L S]

UNIVERSITA" DEGLI STUDI DI PISA
ISTITUTO DI SCIENZE DELL INFORMAZIONE

A multiprocessor interpreter for a high-level

machine language

L.Cardelli - D. Citterico- M. Greco - G. Prini- M. Vanneschi

NOTE SCIENTIFICHE
S5-77-10
MARZO 1977

A MULTIPROCESSOR INTERPRETER FOR A HIGH-LEVEL MACHINE
LANGUAGE

Luca Cardelli , student
Dario Citterico , student
Maurizio Greco , student
Gianfranco Prini

Marco Vanneschi

Istituto di Scienze dell'Informazione

Universitada di Pisa

1. INTRODUCTION

Several recent programming languages, such as ALGOLW,
SIMULA67, ALGOL68, PASCAL, EL1 and CLU, have been designed
to allow data extensibility, that is the ability of declaring

(vs. explicitly programming) data types. Since most computers

are not very well suited to support extensible languages [9],
designers are almost inevitably induced to introduce several
restrictions to the treatment of data types, most of them
being suggested by the need of minimizing run-time type-checking.
It is a common opinion that the problem of designing a truly
general and efficient extensible language would be gfeatly
simplified provided that the existence of a fast and sophisticated
memory manager is assumed.
In [2] a machine, called SMOM, is proposed which allows
data types to be specified already at the machine language
level, in a way similaf to [7,10] . SMOM may be considered as
a quite powerful ﬁemory manager Vhich operates under the
control of a zero-address, stack-oriented machine language,
into which definitional interpreters (in the sense of [11])
for high level programming languages may be easily hand- or
cross-compiled.
Here we do not wish to debate the advantages of the
machine language of SMOM for the implementation of interpreters
and compilers (for a somewhat elaborate discussion see [2]).
Rather we wish to point out how such a machine language may
be supported by a multiprocessor architecture which significantly
speeds up the executién 6f SMOM programs by concurrently
evaluating arguments to functions and by performing most type
checking in parallel with other significant computations. 5
Section 2 contains a short but self contained description
of SMOM. In Section 3 the characteristics of parallel processing
iﬂ SMOM code, including a unique interprocess communication
discipline, are pregented, leading to the general ideas for a
SMOM architecture. in éection 4 a multiprocessor organization

is suggested which implements the ideas of Section 3.

2. SMOM: A SHORT DESCRIPTION

2.1 Data types

All data are manipulated through data descriptors (dd's).

A dd is a typed pointer, i.e. a pair <T,A>, where T is the

type of the described datum, and A is its memory address.

Both types and addresses are explicitly manipulated by the
hardware only: the user is not enabled to access them. This
implies that memory management is completely transparent to

the user. Data may be either basic (i.e. with no inner structure)

or structured (i.e. arrays and records of dd's). Both basic

and structured data types may be either built-in or user-
defined.

Data type definitions are supported by the notion of
class. A class is a structured data type that records all
information relative to a specified data type. It contains
a template which defines the inner structure of all data of
that type (the template being empty for basic data types),
and an unspecified number of locations, called registers,
whose main purpose is to record (dd's for) the definitions of
the functions associated with that class (see Section 2.3 and
2.4). Thus a class may be seen as a data type having a behaviour,
which is specified by its associated functions.

As an example, Fig. 1 shows the declaration of the class
of COMPLEX numbers, which are records of two fields, called

REAL and IMAG, containing two REAL numbers.

(CLASS COMPLEX
(TEMPLATE (REAL REAL)
(IMAG REAL))
(REGISTER PLUS
<code for adding

two COMPLEX numbers>)

(REGISTER FOO
<code for FOOing
two (three?) COMPLEX

numbers>))

Fig. 1 - The definition of the class of COMPLEX numbers.

2434

Evaluation of class definitions is explained in Section

2.2 Stacks

In order to process a datum, a dd for it must be present

in the argument stack (A-stack), whose building blocks are
the A-cells., Though the A-cells contain dd's, they are also
said to contain data. The A-cell at the top of the A-stack is

named A-top. The datum contained into the A-top is the top-

datum: its type is the top-type.

the

Continuation points of programs (see below) are held in

control stack (C-stack), which is made of C-cells. The

C-cell at the top of the C-stack is named C-top.

2.3 Microprograms

Two special built-in data types are present in SMOM,

called microprograms and programs. Microprograms implement

the basic computational functions of SMOM (i.e. they are

supposed to be executable by the hardware). Microprograms

may be grouped into the following categories.

i)

ii)

A-managers and C-managers are used for the data control

(i.e. for the management of the A-stack) and for the
sequence control (i.e. for the management of the C-stack)
respectively. The main A-managers and C-managers are GET,
PUT, PUSH, POP, SQUEEZE and JUMP, JUMPT, JUMPF, TYPEJUMPT,
TYPEJUMPF, CALL, RETURN, respectively: they are described
in the Appendix. Their descriptors (i.e. entry points)

are stored in(the homonymous registers of a special class,
called ANY (see below).

Operations are used for standard computations. Each of them

has an associated arity (i.e. number of arguments). Execution
of an n-ary operation (i.e. an operation whose arity is n)
causes n arguments to be popped off the A-stack and a value

to be pushed onto the A-stack itself.

SMOM contains several built-in microprograms (A-and C-
managers and most microprograms which specify the behaviour
of built-in data types fall into this category). Many others
(mostly operations) are automatically synthesized when a
class definition is evaluated, and dd's for them are stored
in the appropriate registers. For instance, referring to the
example of Fig. 1, the following actions are generated:

1. A constructor operation for building new COMPLEX numbers

out. of two REAL numbers is stored in the register COMPLEX
of the class ANY.

2. Two selector operations for treating the components (i.e.
the real and imaginary parts) of a COMPLEX number are
stored in the REAL and IMAG registers of the class COMPLEX.
They may operate either in load mode (in which case they
are l-ary and are used to retrieve the components of COMPLEX

numbers) or in store mode (in which case they are 2-ary

and are used to update the components of COMPLEX numbers:
the first argument replaces the appropriate component of
the second argument). The default mode is the load mode.
The store mode is used when a selector is invoked via the
special operation UPDATE (see section 2.4).

3. Several utility operations for reading, writing, editing,
etc. COMPLEX numbers are stored in the appropriate registers
of the class COMPLEX.

The mechanism which allows microprograms to be retrieved

and executed is explained in Section 2.4.

2:ab Programs

Programs are linear sequences of functions, each one

being made of an operation code and some (possibly zero)

operands. Both operation codes and operands are represented

as bytes: thus a program is represented as a linear sequence
of bytes. Each byte 1is interpreted either as an operation code
or as an operand according to its position, as it usually

happens in a standard byte-oriented computer.

Programs ate interpreted by a fetch-decode-execute loop
which performs the following operations.

A byte is fetched, according to the address contained in
thé C-top (fetching always increments the contents of the
C-top), and it is interpreted as an operation code. This means
that a register having the same internal name as the fetched

byte is searched in the special class ANY. If such a register

is found, the datum described by it is called as a function
according to the following rules.

1. If the datum is a microprogram, it is directly executed by

the hardware. It may fetch some bytes of the calling
program apd use them as operands: this is the case of all
the functions described in the Appendix (other than RETURN)
and the function UPDATE (which has the name of a selector
as its only operand).

2. If the datum is a program, a dd for it (i.e. a pointer to
its first instruction) is pushed onto the C-stack and
execution goes on with the new program counter. Notice that
recursion is naturally exploited, as it is a built-in
control structure.

3. Otherwise the datum is pushed onto the A-stack and the
standard function APPLY is called (after having pushed
the continuation point of the calling program onto the
C-stack). By the type driven call machinism (see below),
the function APPLY is searched in the class to which
the datum itself belongs. Thus each datum may be used as
a function, provided that an APPLY function (i.e. an in-
terpreter) is defined for it.

If the class ANY does not contain a register with the .
same internal name as the fetched byte, such a register is

searched in the class of the top-datum. If such a register

is found, processing goes on as in the previous case, otherwise
an error is generated. The call mechanism just described is

named type-driven, since the top-type may "drive" the access

to the code of the called function.

A sample program which performs the addition of two
COMPLEX numbers in shown in Fig. 2. The reverse polish notation

is used.

(PROG (GET,2) (REAL)
(GET,2) (REAL) (PLUS)
(GET,3) (IMAG)
(GET,3) (IMAG) (PLUS) (COMPLEX)
(SQUEEZE, 2)
(RETURN))

Fig., 2 - A program for adding two COMPLEX numbers.

Note that, though the program is written in a 'pretty
format", its memory representation is simply a sequence of
bytes, the first byte being the internal name of "GET", the

second one being the binary code of "2", etc.

3. SMOM ARCHITECTURE AND PARALLEL PROCESSING

3.1 General discussion

In Section 2, SMOM functions have been supposed to be
executed in a strictly sequential order, the order being
specified by contiguity and jump operations (program calls
and returns are to be considered as jump operations).

However, the features of the SMOM language allow (we
could say force) to exploit the inherent parallelism of
the algorithms in a natural way: notably, the equivalence
of form between functions and data and the encouragement to
use recursion as a control structure. As it happens with .
the high-level languages with such features (e.g. LISP), a
SMOM computation consists essentially in a number of function
calls, where a function takes the form of an expression.
Thus, the tree (i.e. particular partial ordering) instances

are heavily present in the computation graph, contrary to

what happens in sequence-of-statements based languages (in
particular, in conventional assembler languages) where such
instances are confined to the arithmetical-logical expressions
only. Partial ordering, which allows the most natural and
controllable form of parallelism, is further exploited, in
the form of trees, through the use of the reverse polish
notatiop. Moreover, notice that the SMOM functions (see for
instance A- and C-managers) are more powerful than the
conventional assembler instructions; thus, exploiting the
parallelism among them leads to much faster and efficient
execution and, as we shall see, to an easy modular separation
of firmware controlled system tasks.

We intend now to show how the various parts into which
the program may be divided «can be detected, ordered and
executed in parallel. Of course, determinacy and efficiency
impose suitable synchronization requirements: these will be
defined in a unique way.

In what follows the reader is recommended not to take
care of the type-driven call mechanism of SMOM. Also the
existence of functions (such as PUT and UPDATE) that perform
side-effects is to be i;nored by now. These features will be
treated later.)

Referring to Fig. 2, it is evident that the computation

graph of that program is the tree which is shown in Fig. 3.

COMPLEX

QUEEZE, 2

Fig. 3 - The computation graph of the program of Fig. 2.

-7 =

Each leaf represents a function which starts an independent
computation. Each nonterminal node with K sons represents the
execution of a function with K subordinate computations.

Computation trees may be reproduced in a multiprocessor
environment by means of several synchronization techniques which
all are implementations on the Dijkstra's P and V primitiveé
[83 or, equivalently, on the Conway's FORK and JOIN instructions
[4]. However, such techniques are efficient chiefly in the
classical multitasking environment where tasks are relatively
complex in size so that high processor-switching overhead
is tolerable [13]. Improvements can be devised when the tasks
may be of any size (see, for instance, [6,13,51), but all
these techniques have the same characteristics: every task
is dispatched to one processor only as soon as it is ready
for execution. This fact prevents from employing other

parallelism forms, such as prefetch or look-ahead: we wish

to employ such forms indeed, as we are concerned with

efficient execution of (high-level) machine code. Moreover,

we need a synchronization strategy that agrees with the data
control (i.e. A-stack management) strategy. Our solution is
characterized by the fact that the fetched functions are
dispatched to all the processors which are potential candidates
to their executions: function execution will actually
controlled by a JOIN-type mechanism and by a "data-driven"
control mechanism.

Specifically, functions represented by different leaves
are enqueued on different processors for execution. Functions
represented by a nonterminal node are enqueued on all the
processors which are still involved in some subordinate .
computation of the node itself. The number of such processors
is recorded by a counter associated with the node.

When a processor takes a function from its queue, it
decrements the counter and executes the function only if the
counter is zero. This JOIN-type mechanism prevents a function

from being executed unless all of its subordinate computations

ia

In the following subsections several implementation

problems arising with such an architecture are examined in

some detail.

3.2 The A-stack

Assume that the CP enqueues the first seven functions

10 P2 and
P3, according to the strategy explained in Section 3.1, as

it is shown in Fig. 5.

of the program of Fig. 2 on the three processors P

il s < 1

| .

1 : P1 P2 P3

i e e e Gl s

: " | GET(aA»0) GET (B~+D) GET (A+D)
c + id REAL (C~»>C) REAL (D-+D) .
a + ib PLUS(C,D>C) PLUS(C,D=C) .

Fig. 5 - After prefetching seven functions of the program

of Fig. 2. More precisely, the A-cells A and B
should contain descriptors for the COMPLEX numbers

a+ib and c+id.

Here some A-cells have been labeled in order to single
out the A-cells (also called source A-cells) which contain
the arguments and the A-cell (also called destination A-cell)

which is to contain the result of each enqueued function.

Assume also that the processors execute the prefetched

functions according to the timing of Fig. 6.
3 i

P GET (A=C) REALT{C=C) ' PLUS(C,D+C)

[— & @
P2 GET (B-D) REAL (D=D)
o ®- &
P3 GET (A-+D)
@— - ;Y
éime
R

Fig. 6 - A possible timing for the execution of the prefetched

functions of Fig. 5.

It is evident that the value deposited by P2 into the
A-cell is overwritten by P3 before P1 is enabled to use it
for the addition (remember that P2 cannot perform the addition,
since P1 is still computing the first summand when P2 completes
the computation of the second one).

This example shows that the A-cells cannot be simply

overyritten by the processors without possibly generating
disastrous side-effects on the A-stack. As mentioned before,
semaphores, critical sections and other well-known devices
for interprocess communication are not needed to share the
A-stack correctly among the various processors.

A much simpler solution is sketched in Fig. 7. The A-stack

is made into a stack of pointers to A-cells, which

A=cell
- / ce s

A-stack

Fig. 7 - The structure of the A-stack.

...11..

in turn still contain dd's. The A-stack proper (i.e. the stack
of pointers) is known to the CP only. The A-cells are manipu-
lated by both the CP and the various processors. When a new
function (other than a C-manager, which is always executed

by the CP, as it is explained in Section 3.6) is fetched from
memory, the CP enqueues on the appropriate processors the
prefetched function and the addresses of its source and destination
A-cells. The former are taken near the top of the A=stack
proper, the latter is the address of a newly allocated A-cell,
-which becomes the new A-stop (the A-stack proper is appropria-
tely overwritten). The behaviour of the CP with the program

of Fig. 2 is sketched in Fig. 8.

Pl P2 P3
GET (A>C) GET (B~E) GET (A->H)
REAL (C+D) REAL (E~F)
PLUS (D, F+G) PLUS(D,F+G) L
@- H F E
&—— = G D Y
@ - c+id B
® > a+ib A
|

Fig. 8 - After prefetching seven functions of the program of
Fig. 2. More precisely, the A-cells A and B should

contain descriptors for the COMPLEX numbers a+ib

and c+id.

Note that no A-cell is ever overwritten: only pointers
contained in the A-stack proper are. However, no information
is lost now, since the A-cells containing useful values aré
still referenced from the processors' queues. When an A-cell
becomes unreferenced, it may be reclaimed to free-storage,

as it is explained in Section 3.3.

3.3 - A-managers and the A-cell space

In Section 3.2 we have introduced the notions of source
‘and destination A-cells for a function. These concepts are
clear enough as far as operations (see Section 2.3) are concerned.
But what about the A-managers? Few problems arise with PUSH:
it may be considered as a nullary operation (i.e. an operation
with zero arguments) which is completely executed by the CP.
Also POP and SQUEEZE create few problems: they may be considered
as: (n+l)-ary operations (i.e. operations with n+l arguments)
which are enqueued and executed according to the strategy
explained in Section 3.2. For the three A?managers considered
by now and for all the operations the following policy may be
devised for the management of the A-cell space. Whenever a
function is prefetched, a destination A-cell is allocated, as
it has been already explained in Section 3.2. Whenever.a function
is executed, its source A-cells are deallocated, since they
cannot be referenced any more.

As far as GET is concerned, almost the same policy may be
adopted: a destination A-cell is allocated by the CP, as it is
shown in Fig. 8, but the source A-cell is never deallocated
when GET is executed.

Unfortunately, this simple policy does not seem to be :
applicable td the functions PUT and UPDDATE, unless either the
management of the A-cell space is intolerably complicated or
the CP is forced to wait until all currently enqueued functions
have been completed. The reader is invited to convince himself
that any simple solution to this problem, which does not involve

a garbage collector for the A-cell space, is actually wrong

(counterexamples are easily found in which GET and PUT from
the one side, or selectors used in load and store mode from
the other side, do not properly interact, if an appropriate
timing is assumed for their execution).

A completely different view may also be adopted: each

A-cell is provided with a reference count which records the

number of existing pointers to that A-cell. This has a number
of pleasant consequences. First of all, the A-managers may
now be executed directly by the CP, without allocating extra

destination A-cells (see Fig. 9 for an example).

o
& dd o- dd
(e] o
(GET,n) | :
@ = dd_ o > ddn fo—
*

Fig. 9 - An implementation of GET.

Second, PUT may be completely prefetched without unnec~-
essary waitings. Third, no A-cell is to be allocated for
unary functions. The main disadvantage of this solution is
th%t the maintenance of reference counts introduces a lot

of write operations on A-cells: this may probably cause the

performance of the system to be dramatically compromised
unless a special purpose processor, the ASP, is introduced

for managing the A—ﬁell space.

3.4 - The enqueuing strategy

In Section 3.1 a strategy has been outlined for repro-
ducing computation graphs and dispatching functions to
processors. Here we make that strategy effective.

In Fig. 3 each node of the compﬁtation graph has been
associated with a function. In Section 3.2 each function

has been associated with a unique and newly allocated A-cell

(namely, the destination A-cell). This one-to-one correspondence
between nodes and destination A-cells allows us to associate

the counters mentioned in Section 3.1 with the A-cells. Such
counters have been ;upposed to be positive integers in

Seetion 3.1, Obviously an integer counter only conveys
information about how many (while the CP must know which)
processors are co-operating in the computation associated

with a node. An array of bgolean indicators is more suitable

in this case. Thus an A-ceil may be patterned as shown in

Fig. 10.

S S s ol S type pointer

3 IR S =

counter dd
Fig. 10 - The pattern of an A-cell with boolean indicators

At any time, the indicator S, (l<izn) of an A-cell is
TRUE if and only if the processor Pi is still involved in
some subordinate computation of the node represented by that

A-cell. Each indicator of a newly allocated Qestination

A-cell is initially set to the inclusive OR of the correspond-
ing indicators of the source A-cells of the fetched function:

in fact these A-cells, which are to contain the arguments

15

of the function, also contain information about the processors
which are still computing them. The function is then enqueued
(with the addresses of the source and destination A-cells)

on all the processors whose corresponding indicator in the
destination A-cell is TRUE. If no such indicator is TRUE, the
function may be enqueued on an arbitrary processor, and the
corresponding indicator is set to TRUE.

When a processor takes a function from its queue, it sets

to FALSE the corresponding indicator in the destination A-cell,

and executes the function if and only if all the indicators

of this A-cell are FALSE.

Otherwise the function is ignored, and the next one is

taken from the queue.

3.5 -Type driven calls

Here we explain how the CP may perform the run-time type
checking which is necessary for the implementation of the type
driven call mechanism.

Suppose first that the prefetched function is not a
C-manager and its code is found in the special class ANY. In
this case, the arity of the function is known, and the type
of its result may be often predicted (input functions are a
major exception). So the CP may update the A-stack properly,
and store the predicted type in the destination A-cell before
the function is actually computed, thus possibly communicating
information to the next call, provided that it is type driven.

If the code of the prefetched function cannot be found
in the special class ANY, the type driven call mechanism is
to be invoked. .

If the top-type is manifest (i.e. it has been computed
by either the CP or some processor) then the CP operates as
in the previous case, using the appropriate class instead of
the sﬁecial class ANY. Otherwise the CP cannot do better

than waiting until some processor has computed the top-type.

(™

3.6 - C-manaigps

They can be directly executed by the CP. The execution of
TYPEJUMPT and TYPEJUMPF requires that the top-type is manifest,
and the CP operates exactly as in the case of type-driven calls
(see Section 3.5). The execution of JUMPT and JUMPF requires
that the top-datum is manifest, and the CP must wait until it is.

4., MULTIPROCESSOR ORGANIZATION

4.1 Overall system organization

As shown in Section 3, the overal organization proposed
for a SMOM interpreter is a hierarchical multiprocessor,
consisting of (see Fig. 11): i) a Control Processor (CP) at
the higher level; ii) a set of identical (general) processors
(Pl""’Pn) at the lowest level; iii) an A-stack Processor
(ASP) which manages tbe processors and CP requests for
accessing the A-stack and coptrols their interactions; iv) a
common Memory, with m modules (Ml,...,Mm).

As it often happens in a hierarchical, parallel organization,
the existence of a supervisor control level makes both the
design process and the achievment of high performances more
easy, possibly at the expense of a less reliability. In our
case, performance is further improved by the use of simple and
fast synchronization primitives, by an intensive form of
prefetch and by the independent management of the A-stack. A
modular or;;nization of the memory, possibly with a suitable
separation éf information among the modules, is a standard
technique for balancing the execution and the memory bandwidths.

Every system unit is microprogrammed and, whenever

possible and/or convenient, dynamically microprogrammable

in order to improve system flexibility and extendibility.
Moreover, the overall organization is modular in principle and
thus well suited to better exploit the microprogramming
characteristics. This further improves the system efficiency;

as every unit has its own microprogramming language and

Switch

CP

e e e

o o o

AT e

Intere.

Structure

S

Fig. 11 - Overall system organization

P2 Pn
B BZ Bn
/ > il

18

organization, both chosen in order to optimize the performance/
cost ratio "on a local basis" [14].

In the following subsections we shall describe the internal
organization of the main system parts, according to the general

behaviour discussed in Section 3.

4,2 - Control Processor

As a primary task, CP must perform the sequence control
of the computation. Therefore, the C-stack must be a private
" resource of CP. Moreover, it is convenient that CP contains

a private copy of the A-stack, called the virtual A-stack

(VA-stack), in order to reduce the number of conflicts with

the processor for accessing the A-stack and to maintain a

picture of the contents of the A-cells allocated to prefetched,

but not yet executed, functions. It is sufficient that the

VA:cells are composed of only two fields, the V-type and the

V-link. The first is assigned the type of the fetched datum

according to well-défined predictions as discussed in Section

3. A special mark in the V-type field signals the wait situation.
The C-stack and the VA-§tack are implemented as fast

memories of relatively émall;sizes (tiﬁically, 128 - 256 cells).

Two other similar memories are used as branch tables for registers

of class ANY and for registers of the other classes. Actually,
the second one acts as a cache of the complete table stored in
main memory.

The CP organization is completed by a set of standard
computational resources, (hardware) registers both for general
and for special.purposes, and buff;ring and interaction
mechanisms interfaced with the processors, ASP and Memory.

The scheme of the microprogram defining the behaviour
of CP is shown in Fig. 12. Remember that the microprograms
that affect the control flow have directly executed by CP.
The function APPLY, if present, is an interpreter defined for
using a datum as a function: when it is called by the type-
driven mechapism, it is searched in the corresponding class

of the datum.

179

Class ANY Type-driven

Type-prediction 4}
impossible ;

Wait
executio

Type-prediction
performed

Allocate the type
on A-top and
on VA-top

Program

dd+A-top
and VA-top

Program Counter
->C-top

Program Counter
+~C-top

Branch to
entry point

‘Call APPLY

Fig. 12 - Scheme of Control Processor microcode

_20—

It can be seen that the characteristics of the algorithm
being implemented are such that an horizontal microprogramming
appears suitable, as CP must be as fast as possible for a
continuous supply of functions to the processors. In practice,
a "diagonal" microprogramming [1], is more effective, with
several horizontal microinstruction formats encoding subsets
of microcommands for interdependent sections of CP hardware:
these correspond approximately to the main CP resources and
interconnections mentioned before.

Alternatively, the CP might be realized as a network of
microprocessors, each one corresponding to a "physical'" section
and all controlled by a supervisor microprocessor, according

to the Kehl's [151 or the T.C. Chen's [3] proposals.

4.3 - General Processors
3

The task of a generic processor Pi is to execute the

functions which do not modify the control flow. Its behaviour
has been sketched in Section 3 and the scheme of its microcode

is shown in Fig. 13,

(7.

Get the function name and the

i 1§asF A-stack address from Q.

one indi- : i

cator of 4 '

z:ztgzczll All the indicators of the A-cell
3 A' ‘ contain FALSE

TRUE

N

Execute the
microprogram

\

Deallocate
the A-cells

L ‘ !

Fig. 13 - Scheme of generic processor microcode

21

The internal organization and, correspondingly, the micro-
programming type depends not only on the characteristics of
the implemented algorithms but heavily on overall system
evaluations too. More precisely, the conflicts for accessing
the A-stack and the Memory, together with the parallelism
degree of the computation, impose a saturation to the system
performance vs. both the number of processors and their average
speed. Unless we are willing to make the Memory and the ASP
organizations very sophisticated, at a non-proportional cost,
- the threshold speed of the processors seems of the same order
of magnitude of typical mini- or microprocessors, as.it
- happens in general for a multiprocessor architecture. This
consideration leads to adopt a vertical organization and
microprogramming, or at most a diagonal one with limited
parallelism in the microistruction.

By taking into account the tree form of the computations,
a number of 4-8 processors seems the most suitable, unless a
multitasking feature is introduced in the SMOM language (by
adding special primitives such as FORK and JOIN) and in the
system architecture. In this case, the CP must provide to the
task scheduling; however, some problems arise at the level
of the A-stack. It may be interesting to investigate the
possibility of employing at the task level the same synchro-
nization strategy proposed in this paper at the instruction

level.

4.4 - A-stack Processor

As discussed in Section 3, the A-stack management is a
potential bottleneck of the system which may produce disastrous
effects on the system performance. In fact, if we distributed
this function on the CP and the general processors, their
behaviour would be heavily limited by an excessive overhead.
Thus a specialized independent processor, the ASP, is needed.
The ASP is assigned the task of performing functions under
the command of the CP and the processors, such as: ALLOCATE
and DEALLOCATE A-cells; READ and WRITE A-cells, either with

0

LOCK or UNLOCK feature respectively; conflicts resolution and
priority updating, queues management, and so on.

Commands to ASP are sent by the CP and the processors,
and responsens are returned from ASP, through a set of input-
output buffer (B,Bl,...,Bn in Fig. 11). The commands specify,
together with their code, the relative A-cell address and its
configuration if it has to be modified.

The indirect interaction mechanism can be realized, in
a simple but effective way, by associating a lock-bit to every
A-cell and by iyplementing an arbitration algorithm of the
general or of the circular type.

A fast memory of hardware registers is employed to
implement the A-stack. A dynamic microprogramming, though
desirable, is not essential in this case, for the functions
being implemented are easily foreseen during the design phase.

Moreover, flexibility can be sacrificed in behalf of
speed, owing to the critical task of>ﬁhis unit. The possibility
of realizing ASP as a network of asynchronous, cooperating
submits (at the extreme, one for every A-cell) is to be taken
into account. However, economy considerations, together with
a much less then proportional gain‘in speed, recommend to

follow the proposed solution.

4.4 Memor
} \
In a standard multiprocessor the interleaved organization

of the memory and the use of a crossbar switch (as intercom-
munication structure between memory modules and processors) are
adopted. In our case, two factors play an important role in
derising a more cost effective organization of the memory. |
First, the pafticular function of the CP, roughly behaving as
the Instruction Preparation Unit in a look-ahead computer L121.
Second, the possibility of individuating two memory areas, one
essentially accessed by CP and the other accessed by the
processors. Therefore, we can assign a subset of modules to

CP and share the remaining modules among the processors. CP

is connected to its modules by a simple switch and a queue

(Q in Fig. 11), while the processors are connected through a
distributed crossbar or, perhaps more effectively, through a
time-shared bus. This subdivision can be easily realized in a
quite flexible way, provided that the switch and the intercon-

nection structure are implemented in a modular way.

5. CONCLUSIVE REMARKS

The guidelines among which the design of the SMOM machine
language evolved were essentially two, namely that the language
‘had to be particularly well suited to implement fast interpreters
for extensible high level programming languages, and that it
had to support the good programming style of defining and using

as many data types as many logically different categories of

objects are dealt with in one's programs. Having as many data
types as logically required usually means that the type of the
components of a data tybe are almost always known from the
definition of the data type itself. This amounts to saying that
the prefetching algorithm seldom falls asleep while waiting
for the top-type to become manifest. In other words, a programming
style that allows an almost complete compile-time type checking
also allows an equally complete run-time type checking to be
performed by the prefetching algorithm. So, when the prefetching
algorithm is waiting, it is almost always waiting for the
completion of some test having a really unpredictable outcome,
e.g. a test that precedes a JUMPT or a JUMPF.

A hand-mdde analysis of several SMOM programs (most of
them being obtained by compiling various LISP functions to SMOM)
has shown thatkabout one half of the instructions contained in
a SMOM program are A- and C-managers, and that the number of .
functions which are executed in parallel by the processors
(other than the control processor) is typically varying from
four to eight. These numbers perfectly match the number of
processors that is suspected to be optimally supported by the

proposed architecture, i.e. the maximum number of processors

- 24 -

which does not generate too many conflicts on the A-stack
(see also Section; 4). Even though more accurate estimates are
foreseen, we belleve that the interpretation of a SMOM-like
language is hardly supported by a really better organization
(i.e. an organization in which many more processors are
employed which are almost always busy) than the one presented
in the paper. This apparently amounts to saying that the
maximul speed-up allowed by parallel interpreters for SMOM-
like languages is about one order of magnitude. We believe
that something better can be achieved, provided that the
conflicts for accessing the various storage modules and the
A-stack are held to a minimum by a careful design of the
algorithms for allocating new data items or new A-cells.
Results obtained in implementing extensible high level languages
in paged environments are surprising in this respect. Further
improvements in the performance of such systems can be probably
achieved only if machine languages based on completely different
(possibly new) concepts are designed, even though we obviously
do not know what these concepts should be.

As a final remark we point out that an interesting field
for further research would be to investigate to what extent
the (somewhat new) synchronization techniques presented in
the paper may be profitably used to implement the well estabilished
parallel control constructs which are present in some programming

languages, such as the multitasking feature of PL/1l.

1.

24

6.

8.

10.

11.

124"

13

14'

REFERENCES

A.K. Agrawala, T.G. Rauscher, Foundations of microprogramming:

architecture, software and applications, Academic Press, 1976.

G. Attardi, C. Montangero, G. Prini,.A high-level machine
for artificial intelligence, Proc. of the AISB Summer Conference,
Edinburgh, 1976, 26-37.

T.C. Chen, Distributed intelligence for user-oriented
computing, AFIPS Conf. Proc., 1972 FJCC, 1041, 1056.

M. Conway, A:multiprocessor system design, AFIPS Conf. Proc.,
1963 EJCC, 136~146.

N. De Francesco, G. Vaglini, M. Vanneschi, Impleﬁentation

of parallel computation schemata, Proc. of 2nd Euromicro

Symposium, Venice, Oct. 1976, 157-163.
J.B. Dennis, D.P. Misunas, A preliminary architecture for

a basic data-flow processor, Proc. of 2nd Annual Symposium

on Computer Architecture, New York, Jan. 1975, 126-132.

P. Deutsch, A‘LISP machine with very compact programs,

Proc. of 3nrd Lnt. Joint Conf. on Artificial Intelligence,
Stanford, 1973, 6977703,

E.W. Dijkstra,‘Cooperéting sequential processes, in

Programmingﬁkggguages, F. Genuys (ed.), Academic Press,
1968, 43=112.,

E.A. Feustel, On the advantages of tagged architecture,
IEEE Trans. on Comp., C-22,7, July 1973, 644-656.

A. Kay, Personal Computing, invited paper at the Meeting

on 20 Years of Computer Science, Pisa, 1975.

J. Reynolas, Definitional interpreters for higher-order
programming languages, Proc. of Annual ACM Conference,
Atlanta, 1972,

H. Stone (gd.), Introduction to Computer Architecture,

Science Research Associates, 1975.

L

J.A. Torode, T.H. Kehl, The Logic Machine: a modular computer
design system, IEEE Trans. on Comp., C-23, 11, 1974, 1164-1169.

M. Vanneschi, On’ the microprogrammed implementation of some
computer architectures, Euromicro Newsletter, Vol. 2, N. 2,
19:2:6., - 1= 205

APPENDIX

A.l1 - A-managers

Here n is a positive integer which denotes the address
of an A-cell relative to the A-top (i.e. O is the address of
the A-top, 1 is the address of the A-cell immediately below

the A-cell, etc.). An A-cell having address n is also called

the n-th A-cell.

Format : (GET,n)
‘Action : copies the n-th A-cell onto the A-stack.

Picture :

ad
n
dd dd
(o] (o]
v 1 Ed
. : : (GET,n)
8 ad ‘ dd
n n

Format . : (PUT,n)
‘Action : copies the A-top into the n-th A-cell.

Ficture:
- dd
)
dd1 3 ddl
’ I . :
. (PUT,n) .
da_~ da_
n o

_2\7...

copies dd onto the A-stack

pops n dd's off the A-stack

Format (PUSH, dd)
Action
dd
o
Format (POP,n)
Action
Picture:

(PUSH,dd)

(POE:;n)

dd

dd
o

dd

Format : (SQUEEZE,n)
Action : pops the n dd's between the A-top and the (n+l)-th
A- cell off the A-stack

Picture:

dd
o

dd
o

ddn+l

n+l (SQUEEZE,n)

A.2 C-manager

Here n is a (possibly negative) integers which is to be

added to the C-top (such an operation is called jump); t is

a type.

Format : (JUMP,n)

Action : the jump is always performed.
Format : (JUMPT,n) (JUMPF,n)

Action : the jump is performed if the truth value (basic data

type) TRUE (resp. FALSE) is found in the A-stop.

(TYPEJUMPT,t,n) (TYPEJUMPF,t,n)
Action : the jump is performed if the ‘top-type is (resp. is

ee

Format

not) t.

Format

Action

Format

Action

(CALL,dd)
pushes %ﬂ (which must be a program descriptor) onto
the C-sfack, thus suspending the pProgram containing

the call and activating the program described by dd.

(RETURN)
pops the C-stack, thus resuming the most recently

suspended program.

(e

