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Reversibility in Massive Concurrent Systems

Luca Cardelli 1 Cosimo Laneve 2

Abstract

We introduce reversible structures, an algebra for massive concurrent
systems, where terms retain bits of causal dependencies that allow one
to reverse computation histories. We then study the implementation
of (weak coherent) reversible structures in three-domains dna strands,
which is the natural model that has inspired reversible structures.
We finally provide schemas for modeling significant synchronization
patterns of process algebra into reversible structures.

1 Introduction

Reversing a (forward) computation history means undoing the history. In
concurrent systems, undoing the history is not performed in a deterministic
way but in a causally consistent fashion, where states that are reached
during a backward computation are states that could have been reached
during the computation history by just performing independent actions in a
different order. In rccs [5], Danos and Krivine achieve this by attaching
a memory m to each process P , in the monitored process construct m : P .
Memories in rccs are stacks of information needed for processes to backtrack.
Alternatively, Phillips and Ulidowski propose a technique for reversing process
calculi without using memories [14]. In this technique, the structure of
processes is not destroyed and the progress is noted by underlining the actions
that have been performed. In order to tag the communicating processes,
they generate unique identifiers on-the-fly during the communications.

These foundational studies of reversible and concurrent computations
have been largely stimulated by areas such as chemical and biological systems
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– called massive concurrent systems in the following – where operations are
reversible, and only an appropriate injection of energy and/or a change of
entropy can move the computational system in a desired direction.

However there is a mismatch between chemical and biological systems
and the above concurrent formalisms. In the latter ones, reversibility means
desynchronizing processes that actually interacted in the past while, in massive
concurrent systems, reversibility means reversibility of configurations. In
order to make massive concurrent systems reversible with the process calculus
meaning, one has to remember the position and momentum of each molecule,
which is precisely contrary to the well-mixing assumption of biochemical
soups, namely that the probability of collision between two molecules is
independent of their position (cf. Gillespie’s algorithm [7]).

We introduce an algebra for massive concurrent systems, called reversible
structures, where terms retain bits of causal dependencies that allow one
to reverse computation histories. These bits permit to trace effects of
interactions, but not to the point of being able to identify the precise molecule
that caused an effect. For example, it is not possible to determine the signal
that causes a reductions among the many several of the same population. It
is worth to remark that, in reversible structures with populations of species
that are singletons (called coherent reversible structures in [4]), causality
has a meaning that is consistent with that of standard process calculi [5, 14].
While these latter structures are not currently realizable, they may become
realizable in the future if we learn how to control individual molecules.

Reversible structures may implement significant ccs-style interaction
patterns (Cardelli already noticed this by studying a class of reversible
systems – the dna chemical systems [2, 3]). Consider for example a binary
operator that takes two input molecules and produces one unrelated output
molecule when (and only when) both inputs are present. It is too difficult to
engineer the input machinery in order to account for any possible pattern of
interaction, and to produce the output molecule out of their own structure.
This operator is therefore implemented by an artifact that binds the two
inputs one after the other and then releases the output out of its own
structure. Of course, if the second input never comes, the structure must
release the first input, because the first input may be legitimately used by
some other operator. This means that the binding of the first input must
be reversible, and the natural reversibility of our structures is exploited to
achieve the correctness.

Structure of the paper. In Section 2 we overview the model that inspired
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PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that   suitably 
independent is a tricky issue that is still somewhat of an open 
problem (with a vast literature). But it can work in practice.
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Figure 1: A dna domain

our algebra: dna three-domains strands and their dynamics. In Section 3
we define reversible structures and discuss few properties of these structures.
In Section 4 we study the encoding of reversible structures in dna circuits.
In Section 5 we model standard synchronization patterns in our formalism.
We conclude in Section 6 by discussing the theoretical results in [4] and by
outlining some future work.

Captatio benevolentiae. This paper contains an introduction to reversible
structures by discussing the motivations that led to their definition. The
purpose of the companion paper [4] is to provide a detailed presentation of
the theory developed to date and to establish a precise relationship between
reversible structures and reversible process calculi.

2 Three-domains DNA strands and causality

There are many ways of computing with dna structures. They all use the
Watson-Crick complement that we briefly discuss.

dna strands are sequences of bases (Adenine, Cytosine, Guanine, and
Thymine). There are subsequences of them, called domains, that are inde-
pendent of each other and cannot hybridize from any other domain except
the sequence consisting of complementary bases (Adenine is complementar to
Thymine, Cytosine is complementar to Guanine). In Figure 1 we illustrate a
strand of three domains, that have different names because the corresponding
sequences of bases are different. Single strands have an orientation; double
strands are composed of two single strands with opposite orientation, where
the bottom strand is the complement of the top strand. The “short” do-
mains, called toeholds and depicted in red in the following figures, hybridize
(bind) reversibly to their complements, while the “long” domains hybridize
irreversibly; the exact critical length depends on physical condition. Figure 2
illustrates the hybridizations where distinct letters indicate domains that do
not hybridize with each other.

An additional fundamental mechanism, called toehold mediated branch
migration [16], allows displacements in a reversible way of strands composed
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of long- and short-domains, as illustrated in the leftmost picture of Figure 3.
In the first reaction of Figure 3, a toehold t initiates binding between a
double strand and a single strand. After the (reversible) binding of the
toehold, the x domain of the single strand gradually replaces the top x strand
of the double strand by branch migration. The branching point between
the two top x domains performs a random walk that eventually leads to
displacing the x strand. If the toehold matches but the branch migration
region does not match, then the signal will eventually break off from the
gate, as if nothing had happened. The last reaction unbinds the rightmost
toehold of the double strand, thus obtaining a single strand x:t. The whole
process may be reverted by binding the toehold of the single strand to the
rightmost toehold of the double strand.

In this paper we consider a bit different subset of dna strands (the
reasons are in the following discussion about causal dependencies), which is
a refined version of the “see-saw gates” model of Quian and Winfree [15].
Our dna system consists of signals and gates. A signal is encoded as a single-
stranded dna sequence consisting of three contiguous domains as illustrated
in Figure 1. The first domain is a “history” domain arising from previous
interactions: it can be in principle arbitrarily long and is not part of the
signal identity. That is, two signals are equal provided they are equal in the
second and third domains, ignoring the history domain. The second domain
is a toehold: it initiates the signal processing. The third long-domain is a
branch migration domain: it stabilizes the interaction initiated by toehold
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binding.

Branch migration, like toehold binding, is also a reversible reaction:
it is a bidirectional random walk, zipping and unzipping complementary
dna strands. Although there is no directionality, one can arrange that
when branch migration randomly reaches one end of a region, it causes
another strand to detach. If that detached strand has a toehold to go
back, it can then start reversible branch migration again, and we have a
reversible overall reaction: this whole process is called toehold exchange. As
an example we discuss the simplest dna gate: a reversible signal transducer.
A transducer ^a . b takes an input signal a (a fixed input) and produces
an output signal b becoming a . b^. The expected reduction semantics is
a | ^a . b ↔ a . b^ | b. We model ^a . b and a . b^ with the structures
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and we discuss the behaviour of ^a . b when a signal with name a binds to
it (we assume toeholds are always complementary). In Figure 4, leftmost
picture, the toehold of the signal binds to the complementary toehold of the
gate. Then branch migrations starts, where the domain a of the signal and
the upper strand a of the gate compete for the lower strand. When branch
migration (by a random walk) reaches the right end, the only thing holding
the a domain is the second toehold of the gate, which can hence detach – see
the picture in the middle of Figure 4. Still, this toehold can reattach, and
the branch migration may then reach the left end causing the signal a with
history u to detach. Therefore, this toehold exchange is fully reversible. It is
also possible, however, that the single strand labelled v attaches to the gate
while a is detached see the rightmost picture of Figure 4. This will displace
a signal b leaving unbound the rightmost lower toehold of the gate. Because
of this, the signal may bind again to the gate, thus reverting the behaviour.

Three-domains dna strands carry bits of informations that often allow
one to reverse computations in a causally consistent fashion. To illustrate
the question, consider the solution (written in process algebraic form for
simplicity)

a | b | ^a . c | ^b . c | ^c . d | ^c . e
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Figure 4: The dynamics of a transducer: the leftmost solution represents
a | ^a . b, the rightmost one represents a . b^ | b

and the computation

a | b | ^a . c | ^b . c | ^c . d | ^c . e → b | c | a . c^ | ^b . c | ^c . d | ^c . e (1)

→ b | d | a . c^ | ^b . c | c . d^ | ^c . e (2)

→ c | d | a . c^ | b . c^ | c . d^ | ^c . e (3)

→ d | e | a . c^ | b . c^ | c . d^ | c . e^ (4)

where the c signal of the transducer ^a . c has triggered the transducer ^c . d
and the c signal of the transducer ^b . c has triggered the transducer ^c . e.
This computation may be reversed in different causally consistent ways. One
of its is to reverse the reductions (2) and (4) because independent (they
concern different terms):

d | e | a . c^ | b . c^ | c . d^ | c . e^ → c | d | a . c^ | b . c^ | c . d^ | ^c . e
→ c | c | a . c^ | b . c^ | ^c . d | ^c . e

In this last solution c | c | a . c^ | b . c^ | ^c . d | ^c . e it is not possible
to determine the c that caused either the signal d or e because biological
systems are massively concurrent. Therefore one ends with identifying the
above computation with

a | b | ^a . c | ^b . c | ^c . d | ^c . e → b | c | a . c^ | ^b . c | ^c . d | ^c . e
→ b | e | a . c^ | ^b . c | ^c . d | c . e^
→ c | e | a . c^ | b . c^ | ^c . d | c . e^
→ d | e | a . c^ | b . c^ | c . d^ | c . e^

It is worth to notice that such identities may be troublesome as long
as different causal dependencies produce different visible effects, such as
different colors of the solutions.

A standard solution to this problem is to record the strands that
synchronized and the literature reports several techniques to achieve this [10,
1, 5, 14, 8]. Our three-domain structures implement the technique proposed
by Lévy [10] that, in the above example, amounts to using signals c with
different histories according to they are produced by the transducer ^a . c
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Figure 5: Causality problems

or ^b . c. In facts, the reader may remark that there is no mixing of causal
dependencies in the solution
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that encodes a | b | ^a . c | ^b . c | ^c . d | ^c . e in three domain structures.
However, mixing of causalities are still possible in three-domain dna

strands because of massive concurrency and because of bad designs. In
Figure 5, left picture, it is not possible to determine if the signal b has
been produced by the lower or the upper gate, because they belong to the
same species. As we said, this kind of confusion is unavoidable in massive
concurrent systems. In the right picture of Figure 5, again, the signal b may
bind either to the lower or the upper gate, even if they do not belong to
the same species. In this case the situation is worse because the designer
has used the same history id in two different gates. We notice that these
solutions may be banned by a simple static verifier enforcing that different
species retain different history ids (called weak coherence, see Section 3).

3 The algebra of reversible structures

In this section we define a process algebra, called reversible structures, for
the three-domains dna strands discussed in the previous section. We use
three disjoint infinite sets: names N , ranged over by a, b, c, · · · , co-names
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N , ranged over a, b, c, · · · , and a countable set of ids, ranged over u, v, w,
· · · . Names and co-names are ranged over by α, α′, · · · and α = α. Names
and ids are ranged over x, x′, · · · . The following notations for sequences of
actions will be taken:

– sequences of N are ranged over by A, B, · · · ;

– sequences of elements u:a are ranged over by A, B, · · · ;

– sequences of elements u:a are ranged over by A⊥, B⊥, · · · ;

The empty sequence is represented by ε; the length of a sequence is given by
the function length(·).

The syntax of reversible structures includes gates g and structures S

and consists of the rules:

g ::= A⊥ . ^B . C (length(A⊥ . B) > 0)
| A⊥ . B . ^C (length(A⊥) > 0)

S ::=
0 (null)

| u:a (signal)
| g (gate)
| S | S (parallel)
| (new x) S (new)

A gate is a term that accepts input signals u:a and emits output signals,
reversibly. The form A⊥ . ^B.C represents input-accepting gates, at least when
not considering reverse reactions. A⊥ are the inputs that have been processed,
B are the inputs still to be processed, and C are the outputs to be emitted.
The other form A⊥ . B . ^C represents an output-producing gate (when not
considering reverse reactions). The A⊥ is as before, B are the outputs that
have been emitted, and C are the outputs still to be emitted. Since all the
inputs in a gate have to be processed before the outputs are produced, we
do not need to consider other forms. In both forms, the symbol ^, called
gate pointer, indicates the next operations (one forward and one backward)
that the gate can perform. A structure may be either a void structure 0,
or a signal u:a denoting an elementary message a with an id u, or a gate
g, or a parallel composition “ | ” that collects gates and signals and allow
them to interact. A structure may also be (new x) S that limits the scope
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of a name or id x to S; x is said to be bound in (new x) S. This is the only
binding operator in reversible structures.

For example, the transducer depicted in Figure 4 (leftmost structure)
is defined by u:a | ^a . v:b. This solution may evolve into u:a . ^v:b by
inputting the signal u:a, see the middle structure in Figure 4. At this stage,
a signal v:b may be emitted, thus becoming u:a . v:b^ (rightmost structure
in Figure 4) or may backtrack to ^a . v:b by releasing the signal u:a (see the
following semantics). Another example is a sink gate, such as ^a . b, that
collects signals (and, in a stochastic model, may hold them for a while). This
gate may evolve into u:a . ^b, and then may become u:a . v:b^.

We often abbreviate the parallel of Si for i ∈ I, where I is a finite set,
with

∏
i∈I Si. We write (new x1, · · · , xn) S for (new x1) · · · (new xn) S, n ≥ 0,

and sometimes we shorten x1, · · · , xn into x̃. The free names and ids in S,
denoted fn(S), are the names and ids in S with a non-bound occurrence.

Structures we will never want to distinguish for any semantic reason are
identified by a congruence. Let ≡, called structural congruence, be the least
congruence between structures containing alpha equivalence and satisfying
the abelian monoid laws for parallel (associativity, commutativity and 0 as
identity), and the scope laws

(new x) 0 ≡ 0 (new x) (new x′) S ≡ (new x′) (new x) S,

S | (new x) S′ ≡ (new x) (S | S′), if x 6∈ fn(S)

It is easy to demonstrate the following property.

Proposition 1 For every S, S ≡ (new x̃) (
∏

i∈I gi |
∏

j∈J uj :aj). The struc-
ture (new x̃) (

∏
i∈I gi |

∏
j∈J uj :aj), which is unique up-to alpha equivalence,

the order of names and ids in the sequence x̃, and the order of gates and
signals, is called the normal form of S.

The semantics of reversible structures is defined operationally by means
of a reduction relation.

Definition 1 The reduction relation of reversible structures is the least
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relation −→ satisfying the axioms

(input capture) u:a | A⊥ . ^a . B . C −→ A⊥ .u:a . ^B . C

(input release) A⊥ .u:a . ^B . C −→ u:a | A⊥ . ^a . B . C

(output release) A⊥ . B . ^u:a . C −→ u:a | A⊥ . B .u:a . ^C

(output capture) u:a | A⊥ . B .u:a . ^C −→ A⊥ . B . ^u:a . C

and closed under the rules

S −→ S′

(new a) S −→ (new a) S′
S −→ S′

S | S′′ −→ S′ | S′′

S1 ≡ S′1 S′1 −→ S′2 S′2 ≡ S2

S1 −→ S2

Sequences of reductions, called computations, are noted −→∗.

The reductions (input capture) and (output release) are called forward reduc-
tions, the reductions (input release) and (output capture) are called backward
reductions.

The axioms of reversible structures semantics are explained below by
discussing the reductions of the transducer ^a . v:b when exposed to signals
u:a and w:a. The transducer may behave either as u:a | w:a | ^a . v:b −→
w:a | u:a . ^v:b or as u:a | w:a | ^a . v:b −→ u:a | w:a . ^v:b according to
whether the axiom (input capture) is instantiated either with the signal u:a or
with w:a – in these cases A⊥ is empty. In turn, w:a | u:a . ^v:bmay reduce with
(output release) as w:a | u:a . ^v:b −→ w:a | u:a . v:b^ | v:b or may backtrack
with (input release) as follows w:a | u:a . ^v:b −→ u:a | w:a | ^a . v:b.
This backtracking is always possible in our algebra. In fact, it is a direct
consequence of the property that, for every axiom S −→ S′ of Definition 1,
there is a “converse one” S′ −→ S.

Proposition 2 For any reduction S −→ S′ there exists a converse one
S′ −→ S.

We notice that, ^a .u:b | v:a | ^a .u:b ≡ v:a | ^a .u:b | ^a .u:b (and
similarly for every permutation of gates and signals). In these structures,
the two occurrences of ^a .u:b are indistinguishable, that is it is not possible
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to identify the precise gate ^a .u:b that performs the reduction ^a .u:b |
v:a | ^a .u:b −→ v:a . ^u:b | ^a .u:b. This feature formalizes the well-mixing
assumption of chemical solutions, namely that the probability of collision
between two molecules is independent of their position. This is also the
main difference between our model and reversible process calculi models
as [5, 13], where every element has a unique tag. We finally notice that, as a
consequence of the above identities, the notions of causality and independence
of reductions are different from [5, 14] because different molecules of the
same chemical species are indistinguishable in our setting.

By Proposition 1 and the definition of the reduction relation, it is
possible to restrict the arguments about the dynamics of reversible structures
to structures in normal forms. In turns, the following statement allows one
to limit the analysis to the subclass of structures without news when the
interest is in computations of “closed” structures, namely structures that do
not interact with the external environment. (This simplifies the following
notion of weak coherence.)

Proposition 3 (new x̃) (
∏

i∈I gi |
∏

j∈J uj :aj) −→ (new x̃) (
∏

i∈I g
′
i |

∏
j∈J ′ u′j :a

′
j)

if and only if
∏

i∈I gi |
∏

j∈J uj :aj −→
∏

i∈I g
′
i |

∏
j∈J ′ u′j :a

′
j.

In the following, if not otherwise specified, the structures will be con-
sidered without news.

Definition 2 A structure S is weak coherent whenever ids are uniquely
associated to names and co-names. That is, if u:α and u:α′ occur in S then
either α = α′ or α = α′.

For example, the structure u:a . v:b^ | v:c is not weak coherent because v is
associated to two different co-names, while u:a . v:b^ | v:b is weak coherent.
Weak coherence is an invariance of the reduction relation.

Proposition 4 If S is weak coherent and S −→ S′ then S′ is weak coherent.

4 The compilation of reversible structures into three-
domains DNA strands

In this section we detail the implementation of weak coherent reversible
structures into three-domains dna strands. We have already presented these
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strands in Section 2. Here we complete the presentation by discussing the
semantics rules in Figure 6.

A dna solution is a multiset of strands that may be either single two-
domains toehold/long-domain or single three-domains long-domain/toehold/long-
domain or double strands. The double strands are (i) composed of two single
strands with opposite orientation, where the bottom strand is the comple-
ment of the top strand; (ii) are toehold-mediated, namely they are sequences
of alternating toeholds and long-domains. We assume there is a unique
toehold in strands; therefore complementary toeholds always match. The
definition of dna solution is purposely left informal because below we only
consider a subclass of solutions implementing reversible structures.

The dynamics of dna solutions is defined in Figure 6. Rule (binding)
models toehold hybridizations between a double strand with an hole in the
upper strand, in correspondence of a toehold and a signal. The dotted lines
represent domains that may miss so, technically, the rule is a schema. Rule
(migration) defines branch migrations of matching long-domains, while rule
(p-binding) defines partial branch migrations of mismatching domains. In
this latter case the bases may hybridize till the longest matching prefix of
the domains and then may unbind. Formally, there is a function cprefix (x, y)
from pairs of names and ids to naturals that defines the largest matching
prefix between them. This function is not defined on pairs of identical names
or of identical ids. The rule (p-binding) is applied provided cprefix (x, y) is
positive.
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Without loss of generality, by Proposition 3, we restrict the following
discussion to structures without new. The encoding $ · % of reversible
structures to dna strands is homomorphic with respect to parallel, is such
that $0% = ∅, and it is defined on signals and gates as follows (for gates
we only illustrate the encodings of configurations of a1 . a2 . v1:b1 . v2:b2):
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The strict correspondence between reversible structures and dna three-
domains strands is fixed by the following statement. Let T and T′ be two
dna solutions. We write T =b,p T

′ if and only if T −→∗ T′ with rules (binding)
and (p-binding). By reversibility, the relation =b,p is symmetric.

Theorem 1 S −→ S′ implies $S% −→∗ $S′%. Additionally, if S is weak
coherent and $S% −→∗ T then there is S′ such that T =b,p $S′%.

Proof: The proof of S −→ S′ implies $S% −→∗ $S′% is a simple case anal-
ysis on the axiom used in S −→ S′. Figure 4 illustrates the correspondence
when the axiom is an (input capture) (in the simple case of a transducer).
The analysis of the other axioms is omitted.

Let S be weak coherent. The proof that $S% −→∗ T then there is S′

such that T =b,p $S′% is by induction on the number of rules (migration)
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used in $S% −→∗ T. The case when this number is 0 is obvious. Assume
the statement holds when there are n rules (migration), let us prove the case
n+ 1. So the computation may be split into

$S% −→∗ T1 −→ T2 −→∗ T

where T1 −→ T2 is the n + 1 reduction due to an instance of (migration)
and T2 =b,p T. By inductive hypotheses, there is T′1 such that T1 −→∗ T′1
with rules that are instances of (binding) and (p-binding) and such that
T′1 = $S′1%, for some S′1. In case of strands obtained by the encoding $ ·%
there are four possible types of reduction T1 −→ T2:

v bv

a

(i)

c v

u

c

a

a

a

u

u

x

x

z

y

u

u

u

a

a

a

a

(ii)

(ii)

(iii)

(iv)

In case (i), according to the signals that are present in the solutions, the
upper domain a must be the final part of a signal starting with an id, let’s
say u, and having a toehold in between – the signal is u:a. Next, take the
reverse of T1 −→∗ T′1, let it be T′1 −→∗ T1, and consider the computation
T′1 −→ T′′1 −→ T′′′1 where the first reduction is the (binding) of the toehold of
u:a and the second one is the (migration) of the domain a. By definition
T′′′1 = $S′% where S′1 −→ S′ is an instance of (input capture). It remains to
prove that $S′% −→∗ T2 and then, by reversibility, we obtain T =b,p $S′%.

Consider the computation $S′% −→∗ T′2 obtained by performing the
sequence of reductions of T′1 −→∗ T1 and skipping those concerning the signal
u:a and the toehold of the double strand involved in T′1 −→ T′′1 −→ T′′′1 . We
observe that

1. in T′2 the context of the signal u:a and the toehold of the double strand
involved in T′1 −→ T′′1 −→ T′′′1 are the same as in T2 because reductions
of dna strands are context-free;

2. the configurations signal u:a and the toehold of the double strand
involved in T′1 −→ T′′1 −→ T′′′1 are the same in T′2 and T2 because (i)
T′1 −→∗ T1, by definition of T′1, must have an odd number of (binding)
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rules concerning the toehold of the signal u:a since the toehold initially
is unbound and at the end is bound (otherwise the rule (migration)
cannot occur); (ii) the effects of reverse reductions on a solution are
void.

Therefore T′2 = T2.
The other cases are omitted because similar; we only observe that (ii)

corresponds to an instance of (input release, (iii) corresponds to an instance
of (output release), and (iv) corresponds to an instance of (output capture).
�

The second part of Theorem 1 is restricted to weak coherent structures.
In fact, $S% −→∗ $S′% implies S −→∗ S′ is false in the unrestricted
case. Consider the above encoding of the gate u1:a1 .u2:a2 . v1:b1 . ^v2:b2
and observe that, in the dna strand, the co-name b1 never appears. If the
(not weak coherent) structure also contained the signal v1:c then the dna
strand might reduce to the encoding of u1:a1 .u2:a2 . ^v1:c . v2:b2. However
this gate cannot be obtained from the structure u1:a1 .u2:a2 . v1:b1 . ^v2:b2.
It is worth to notice that there is a way for removing the constraint of weak
coherence in Theorem 1. The technique associates different toeholds to
different names – that is the toeholds record the identity of names. While
this method works fine for solutions with few names, it is not practicable in
general because toeholds are usually very few with respect to (long domains)
names. We also notice that the three-domains structures used by Quian
and Winfree [15] have the output parts of gates without ids. It is easy
to verify that such model identifies more computations (i.e. mixes causal
dependencies) than our model.

We finally remark that Theorem 1 establishes a relation between “mean-
ingful” reductions of the dna solution and reductions of reversible structures,
where “meaningful” means those reductions obtained with rules (migration).
In facts, rules (binding) and (p-binding) must be considered as bureaucracies
used to prepare the solution for long-domains hybridizations.

5 Modelings

Despite of their simplicity, reversible structures are quite expressive. In this
section we discuss a number of synchronization patterns that are standard
in process calculi and detail their modeling in reversible structures. As we
will see, in every case, reversibility plays a basic role.
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Join patterns. Join patterns have been introduced in join-calculus [6].
Here we consider the so-called “zero-adic” version where channels carry no
message. Join patterns, written a1& · · · &am . b1| · · · |bn reduce as follows

a1 | · · · | am | a1& · · · &am . b1| · · · |bn −→ b1 | · · · | bn

that is a join pattern a1& · · · &am triggers provided all the messages a1, · · · ,
am are available in the solution. The rule specifies that all the messages are
grabbed at once – an all-or-nothing requirement – and all the messages b1,
· · · , bn are released at once.

The modeling of the above join pattern in reversible structures is given
by the term

(new u1, · · · , un) (^a1 . · · · . am .u1:b1 . · · · .un:bn)

There is a difference between the semantics of this term and that of join
patterns that turns out to be irrelevant. In the above terms, messages a1,
· · · , am are taken in order: first a1, then a2, and so on. It is possible that
one takes a1 and a2 and then realizes that there is no a3 in the solution – a
circumstance that never occurs in join-calculus. However this is not an issue
because (i) the input capture is reversible, therefore the messages a1 and a2
may be released in the solution, and (ii) messages/signals are asynchronous
– they have no continuation – and therefore no (continuation) process has
been triggered. Additionally, because of asynchrony, releasing messages b1,
· · · , bn in order or all at once is semantically the same.

Mixed choice. Mixed choice is a standard operation in process calculi
(see, for instance, CCS [11] or pi calculus [12]) that allows the progress of
exactly one among several processes. The operator, in case of asynchronous
calculi, is usually written

∑
i∈I ai.bi +

∑
j∈J cj and the semantics is defined

by one of the following rules:

ak |
∑

i∈I ai.bi +
∑

j∈J cj −→ bk (k ∈ I)

ck |
∑

i∈I ai.bi +
∑

j∈J cj −→ 0 (k ∈ J)

In particular, the semantics excludes communications between two branches
of the choice. The above mixed choice is modelled in reversible structures
by the term

(new v, e, ui
i∈I , wj

j∈J) (
∏
i∈I

e . ai .ui:bi |
∏
j∈J

e .wj :cj | v:e )
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that implements choice with parallel composition. Every gate of the above
term is prefixed by an input on the name e that is local to the term. The
correctness of the modeling follows by the properties (i) there is at most one
gate that progresses because of the presence of exactly one signal v:e; (ii)
if the chosen gate is one of e . ai .ui:bi and the solution does not contain a
signal ai, it is possible to revert the decision and select another branch.

Smooth orchestrators. Smooth orchestrators, introduced in [9] for mod-
eling synchronization patterns in web services, combine join patterns and
(input-guarded) choices. A smooth orchestrator is a term

∑
i∈I a

i
1& · · · &aimi

.

bi1| · · · |bini
with the semantics defined by (k ∈ I)

ak1 | · · · | akmk
|
∑
i∈I

ai1& · · · &aimi
. bi1| · · · |bini

−→ bk1 | · · · | bknk

The modeling of such operator in reversible structures is a byproduct of the
above encodings:

(new v, e, ui1, · · · , uini

i∈I) (
∏
i∈I

e . ai1 . · · · . aimi
.ui1:bi1 . · · · .u

i
ni

:bini
| v:e )

and the correctness follows with arguments similar to the above ones.

6 Conclusion

In this paper we have introduced reversible structures, an algebra for massive
concurrent systems, where terms retain bits of causal dependencies that
allow one to reverse computation histories. We have discussed the model
that has inspired reversible structures, the dna three-domains strands – and
studied the implementation of (weak coherent) reversible structures in dna
strands. We have finally analyzed significant synchronization patterns of
process algebra and the modeling schemas into reversible structures.

In the companion paper [4] we develop the theory of causal dependencies
in reversible structures. Following Lévy [10], we define an equivalence on
computations based on labels of terms that abstracts away from the order
of causally independent reductions – the permutation equivalence. We
then demonstrate a standardization theorem that permits the shortenings
of computations by removing converse reductions. This theorem seems
strange because, in reversible structures, removals may address reverse
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reductions performed by different terms (of same species). In facts, in our
setting, labels are not powerful enough to discriminate among molecules
of the same species. We finally study coherent reversible structures where
multiplicities are dropped (terms have multiplicity one). We demonstrate that
the reachability problem in these structures has a computational complexity
that is quadratic with respect to the size of the structures, a problem that
is expspace-complete in weak coherent structures. We also measure the
expressive power of coherent reversible structures by drawing a precise
comparison with a sub-calculus of rccs [5], its asynchronous fragment.

Our study prompts a thorough analysis of reversible calculi where
processes have multiplicities and the causal dependencies between copies may
be exchanged. Open questions are (i) What synchronization schemas can be
programmed in massive concurrent systems? (ii) Are there other constraints,
different than coherence, such that relevant bio-chemical properties retain
better algorithms than in standard structures? (iii) What is the theory
of massive (reversible) systems with irreversible operators and what is the
relationship with standard programming languages?
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