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Introduction
This paper describes the low-level primitives necessary to implement a particular flavor or inter-process

communication. It is motivated by the design of a communication subsystem for a higher-order functional
language [Cardelli 84]. Although we try to abstract somewhat from the special characteristics of that
language, the model does not accommodate a wide range of communication schemes.

 This communication model is intended to be used on (uniprocessor) personal computers. In this model,
processes running on the same processor can share the same address space.  If the underlying language is
safe, a process can  affect other processes only by communication, or by affecting data structures which have
been explicitly transmitted. This ensures privacy and data protection even in a shared address space.

 Processes running in the same address space can exchange arbitrarily complex objects very cheaply, just
by passing pointers. Processes running on different processors communicate through restricted “flat”
channels, e.g. character channels. In this case, complex objects have to be encoded to fit into flat channels,
and decoded on the other side; the encoding activity may or may not be automatic. In any case there is a
semantic difference between exchange of objects in the same address space, where objects are shared, or in
different address spaces, where objects are copied.

 The basic communication mechanism is rendezvous [Milner 80]: both the sender and the receiver may
have to wait until the other side is ready to exchange a message. Both the sender and the receiver may offer
communications simultaneously on different channels: when a pair of complementary offers is selected for a
rendezvous, all the other simultaneous offers, on both sides, are retracted.

 The scheduling is non-preemptive: a running process will run until it explicitly gives up control (e.g. by
attempting a communication); at that point other processes will get a chance to run. We assume a cooperative
universe, where no process will try to take unfair advantage of other processes, unless it has some reason for
doing so.

 Channels and processes can be dynamically created. Channels can be manipulated as objects and even
passed through other channels [Abramsky 83, Inmos 84, Milner 82]. Processes are not denotable values; they
can only be accessed through channels.

 In the following sections, we use the term “pool” rather than “queue” because the latter term implies a
particular scheduling policy to which we do not wish to commit ourselves. Note that the relation “being in the
same pool” is non-transitive: an object can appear in different pools without implying the equivalence of all
such pools.

Channel pools
 A communication channel has an output pool and an input pool. The output pool records all the

processes that have offered an output communication on this channel, and the respective output values. The
input pool records all the processes that have requested an input communication on this channel. There can be
any number of processes in either pool. In the figures, objects in the same pool are connected by a double
line.
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Figure 1: Channel pools

 In the above figure, the process P is simultaneously waiting for input on channel A, and for output on
channel B (where it is ready to communicate the value v) and possibly on more channels. The simultaneous
communication offers of processes are chained across channels into mutual exclusion pools; one such pool
connects the two instances of P above.

 If P is selected for communication on channel A (which could not happen in this situation because the
out pool is empty), then P will resume in state p’. If instead P is selected for communication on channel B, it
will resume in state p’’. In both cases, P is removed from the pool of channels A, B and all other channels in
the same mutual exclusion pool.

 Two communications are possible on channel B: P with R and Q with R. If Q and R are made to
communicate (by exchanging the value w), both Q and R are removed from the channel B pools; Q is
resumed in state q and R is resumed in state r. Again, all the simultaneous offers of Q and R are removed
from the appropriate channels. Restriction: although a process can be waiting for input and output on the
same channel, it cannot be made to communicate with itself because the resumption state would be
ambiguous.

Scheduler Pools
 A channel is active if it has non-empty in or out pools. At any moment, all the active channels are

grouped into an active channel pool, which is used to select the next communication according to some
scheduling policy.

 The active channel pool is the primary scheduling structure: processes ready to communicate hang from
it until they are activated. However, in some situations, e.g. just after process creation, processes have not had
a chance to be inserted into the active channel pool. Such processes are temporarily stored in an auxiliary pool
of ready processes. Processes in the ready pool have a resumption state; for newly created processes this is
just the initial state.

Figure 2: Scheduler pools

State Transitions
 The global state of the system is determined by three quantities: the currently executing process (and its

current state), the ready process pool and the active channel pool.
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Figure 3: The state

 The system evolves by state transitions [Plotkin 81]. There are three kind of transitions: (a) internal
process transitions, which only affect the internal state of the currently executing process, (b) external process
transitions, which affect the ready pool, the active pool or deactivate the current process, and (c) scheduler
transitions, which take place when there is no current process. Internal process transitions are not described
here (except for an operation which creates new channels), because they are largely independent of the
concurrency aspects, but they can be taken to be similar to the ones in [Cardelli 83].

 In the figures, a transition is represented as an “old” state, a big arrow with a transition name, and a
“new” state. Those parts of the state which are not affected by a transition, are omitted.

Process transitions
 There are five concurrency-related operations a process can perform. The first one is stop, which kills

the currently executing process:

Figure 4: Stop

 After a stop operation there is no current process. In this situation the scheduler takes over, as we shall
see in the next section. The scheduling discipline ensures that P  is not in any pool when it stops. We assume
that the channels known by P will be garbage collected, if needed.

 A process can create another process by a start operation. Given a program Q, a new process is created
to execute Q and is placed in the ready pool in its initial state. The current process continues execution. The
exact structure of Q is not discussed here; it could be a functional closure, as described in [Cardelli 83].
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Figure 5: Start

 A process can create a new channel by the channel operation. New channels are not active, and are
placed on the execution stack of the current process.

Figure 6: Channel

 A process can simultaneously offer communication on a set of channels, with the intent of
communicating on exactly one of them as soon as a communication is available. This is done by the select
operation. There can be any positive number of input and/or output offers (a select with zero offers would be
equivalent to stop). Each offer designates a channel (A, B and C in the example below) and a resumption
state (a, b and c) for the process after a communication. Input offers are decorated with a question mark (?)
and output offers with an exclamation mark (!) and a value to be communicated.
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Figure 7: Select

 The current process is inserted in the input or output (as appropriate) channel pools of the channels
involved in the operation, with the proper resumption state and output value (if appropriate). All these offers
are chained together into a mutual exclusion pool, to remember that they were done simultaneously. Some
inactive channels (like C above) may become active and are then inserted into the active channel pool. After a
select operation there is no current process. Hence, the scheduler takes over and other processes get a chance
to run.

 The following deactivate operation deactivates the current process and gives control to the scheduler. It
can be useful in some special scheduling policies. For example a deactivate can be inserted in loops and
recursive function calls to prevent looping processes from locking out everybody else. It can also be used by
concurrently running processes which do not need to communicate, to periodically give up control.

Figure 8: Deactivate

 This operation is not strictly necessary; it could be simulated by a select on some channel which is
always ready to communicate.

Scheduler transitions
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 When there is no current process, an entity called the scheduler gets control and decides who should run
next. The scheduler has two major options: it can take a process from the ready pool (if one is available) and
make it the current one, or it can select a channel for a communication (if one is possible) and give control to
one of the processes involved in the communication. The choice between these two options is a matter of
scheduling policy, and depends on the implementation. The same holds for other choices the scheduler has to
make: which process to select from the ready pool, which channel to select from the active pool, which
communication to fire on that channel, etc. All these possibilities are left open; the scheduling policy is not
even required to be fair.

 By an activate operation, the scheduler can select a ready process to become the current one. Processes
are placed in the ready pool by start operations (for new processes) and by rendezvous operations (for
processes involved in output communications, as explained later).

Figure 9: Activate

 A rendezvous operation causes a communication to happen between two distinct processes, one
waiting for input and the other one waiting for output on the same channel (P and Q on channel C in the
example below). The process waiting for input (Q, with resumption q) becomes the current process, and the
value being communicated (w) is placed on its execution stack. The process waiting for output (P, with
resumption c) is placed in the ready pool. These communication offers, and all the ones linked in the same
mutual exclusion pools (Pa, Pb and Pc below, and all the ones linked with Qq), are removed from the
respective channel pools. Some channels may become inactive (e.g. C), and are then removed from the active
pool.
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Figure 10: Rendezvous

 Hence, the scheduler passes control to a process waiting for input, and eventually will give control to
the corresponding process waiting for output, which is temporarily stored in the ready pool.

Conclusions
 We have informally presented a set of concurrency-related primitives. They can be used as a basis for

the implementation of rendezvous communication mechanisms in programming languages. The method used
to describe these primitives can be formalized following [Plotkin 81], as was done in [Cardelli 83].

 Several people have worked on implementations of, roughly, this model of communication, for example
[Inmos 84], [Abramski 83] and the BCSP system at Oxford. I am confident that their solutions are not
conceptually very different from what is described here. The aim here was to present these ideas by
abstracting as much as possible from low-level implementation details, and from particular programming
language features. The result is this intermediate level of abstraction given by a state transition model, lower
than programming language semantics, but higher than program code.
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