Real Time Agents

Luca Cardelli
Dept. of Computer Science
University of Edinburgh
JCMB The King's Buildings
Edinburgh EH9 3JZ, Scotland

Introduction

This paper is inspired by Milner's approach to synchronous processes, as re-
ported in (Milner 82). The main differences are the use of a dense time domain and
a dense-nondeterminism operator. Milner has shown that many of the characteristics
of concurrent processes can be modelled and, more importantly, manipulated in an
algebraic framework tailored to synchronous discrete interaction. Although much
can be done in a discrete-time model by reducing the grain of discreteness to the
desired level, we think it is interesting to see what can be gained in a dense-

time framework and what additional difficulties arise.

At an appropriate level of abstraction there are entities which act and influ-

ence each other's behaviour through a continuous interaction. These entities are

called here agents and their interactions are assumed to happen in real time (we
use real numbers as a standard example of dense order). Agents progress by per-
forming actions. Actions are denoted by the letters a,b,c and d, and the set of
all the actions is A. Actions can be performed concurrently, so we denote by a-b
(or simply ab) the simultaneous occurrence of the actions 2 and b. We also admit

a neutral action 1, so that (A,*,1) is an abelian monoid.

Communication between agents can be modelled by requiring A to be a commutative
group (A,o,l,-). A successful communication between two agents is represented by
the matching of two complementary actions a and a. The fact that aa = 1 means that
communication involves exactly two agents, that the respective communication capa-
bilities are consumed during the process and that an external observer is unable
to tell which communication took place (he can only observe 1). Note that commu-

nication here means simple synchronisation, without passage of values.

The central idea in real time agents is the explicit use of time information
when expressing the behaviour of agents. Time is assumed to be dense, i.e. for
every two instants t',t" it is always possible to find an instant t such that

t'<t {t". We shall formalise the idea of observing a real time system during

95

intervals of time (i.e. not observing at time instants) and we want to rule out
the possibility of observing zero-length actions. Hence the variables denoting
time will range over a dense domain X (for Kronos) = IR+, that is the set of

strictly positive real numbers. The letters t,u,v will range over K.

Deterministic Agents

We first examine agents which are deterministic, in the informal sense that
every agent has a unigue possible development in time. A formal property corre-

sponding to the idea of determinism will be examined later.

We begin with a very simple set of operators to build agents. Our initial oper-
ator signature consists of: a constant 11 representing the neutral agent always
performing the neutral action 1y a unary prefix operator a[t]: which represents
the act of performing the action a for an interval of time t; and the binary infix
operator X representing the synchronous composition (coexistence) of two agents.
An agent (denoted by p,q,r,s) is an expression over the signature ZD= {ll,a[t]:,X}

D
(where D stands for deterministic). The set of agents P is the free algebra over z .

Now we specify how our agents behave, by defining a set of binary relations
D a
% (for a€h and t € X) over P . We read p —t—> q as "p moves to g performing
a for an interval t", or "p takes t to move under a to g". The reduction rules for

deterministic agents are as follows:

(n ») B B
g % p—i—)p' q-:—>q'
(2] =) aft]ip —> » (x =)

pXaq —ab—> p'Xq'

(allal]) aft+ulip => aful:v g

Rule (1 —>) asserts that Il moves under 1 for an arbitrary interval t to produce
11 again. Rule (a[] ->) says that a[t]:p takes t to move under a to p, with t>0.
Rule (a[]a[] ->) has to do with the density of time; it says that after an inter-
val t, a[t+u]:p has only reached a[u]:p. Note that it is possible to split actions
at arbitrary points, but this is done consistently so that the final outcome re-
mains the same. Rule (X =) gives meaning to the coexistence of two agents: if p
takes t to move under a to p' and q takes t to move under b to q', then pXq takes
t (the same t) to move under a+b to p'Xq'. Note that if q has form b[t+ul:om, we

can use (a[Ja[] =) to get a t-derivation of q, so that we can use (X ->).

This set of operational rules enjoys two fundamental properties:

96

Lemma 1 (Density Lemma) P t—+1? r = 4q. —:—> q, o -39 e

Proof: Induction on the structure of the derivation of p t% ¥
u

Lemma 2 (Persistency Lemma) Y py ks Hp e ,tl o pn,an,tn.
a
i !
t = d e o0
Z"i i t an P —? Py -Tn—> R,

Proof: Induction on the structure of p. The case p=p'Xp" needs the density 1emmaD

We shall abandon the persistency lemma later, but density is fundamental for
all the different signatures we shall study. When adding a new operator to our
signature, most of the results for the old signature extend to the new one, pro-

vided that density is preserved.

Agents will be observed by considering the seguences of actions they can per-

a
form. If the agents p and g are in the relation p ——) a, and g and r are in the
relatlon q ——) r, then we can consider the composition of the relations -—:——) and

-—) (denoted -—) o -—)) so that p and r are in the relation p (—) o —)) T

i a b a b
Definition 1 -‘? o —u-> = {(P’r)l da. (psa)e "? and (q,r)€ ‘_u—> } O
(2 ...an) 2 e
We write z-t-—t—? for -t—-)o cleiel O -t—-> (n>0). Moreover a secuence of
L DN 1 n

actions is denoted by 2 = (al...an) with #32 = n, and a seouence of time inter-

A= e e e i A‘—_- d A=
vals by t (tl tn) with #T =n and)% zlSiSn

We want to observe actions in such a way that, for example, the secuences
%2%; and % are indistinguishable. This can be done by considering similar
’
seguences in the following informal sense:
(2,b,b,b) (2,2,b,Db) {a,d) o5 (a,1b)

2 i imi 2 t 1 t .
3,2,2,2 is similar to 1,1,3,3 s 1-175) is not similar to E-yl—))

Definition 2 Similarity is the least equivalence relation, =~ , between relations
-~

-i—) such that:
t

(i) TEC B sige: = 8. = D = vhe =D and Xt =Zu then —_—D D>
i 4 n ; m 1 u
3! "5' 31! %" gv | ’*B "Bn
(ii) If —=> —=> and —>"==> then -—=>o0 —)/\‘—> o == [|
?' ﬁ' t" u" -t t“ u"
We can also talk about sequences which are finer than other sequences: 1
% 3 2) 1
Definition 3 ——> 1is finer than ——> when —> S —>, where S is the ’
t u A u

least relation satisfying:

(1) D svs B) i a.

97

o A
£ a' 'b' " b" " ' "
{13) It —%T?S—;T) and —%—)S—,;é then ———)o-a—><—-90—>|:|
u ” u"
Theorem 1 5; is a partial order over the relations —;}a. Moreovers:
o 2 b t
(1) If —9(-79 then -i—)./:——)
3)y Wl
[3i) I -7\—9 then —-) <
i (u) (u)

(iii) The greatest lower bound of two similar sequences exists and is uniaque.

Proof: Directly from the definitions []

The density lemma implies the following:

~

~ -~ -~
b b
Lemma 3 (Refinement Lemma) If p —i—) g and —> < —i—é then p —> a [
: u t u

The following abbreviation will be used:

-~ ”~~

~
a'

Lo
Definition 4 p —;a—;—)s g if there exists -—=<> = —;—9 such that »p -;9 s 1}
t g AL t %"

Informally, the behaviour of agents is given by their reduction chain, and we
want to regard as equivalent agents which have the "same" reduction chains (i.e.
which perform the "same" actions) even if they are syntactically different as mem-—
bers of PD. After having defined a congruence relation ~ over PD so that p ~ a
iff they perform the same actions, we can then take the equivalence class of p in

D
P/~ as the semantics of p.

We are going to define the following equivalence: p is eouivalent to q iff
a
whenever p can reduce under 2 single action —-9 to p', then g can reduce
by a similar sequence ——) to some q' eguivalent to p', and vice versa. This

eguivalence is called smooth equivalence because it ignores the "density" of indi-

vidual actions and only considers their coarse result. We first define a formula

D
D(2~2) parametrically in an arbitrary relation over P :

Definition 5 D(x) = px q iff VagA Vie K

a s
both p-:—>p' = daq'. g g and p'=x q'
a a _s
. ey’ ap det pepd aed e et
Definition 6 Smooth eauivalence (~) is the maximal fixpoint of the equation

D
() = 2~ in the lattice of binary relations over y I

Theorem 2 (Park's Induction Prlnclple (Park 81))
TR 1 I E P EF. 0G) bl e ®

(ii) R € D(R) []

Condition (ii) can be written more explicitely as:

98

(psa) € R = (ii") Vp-i—>p'- d(p',a')eR. q—i—ésa'

S a a .8
(11"} Waq =g’ '’)eR. pogie P

Theorem 3

(i) ~ is an equivalence relation.

(i1) ~ is a congruence with respect to ZD = {]l, alt]:, X}.

(iii) PD/N is a ZD—algebra.

Proof: (i) is easily verified.

(ii) We have to show that for every ZD—context C(x): p~a = C(p)arC(a).
It is enough to show (using Park's induction) that:

(1) p~q = altlip~ alt]:q

(2) pa~rg = pXr~gXr and rXp~ rXag

For (1) take R = {(a[t]:p, a[t]:9) I Dr q} U ~, and proceed by Park's induction
and analysis of the structure of the derivations. For (2), similarly, take

R = {(px r, qXr) I P~ q_} U~ (and symmetrically in the second case). Note that
the density lemma is required.

(iii) This is a standard algebraic result, based on (ii) []]
We can now investigate the equivalence (a-) of agents. The following laws hold:

(Xn) pX m ~ »p (1fJn) 1[t):n ~ 1
(X) pXaq ~ qXp (a[Jal]) alt]:alul:ip ~ alt+ul:p
(xx) pX(aXr) ~ (pXaq)Xr (a[]Xx) a[t):p X b[t]:a ~ ab[t]:(pXa)

A1l the laws can be proved smoothly by Park's induction. Both the congruence prop-

erty for X and the factorisation law (a[]X) depend only on the density lemmas

whenever we modify our signature we need only to make sure that the density lemma

still holds.

The following results tell us that the above set of laws is rich and consistent:
Theorem 4 (Soundness) Let us denote by = the congruence defined by the set of
laws (X1) ... (2[]X). We say that p is convertible to q iff p = q. Then:

P=ag = p~gq

Proof: Induction on the derivation of p = q, using the fact that ~ is a con-

gruence and the laws are valid []

Th N F L S 4 i ce e H
eorem 5 (Normal Forms) et ign ai[ti] p abbreviate al[tl]z an[tn] P

(for n20). An agent is in sequence form if it has the form Sisn ai[ti]: n.

99

An agent is in normal form if it is in sequence form SiSn ai[ti]:]I with both
(n>0 éan;é 1) and (n22 = Vi<n. ai;éai+1). Then:

(i) Every agent is convertible to a sequence form.

(ii) Every sequence form is convertible to a normal form.

(iii) Every agent has a unique normal form.

Proof: Simple inductions on the structure of terms []

Theorem 6 (Completeness)
P~q = p=aq

Proof: First prove that for p',q' in normal form, p'~ q' = p'= o' Dby induc-
tion on the structure of p' and q' (this is easy because of the simple structure
of normal forms: we even have p'aAq' = p' = q'). In general, by the normal
form theorem, p and q have respective normal forms p' and q' (so that p = p' and
a=q'). By soundness p'~ p~q ~q's So by the first part of the proof p'=q’.
Hence p=p'= a'=q []

We said that our agents are deterministic: this can be stated formally in the

following way:

Theorem 7 (Determinism)

b
Vertical determinism: P -§;> q i and Tp —;ﬁ} r implies a=>5
Horizontal determinisms
~ ~ PP I LA
b b
(1) Ir » -:r> Q, P —> r and -2}} = = then q=7
F e R Bk TN
(ii) If p~aqy, P —=—>1Dp'y g =>q' and -—x> 2 —<> then p' ~ q
t u t u

Proof: Structural induction on the left hand side of the arrows, plus in each
case a simple lemma about the corresponding structure of the action and the right

hand side of the arrow []

In this formal sense our agents are completely deterministic, and we can also
see that it is possible to introduce two orthogonal kinds of nondeterminism.

This will be done in the next section.

Nondeterministic Agents

Let us now extend our signature by the following operators. A constant O rep-
resenting an agent with no actions; when a system reaches the state 0, a catastro-
phe occurs and time ceases to flow, hence 0 is called a disaster. A unary prefix
operator a(t): performing the action a for a positive interval of length at most

t; we say that a(t): introduces horizontal continuous nondeterminism in the sense

100

that arrows can be stretched horizontally according to the duration of a(t):.

A binary infix operator + representing the choice between two behaviours; we
say that + introduces vertical discrete nondeterminism. We can imagine the be-
haviour of an agent as a (discontinuous) trajectory on the plane, with time on the
x axis and the action monoid on the y axiss this explains the sense of the adjec-

tives "horizontal" and "vertical".

The operational semantics is as follows. There are no axioms for O. The agent
a(t):p takes time v<+t to move under a to p, and a(t+u):p takes time v< t to move
under a to p + a(u):p. Hence a(t):p can choose at any move to shorten its life
span by some amounts; moreover at any point in time it can stop its a-action and
start executing p. As for +, if p takes t to move under a to p', then p+g may
move under a to p' taking time t, or else if g takes u to move under b to o',

then p+g may move under b to g' taking time u.

a b
() ») a(¥)ip —> v SRE Ll aae . v
a =
. . a b
(a0)a() =) a(t+u):p —> pra(u):p v+ Pt => p' pra —>q

Applying the same definition of smooth equivalence to the new extended signa-

ture Z:(freely generating the new set of agents P), we obtain the following laws:

(#0) p+0 ~ p (a()+) a(t+u):p ~ a(t+u):p + a(t):p
(+p) p+p ~ (a0)a()) a(t+u):p ~ a(t):(p + a(u):p)
() p+a ~ a+p (x0) pX0 ~ 0

(33 B rlasa) ~ (p+n)+r {2 pX (g +r) ~ (pXg) + (pXr)

(10)n)1(¢):n ~ 1

The density lemma is still valid (we must abandon the persistency lemma because
of 0) and ~ is a congruence. However the set of laws above is not complete, we

lack the distributivity of a(t): over X and laws relating a(t): to a[t]:.

Laws relating a(t): and X are called factorisation theorems (the restriction

operator [B used below is explained in the next section: the laws (FT2) and (FT4)

hold also with all the [B elided):

(FT1) (a(t):p X b(t):q)fB ~ O if abg B
(FT2) (a(t):p X b(t):q)B ~ (ab(t):(pXq))lB

if either Vu<t. (pX(q+b(w):a))'B ~ (pXo)lB
orVu<t. Jvsu. (pX(g+b(u):0)N'B ~ (pXo+a(v):(pXb(v):q))lB
and either Vugt. ((p+a(u):p)Xa)'B ~ (pXq)lB

101

orVu<t. I vsu. ((p+a(u):p)Xa)fB ~ (pXo+a(v):(pXb(v):0))[B
and either Vu<t. ((p+a(u):p)X(a+b(u):e))B ~ (pXa)l'B

orVu<t. Jvsu. ((p+a(u):p)X(q+b(u):a))lB ~ (pXa+a(v):pXb(v):q)lB
and either Vu<t. (pXq+a(u):pXb(u):q)[B ~ (pXa)lB

orVu<t. Jvsu. (pXq+a(u):p+b(u):a)[B ~ ((p+a(v):p)X(a+b(v):a))lB

(FT3) (a(t):p X b[t]:q)[B ~ © if ab g B
(FT4) (a(t):p X blt]:q)B ~ (ablt]:(pXa))IB

if Vu<t. (a(u):p X b[u]:q)[B ~ (p X vlul:a)lB
and Vu<t.d vsu. (a(u):p X b[}l]:q)rB ~ ((p+a(v):p) X b[ul:q)lB

These laws constitute a major departure from the equational style we have ob-
served so far, and may be an indication that we have not chosen the best possible
set of primitive operators. On the other hand they seem to reflect rather faith-
fully the complex relationships between a synchronous deterministic world 0y
a[t]:, X) and an asynchronous nondeterministic one (0, a(t):, +), and we could
not devise a simpler formulation. The factorisation theorems can usually be much
simplified in practical situations (e.g. replacing "W u<t" by "\fu"), and they
turn out to be very useful in proving ecuational laws of interesting derived

operators, as we shall see later.

Communication

The restriction operator rB, for BE A and 1 € B is used to extract a subset
of the possible actions of an agent, inhibiting the rest of the actions.
a
D =——3q

: if a €3

(' =)

plB —:-9 af'B

Thus prB can only perform actions which are in B, and this can force some commu-
nication event inside p. The action 1 is never inhibited by definitions it rep-

resents the possible anonymous occurrence of a communication event inside p.

The delabelling operator p\x is a particular case of restriction. We assume
here that A is generated by a set of atomic actions &3 ,) Then p\x is the
restriction of p to the set of all the actions of A not containing R or X as

prime factorse.

We also need a way of renaming actions, so that we can easily set up commu-
nication channels. The most general form of renaming is called a morphism p{&}

where J: A —> A is a monoid homomorphism:

102

P —2% p'
pi43 52 o143

We write {o(/ﬁ% for the unioue monoid morphism renaming the generators f3
- { i i

({67 >

to o(i and leaving the other generators unchanged.

We omit the laws for restriction and morphism, because they are not signifi-

cantly different from those of (Milner 82).

Recursion

A recursive definition facility will now be introduced in our language. Its
general form for a single recursive definition is:
x<&
where x is a variable and r is a context, i.e. a term possibly containing varia-
bles. We have the operational rule:

r—>7»
&)

x -z—> P
To satisfy a definition like x<& 11 + a[t]:x, it is sufficient to find a p such
that p~ 11 + a[t]:p because all our laws are valid up to eouivalence. In fact
it is easy to show that (€&) implies x ~ p. But we still need te specify which
particular x we want, when several of them are available, like in the definitien
x€ x. To avoid this problem we restrict our admissible definitions to those
having a unigue solution up te eguivalence; thus there is no doubt about which x

we mean. In general weuse setsef definitions, to take mutual recursion inte account.

Definition 7 A definition set is a set of pairs {(xi,ri)}, written {xiéri} or

;é T, where x, are variables and r, are contexts. A l-step expansion of a defi-
nition set ;é T is obtained by replacing xiéri by xiéri.{rj/xj} (for seme i and

j) in ;é T. A finite expansien ;é T of 3?@ T is an expansion ebtained by a

finite number of l-step expansions []

Definition 8 A variable x is guarded in a context r if all the occurrences of x

are in subterms of r of the form a[t]:r' or a(t):r'. A context r is guarded if
all its variables are guarded. A definition set{xié r]% is guarded if there is

a finite expansion{xi < r]'} such that each r:{ is guarded O

In order to have unigue solutions for our definition sets, we need te exclude

103

definition sets which expand indefinitely but only approach a finite limit (e
such that the duration of their infinite chains of actions is finite). Definitien

sets which can expand for the same duration as their solutions are persistent.

Definition 9 A definition set {xi < ri§ is persistent if whenever ~?§§/§§

a
then for all j, bp. —-t-—> q. implies that there exists a finite expansion rg of
a s A~
r. such that r®* —> r' with r! /x ~q.
J j ot J J{p } g O
Every persistent definition set is guarded, and every finite guarded definitien

set is persistent, but there are infinite guarded definition sets which are not

persistent (e.g. {Zné 1|:n:|:Zn/2 I né]K}).

Theorem 10 (Recursion Theorem)

Every persistent definition set ;é T has a unioue solution up to Ay, i.e.:
P, ~ T, 'ﬁ/’i} and o, ~ ri{'d/‘i} > p, ~ oo,

Proof: Let == {(C {'ﬁ/i}, Cfa/?c}) | ¢ isa context}. By Park's induction:

(i) p qi (take C = x)

(ii) Ci /;c} —é P may hold because either C ——) C* with P=C {p/x} (then alse

C{q/?t} —) Q= C'{q/x} and QaP), or x3 is not guarded in C and p —-9 2

In the latter case, T is persistent and there is a finite expansion r° with

r° ——> r:'] and {p/x}rvP Then alseo r°{q/x} ——} r {q/x} and since q:j
{q/x} ~T {q/x} we have q —9 Qar! {q/x} Hence C{q/'i}——é Q with Q=P []

Indefinite Actions and Delays

We new use recursion and nondeterministic guards to define actions of indefi-

nite duration in time (a.p):

< a(1):(p + a.p)

The particular choice of unit delay above makes no difference, as we have:

a(t):(p + a.p) ~ a(t):(p + a.p + a.p) by (+p)
~ a(t):(p + a.p + a(1):(p + a.p)) by definition of a.p
~ a(t+l):(p + a.p) by (a()+)
~ a(1l):(p + a.p + a(t):(p + a.p)) by (a()+)

a.p ~ a(1):(p + a.p) ~ a(1):(p + a.p + a.p)

Hence a.p ~ a(t):(p + a.p) for any t, by the recursion theorem.
Moreover a.p enjoys the laws:

(100) 1.0 ~o 1 (ao) aeD ~v a.(p * aop)
(1.1) 1.0 ~ 1 (a.Xb.) a.p X beq ~ ab.(pXa + a.pXa + pXb.q)

104

Note the importance of the law (a2.Xb.); it allows. us to equationally factorise
actions in horizentally nondeterministic agents, which we could not do for the
"a(t):" operator. The first three laws can be proved easily by the recursion
theorem. Law (2.Xb.) is proved using the factorisation theorems, thereby demon-
strating some of their power:

2.p X beo ~ a(1):(p + a.p) X b(1):(0 + b.o) by definition of a.p

~ ab(1):((p + a.p) X (a + b.q)) (x)
~ ab(1l):(pXq + a.pXaq + pXbea + a.pXbea) Dby (X+)

ab.(pXq + a.pXq + pXb.q)
ab(1):(pXo + a.pXq + pXbeqg + ab.(pXq + a.pXq + pX b.q))

Hence a.pXb.g A~ ab.(pXq + a.pXq + pXb.g) by the recursion theorem. The
step leading to (%) uses a factorisation theorem (FT2); the four hypotheses of*
the theorem can be verified as follows (using the fact that a.p ~a(t):(p + a.p)
and b.g ~ b(t):(q + beq)):

(1) (p + a.p) X (q + beqg + b(t):(q + bea)) ~ (p + a.p) X (q + b.q)
(2) (p + aep + 2a(t):(p + 2.p)) X (a + bea) ~ (p + a.p) X (g + b.q)
(3) (p+a.p+a(t):(p+a.p)) X (q+b.a+b(t):(g+beq)) ~ (p+a.p) X (g + b.q)
(4) (p+a.p) X (q+b.q) + a(t):(p+a.p) X b(t):(q+b.a) ~ (p+a.p) X (q+b.q)

A closely related operator to a.p is indefinite delay:

ap 4 P +ap

where the agent p may be activated immediately, or delayed indefinitely by an

action a. The fellewing laws can all be easily derived from the properties of a.p:

0 e K h K : K
a = where & a[1] :
d K »~» K

a a a
d (dap) ~ dap

X
dap d

X
pd ~ dab(dap dbq)

x X X
dpXadaq ~ da‘b(dap q + pXd a)

An Asynchrenous Rising Edge Counter

We now discuss an example of application of non deterministic guards. Suppose
we have a boolean signal represented as tt[ti]:ff[tz]:tt[t3]=ff[t4]: N 5
where the length of the intervals tiis completely arbitrary. The problem consists
in counting the number of rising edges (i.e. transitions from ff to tt) which
have occurred in the signal at any given time. It is pretty well evident that
there can be no selution using deterministic guards, as any proposal would be

bound te fail on some input waveforms.

105

The counter has two states: Lown and Highn, and n is increased at any passage

from Low to High (for simplicity n is not supplied as an explicit output).

L ££(1):Lew + tt(1):High
ow & (1):Low + t+(1):High

Highn &= ff(l):Lown + tt(l):Highn
Note how the guards tt and ff are programmed to last as long as their corre-
sponding non synchronised inputs. Again, we first prove that the "1"s used in the
definition are not significative using the techniaue shewn in the previous section:

L -+ <+ Hj :L + Hi
Lown ~ ff(t) ow_ t+(1) igh .~ ££(1) own+tt(t) igh |

1
High ~ ff(t):Low + tt(1):High ~ ff(1):Low + tt(t):High
n n n n n

i

The following ecuivalences state the correctness of the counter; they can be
proved using (FT3) and (FT4):
(Lown X Tf[t]:p)\ff ~ l[t]:(Lown X p)\ff
(Highn X tt[t]:p)\tt ~ ll:t]:(Highn X p)\tt
(Lwn X 3t[t]:p)\tt ~ 1Et]:(Highn+1 X p)\tt
(Highn X F[t]:p)\ff ~ l[t]:(Lown X p)\ff

Descriptive Operators

Some operators can be introduced just to talk about the preperties of agents.
In order to talk about synchrony we can introduce synchronisation operators Ft,
designed to "impose™ a clock of period t on an otherwise unsynchronised agent.

) _34> q r‘p _3;>
q
t t° utv
(", =) =

t+u

() -
r;P _— a[v]:q

a
r;P f{€> r;q
Rule (r; ->) says that r;p can perform "t-ticks" only if p can, i.e. p must be
synchronisable to a clock of period t, otherwise r;p will stop. Rule (r;+u)

is introduced to preserve the density lemma.

Definition 10 An agent is t-synchronous if p ~ r;p .

An agent is non-synchronous if it is not t-synchronous for any t |

The definition of t-synchreny intends to capture the idea that all the "sig-
nificant changes" (i.e. transitions from an a-action to a different b-action) in
a t-synchronous agent occur at instants which are divisors of t. For example

P &= a[2]:b[2]:p is 2-synchrenous, l-synchrenous etc., but it is net 3-syn-

chronous, 4-synchrenous etc. because p cannot produce any action lenger than 2.

106

An example of a non-synchronous agent is provided by a "bouncing ball" agent

pn'ék a[l/n]:b[l/n]:pn+l which changes its output at a faster and faster rate.

If we eliminate the nondeterministic guard "a(t):" from our signature, and we
replace "a[t]:" by "a[1]:" (abbreviated "a:"), then all the agents which can be
expressed are l-synchronous. The set of l-synchrenous agents correspond exactly
te the Synchrenous CCS calculus (Milner 82), in the sense that the same set of

laws helds.

Finally we can try to characterise some foerm of asynchronous behaviour by the
fellowing operator, which stretches by arbitrary amounts all the actiens of an agent:
a
D

(A=) -

a
Ar ;:;9'Ziq

Definition 11 An agent is asynchronous if p ~ Ap []

Nete that this definition allows us to make a subtle distinction between non-
synchrenous or non t-synchronous agents (which are deterministic) and asynchrenous
ones (which are completely nondeterministic) and that many other behaviours lie

in between.

Acknowledgements

I would like to thank Matthew Hennessy, Robin Milner and Gorden Pletkin for
helpful discussions and comments.
References
(Cardelli 80) L.Cardelli: "Analog processes". Proc. 9th Symposium on Mathematical

Foundations of Computer Science. Lecture Notes in C.S. n.88, Springer-Verlag.

(Hennessy 80) M.Hennessy, R.Milner: "On observing nondeterminism and concurrency".
Proc. ICALP 80. Lecture Notes in C.S. n.85, Springer-Verlag.

(MacQueen T79) D.MacQueen: "Models for distributed computing". Report n.351, IRIA,

(Milner 80) R.Milner: "A calculus of communicating systems". Lecture Notes in
C.S. n.92, Springer-Verlag.

(Milner 82) R.Milner: "Calculi for synchrony and asynchrony". Internal report
(to appear), Dept of Computer Science, University of Edinburgh.

(Plotkin 81) G.D.Plotkin: "A structural approach te operational semantics".
Report DAIMI FN-19, Dept. of Computer Science, University of Aarhus.

(Park 81) D.M.Park: "Concurrency and autemata on infinite seouences".
Proc. GI Cenference.

