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Introduction

This paper is inapired by Milner's approach o synchronous processes, &8 re—
ported in (Milner 52). The main differences are the use of & denee time domain and
& dense-nondeterminiesm operator. ¥ilner has shown that many of the characteristics
of comcurrent processesn can be modslled amd, more importantly, manipulated in an
algebraic framework tailored to eynchronous discrete interaction. Although much
gan be done in a discrete-time model by reducing the grain of discreteness to the
degired lewel, we think it is interesting to ses what can be gained in a dense-

time framework and what additional difficulties arise.

At an appropriate level of abatraction there are entities which act and influ-
enca esach sther's behavioonr through a continuous interaction. These entities are
oallod hars agenio and their internctiono are acpumed to happen in real tims l:'-rl
use real numbers as & standard sxample of dense order). Agents progress by per-
forming actlons. Actions are demoted by the letters a,b,¢ and 4, and the set of
all ths actiona im A. Actionm san be performed asnsurrently, 2o we denote by a<h
(or simply ab) the simultaneous occurrence of the actions a snd b. We also admit

4 neutral action 1, so that (A,,1) is an abelian momeid.

Communication between agents can be modelled by requiring A to0 be & commutative
group (A,-,1, ). A gucceseful communication betwsen two agents im reprassnted by
the matching of two complementary mcticns a and a. The faet that sa = 1 means that
communication involves exactly itwo agents, that the respective commmication capa-
bilities are consumed during the process and that an external observer is unable
to tell which commumication took place (he can only observe 1). Nots that comsm-

nication here means simple synchronisation, withsut passage of waluse.

The central idea in real time agenis is the explicit use of time information
vhen axprassing the bahaviour of agenta. Time is asgumed to be denss, i.e. for
every iwo instants t';1t" it is always possible to find an instant t such that
¢ 4 {t". We shall formalise the idea of cbssrving & real time systea during



95

intervals of time (i.e. not observing at time instants) and we want to rule out

the poasibility of sheerving sero-length astions. Hense the variables denoting
time will range over a dense domain X (for Kronos) = T*, that is the set of
strictly positive real numbers. The lettera t,u,v will range over K.

Deterministic Agents

We first examine agents which are deterministic, in the informal sense that
every agent has a unioue possible development in time. A formal property corre-

sponding to the idea of determipnism will be examined later.

Wa begin with a very simples set of operators $o build agents. Cur initial oper-
ator signature consists of: a constant Il repressnting the neutral agent always
performing the neutral action 1y & unary prefir operator l.[t]r which represents
the aot of performing the action & for an interval of time t; and the binary infix
operator X representing the synchronous composition (coeristence) -nf two apents.
An agent (denoted by p,q,r,s) is an expression over the l:i.E.ﬂlt'l.L'l'&E {II. aft]s 1}
(where D stands for determiniastic). The set of agents Pnii the free algebra over E

How we specify how our agenis behave, by defining a zet of binary relations
1]
:4» (for ael and t & K) over F . We read p %‘.ﬁ q &8 "p moves to g performing
a for sn interval t"; or "p takes t 10 move under a to g". The reduction rules for

deterministic agentis are as followa:

(0 =) n-:ﬁun £ -
! P> q-;;-:hq'
(=[] =) aft]ip -1—} P (X =)

plq i} p'Xq’

(a[la[] ) aftralip 5> alulip ;

Rule { 1 —») asserts that Il moves under 1 for an arbitrary interval t to produce
1N again. Rule (a[] =) says that a[t]:p takes t to move under & to p, with t>0.
Huls {u[]l.[] =») has to do with the density of timeg it mays that after am inter-
val t, a[t+u]:p has only reached af[u]:p. Hote that it is possible to split actions
at arbitrary pointe; btut this is done consistently so that the final outcome re-
maine the same. fAule (X =) gives meaning %o the cosvistence of two agenta: if p
takes t to move under a to p' and q takea % to move under b to g', then pX g takes
t (the same t) to move under a+b to p'Xg'. Hote that if q has form blt+ulia®, we
oan une I:I.[]I[:] =) to get a t-derivation of g, o that we can use (X =3).

Thin set of operational rules enjoys two fundamental properties:
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Lemma 1 (Density Lesma) pﬁl r =p Ja. p—-i--i-ﬂ, nT}r
Proof: Industion om the structure of the derivatisn of p i} T D

t+u

Lemma 2 (Porsistency lrﬂrnrn:] Y, t. ‘gp_l,a],t,i vee P ool oot .

1 T
E_lti-t and pT}PI ---?J'P“
Proof: Induction on the structure of p. The case pap'lp” nesds the density lau-lu
We shall abandon the persistencsy lemma later, but density is fundamental for
all the different sijnatures we zhall atudy. When adding a new operator to our
signature, moat of the results for the old simmature extend to the new one, pro-

vided that density is preserved.

Agents will be obmerwed by conasidering the secuences of actions they can per-

n
forms If the agents p and g are in the relation p —t'-'} ay and q and r are in the
relation q %‘p ry; then we pen copnsidsr the composition of the relations L and

b i
T}- (denoted —::—i- o -:—}'II go that p and r are in the relation p {T} ] -G-l']- o

Definition 1 —p 1) ~:—} - {{p,r']laq- {'p.q}e-z—l- and En,ﬂ-ﬁ%}} ]

%
{ll-!l--l-ﬂ. ] a ‘ﬂ
He write Hﬁ- far -t—-]- O sne B t—} {n>>0). Moreover a senuence of
11-1-- n 1 n

actions is denoted by & = {a.l-ulﬂ} with $§3 = n, and a seouence of time inter-

vals by & = (000t ) with #T=n and E?-Iuﬁn t.

We want to observe actiena in such a way that, for exzamples, the Bscusnceas
.E%}; and {.;;.;. are indistinguishable. This can be done by considering similar
5

seagusnces in the following informal sense:
{a,a,b,b) (a,b (a,b)

{‘rh b"lt']
i iz not similer to -
s R WA s 1,17

Dafinition 2 Similarity is the least equivalence relation, = , betwesn relations

B
— ouch that: -,
1 L B b
W oaas W - - gaw = t - th &
(1) Ir . L h]. ﬁb- and L E'Il ,.:11 ? T
S e B A ¥ e
ot - then o e 0 —
(HYIE s e B e o e egeese O
We can alss talk about sequences whisch are finar than other ssouences:

i % a ®
Definition 3 ?} is finer than —» when ?:,—} < ﬁ*' where £ ie the
u
least relation satisfying:

(2 ... a) a
S e Oy
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™
Theorem 1 ~..{,_ in & partial nrdar oveT thﬂ relationa -:—} Morsover:

(1) If T} { L then —:lr -,-:..-&
- u -'l .

(1ii) If -—--:u ~ {h] then 1-3- £ — (v)

{u'} fu'll

{145) The gru-h:ut lower bound a!‘ two mimilar sesuences exists and is unioue.

B ! B "
(i) If ——!Pg—,lrl' and ? ﬂrll then —:l"ﬂ ﬂ?ﬂ-;.—_'l‘u
u

Proof: Directly from the definitiona []
The density lemma impliea the following:
A i a b
Lemma 3} (Refinement Lemma) If p —,E,—} a md =3 & T} then p =20 []
u u

The following abbreviation will be usmed:

Ea] -‘\-1_ ] i'
Definition 4 p ——3" g if there sxists =3 = %} such that p ==—>a []
t " s

Informally, the behavicur of agents im given by their reduction chain, and we
want to regard as equivalent agents which have the "same™ reduction chains (i.=.
which perform the "same” actions) even if they are ayntactically differant as mem-
bers of FD. After having defined a congruence relation -~ over Pn ao that p ~ a
iff they perform the same actions, we can then take the souivalence clasa of p in

)|
F f"‘" asn the semanticas of p.

We are going %o define the following eguivalence:r p is eonivalent to o iff
whenever p can reduce under 2 =ingle action %} to p',; then g can reduce
by & similar seguence L}t +o pom® o' esuivalent to p'; and vice versa. This

— .t

eguivalence im called smooth squivalence becours it ijmores the "density™ of indi-

vidual sotions and only considers their coarse result. We first define a formula

i
D) pirametrically in an arbitrary relation over Fi

Definition 5 D) = pa q iff Yasd Ve K,

both t-—:-&n' 2 dq'. u+}'u' and p' 2= af

a
and ﬂ%ﬁ'ﬂ' s J'. FT!"F' and p'sf 9 [

Dafinition & Smooth ecuivalence {~) is the maximal fixpoint of the equation

I
D(=s) = = in the lattice of binary relations over F o[

Theorem 2 (Park's Induction Primciple (Park 81))
z b
{11y & MR) []

Condition (1i) can be written more explicitely as:



(o) & B = (14 Vp o> p. I(p'ya")eR g 3" o’
(1i") Waq -E-arq‘- 3 (p',a*)e R p—l-: c P

Theorem 3

(i} ~ is an equivalence relation.

(i) ~ is & congrusnce with respsct to ED = {np alt]s, I}.

(144} rnfn.- is a En-rllgc'hrn.

Proof: (1) is easily verified.

(41} We have to show that for HUHTJ'ED-'-GDI'I.tHIt Cl(xY: para = C(p)~rCial).
It is enough to show (using Park's induction) that:

(1) parg wie altlip~ a[t]:q

(2) p~no wp plr~gXkr and rXp~rkg

For {1} take R = {I,’I.Et]s'p, alt]ea) ! ‘qu} U s, and procesd by Park's induction
and analysis of the structure of the derivations. PFor (2), similarly, take

R = {fpl r, gkr) I 'p-.ru-q]- U~ {and symmetrically in the second casa). Note that
the density lemma is resuired.

{111) This is a standard algebraic resalt, based on (i1} [J

We can mow investigate the eguivalence [~} of agents. The following lawn hold:

(Xn) pX 1 ~ p (1[In) 1[+l:tn ~ n
(x) pXg ~ qXop I‘:l.[]n[]';l l[t:hn[u]tp ~ l[tﬂl]:n
(xx) pX(gXr) ~ (pXqg)Xr (allx) altlip X v[tla - av[t]:(pXa)

All the laws can be proved smoothly by Park's induction: Poth the congruence prop-
erty for X and the factorisation law (allxy depend only on the density lemmay
vhenever we modify our signature we need only to make sure that the deneity lemma

still halde.

The following results tell us that thes above met of laws is rich and conmistent:

Theorem 4 (Soundness) Let us denote by = the congruence defined by the set of

laws (X1) ... [(al]X). We say that p is convertible to q iff p = g. Then:
PE o =p p~g

Proof: Induction on the derivation of p = g, using the fact that ~ is a con-

gruence and the laws are valid []

Theorem (Normal Forma) Let 35 li[ti]:p abbreviate ll[tllr---lntt“]lp

ign
(for n20). An agent is in seguence form if it has the form & 'i[ti]‘ .

ifn



An agent is in normal form if it is in sequence form EiEn Ii[ti]: N with bath
(n>0 q...n,l 1) and (n2 2 =& %i<n. .i.iahl‘,l. Then:

(1) Bwery agent is convertible to a megquencs form.

{(i1) Every sequence form is convertible to a normal form.

(111) Every agent has a unioue normal form.

Proof: Simple inductions en the structure of terms []

Theorem & (Completensss)

p~q = pE g
Proof: Pirat prove that for p',q' in normal form, p'~ q' =p p'= o' by induc-
tion on the structure of p' and q' (thie is easy because of the simple structure

of normal forms: we even have p'~-g' = p" = o'} In general, by the normal
form theorem, p and g have respective normal forms p' and o' (so that p = p° and
qg=1q'). By soundness p'~ p~g ~a's So by the first part of the proof p'=q'.
Henoe p=p'= a'=0a []

We said that our agents are deterministic: this can be stated formally in the

following way:

Thesrsm 7 (Daterminism)

Vertioal determiniams p—<>aq oand p%} r implies &= b
Horizontal dattr.iniun:

(i) 1Ir raﬁ-m P*:'}Tmﬂﬁr 'E'T then g=r

(i1) I!‘prwq. p-,r‘l-n‘ q'ﬂn' and n‘ﬂﬂ"ﬁ'?:_} then p' ~ a’

Proof: Structural in:‘luutinn i 't]'.m left hand side of the arrows, plus in eash
case a simple lemma about the corresponding structurs of the action and the right

hand side of the arrow [ ]

In this formal oense our agents ares completely deterministic, and we can also
see that it i possible to introduce two orthogonal kinds of nondeterminies.
This will bs dons in the next section.

Nendeterministia lEPnta

Let us now sxtend our signature bty the following operators. A constant 0 rep-
resenting an agent with no actions; when a system reaches the state 0, a catastro-
phe ooours and time ceases to flew, hence 0 is called a disaster. A unary prefix
eperator a{t): performing the sction a for a positive intarval of length at most

1 we say that a(t): introduces horizental continucus nondsaterminism in the sense
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that arrows can be stretohad horigontally acecording to the duration of aft):.

A binary infix operator + representing the choice between two behaviours; we
gay that + introduces wertical discrete nondeterminism. We can imagine the be-
haviour of an agent as a (dimcontinuscus) trajectory on the plane, with time on the
¥ axin and the action monoid on the y axiasg this explains the senms af the adjec-

tives "horirontal™ and "wertical®.

The operational semantics is as followa. There are no arioms for 0. The apent
altiip takes time vEt to move under a to p, and alt+u)ip takes time vEt to move
under a to p + alul:p. Hence a(t):p can choose at any move to shorten its life
span by some amount: moresover at any point in time it can step its a-action and
gtart sxecuting ps Am for +, if p takes t to move under a to o', then p+o may
move under a to p' takine time t, or slse if o takes u to move under b to o,

then pto may move under b to 9" taking time u.

(a0) ) althip => » o p=>p' 0 =>a
(30a0) 3) altmdip D> poaladep v€e ) L TTRD

Applying the same dsfinition of emooth sguiwalsncs ta the new sxtended aigna-

ture ) (freely generating the new set of agents P), we obtain the following laws:

(+0) p+0 ~ p (a(d+)  a(t+u)ip .~ alt+wu)ip + alt)ep
(+p) p+p ~ p (a()a()) alt+u)ip ~ alt)elp + alu)ap)
(+) p¥tg ~ g+ p {x0) pX0 ~ 0O

(+4) p+lg+2) ~ (p+ra)+r (Xs) pX(a+r) ~ (pXg) + (pXr)
(1()n)1{t)+1 ~ 1

The density lesma is still valid (we must abandon the parsistency lesma becauss
of 0) and s is & congruoence. Howsver the set of laws above is not complete, we

lack the distributivity of a{t): over X and laws relating a{t): to alt]s.

Laws relating a{t): and X are called factorisation theorems (the restriction

operator [B usesd below is explained im the next section: the laws (FT2) and (FT4)
hold aleo with all the [B alided)s

(PF1) (a(t)ip X B{t):q)[B ~ O it abgd B
(Fr2Y (alt)ep X B{tYea¥WE ~ (ab(t):(pXq)ifB

if either Wuct. (pE(g+b{u):a) B ~ (pla)fB
orPuct. Jvfu. (plig+b{u)ta) W B ~ (pla+a(v)e(pioiv)ia))B
and either Yugt. ((ptalu)ip)%aB ~ (plq)f'®
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or'vuct, 3 vgu. ((pralu)ip)®a)}f® ~ (plosa(w)z(pib(v):c))E
and sither Wuct. ((pralu)ip)X(g+b(u)ea) B ~ (pXa)fB

ar'vuct.  vu. ({pralu)ip)tiasb(u)za) B ~ (pXa+alv)ipXb{v)a) B
and sither Wuct. (plg+alu)epib(u)ea)lB ~ (plallB

or'uct. Jvgu. (plaralu)spit(u)alB ~ ((pralv)ip)X(a+b(v)ra))[E

(F13) (alt)ep X blt]ea)® ~ 0 if abgd B
(FT4) (a(t)ep X v[t]ea)B ~ (ab[t]s(pXa))lB

if Yuct. (a(u)ep X Bloig)fB ~ (pX tulialil®
and Wu<t.J v$u. (alu)ep X vlulialB ~ ((pralw)ep) X Blul:a)B

These laws constitute a major departurs from the equational atyle we have ob-
served so far, and may be an indication that we have not chosen the beat possible
sat of primitive operators. On the other hand they seem to reflect rather faith-
fully the complex relationships between a mynohronous deterministic world (1,
a[t]:, X) and an asynchronous nondeterministic eme (0, a{t)s, +), and we could
not devisme & simpler formulation. The factorisation theorems can psually be much
simplified in practical situations (e.g. replacing "Wuct"™ by vy ), and they
turn out to be very useful in proving eouational laws of interesting derived

speratora, as we shall see later.

Communication
The restriction operator [B, for BE A and 1 € B is used to extract a subset
of the posaible actions of an agent, inhibiting the rest of the actions.
P —."} f

([ =) i BT if a&B

a

pl B —t'-i qf B
Thus plD can only perform sctions which are in B, and this can force some commu-
nication event inside p. The action 1 is never inhibited by definitions it rep-

resents the possitle anonymous cccurremnce of a communication event inside p.

The delabelling operator pke¢ is a particular case af reatriotion. We assume
here that A is penerated by a set of atomic actioms 043,73 ... . Then p\at is the
restriction of p to the set of all the actions of A not containing ctor of an

prime fastora.

He also need a way of renaming actions, =o that we can easily set up commu-
nication chamnels. The most general form of renaming is called a morphiem pff}

where #iz A =» A is & monoid homomorphism:
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({67 = pfﬂ@i e

We write {n:'i,i"[gii for the uniocue monoid worphism renaming the generators lﬂi

to -n:'-:"rl and leaving the other generators unchanged.
He emit the laws for restriction and morphiam, becauss they are not sigmifi-
cantly different from those of (Milner 82).

Hecursion

A recursive definitisn fasility will now be introduced im our language. Iis
general form for a aingles resursive definition iss
T = T
where ¥ is a variable and r is 8 context, i.e. a term possibly containine varia-

blen. We have the sperational rules

a
r *i P

=) -
x T} P

To satisfy a definition like xg= I + a[t]:x, it is sufficient to find a p such
that pe I + a[t]ip because all our laws are valid np to eouivalencs. In fact
it im easy to show that (€) implies x ~ p. But we still need to specify which
particular x we want, when several of them are available, like in the definitien
x<= x. To aveid this problem we restrict our admissible definitions to those
having & unioue selution up to equivalenas; thus thars is no doubit about which x

we mean. In geperal weuse seteef definitions, to take mutual recursion inte account.

Definitien 7 A definition set is a met of pairs i‘{:ifri )}, written {:;ﬁtri} or

T T, where x, are variables and r, are contexta. A l-step expansion of a defi-

nition set T r is obtained by replacine Ii+fi by ti'.*rifrjf:ji (for some i and
j) in X4 T. A finite expansien T = ©' of T T is an expansion ebtained by a

finite number of l-step expansions []

Definitien B A wvariable x is Eﬂ_ﬂrd.ﬁﬂ in & context r if all the sccorrences of x

are in subterms of r of the form a[t]er' or a(t)er’. A context r is guarded if
2ll its variables are guarded. A definition ::t{xi* raiu guarded if there in

g finite nmnuinufti = r{}mh that each ri' is guarded []

In arder to have unicue selutions for our definition sets, we nesd te exoluds
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definition sets which sxpand indefinitely but only approach a finite limit (i.e.
sach that the duration of their infinite chaine of actions is finite). Definitien

sats which con expand for the sams duration as their solotioms are persistent.

Definition 9 A definition set {x &= r { is persistent if whenever ﬁy?fﬁ?}

et qj implies that there exists a finite sxpansion rf'i of

wi £h r*fw"‘} ~a, [

then fTar all j, F:j.
rj such that .:I —} r;

Every persistent definition set is guarded, and every finite puarded definitisn
mat is persistent, but there are infinite guarded definition sets which are not

pereistent (e.g. {En{- ][n]':i'i-w,-? I nil:}}*

Theorem 10 (Hecursion Theerem)
Every persistent definition set Te= T has a uninue solution up to ~Ary l.e.:

Pimr{rf"} qlwr{ﬁﬁ} > p o0,
Preef: Let 2w f{{.‘{'}’:}, Eiqf'!}'] | Cims m cuntuﬂ} By Park's induction:
(i) pi"""'qi f‘hﬂ::ﬂ-l]

{11} E{w""} —} P may hold because sithar C T—} C* with P = ﬂ' pﬁ} (then ales

ﬂfﬁ r} --—} Q= E'{q_,i"i} and Qa:P), or :I'.'j im not guarded in ¢ and P.j T} P.

In the latter case, T is persistent and there is a finite expansion 1'; with

- _], ri and T {p..""i}--l’. Then zlee r’{qfi} —} r {qﬁ and sinoe 9y
{qf"j *r'{qa""‘} we have g j—} Q! {n.f'"} Hmue E-'{qr"i}—a- qQ with Q=P [J

Indafinite Aotions and Delays

We mew use recursion and nondeterministic guarde to define actions of indefi-

nite duration in time (m.p)s

a.p €= a(l):(p + a.p)
The particular choice of unit delay abeve makes mo difference, as we have:

a(t)elp + 2.p) ~ a(t):(p + sap + nup) by (+p)
e alt)ilp + sep + all)elp + asp)) by definition of a.p
~ a(t11)s(p + a.p) by (a()+)
e afl)zl(p + aep + alths(p + acp)) by (a()+)

a.p ~ a(1)2(p + a.p) ~ a{1l)s(p + a.p + a.p)

Hence &.p ~ a(t):(p + a.p) for any t, by the recursion theorea.
Morsaver a.p enjoys the laws:

iltﬂ} 1-Iﬂ s .'l.'l. {H-IIJ ‘-p = ..i{'p * la.'p"'
(1.1) 1.1 ~ 1 {8.Xb.) @+p X buq ~ ab.{pXao # a.pXg + pX b.q)
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Hote the importance of the law (a.Xb.)s it allows wus ts esuationally factorise
actions in horizentally nondeterminiastic apente, which we could not do for the
"a(t)t" eperator. The firat three laws can be proved sasily by the recursion
theorsm. Law (a.Xb.) is proved using the factorisation theorems, thersby demon-
atrating some of their power:

2.p X boo ~ all)elp + m.p) X B{1)2{n + B.n) by definition of a.p
~  ab{1)1{(p + 5.p) X (a + b.q)) (=)
~ ab{1)1{pXq + 2.pXq + pXben + a.pXbea) by (X+)

ab.(pXq + .pX g + pX baa)
ab{1)1{pXo + a.pXq + pXbeg + ab.(pXq + 2.pXq + pIlb.a))

Hence &.pXb.q ~ ab.(pXqg + a.pXg + pXb.a) by the recursion theorem. The

step leading to () uses & factorisation theorem (PT2); the four hypothesss of-

the theorem can be verified as follows (uming the fact that s.p ~a(t):(p *+ a.p)
and b.g A~ b(t)2lg + bea))s

(1) (p + ap) X (g + ban + b{t)e(q + bea)) ~ (p+ a.p) X (g + b.o)
(2) (p + a.p + a(t)s(p + a-p)) X {0 *# b-g) ~ (p + a:p) X (g + bug)
(3)  (praspra(t):(prasp)) X (g+bea+b{t)s(a+bag)) ~ (pta.p) X (o + ban)
(4) (p+a.p) X (q+beq) + alt)e(pra.p) X bl{t):(g+bia) ~ (pra.p) X (g+b.a)

A closely related operator 40 a.p is indefinite delay:
ap 4= ptap
where the agent p may be activated immediately, or delayed indefinitely by an
action a. The fellowing lawe can all be sasily derived from the properties of a.p:

0 A
d_ I‘ where ]{‘* a[1]: E-.
d K ~ K
a =& a
d(dp) ~ dp

dpXkda ~ d (dpXda)
dlp 4 ﬂhq o~ d.,hfd‘pln + pX dhq'i

An Amynchrensus Rising Edge Counter

We now discuss an example of application of nen deterministic guards. Suppose
we have a boolean sigmal reprasented an H.-[t.l]|ff[12]ttt[t]]:!'f[t‘1: P

wheres the length of the intervals t is completely arbitrary. The problem consists

i
in counting the number of rising edges (i.e. transitions from ff te tt) which
have socurred in the sipnal at any given tims. It im pretity wall svident that
there can be no selution using determinietic guarde, as any proposal would be

bound te fail on some input waveforma.
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The counter has two states: Ln-lu'n and High“. and n 18 increassd at any passage

from Low to High (for simplicity mn i= not supplied as an explicit output).

h-n = l"ffl'!l:hvﬂ + tt{l'ﬂ:Ei;hm
Htghn <= frfl]:huﬂ + tt{l}:Hig‘hn

1

Hete how the guards tt and ff are programmed to last as long as their corre-
aponding non synchroeniszed inputs. Agein, we firat prove that the "1"s used in the
dafinitisn ares not siepnificative usming the technioue sheawn in the previous section:
tt +
Luun P ff{t}:bﬁuﬁ 3 (1]:Hinh“+tr~ ff{l}ihunn ttftllﬂirh“‘
High“ oy rr“},l.g.un + tt[l]:High“ o~ ﬂ‘{lhl-mrn + tt{ﬂllHirhn

1

The following souivalences state the correctness of the countery they can be
proved using (FT3) and (FT4):
(Low X FE[t]ep\eE  ~ 1Lt]e (Low X p\fr
{Hi,;hn X Et[e]epintt ~ 1[-!.-.]:{!‘[1.:11“ X pI\tt
{Luu“ X tt[t]:phtt ~ 1[=1:|[!{1:1:“+1 X pI\it
(High X TE[+]epNer ~ 1[#]s(Low X p)\rr

Descriptive Operaters

Some operators can be intreduced just %o talk about the properties of agentn.
In order to talk about synchrony we can intreduces synchronisation eperators rt'
demipned to "impose™ a aleock of peried t on an otherwise unsynchronised agent.

=3 A
» 51 r'tp — 0
Lkt
_ (r,. -
Cp—> a %
] t 1

(r, -

r;F +'.i- a[v]n

fule {r.t =) say= that r':‘p can parform "t-ticks" only if p can, i.e. p must be
gynchronisable to a clock of period t, otherwise r‘t:l:l will stop. Rule {rt-iu =)

is introduced to preserve the density lemma.

Definition 10 An agent is t—synchronous if p -~ Pt" .
An agent is mon-synchremous if it is not t-synchronous fer any t []

The definition of t-synohreny intends to capture the idea that all the “sig-
nificant changes® (i.e. transitions from an s-action to a different b-action) in
& t-mynchronsus agent occur at instants which are divisers of t. For example

p €= a[2]:w2]ip im 2-synchronous, l-synchronous ete., but it is net I-sym-

chronous, 4-synchronous etc. becausc p cannot produce any action lemger than 2.



106

An sxampls of 2 non-synchronous agent is provided by a "bouncing ball” agent

p 4= af1/n] ‘h[lfn]'pnrl which changes its output at a faster and faster rate.
n

If we eliminate the nondeterministic guard "a(t)s" from our signature, and we
replace "a[t]:™ bty "a[1]:" (avbreviated "a:"), then all the agents which can be
axpressed are l-synohronous. The set of l-synchrenous agents correspond exactly
te the Synchrenous CC3 caloulus (Milner 82), in the sense that the same set of

laws haldas.

Finally we can try to characterise some form of asynchronous behaviour by the

fellowing operater, which stretchea by arbitrary ameunts all the actien= of an agent:

&
'PT*'!

(A—) -
Hp ;;;ijﬁq

Definitieon 11 An agent is asynchremous if p ~ Ap O

Hete that this definition allows uas to make & subtle distinetion between non-
gynchrenous or non t-synchronous agents (which are deterministic) and asynchrenous
onzs (which are cempletely nondeterministic) and that many other behaviours lie

in between.
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