas
of Section 3. Some concluding remarks
are contained in Section 5. A detailed
description of some relevant SMOM ma-

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

374 L. Cardelli, G. Prini, M. Vanneschi

chine instructions is contained in the
Appendix.

2. SMOM: A SHORT DESCRIPTION

2.1. Data types

AT1 data are manipulated through data
descriptors (dd's). A dd is a typed
pointer, i.e. a pair (T,A), where T is
the type of the described datum, and A
is its memory address. Both types and
addresses are manipulated by the hard-
ware only: the user is not enabled to
access them. This implies that memory
management is completely transparent to
the user.
with no inner structure) or structured
(i.e. arrays and records of dd's). Both
basic and structured data types may be
either built-in or user-defined.

A data type is introduced by defining a
class. A class is a structured data
type that records all information rela-
tive to a specified data type. It con-
tains a template which defines the inner
structure of all data of that type (the
template being empty for basic data
types), and an unspecified number of
locations, called registers, whose main
purpose is to record (dd's for) the de-
finitions of the functions associated
with that class (see Section 2.3 and
2.4). Thus a class may be seen as a
data type with an associated behaviour.

As an example, Fig. 1 shows the decla-
ration of the class of COMPLEX numbers,
which are records with two fields,
called REALPART and IMAGPART, containing
two REAL numbers.

(CLASS COMPLEX
(TEMPLATE (REALPART REAL)
(IMAGPART REAL)
(REGISTER ADD
<code for ADDing two
COMPLEX numbers>

(REGISTER FOO
<code for FO0ing two
(three?) COMPLEX
numbers>))

Fig. 1. The definition of the class of

COMPLEX numbers.

Data may be either basic (i.e.

Evaluation of class definitions is ex-
plained in Section 2.3.

2.2. Stacks

In order to process a datum, a dd for it
must be present in the argument stack
(A-stack), whose building blocks are the
A-cells. Though the A-cells contain
dd's, for short they are also said to
contain data. The A-cell at the top of
the A-stack is named A-top. The datum
contained in the A-top is the top-datum,
its type is the top-type.

Continuation points of programs (see
below) are held in the control stack
(C-stack), which is made of C-cells.
The C-cell at the top of the C-stack is

named C-top.

2.3. Microprograms

Two special buiTt-in data types are

present in SMOM, namely programs and

microprograms. Microprograms implement
the basic computational functions of

SMOM (i.e. they are supposed to be exe-

cutable by the hardware). Microprograms

may be grouped into the following cate-
gories.

a) A-managers and C-managers are used
for the data control (i.e. for the
management of the A-stack) and for
the sequence control (i.e. for the
management of the C-stack) respecti-
vely. The main A- and C-managers
are described in the Appendix. Their
descriptors are stored in the homo-
nymous registers of the special class
ANY (see below).

b) Operations are used for standard com-
putations. Each of them has an asso-
ciated arity (i.e. number of argu-
ments). The execution of an n-ary
operation (i.e. an operation whose
arity is n) causes n arguments to be
popped off the A-stack and a value to
be pushed onto the A-stack itself.

SMOM contains several built-in micro-
programs (i.e. all A- and C-managers and
microprograms which specify the behaviour
of built-in data types). Many others
(mostly operations) are automatically
synthesized when a class definition is
evaluated, and dd's for them are stored
in the appropriate registers. For
instance, referring to the example of
Fig. 1, the following functions are gene-

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

Multiprocessing Implementation of. a High-Level Machine Language 375

rated.

a) A constructor operation for building
rew COMPLEX numbers out of two REAL
numbers. Its entry point is stored
in the register COMPLEX of the class
ANY.

b) Two selector operations for accessing
the components (i.e. the REALPART and
the IMAGPART of a COMPLEX number).
Their entry points are stored in two
registers, named REALPART and
IMAGPART, of the class COMPLEX. They
may operate either in load mode (in
which case they are unary and are
used to retrieve the components of
COMPLEX numbers) or in store mode (in
which case they are binary and are
used to update the components of
COMPLEX numbers: the first argument
replaces the appropriate component
of the second argument). The default
mode is the load mode. The store
mode is used when a selector is
invoked via the special operation
UPDATE (see Section 2.4).

c) Several utility operations for read-
ing, printing, editing, etc. COMPLEX
numbers according to a standard re-
presentation. Their entry points are
stored in the registers READ, PRINT,
EDIT, etc. of the class COMPLEX.

The mechanism which allows microprograms
to be retrieved and executed is explain-
ed in Section 2.4.

2.4. Programs

Programs are linear sequences of
functions, each one being made of an
operation code and some (possibly zero)
operands. Both operation codes and
operands are represented as bytes: thus
a program is represented as a linear
sequence of bytes. Each byte is inter-
preted either as an operation code or as
an operand according to its position, as
it usually happens in a standard byte-
oriented computer.

Programs are interpreted by a fetch-
decode-execute Toop which performs the
following operations.

A byte is fetched, according to the
address contained in the C-top (fetching
always increments the contents of the
C-top), and it is interpreted as an ope-
ration code. This means that a register
having the same internal name as the

fetched byte is searched in the special

class ANY. If such a register is found,

The datum described by it is used as a

function according to the following

rules.

a) If the datum is a microprogram, it is
directly executed by the hardware.

It may fetch some bytes of the
calling program and use them as ope-
rands: this is the case of all the
functions described in the Appendix
(other than RETURN) and the function
UPDATE (which has the name of a
selector as its only operand).

b) If the datum is a program, a dd for
it (i.e. a pointer to its first
instruction) 1is pushed onto the
C-stack and execution goes on with
the new program counter. Note that
recursive calls are performed natu-
rally, and recursion may be imple-
mented straightforwardly, provided
that the A-stack (which is used for
passing parameters) is properly syn-
chronized with the C-stack. This
means that, at the end of a recursive
call, a program should pop its
parameters off the A-stack and repla-
ce them with a value.

c) Otherwise the datum is pushed onto
the A-stack and the standard function
APPLY is called. By the type-driven
call mechanism (see below) the
function APPLY is searched in the
class which contains the datum itself.
Thus, each datum may be used as a
function, provided that a function
APPLY (i.e. an interpreter) is
defined for it.

If the class ANY does not contain a

register with the same internal name as

the fetched byte, such a register is
searched in the class of the top-datum.

If such a register is found, processing

goes on as in the previous case, other-

wise an error is generated. The call
mechanism just described is named type-
driven, since the top-type "drives" the
access to the code of the called
function.

An extensive discussion of the relations
between the notion of class plus type-
driven function invocation and more fa-
miliar concepts like "user defined data
types" (in the sense of PASCAL) or
"abstract data types" is outside the
scope of this paper, and may be found

Rivista di Informatica, vol. VIII, n. Y4, ottobre-dicembre 1978

376 L. Cardelli, G. Prini, M. Vanneschi

in (2). Here we 1imit ourselves to ob-
serving that SMOM classes are rmore
similar to "abstract data types" than to
"user defined types".

A sample program which performs the
addition of two COMPLEX numbers is shown
in Fig. 2. The evolution of the A- and
C-stacks during the execution of such
program is shown in Fig. 3. Note that,
although the program is written in a
“pretty format", its memory represen-
tation is simply a sequence of bytes,
the first byte being the internal name
of "GET", the second one being the
binary code of "1", etc.

(PROG
(GET 1) (REALPART)
(GET 1) (REALPART) (ADD)
(GET 2) (IMAGPART)
(GET 2) (IMAGPART) (ADD) (COMPLEX)
(SQUEEZE 2)
(RETURN))
Fig. 2. A program for adding two

COMPLEX numbers.

C-stack = (PROG (GET 1) ...)
A-stack = c+id

a+ib
C-stack = ((REALPART) (GET 1) ...)
A-stack = a+ib

c+id

a+ib
C-stack = ((GET 1) (REALPART) ...)
A-stack = a

c+id

a+ib
C-stack = ((ADD) (GET 2) ...)
A-stack = ¢

a

c+id

a+ib
C-stack = ((GET 2) (IMAGPART) ...)
A-stack = <value of a+c>

c+id

a+ib
C-stack = ((COMPLEX) ...)
A-stack = <value of b+d>

<value of a+c>

c+id

a+ib

C-stack = ((SQUEEZE 2) ...)
A-stack = (a+c)+i(b+d)

c+id

atib
C-stack = ((RETURN))

A-stack - (a+c)+i(b+d)

Fig. 3. The evolution of SMOM stacks
while executing the program
of Fig. 2. The irrelevant
parts of the stacks (i.e.
deeper procrams and data) have
not been displayed for simpli-
city.

3. SMOM ARCHITECTURE AND PARALLELISM
3.1. General discussion

In Section 2 SMOM functions have been
supposed to be executed in a strictly
sequential order, the order being speci-
fied by contiguity and jump operations
(program calls are to be considered as
jump operations). However, the features
of SMOM make it possible to exploit the
inherent parallelism of the algorithms
in a natural way.

As it happens with high-Tevel expression
languages (1ike LISP), a SMOM computa-
tion consists of a number of function
calls, where function bodies are expres-
sions. Thus the computation graph
consists of a series of directed acyclic
graphs (i.e. partial orders). This is
not true of imperative languages (in
particular conventional assembler lan-
guages) where this property holds local-
ly: essentially it is confined to
"small" arithmetical and logical expres-
sions. Moreover, since SMOM functions
are more powerful than conventional
assembler statements, exploiting the
parallelism among them leads to much
faster and efficient computations and,
as we shall see, to an easily recogni-
zable modular separation of firmware-
controlled system tasks.

We now intend to show how to detect,
order and execute in parallel the
various parts into which a program may
be decomposed. Of course, determinacy
and efficiency impose suitable synchro-
nization requirements: they will be
defined in a unique way.

In what follows, the reader is recom-

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

Multiprocessing Implementation of a High-Level Machine Language 377

mended not to take care of the type-
driven call mechanism of SMOM. Also the
existence of functions (such as PUT and
UPDATE) that perform side-effects is to
be ignored by now. These features will
be considered later.

Referring to Fig. 2, it is evident that
the computation graph of that program is
the tree shown in Fig. 4. Each leaf re-
presents a function which starts an
independent computation. Each nonter-
minal node with K sons represents the
execution of a function with K subordi-
nate computations.

Partially ordered computations may be
reproduced in a multiprocessor environ-
ment by means of several synchronization
techniques, all of them being implemen-
tations of Dijkstra's P and V primitives
(9) or, equivalently, of the Conway's
FORK and JOIN instructions (5). However,
the efficiency of such techniques is
fully exploited in the classical multi-
tasking environment, where tasks are
relatively large in size, so that a con-
siderable processor-switching overhead

is tolerable (15). Improvements can be
devised when the tasks may be of any size
(see for instance (6,7,14)), but all these
techniques have the same characteristics:
every task is dispatched to one processor
only as soon as it is ready for execu-
tion. This fact prevents from employing
other forms of parallelism, such as
prefetch or look-ahead: we wish to employ
such forms indeed, as we are concerned
with the efficient execution of (high-
Tevel) machine code. Moreover, we need

(GET 1) (GET 1)

(REALPART) (REALPART)

(PLUS)

a synchronization strategy that agrees
with the data control (i.e. A-stack
management) strategy. Our solution is
characterized by the fact that the
fetched functions are dispatched to all
the processors which are potential
candidates to their execution: function
execution will be actually controlled by
a JOIN-type mechanism and by a data-
driven control mechanism. More precise-
ly, functions represented by different
leaves are enqueued on different pro-
cessors for execution. Functions repre-
sented by a nonterminal node are enque-
ued on all the processors which are still
involved in some subordinate computation
of the node itself. The number of such
processors is recorded by a counter
associated with that node. When a pro-
cessor takes a function from its queue,
it decrements the counter and executes
the function only if the counter is
zero. This JOIN-type mechanism prevents
a function from being executed unless
all of its subordinate computations have
been completed.

The enqueuing strategy just explained
may be realized by a specialized proces-
sor, the Control Processor (CP), which
operates in parallel with the general
processors (simply called processors)
P], s | 3 Pn and masters the whoTe sys-

tem. The CP operates by prefetching the
functions, whenever possible, and by
dispatching them to a number of proces-
sors and priming the Synchronization
mechanism.

(GET 2) (GET 2)

(IMAGPART) (IMAGPART)

(PLUS)

(COMPLEX)

(SQUEEZE 2)

(RETURN)

Fig. 4.

The computation graph of the program of Fig. 2.

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

378 L. Cardelli, G. Prini, M. Vanneschi

The architecture of a multiprocessor
Si0M interpreter is therefore of the
hierarchical type. The overall organi-
zation is shown in Fig. 5. As we shall
see, it is convenient that the A-stack
is managed by an independent specialized
processor, i.e. the A-stack processor
(AP), tightly interacting with CP and

the general processors.

MEMORY (M)

C QUEUE PROCESSOR
1 1
ﬁ" () Py o
i
R
0
L ||| Queue, PROCESSOR, ||
. (2,) P 2 [
R
0
c
E
S
S
0
RoLJ | ueue, ||] processor | |
(cp) ()) " [
A-STACK PROCESSOR (AP)
Fig. 5. The architecture of a multi-

processor SMOM interpreter.

In the following subsections several
implementation problems arising with
such an architecture are examined in
some detail.

3.2. The A-stack

Assume that the CP enqueues the first
seven functions of the program of Fig. 2
on the three processors P], P2 and P3,

according to the strategy explained in
Section 3.1, as shown in Fig. 6. In the
figure some A-cells have been labeled in
order to single out the A-cells (also
called source A-cells) which contain the

A-stack = <unused> A-cell D
<unused> A-cell C

c+id A-cell B

a+ib A-cell A

QUEUE, = GET(A-C)
REALPART (C-C)
ADD(C ,D+C)

QUEUE, = GET(B+D)
REALPART (D+D)
ADD(C ,D+C)

QUEUE, = GET(A=D)

Fig. 6. The state of the system after

prefetching seven functions of
the program of Fig. 2.

arguments and the A-cell (also called
destination A-cell) which is to contain

the result of each enqueued function.

Note also that the cell B is the A-top
when prefetching is started.

Assume that the processors execute the
prefetched functions according to the
timing of Fig. 7.

Py GET(A+C) REALPART(C~C) ADD(C,D-C)
Q==============(Q=============(Q==========
P, GET(B-D) REALPART(D-D)
===0)========()========S=====(Q)=====—==————-
Py GET(A=D)

—————— O:::::::::::::::::::::O———______.._
Fig. 7. A possible timing for the exe-

cution of the prefetched fun-
ctions of Fig. 6.

It is evident that the value deposited
by P2 into the A-cell D is overwritten

by P3 before P] is enabled to use it for
the addition (remember that P2 cannot
perform the addition, since P] is still
computing the first addendum when P2

has already completed the computation of

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

Multiprocessing Implementation of a High-Level Machine Language 379

the second one).

This example shows that the A-cells
cannot be simpiy overwritten by the pro-
cessors without possibly generating
disastrous side-effects on the A-stack.
As mentioned before, semaphores, criti-
cal sections and other well known
devices for interprocess communication
are not needed to share the A-stack
correctly among the various processors.
A much simpler solution is sketched in
Fig. 8. The A-stack is made into a
stack of pointers to A-cells, which in
turn still contain dd's. The A-stack
proper (i.e. the stack of pointers) is

== g
— e
/\/V\/V\» ‘\'A—stack proper

Fig. 8. The structure of the A-stack.

44]4/,»~ A-cells

known to the CP only. The A-cells are
manipulated by both the CP and the
various processors. When a new function
(other than a C-manager, which is always
executed by the CP, as explained in Sec-
tion 3.6) is fetched from the memory,
the CP enqueues on the appropriate pro-
cessors the prefetched function and the
address of its source and destination
A-cells. The former are taken near the
top of the A-stack proper, the latter is
the address of a newly allocated A-cell,
which. becomes the new A-top (the A-stack
proper is appropriately overwritten).
The behaviour of the CP with the program
of Fig. 2 is sketched in Fig. 9.

Note that no A-cell is ever overwritten:
only the A-stack proper is. However, no
information is lost now, since the
A-cells containing useful values are
still referenced from the processors'
queues. When an A-cell becomes unrefe-
renced, it may be reclaimed to free-
storage, as explained in Section 3.3.

3.3. A-managers and the A-cell space
In Section 3.2 we have introduced the
notion of source and destination A-cells

I :

i A . B

| D | |

L

]

] »

\\/\/w6UEUE] = GET(A-C)

REALPART (C-+D)
ADD(D,F~G)

QUEUE, = GET(B-E)
REALPART (E~F)
ADD(D,F-G)

QUEUE, = GET(A-H)

Fig. 9. The state of the system after
prefetching seven functions of

the program of Fig. 2.

for a function. These concepts are
clear enough as far as operations (see
Section 2.3) are concerned. But what
about the A-managers? Few problems
arise with PUSH: it may be considered as
a nullary operation (i.e. an operation
with zero arguments) which is completely
executed by the CP. Also POP and
SQUEEZE generate few problems: they may
be considered as (n+1)-ary operations
which return their first and last
argument respectively, totally ignoring
the other n arguments. They may be
enqueued and executed according to the
strategy explained in Section 3.2.. In
the case of both the three A-managers
considered by now and all the operations,
the following policy may be devised for
the management of the A-cell space.
Whenever a function is prefetched, a de-
stination A-cell is allocated, as
already explained in Section 3.2. When-
ever a function is executed, its source
A-cells are deallocated, since they
cannot be referenced any more.

As far as GET is concerned, almost the
same policy may be adopted: a destina-
tion A-cell is allocated by the CP, as
shown in Fig. 9, but the source A-cell
is not deallocated when GET is executed.

Unfortunately, this simple policy does
not seem to be applicable to the fun-

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

380 L. Cardelli, G. Prini, M. Vanneschi

tions PUT and UPDATE, unless either the
management of the A-cell space is into-
lerably complicated or the CP is forced
to wait until all currently enqueued fun-
ctions have been completed. The reader
is invited to convince himself that any
simple solution which does not involve a
garbage collector for the A-cell space

is actually wrong. Counterexamples are

dd dd

T 3

ddn LVAV\ ddn

An implementation of GET.

2%

Fig. 10.

easily found in which GET and PUT, from

the one side, and selectors used in load
and store mode, from the other side, do

not properly interact, if an appropriate
timing is assumed for their execution.

A totally different view may also be
adopted: each A-cell is provided with a
reference count which records the number
of existing pointers to that A-cell.
This has a number of pleasant consequen-
ces. First of all, the A-managers may
now be executed directly by the CP,
without allocating extra destination
A-cells (see Fig. 10 for an example).
Second, PUT may be completely prefetched
without unnecessary waitings. Third, no
A-cell is to be allocated for unary fun-
ctions. The main disadvantage of this
solution is that the maintenance of re-
ference counts introduces a lot of write
operations on A-cells. This may proba-
bly cause the performance of the system
to be dramatically compromized unless
(as already suggested) a special purpose
processor, i.e. the AP, is introduced
for managing the A-cell space.

3.4. The enqueuing strategy

In Section 3.1 a strategy has been out-
lined for reproducing computation graphs
and dispatching functions to processors.

Rivista di Informatica, vol. VIII, n.

Here we make that strategy effective.

In Fig. 4 each node of the computation
graph has been associated with a fun-
ction. In Section 3.2 each function has
been associated with a single and newly
allocated A-cell (namely, the destination
A-celT). This one-to-one correspondence
between nodes and destination A-cells
allows us to associate the counters men-
tioned in Section 3.1 with the A-cells.
Such counters have been supposed to be
positive integers in Section 3.1. Ob-
viously, an integer counter only contain
information about how many (while the CP
must know which) processors are co-opera-
ting in the computation associated with

a node. Hence, an array of boolean indi-
cators is more suitable in this case.
Thus, an A-cell may be patterned after
Fig. 11.

S11 S || Sn type pointer

Fig. 11. The pattern of an A-cell with

boolean indicators.

At any time, the indicator s, (l1<izn) of

an A-cell is TRUE if and only if the pro-
cessor Pi is still involved in some sub-

ordinate computation of the node repre-
sented by that A-cell. Each indicator of
a newly allocated destination A-cell is
initially set to the inclusive OR of the
corresponding indicators of the source
A-cells of the fetched function: in fact
these A-cells, which are to contain the
arguments of the function; also contain
information about the processors which
are still computing them. The function
is then enqueued (with the address of the
source and destination A-cells) on all
the processors whose corresponding indi-
cator in the destination A-cell is TRUE.
If no such indicator is TRUE, the fun-
ction may be enqueued on an arbitrary
processor, and the corresponding indica-
tor is set to TRUE.

When a processor takes a function from
its queue, it sets to FALSE the corre-
sponding indicator in the destination
A-cell, and executes the function if and
only if all the indicators of this A-cell
are FALSE. Otherwise the function is ig-

4, ottobre-dicembre 1978

q

Multiprocessing Implementation of a High-Level Machine Language 381

nored, and the next one is taken from the
queue.

3.5. Type-driven calls

Here we explain how the CP may perform
the run-time type-checking which is ne-
cessary for the implementation of the
type-driven calls.

Suppose first that the prefetched fun-
ction is not a C-manager and its code is
found in the special class ANY. In this
case the arity of the function is known,
and the type of its result may be often
predicted (input functions are a major
exception). So the CP may update the
A-stack properly, and store the predicted
type in the destination A-cell before the
function is actually computed, Thus com-
municating information to the next (pos-
sibly type-driven) call.

If the code of the prefetched function
is not found in the special class ANY,
the type-driven call mechanism is to be
invoked. If the top-type is manifest
(i.e. it has been computed by either the
CP or some other processor) then the CP
operates as in the previous case, using
the appropriate class instead of the
special class ANY. Otherwise the CP
cannot do better than waiting until some
processor has computed the top-type.

3.6. C-managers

They can be directly executed by the CP.
The execution of TYPEJUMPT and TYPEJUMPF
requires the top-type to be manifest, and
the CP operates exactly as in the case of
type-driven calls (see Section 3.5). The
execution of JUMPT and JUMPF requires
that the top-datum is manifest, hence the
CP must wait until it is.

4. MULTIPROCESSOR ORGANIZATION

4.1. Overall system organization

As shown 1in Section 3, the overall orga-

nization proposed for a SMOM interpreter

is a hierarchical multiprocessor, con-

sisting of the following components (see

Fig. 12).

a) A Control Processor (CP) at the high-
est level.

b) A set of identical (general) proces-
sors P], PZ’ P Pn at the Towest

level.
c) An A-stack Processor (AP) which mana-

ges the processors' and CP's requests
for accessing the A-stack, and con-
trols their interactions.
d) A common Memory (M), with m modules
M], MZ’ ciw 3 Mm.
As it often happens in a hierarchical,
parallel organization, the existence of
a supervisor control level makes both the
design process and the achievement of
high performance easier, possibly at the
expense of less reliability. In our
case, the performance is further improved
by the use of simple and fast synchroni-
zation primitives, by an extensive use of
prefetching and by the independent mana-
gement of the A-stack. A modular orga-
nization of the memory, possibly with a
suitable separation of information among
the modules, is a standard technique for
balancing the execution and the memory
bandwidths.

Every system unit is microprogr: med and,
whenever possible and/or convenient,
dynamically microprogrammable, in order
to improve system flexibility and exten-
sibility. Moreover, the overall orga-
nization is modular in principle and thus
well suited to better exploit the micro-
programming characteristics. This
further improves system efficiency, as
each unit has its own microprogramming
language and organization, both chosen

in such a way as to optimize the perfor-
mance/cost ratio "on a local basis" (17).

In the following subsections we describe
the internal organization of the main
parts of the system, according to the
general behaviour discussed in Section 3.

4.2. Control Processor

As a primary task, the CP must perform
the sequence control of the computation.
Therefore, the C-stack must be a private
resource of CP. Moreover, it is conve-
nient that the CP contains a private copy
of the A-stack, called the Virtual
A-stack (VA-stack), in order to reduce
the number of conflicts with the proces-
sors for accessing the A-stack and to
maintain a picture of the contents of the
A-cells allocated for prefetched, but not
yet executed, functions. It is enough
that the VA-cells are composed of only
two fields, i.e. the V-type and the
V-address. The first is assigned the

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

382 L. Cardelli, G. Prini, M. Vanneschi

—_ e — 3 . — —— — — — —

9 A
Swithﬂt— Interconnection Structure
3 ? T Y

} } !
Q Q Qs Q,
v 1 ¥ ¥
cp " Py P
§) H 3
B B] BZ Bn
AP

Fig. 12. Overall system organization.

—»LT—'etch instruction J—_——{Type prediction possib]e?HTMaitJ

Type-driven NO

Class ANY YES

A
ﬂrite type into A-top and VA-top |

Call APPLY

Microprogram Program Datum
* 1 ! Y y
Push dd onto Push dd onto
| GETl l PUTJ l RETURN l C-stack A-stack

S A J ‘———4

Fig. 13. Scheme of the Control Processor microcode.

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

Multiprocessing Implementation of a High-Level Machine Language

type of the result of the currently pre-
fetched function according to well-defi-
ned predictions as discussed in Section
3. A special mark in the V-type field
signals the wait situation.

The C-stack and the VA-stack are imple-
mented by means of fast memories of rela-
tively small size (typically, 128-256
cells). Two other similar memories are
used as branch tables for registers of
class ANY and for registers of the other
classes. Actually, the second one acts
as a cache of the complete table sorted
in main memory.

The scheme of the microprogram defining
the behaviour of CP is shown in Fig. 13.
Remember that the microprograms that
affect the control flow are directly
executed by the CP. The function APPLY,
if present, is an interpreter defined
for using a datum as a function: when it
is called by the type-driven mechanism,
it is searched in the corresponding
class of the datum.

As the CP must be as fast as possible
for a continuous supply of functions to
the processors, it may be realized as a
network of bit-slice microprogrammable
microprocessors, each one corresponding
to a "logical" section of the CP algo-
rithm, all being controlled by a super-
visor microprocessor (1,4,14,17).

4.3. General processors
The task of a general processor Pi is

that of executing the functions which do
not modify the control flow. Its
behaviour has been sketched in Section 3
and the scheme of its microcode is shown
in Fig. 14.

The internal organization and, corre-
spondingly, the microprogramming type
depends not only on the characteristics
of the implemented algorithms, but
heavily on overall system evaluations
too. More precisely, the conflicts for
accessing the A-stack and the Memory,
together with the degree of parallelism
of the computation, impose a saturation
to the system performance with respect to
both the number of processors and their
average speed. Unless we are willing to
make the AP organization very sophisti-
cated, at a non-proportional cost, the

383

|

Get the funtcion name and
[7] A-stack addresses from Q;.

!

Are all the indicators of
the destination A-cell
set to FALSE?

NO 4 VES
[Execute the microprogram W

}

Deallocate the source
L A-cells if not referenced
any more.

Scheme of the microcode of a
general processor.

Fig. 14.

threshold speed of the processors seems
to be of the same order of magnitude as
the typical speed of mini- or micropro-
cessors, as it usually happens with a
multiprocessor architecture.

By taking into account the tree form of
the computations, a number of 4-8 pro-
cessors seems the most suitable, unless

a multitasking feature is introduced in-
to the SMOM language (by adding special
primitives such as FORK and JOIN) and in
the system architecture. In this case,
the CP must perform the task scheduling.
However, some problems arise at the

level of the A-stack. It may be inte-
resting to investigate the possibility of
employing at the task level the same syn-
chronization strategy proposed in this
paper and used at the instruction level.

4.4, A-stack Processor

As discussed in Section 3, the manage-
ment of the A-stack is a potential
bottleneck of the system which may pro-
duce serious degradation of the system
performance. In fact, if this function
is distributed on the CP and the gene-
ral processors, their behaviour would be
severely Timited by an excessive over-
head. Thus a specialized independent
processor, the AP, is needed. The AP is
assigned the task of performing functions
under the command of the CP and the pro-

Rivista di Informatica, vol. VIII, n.4, ottobre-dicembre 1978

364

cessors. Examples of such functions are:
ALLOCATE and DEALLOCATE A-cells; READ and
WRITE A-cells, either with LOCK or UNLOCK
feature respectively; conflict resolution
and priority updating, queues management,
etc.

Commands to the AP are sent by the CP and
the processors, and responses are retur-
ned from the AP through a set of I/0
buffers B, Bl’ BZ’ e s Bn (see Fig.

12). The commands specify, together with
their code, the relative A-cell address
and its configuration if it has to be
modified.

The indirect interaction mechanism can be
realized, in a simple but effective way,
by associating a lock-bit to every
A-cell, and by implementing an arbitra-
tion algorithm of the general or of the
circular type.

A fast memory of hardware registers is
employed for implementing the A-stack.

A dynamic microprogramming, though desi-
rable, is not essential in this case, for
the functions being implemented are
easily foreseen during the design phase.
Moreover, flexibility can be sacrificed
in behalf of speed, owing to the criti-
cal task of this unit. The possibility
of realizing the AP as a network of
asynchronous, co-operating subunits (at
the extreme, one for every A-cell) is to
be taken into account. However, economy
considerations, together with a much
less than proportional gain in speed,
recommend to follow the proposed
solution.

4.5. Memory

In our case, two factors play an impor-
tant role in devising a cost effective
organization of the memory. First, the
particular function of the CP, roughly
behaving as the Instruction Preparation
Unit in a look-ahead computer (15).
Second, the possibility of individuating
two memory areas, one essentially acces-
sed by the CP, the other accessed by the
processors. Therefore, we can assign a
subset of modules to the CP and share the
remaining modules among the processors.
The CP is connected to its modules by a
simple switch and a queue (Q in Fig. 12),
while the processors are connected
through a time-shared bus. This subdi-

L. Cardelli, G. Prini, M. Vanneschi

vision can be realized in a quite flexi-
ble way, provided that the switch and
the interconnection structure are imple-
mented in a modular way.

5. CONCLUDING REMARKS

The design goals of the machine language
of SMOM were essentially two, namely it
had to be particularly well suited to
implement fast interpreters for extensi-
ble languages, and it had to support

the good programming style of defining
and using as many data types as logically
required by the user's problem. In this
case, the types of the components of a
datum are almost always known from the
definition of the data type which the
datum is an instance of. This amounts
to saying that the prefetching algorithm
seldom falls asleep while waiting for the
top-type to become manifest. In other
words, a programming style that allows
an almost complete compile-time type-
checking also allows an equally complete
run-time type-checking to be performed
by the prefetching algorithm. So, the
prefetching algorithm generally waits
for the completion of some test having

a really unpredictable result, e.g. a
test that precedes a JUMPT or a JUMPF.

A hand-made analysis of several SMOM
programs (most of them obtained by com-
piling various LISP functions to SMOM)
has shown that about one half of the
instructions contained in a SMOM program
are A- and C-managers, and that the
number of functions which are executed
in parallel by the processors (other
than CP) is typically varying from four
to eight (this result has been recently
confirmed by experiments performed with
a software simulator of the parallel
architecture described in this paper
(11)). These numbers perfectly match
the number of processors that is con-
jectured to be optimally supported by
the proposed architecture, i.e. the
maximum number of processors which does
not generate too many conflicts on the
A-stack (see also Section 4). This
apparently amounts to saying that the
maximum speed-up allowed by parallel
interpreters of SMOM-1like languages is
about one order of magnitude. We
believe that something better can be
achieved, provided that the conflicts

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

Multiprocessing Implementation of a High-Level Machine Language

for accessing the various memory modules
and the A-stack are held to a minimum by
a careful design of the algorithms for
allocating new data items or new A-cells.
Results obtained in implementing extensi-
ble high-Tevel Tanguages in paged envi-
ronments are surprising in this respect.
Further improvements in the performance
of such systems can be probably achieved
only with machine languages based on dif-
ferent concepts (13).

ACKNOWLEDGEMENTS

Dario Citterico and Maurizio Greco par-
ticipated in early phases of the research
that Tead to this paper. Their contri-
bution is acknowledged. Gigina Aiello
made many suggestions that considerably
improved the manuscript.

REFERENCES

(1) A.K. Agrawala & T.G. Rauscher, Foun-
dations of microprogramming: architec-
ture, software and applications (Aca-
demic Press, New York, 1976).

(2) L. Afello, M. Aiello, G. Attardi &
G. Prini, Recursive data types in LISP:
a case study in type-driven programming,
in: B. Robinet (ed.), Programmation (Du-
nod, Paris, 1976)232-248.

(3) G. Attardi, C. Montangero & G. Prini,
A high-level machine for artificial in-
telligence, in: M. Brady (ed.) Proceed-

ings of the AISB summer conference (Edin--

burgh University Press, Edinburgh, 1976)
26-37.

(4) T.C. Chen, Microprocessors as build-
ing blocks, in: Symposium on distributed
computing systems: micros, minis and net-
works (Pisa, 1975)

(5) M. Conway, A multiprocessor system
design, in: AFIPS conference proceedings
(1963)136-146.

(6) N. De Francesco, G. Vaglini & M. Van-
neschi, Implementation of parallel com-
putation schemata, in: Proceedings of the

385

3rd International Joint Conference on

Artificial InteTTigence (Stanford, 1973)

697-703.

(9) E.W. Dijkstra, Co-operating sequen-

tial processes, in: F. Genuys (ed.) Pro-
gramming languages (Academic Press, New
York, 1968)43-112.

(10) E.A. Feustel, On the advantages of
tagged architecture, IEEE Transactions

on Computers C22,7 (1973)644-656.

(TT) B. Giannetti, Valutazione delle pre-
stazioni di un sistema di programmazione
integrato, Thesis, Istituto di Scienze
del1'Informazione, Pisa (1978).

(12) A. Kay, Personal computing, in:
Proceedings of the meeting on 20 years

of computer science (Pisa, 1975).

2nd Euromicro symposium (Venice, 1976)
157-T63.

(7) J.B. Dennis & D.P. Misunas, A preli-
minary architecture for a basic data-flow
processor, in: Proceedings of the 2nd
annual symposium on computer architec-
ture (New York, T1975)126-132.

(8) P. Deutsch, A LISP machine with very
compact programs, in: Proceedings of the

Rivista di Informatica, vol.

(13) M. Morescalchi, L. Signorini & A.
Tomasi, Una architettura parallela per
1'interpretazione di Tinguaggi macchina

ad alto Tivello, in: Atti del congresso
annuale dell'AICA (Pisa, 1977).

(14) G. Rietti, U. Tiriticco & M. Vanne-
schi, Sistemi distribuiti di unitd fun-
zionali come complessi di microprocessors,
in: Atti del congresso annuale dell'AICA
(Pisa, 1977).

(15) H. Stone (ed.), Introduction to
Computer Architecture (Science Research
Associates, Los Angeles, 1975).

(16) M. Vanneschi, On the microprogrammed
implementation of some computer archi-
tectures, Euromicro Newsletter 2,2
(1976)14-20.
(17) M. Vanneschi, Microprogrammable pro-
cessor components and architectures, in:
D. Aspinall (ed.), The microprocessor and
its applications (Cambridge University
Press, Cambridge, 1977).

APPENDIX
A.1. A-managers

2 . . y
Here n is a non-negative integer which

denotes the address of an A-cell relative
to the A-top (i.e. 0 is the address of
the A-top, 1 is the address of the

A-cell immediately below the A-top,
etc.). The A-cell whose address is n is
also called the n-th A-cell.

Format: (GET n)
Action: copies the n-th A-cell onto the
A-stack.

VIIT, n. 4, ottobre-dicembre 1978

386

Figure:

Format:
Action:

Figure:

Format:
Action:
Figure:

Format:
Action:
Figure:

Format:
Action:

L. Cardelli, G. Prini, M. Vanneschi

ddn
dd0 dd0
ddn ddn
(PUT n)
copies the A-top into the n-th
A-cell.
dd0
dd1 dd]
ddn ddO
(PUSH dd)
copies dd onto the A-stack.
dd
dd ! dd
O [(pusH dd) i
(POP n)
pops n dd's off the A-stack.
dd0
ddn | (POP n) ddn
(SQUEEZE n)
pops n dd's between the A-top

and the (n+1)-th A-cell off the
A-stack.

Figure:

dd

0
dd. | (SQUEEZE n) > dd,
dd, dd,

A.2. C-managers

Here n is a (possibly negative) integer
which is to be added to the C-top (such
an operation is called a jump).

Format:
Action:

Format:
Action:

Format:
Action:

Format:
Action:

Format:
Action:

(JUMP n)
the jump is always performed.

(JUMPF n), (JUMPT n)

the jump is performed if the
truth value (basic built-in
data type) FALSE (resp. TRUE)
is found in the A-top.

(TYPEJUMPF t n), (TYPEJUMPT t n)
the jump is performed if the
top-type is not (resp. is) t.

(CALL dd)

pushes dd (which must be a pro-
gram descriptor) onto the
C-stack, thus suspending the
program containing the function
(CALL dd) and activating the pro-
gram described by dd.

(RETURN)

pops the C-stack, thus resuming
the most recently suspended pro-
gram.

Rivista di Informatica, vol. VIII, n. 4, ottobre-dicembre 1978

