An implementation model
of rendezvous communication

Luca Cardelli

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

This paper describes the low-level primitives necessary to implement a particular flavor
or inter-process communication. It is motivated by the design of a communication subsystem
for a higher-order functional language [Cardelli 84]. Here we try to abstract somewhat from
the special characteristics of that language, but the model does not accommodate a wide
range of communication schemes.

This communication model is intended to be used on (uniprocessor) personal computers.
In this model, processes running on the same processor can share the same address space.
If the underlying language is safe, a process can affect other processes only by
communication, or by affecting data structures which have been explicitly transmitted. This
ensures privacy and data protection even in a shared address space.

Processes running in the same address space can exchange arbitrarily complex objects
very cheaply, just by passing pointers. Processes running on different processors communicate
through restricted “flat” channels, e.g. character channels. In this case, complex objects have
to be encoded to fit into flat channels, and decoded on the other side; the encoding activity
may or may not be automatic. In any case there is a semantic difference between exchange
of objects in the same address space, where objects are shared, or in different address
spaces, where objects are copied.

The basic communication mechanism is rendezvous [Milner 80]: both the sender and the
receiver may have to wait until the other side is ready to exchange a message. Both the
sender and the receiver may offer communications simultaneously on different channels: when
a pair of complementary offers is selected for a rendezvous, all the other simultaneous
offers, on both sides, are retracted.

The scheduling is non-preemptive: a running process will run until it explicitly gives up
control (e.g. by attempting a communication); at that point other processes will get a chance
to run. We assume a cooperative universe, where no process will try to take unfair
advantage of other processes, unless it has some reason for doing so.

Channels and processes can be dynamically created. Channels can be manipulated as
objects and even passed through other channels [Abramsky 83, Inmos 84, Milner 82].
Processes are not denotable values; they can only be accessed through channels.






