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ABSTRACT
We consider continuous time stochastic hybrid systems with
no resets and continuous dynamics described by linear sto-
chastic differential equations – models also known as switch-
ing diffusions. We show that for this class of models reach-
ability (and dually, safety) properties can be studied on an
abstraction defined in terms of a discrete time and finite
space Markov chain (DTMC), with provable error bounds.
The technical contribution of the paper is a characterization
of the uniform convergence of the time discretization of such
stochastic processes with respect to safety properties. This
allows us to newly provide a complete and sound numeri-
cal procedure for reachability and safety computation over
switching diffusions.

Keywords
Switching diffusions; stochastic hybrid models; reachability
and safety analysis; finite abstractions; time and space dis-
cretisation; numerical computations

1. INTRODUCTION
Hybrid models are natural in the context of cyber-physical

systems applications, where continuous dynamics of physical
variables are interleaved with discrete updates of finite-state
models. In many engineering and natural systems, noise or
uncertainty structured via probabilistic laws are relevant,
which leads to stochastic models. In this context stochas-
tic hybrid models encompass all these features, and their
properties have been recently investigated [17, 10, 18, 3].

In this work we consider switching diffusions [27, 38, 6],
models that are characterised by dynamics over a hybrid
state space: continuous-time flows are determined by the so-
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lution of a mode-dependent linear diffusion process, whereas
mode updates (over finitely many locations) hinge on events
triggered by Poisson processes, with rates that depend on
the continuous variables. As such, switching diffusions can
be regarded as special instances of stochastic hybrid mod-
els, the latter dealing also with probabilistic resets between
discrete-mode commutations. The models considered in this
work are fully observable and not subject to any form of non-
determinism (such as control inputs, as discussed in [27, 6]).

This paper investigates the problem of reachability analy-
sis for switching diffusions, a central problem due to the du-
ality between reachability and safety problems, and its role
in the verification of many other specifications (thanks to
product constructions). Whilst this is a widely investigated
problem, contributions in the literature have been limited
to the characterisation of this problem, with computational
aspects that have been relegated to the use of approxima-
tion techniques often resorting to state-space gridding with
no guarantees.

Contribution
This work provides a formal computational procedure for
the reachability analysis problem over switching diffusions.
As such, we address an open problem also for the special case
of linear stochastic differential equations. More precisely, we
provide approximation algorithms with certificates on their
precision, which reduce the problem to the computation over
a finite-state Markov chain. In other words, we show that
probabilistic reachability can be formally computed over fi-
nite abstractions, obtained by discretising the continuous
components of the models (time and space).

Related work
Stochastic hybrid models (SHS) are extensively discussed in
[18, 10], and switching diffusions investigated in [27, 38, 1,
6]. The characterisation of probabilistic reachability for SHS
is elaborated in [13] by means of a number of techniques, but
not under the lens of computations. [13] leverages and ex-
tends theory developed for piecewise deterministic Markov
processes in [20]. Further, [29] has characterised probabilis-
tic reachability for SHS as a solution of a PDE (HJI partial
differential equation), but only provided weak convergence
results for its computation, based on the approximation the-



ory in [30]. A similar approach has been pursued in [34], but
again without a numerical scheme with certifiable errors. It
appears that the application of numerical schemes for time
discretisation of SDE [28] are not helpful. [22] has extended
the characterisation to constrained reachability problems.
In [11, 16, 12] numerical algorithms for verification of lin-
ear SDE, obtained for Markov population processes in the
limit of high population, have been given with just weak
convergence results.

For discrete-time stochastic hybrid models, probabilistic
reachability (and safety) have been fully characterised [3],
connected with verification procedures [2, 37], formally com-
puted via software tools [23] leveraging finite abstractions,
and indeed extended to general specifications [36].

An alternative approach towards formal, finite approxi-
mations of continuous-time stochastic models is discussed in
[40] and extended in [39] to switching diffusions. Notewor-
thy are also techniques and tools for verification of related
probabilistic models based on abstractions [41], measurabil-
ity conditions [24], and SMT technology [25] approaches.
These techniques, alongside that of this work, are clearly
distinct from statistical model checking approaches [15].

2. STOCHASTIC HYBRID PROCESSES
We consider the following class of continuous time stochas-

tic hybrid systems with no guards or resets, which are also
commonly denoted as switching diffusions. We refer the
reader to [10, 18] for technical details on the measure theo-
retical aspects underlying these processes.

Definition 1. A switching diffusion H is a tuple H =
(Q,K, F,G,W,Λ), where

• Q = {q1, ..., q|Q|} is the set of discrete modes

• K ⊆ Rm, for m > 0, is the state space of the contin-
uous dynamics. The hybrid state space is defined as
D = ∪q∈Q{q} ×K

• F : Q → Rm×m is the drift term for the continuous
dynamics

• G : Q → Rm×q is the diffusion associated to the con-
tinuous dynamics

• W is a q−dimensional Wiener process

• Λ : D × Q → R≥0 is an intensity function, where for
(qi, x) ∈ D, qj ∈ Q, we define Λ((qi, x), qj) = λi,j(x)

Let W be defined in the probability space (Ω,F , P ) with
filtration Ft, where a filtration is a family of σ−algebras
representing the information available at time t. Then, given
H and an initial condition y0 = (x0, q0) ∈ D, the stochastic
process Y = (X,α), defined on the hybrid state space D =
∪q∈Q{q} ×K is a solution of H if it satisfies

dX(t) = F (α(t)) ·X(t)dt+G(α(t)) · dW (t), (1)

and for i 6= j

P
(
α(t+ ∆t) = qj |Y (t) = (qi, x)

)
= λi,j(x)∆t+ o(∆t) (2)

with (X(0), α(0)) = (x0, q0).
The discrete dynamics of Y , described by the variable α,

evolves as a jump process over the discrete state space Q,

with jump rate dependent on the continuous part. The con-
tinuous dynamics of Y evolves according to a linear diffusion.
That is, when the discrete system is in a particular state, X
evolves according to a linear SDE driven by a Wiener pro-
cess. Then, when the discrete system hits a change in its
state, X continues to evolve according to a different SDE
without resetting its state.

Assumption 1. We introduce the following assumptions,
which are standard in the literature [33, 38]:

• λi,j(x) is a bounded and locally Lipschitz continuous
function in x, for all qi, qj ∈ Q

• |F (q)x| + |G(q)| ≤ C(1 + |x|) for all q ∈ Q, for some
constant C where |G(q)| =

∑
i,j |G(q)(i, j)|

• |F (q)x − F (q)x′| ≤ D|x − x′| for all q ∈ Q, for some
constant D

The first condition guarantees that, over any finite time
interval, α almost surely jumps only a finite number of times,
thus excluding Zeno behaviours. The second and third con-
ditions guarantee that the continuous solution X exists and
is unique, and that it remains bounded over a finite time
interval [33].

Example 1. Consider the stochastic process X described
by the following SDE

dX(t) = F ·X(t)dt+G · dW (t) (3)

with initial condition X(0) = x0 ∈ Rm. That is, X is the
solution of a hybrid process H with a singleton discrete state
space (Q = {q}). It is well known that the evolution of the
probability distribution of the solution of a SDE over time
satisfies the following Fokker-Planck equation [26]:

∂p(x, t)

∂t
=−

N∑
i=1

∂

∂xi

[
(F (t) · x)ip(x, t)

]
+

1

2

N∑
i=1

N∑
j=1

∂2

∂xi ∂xj

[
Dijp(x, t)

]
,

with diffusion tensor Dij =
∑q
k=1 GikGjk.

The following lemma guarantees that X, process solution
of Equation 3, is a Gaussian process.

Lemma 1. [7, 35] Let X(0) be a normally distributed ran-
dom variable with expected value E[X(0)] = Ex0 and covari-
ance matrix CX(0) = E[X(0)X(0)] = Cx0 . Then, X, as
defined in (3), is a Gaussian Markov process with expected
value and covariance matrix given by{

dE[X(t)]
dt

= FE[X(t)]

E[X(0)] = Ex0 ,
(4)

{
dCX (t)
dt

= FCX(t) + CX(t)TF +G(GT )

dCX(0) = Cx0 .
(5)

Lemma 1 allows us to derive the analytical solution for the
expectation and variance of the solution of a linear SDE as

E[X(t)] = eFtEx0 ,

CX(t) = eFtCx0

(
eFt
)T

+

∫ t

0

(
eF (t−s)

)
GGT

(
eF (t−s)

)T
ds.



3. PROBLEM DEFINITION
Given a stochastic process Y with state space D, a target

set S ⊆ D, which is assumed to be measurable, and a time
interval I ⊆ R≥0, the reachability problem is defined as the
search for the characterisation and computation of the prob-
ability that Y will reach S during I from any point in D.
This problem is dual to the safety problem, that is, comput-
ing the probability that the system will remain in a given,
measurable safe region, over a given time interval. The char-
acterisation of the two problems is thus interchangeable [2].
Reachability analysis is one of the fundamental problems in
the quantitative analysis of models, and it is likewise key
for the analysis of stochastic hybrid processes [14]. Model
checking of Continuous Stochastic Logic (CSL) [8] reduces
to computing reachability problems. Similarly, for discrete-
time stochastic hybrid systems, reachability and safety play
a pivotal role for model checking PCTL formulae [31] and
more complex properties via the product construction [36].

Problem 1. (Probabilistic Reachability) Let H be a hy-
brid process, and Y = (X,α) its solution with state space
D. Let S ⊆ D be a measurable set and I = [t1, t2] a time
interval. The reachability probability for Y to reach S in I
is defined as

Preach(Y,S, I) = Prob{∃t ∈ I s.t.Y (t) ∈ S}. (6)

The safety problem is introduced as

Psafe(Y,S, I) = Prob{∀t ∈ I, Y (t) ∈ S}

and is the dual of the reachability problem, namely

Psafe(Y,S, I) = 1− Preach(Y,Sc, I)

where Sc is the complement of set S.

Analytic solutions of Problem 1 for the class of hybrid sys-
tems we consider are in general infeasible, as they would be
tantamount to viscosity solutions of systems of Hamilton-
Jacobi-Bellman equations [29]. In this work we instead in-
troduce a numerical algorithm that employs time- and space
discretization to solve Problem 1 – in particular the time dis-
cretisation part of the scheme is new. We further show that
for the class of processes considered in this paper, the safety
value computed on the discrete time and finite space Markov
chain (DTMC) abstraction, obtained from the overall pro-
cedure, converges uniformly to the safety value associated
to the given (continuous) switching diffusion as the discreti-
sation parameters become zero. We also offer explicit error
bounds quantifying this approximation level.

In the following illustrative example, we consider a simple
SDE model, for which analytical solutions to the probabilis-
tic safety problem exist.

Example 2. Consider the stochastic process X described
by the SDE dX(t) = GdW (t), where G ∈ R≥0 and W is
a uni-dimensional Brownian motion. Assume there is no
discrete switching (and a single discrete location), then the
probability density function of process X is described by the
following diffusion equation

∂p(x, t | x0)

∂t
=
G2

2

∂2p(x, t | x0)

∂x2
,

with initial condition p(x, 0 | x0) = δ(x − x0). For x̄ ∈ R,
we consider the safe set SX̄ = {x ∈ R : x ≤ x̄}. In order

to solve Psafe(X,SX̄ , [0, 1]), we need to integrate p(x, t;x0)
with the boundary condition P (x̄, t) = 0: this leads to the
following density function for, x < x̄,

p(x, t;x0, x̄) =
1√

2πGt

(
e−

(x−x0)2

2Gt − e−
(x−(2x̄−x0))2

2Gt

)
.

We then obtain

Psafe(X,SX̄ , [0, 1]) =

∫ x̄

−∞
p(x, 1;x0, x̄)dx = erf

(
x̄− x0√

2G

)
,

where erf() is the Gaussian error function.

4. TIME DISCRETIZATION

Given a hybrid system H, its solution, Y = (X,α), is a
continuous time Markov process defined on the hybrid space
D = ∪q∈Q{q} ×K, where K ⊆ Rm,m > 0. By sampling Y
with a fixed interval h > 0, we obtain a discrete-time Markov
process Ȳ = (X̄, ᾱ) defined on the same hybrid state space
D and such that Ȳ (k) = Y (h · k), k ∈ N.

Definition 2. For k ∈ N, the discrete-time Markov pro-
cess (DTMP) (Ȳ (k) = (X̄(k), ᾱ(k)) is a time homogeneous
hybrid model, uniquely defined by a quadruple (D, σ, T c, T d),
where (D, σ) is the measurable space inherited from H; T c :
A×D → [0, 1], for A ⊆ Rm, is a continuous transition ker-
nel; and T d : Q×D → [0, 1] is a discrete transition kernel.

T c and T d describe the probability that the continuous and
discrete components of the process transition onto a mea-
surable set at the next discrete step, given the current state
of the process. More precisely, for state (q, x) ∈ D and
Borel-measurable set (q′, A) ⊆ D , we have that

T c(A, x, q) = Prob(X̄(k + 1) ∈ A|X̄(k) = x, ᾱ(k) = q)

T d(q′, x, q) = Prob(ᾱ(k + 1) = q′|X̄(k) = x, ᾱ(k) = q).

T c and T d fully characterize Ȳ = (X̄, ᾱ). In the following
proposition we derive an analytical form for such kernels.
To simplify the presentation, for the following theorem only
we make a further restriction that the jump rates do not
depend on the continuous state x ∈ K: λij(x) = λij . This
assumption allows us to have a simpler form of the kernel.
In order to deal with more general rate functions, we can
assume that they are piecewise constant in each considered
interval of time, and fix the value of λij at the initial state
for each time interval. As rate functions are locally Lips-
chitz, the distance between the true rate and the obtained
λij will be bounded by a term of order O(h), whose error
contribution can be lifted to the kernel level.

Theorem 1. Let H = (Q,K, F,G,W,Λ) be a hybrid pro-
cess and Y = (X,α) its solution. Assume the jump rates do
not depend on the continuous state. Let h > 0 be a sampling
time and N(x̄|E,C) the normal distribution with mean E
and covariance C. Introduce terms

Γ(i, t) =

∫ t

0

(
eF (qi)(t−m)

)
G(qi)G(qi)

T
(
eF (qi)(t−m)

)T
dm,

Ωλi,λj ,t(s) = (λj − λi)
e(λjs−λjt−λis)

e(−λit) − e(−λjt)
,

and for x ∈ Rm define λi(x) =
∑
j 6=i λi,j(x). Then, given

(q, x) ∈ D and a measurable set (q′, A), for the resulting
DTMP Ȳ = (X̄, ᾱ) it holds that



T c(A, x, qi) =

∫
A

N
(
x̄|eF (qi)·hx,Γ(i, h)

)
dx̄ · e−λih +

∑
qj 6=qi

∫
A

(∫ h

0

N
(
x̄|EHqi,x(s), CHqi,x(s)

)
· Ωλi,λj ,h(s)ds

)
·

λij
λi
· λih · e−λih dx̄ + ε

and

T d(qj , x, qi) =

{
e−λih + ε if qi = qj

λih · e−λih · λij

λi
+ ε if qi 6= qj

,

where

EHqi,x(s) = eF (qi)seF (qi)(h−s)x,

CHqi,x,s = eF (qi)sΓ(i, s)(eF (qi)s)T + Γ(j, h− s),

0 ≤ ε ≤ 1− e−λih − λih · e−λih.

The full derivation of the continuous kernel, T c(A, x, qi), is
shown in Section 9. Each integral over A quantifies the prob-
ability that the continuous component of the model enters
set A, conditional on the discrete part of the process per-
forming either 0 or 1 jumps during the sampling interval h.
Assuming to be in the discrete location qi, the probability of
these events is respectively e−λih and λih ·e−λih [19], where
x is the state at time kh. If the discrete system makes no
jumps within [0, h], then, because of the memory-less prop-
erty of the SDE, during this interval X evolves according
to equations as in Lemma 1 and specific to location qi. As
a consequence, at time h, X is normally distributed, with
mean eF (qi)·hx and variance Γ(i, h). If instead the system
jumps once within [0, h], after marginalizing over the jump
time and the state where this event happens, we end up with
a linear Gaussian model [9]. This process is still Gaussian
with mean and covariance matrix that can be derived from
the equations in Lemma 1. Finally, parameter ε takes into
account the probability associated to paths with more than
one jump within [kh, (k + 1)h]: based on the provided up-
per bound on ε, it is clear that the probability of such event
becomes negligible as h gets small enough.

The discrete kernel T d(qj , x, qi) has a much simpler der-
ivation. If we assume that the system makes at most one
jump during h, then the probability that qj = qi amounts to
the probability that the system does not jump within [0, h].
Instead, for the condition qj 6= qi the resulting probability
is obtained as the probability of making a jump once, mul-
tiplied by the probability of jumping to the specific state qj .

From T c and T d, it is easy to calculate the following tran-
sition kernel for (x, qi) ∈ D and a measurable set (A, qj) ⊆ D

T ((A,qj), (x, qi)) =

Prob(Y ((k + 1)h) ∈ (A, xj)|Y ((k)h) = (q, xi), k ∈ N).

In fact, from Theorem 1, we have

T ((A, qj), (x, qi)) =
∫
A
N
(
x̄|eF (qi)·hx,Γ(i, h)

)
dx̄ · e−λih if qi = qj∫

A

(∫ h
0
N
(
x̄|EHqi,x(s), CHqi,x(s)

)
· Ωλi,λj ,h(s)ds

)
·

dx̄ · λij

λi
λihe

−λih if qi 6= qj

Note that the derived kernels are time homogeneous: from a
numerical point of view this is a key property that facilitates
the practical computation of the resulting DTMP, which is
also time homogeneous.

4.1 Error Bounds for Time Discretization
In this section we quantify the approximation level in-

troduced by the discretisation procedure. More precisely,
we characterize the error associated to the computation of
reachability properties with the DTMP over a discrete set
of sampling points, with sampling time h > 0: by deriving
formal error bounds, we show uniform convergence as h→ 0.

Assumption 2. Assume that the target set S is inde-
pendent of the locations, namely select S ⊆ Rm so that
S = ∪q∈Q{q} × S.

Note that, although this assumption limits the class of
properties that can be expressed, there are many applica-
tions where target sets independent of discrete locations are
of great interest. For example, in the context of controlling
room temperature in smart buildings, often the focus is on
checking the temperature (continuous variable) regardless of
the discrete state of the thermostats (locations). At the end
of the section we briefly discuss how this assumption can be
relaxed.

Let H = (Q,K, F,G,W,Λ) be a hybrid system and Y =
(X,α) its solution. Let I ⊆ R≥0 be a finite time interval.
For any q ∈ Q, call Xq the solution of the SDE:

dXq(t) = F (q)Xq(t)dt+G(q)dW (t).

In this section we assume that Xq is a uni-dimensional, zero
mean Gaussian process (GP). In the next subsection, we
show how to generalize the results derived here for general
GPs and multi-dimensional processes.
Xq is almost surely bounded within the interval I by As-

sumption 1. Set h = min{ 2−n

2
√

2K2Kd
, 2−n} and εn = 2−

n
2 ,

where n ∈ N, andKd is a constant such that for any t1, t2 ∈ I

max
q∈Q
{dq(t1, t2)} ≤ Kd · |t2 − t1|,

where dq is a pseudometric defined as

dq(t1, t2) =
√
E[(Xq(t2)−Xq(t1))2],

and K ≥ 12 is the universal constant in the Dudley’s met-
ric entropy integral [32]. Fix a set of sampling times Σ =
{t1, ..., t|Σn|}, with step distance h. Call

Sεn = {x ∈ S : |x− ∂S| ≥ εn},

where ∂S is the boundary of S and | · | is the Euclidean
distance metrics between a point and a set. Define the events

An = {∀ti ∈ Σ, X(ti) ∈ Sεn}

and

B = {∃t ∈ [0, T ] s.t. X(t) 6∈ S}.
As S ⊆ R, we have that Psafe(Y,S, I) = Psafe(X,S, I), where
Psafe(X,S, I) is the probability that the continuous compo-
nent X of Y , stays in S during I. It is easy to see that

Psafe(X,S, I) = lim
n→∞

P (An ∧ Bc).

For a finite n > 0, P (An ∧ Bc) is the lower bound for the
safety probability computed on S, since it requires the sys-
tem to be inside Sεn ⊆ S at sampling times in Σ. Notice that



for n big enough S and Sεn become indistinguishable. As
a consequence, we can compute the reachability on Sεn in-
stead of S, assuming n is big enough. Let us define as P (An)
the reachability probability computed considering only the
discrete times in Σ.

Theorem 2. Under Assumption 1, it holds that for n ≥ 3
and over a finite time interval I ⊆ R≥0

P (An) ≥ P (An ∧Bc) ≥ P (An) ·

(
1− I

h
exp
−
(

2n−2
n
2 +1

))
,

where h = min{ 2−n

2
√

2K2Kd
, 2−n}.

Corollary 1. Under Assumption 1, it holds that

lim
n→∞

P (An ∧ Bc) = lim
n→∞

P (An).

Theorem 2 guarantees that for any n ≥ 3, we obtain

|P (An)− P (An ∧ Bc)| ≤ I

h
exp
−
(

2n−2
n
2 +1

)
.

This enables choosing, a priori, a sampling interval h that
guarantees meeting a chosen error on the precision. The
proof of Theorem 2 is given in the Appendix. Here, we ex-
plain the main ideas. The proof of Theorem 2 is based on
the fact that, for any q ∈ Q, Xq is a Gaussian process, which
is almost surely bounded in T . It is possible to show that the
supremum of Xq is still distributed as a Gaussian [4]. Then,
the use of the entropy Dudley’s integral [21] allows to bound
the probability that each Xq stays in a εn−neighbourhood
between two sampling points. The fact that Sεn depends
on the sampling interval concludes the proof. Note that a
key feature enabling this approach is the absence of resets of
the continuous state upon mode change. As a consequence,
we can simply assume that we can find constants for the
“worst behaving Xq” in a particular interval, without wor-
rying about the discrete mode changes.

Discussion on the error and extensions
In the derivation of Theorem 2 we have assumed that the
continuous component of Y , solution of H, is zero mean and
uni-dimensional. This is not a limitation: Lemma 1 guaran-
tees that for any q ∈ Q, the variance of the solution Xq is
independent of the particular continuous location, depend-
ing exclusively on time. Moreover, given a set S ⊆ R and
h > 0, for E[X(0)] = x ∈ S from Equation (4), it is possible
to derive a constant Km

h,S such that

supq∈Q,t1,t2∈[0,h]{|E[Xq(t2)− E[Xq(t1)]|} ≤ Km
h,S · h.

Then, we can simply consider as target for the continuous
components the set

S′ = S ∪ {x ∈ R− S : |x− ∂S| ≤ Km
h,S · h}.

The bound computed for X −E[X] on S = ∪q∈Qq × S still
holds for X on S ′ = ∪q∈Qq×S′. One of the key properties
of a multivariate Gaussian Process (mGP) is that each of
its components is itself a Gaussian process. Moreover, the
Euclidean metric distance for X at time t can be defined as

|X(t)| =

√√√√ m∑
i=1

|Xi(t)|2,

where Xi is the i− th component of X. As a consequence,

P
(
|X(t)| < ε

)
≤ P

(
supi∈[1,n]|Xi(t)| <

√
ε2

n

)
.

These observations allow us to derive the following theorem,
which generalizes Theorem 2 to multi-dimensional continu-
ous components.

Theorem 3. Let H be a hybrid process and Y = (X,α)
its solution, with X m-dimensional process, for m > 0. De-
fine Kd,i, the Kd constant relative to Xi, as introduced in
Section 4.1. Then, it holds that for n ≥ 3 and over a finite
time interval I ⊆ R≥0

P (An) ≥ P (An ∧Bc) ≥ P (An) ·

(
1− I

h
exp
−
(

2n−2
n
2 +1

))
,

where h = min
{

2−n

2
√

2K2K̄d
, 2−n

}
, for K ≥ 12 and K̄d =

supi∈1,...,m(Kd,i).

Finally, it is important to stress that Assumption 2 can
be relaxed by modifying the time discretization error and
including a term encompassing the probability that the sys-
tem jumps more than once during the time interval [0, h].
Moreover, as explained next, Theorem 3 can still be used to
get lower bounds of cases where the target set depends on
the discrete mode. However, the bounds we obtain can be
quite conservative if the target sets corresponding to differ-
ent modes greatly differ.

Observation 1. Consider a hybrid system H with solu-
tion Y = (X,α), where X takes values in Rm and α takes
values in a finite set of discrete states Q. Given a measurable
set S = ∪qi∈Q(qi, Si) ⊆ D, we can define S′ = ∩qi∈QSi and
S ′ = ∪qi∈Q(qi, S

′. Then, we have that for a general time in-
terval I, Psafe(Y,S, I) ≥ Psafe(Y,S ′, I). That is, if we need
to compute probabilistic safety on a set that depends on the
discrete modes, then we can always compute a lower bound
of this safety considering a target set that is independent of
the locations.

5. STATE SPACE DISCRETIZATION
In order to complete the procedure leading to a model

where we can numerically compute safety or reachability
properties, we introduce a numerical scheme inspired by
the results of [2, 23]. The numerical scheme is based on a
discrete-time Markov chain (DTMC) approximation of the
DTMP that results from the time discretization of the orig-
inal switching diffusion process H. We discuss convergence
results and relative error bounds both of this second (state
space) approximation step, and of the combined (time- and
state approximation) procedure.

Let S = ∪q∈Q{q} × Aq be the safe set, where Aq ⊆
Rm. We assume S to be measurable and compact. Given
dx ∈ R≥0, we define the grid

Gdx = ∪q∈Q ∪i∈mq {q} ×Ai,q,

where Ai,q are pairwise disjoint measurable sets, such that
for q ∈ Q ∪i∈mqAi,q = Aq, for i 6= j Ai,q ∩Aj,q = ∅, and

Ai,q = {x, x′ ∈ Aq : |x− x′| ≤ dx}.

In other words, Gdx is a partition of S in sets of diameter
dx. For each (q,Ai,q) ∈ Gdx, we consider a representative



point (q, xi) ∈ {q} × Ai,q. The set of representative points
Sdx = {(q, xi), i ∈ {1, ...mq}, q ∈ Q} makes up the finite
state space of the DTMC, a discrete version of the set S.
Let us introduce ξ : S → Sdx, a map that associates to any
(q, x) ∈ S the corresponding representative point. Similarly,
the set-valued map Ξ : S → Gdx relates any representative
point to the concrete Ai,q partition.

We define the discrete state space Zdx = Sdx ∪ φ, where
φ is a discrete state modeling all the states outside S. Note
that the compactness of S guarantees that Z is finite. The
resulting DTMC is completely characterized by its transi-
tion kernel Tdx : Zdx × Zdx → R≥0, such that for z1 =
(x1, q1), z2 = (x2, q2) ∈ Zdx, Tdx(z1, z2) describes the prob-
ability of going in z1 in the next discrete step, being in z2 at
the current time. Tdx can be easily computed from kernel T
presented in Section 4 as Tdx(z1, z2) =

T (z1, z2), if z1, z2 ∈ Sdx
1−

∑
zj∈Sdxr

T (z1,Ξ(zj)), if z1 ∈ Sdx, z2 ∈ φ
1, if z1, z2 ∈ φ
0, if z1 ∈ φ, z2 ∈ Sdx.

5.1 Error Bounds for Space Discretization
Let Ȳ the discrete time continuous space hybrid process

derived through time discretization of Y , solution of the hy-
brid processH, with initial condition (x, q) ∈ S. Call Y D the
approximated DTMC with state space Zdx and initial condi-
tion (xD, qD) = ξ((x, q)). We show that, for I ⊆ R≥0, under
Assumption 1, the propertyPsafe(Y D,Sdx, I) converges uni-
formly to Psafe(Ȳ , S, I), which also allows us to derive uni-
form convergence on the original continuous time stochastic
process, and to derive error bounds on the global approxi-
mation procedure.

Definition 3. Let us introduce the following Lipschitz
constants h1, h2 ∈ R≥0, which are such that

|T d(q′, x1, q)− T d(q′, x2, q)| ≤ h1 · |x2 − x1|,
for all (q, x1), (q, x2) ∈ S, q′ ∈ Q,
|tc(x′, x1, q)− tc(x′, x2, q)| ≤ h2 · |x2 − x1|,
for all (q, x1), (q, x2) ∈ S, x′ ∈ K ∩ S,

where tc is the density function of the continuous kernel T c.

Theorem 4. [2] Let Ȳ be the discrete-time continuous
space hybrid process with initial condition (x, q) ∈ S, where
S is a measurable set. Call Y D the approximated DTMC
with state space Zdx, where dx > 0 is the discretization pa-
rameter, and initial condition (xD, qD) = ξ(x, q). Then,
given [0, N ] ⊆ N, it holds that

|Psafe(Y
D,Sdx, N)− Psafe(Ȳ ,S, N)| ≤ N · K · dx,

where K = mh1 + Lh2, with L the Lebesque measure of the
continuous set S, and m cardinality of the discrete set Q.

Notice that, as dx ↓ 0, the two probabilities collapse.

6. GLOBAL ALGORITHM AND ERRORS
Using the results in Theorem 4, we can derive the uniform

convergence between Psafe(Y D,Sdx, N) and Psafe(Y, S, I) for
h, dx→ 0 and N discretized version of I.

Theorem 5. Let Y be the solution of a switching diffu-
sion process H with initial condition (x, q) ∈ S. Call Y D

the approximated DTMC, with h, dx > 0 time and space dis-
cretization parameters, and with initial condition (xD, qD) =
ξ((x, q)). Then, given I = [0, t] ⊆ R≥0, it holds that:

∣∣∣∣∣∣Psafe

(
Y D,Sdx,

⌈
I

h

⌉)
− Psafe(Y,S, I)

∣∣∣∣∣∣ ≤
I

h
·

(
Kdx+ e

−
(

2n−2
n
2 +1

))

where h = min
{

2−n

2
√

2K2K̄d
, 2−n

}
for n ≥ 3, with K ≥ 12

and K̄d constant introduced in Section 4.

Proof. By triangular inequality we have∣∣∣∣∣Psafe(Y D,Sdx,
⌈
I

h

⌉
)− Psafe(Y,S, I)

∣∣∣∣∣ ≤∣∣∣∣∣Psafe(Y D,Sdx,
⌈
I

h

⌉
)− Psafe(Ȳ ,S,

⌈
I

h

⌉
)

∣∣∣∣∣+
|Psafe(Ȳ ,S, I)− Psafe(Y, I, I)|.

The proof results from the application of Theorem 4 and
Theorem 2.

Algorithm 1 Probabilistic safety computation by finite
DTMC abstraction

Require: Y = (X,α) solution of H with initial condition
(x, q), safe set S, finite time interval I = [0, t], and pa-

rameters dx, h = min
{

2−n

2
√

2K2Kd
, 2−n

}
;

1: Select the partition Gdx = ∪q∈Q ∪i∈mq {q} ×Ai,q;
2: Select the set of representative points, leading to Sdx;
3: Define the DTMC Y D with state space Zdx = Sdx ∪ φ,

initial condition z0 equals to 1 for the entry correspond-
ing to ξ((x, q)) and 0 otherwise, and transition matrix
Pdx such that Pdx(i, j) = Tdx(zi, zj);

4: Compute zt = z0 · P
(
d I

he
)

dx ;
5: Return Psafe(Y,S, I) = 1 − zt(φ) with the error given

as I
h
· (Kdx+ e−(2n−2

n
2 +1)).

In Algorithm 1 we present a numerical routine to compute
safety properties over continuous-time hybrid systems. The
inputs of the algorithm are Y = (X,α), solution of the con-
tinuous time hybrid process H with a given initial condition,
a finite time interval I, the sampling time h, the grid param-
eter dx and the target set S. (In the case study presented in
the next section we consider parameters h = 0.1, dx = 0.2
and I = [0, 2].) Theorem 5 allows us to compute a bound on
the error as a function of parameters dx and h. Moreover,
such parameters can be selected to meet a required precision
error. That is, given the maximum error that is tolerated,
Theorem 5 returns possible h and dx that guarantee such
an error. In Lines 1, 2, 3 the algorithm computes the DTMC
abstraction from Y and S, as described in the previous sec-
tion: Pdx is the transition probability matrix of the resulting
DTMC [31], namely Pdx(i, j) describes the probability of go-
ing from the discrete state zi to the discrete state zj at the



next time step. Line 4 computes the transient evolution of
the DTMC Y D. This is done by multiplying the initial state
z0 for Pdx d Ihe times, where d I

h
e are the number of discrete

steps: Psafe(Y,S, I) is just the probability of not being in
the sink state φ. A bound on the error is computed using
Theorem 5.

7. CASE STUDY
We consider a continuous-time switching diffusion process

studied in [1]. The discrete state space is composed of two
locations Q = {on, off}, and the continuous process takes
values in R2, so that the hybrid state space is D = Q× R2.
The drift is given by the following two matrices

F (on) =

(
−0.6 0.3
−0.6 0.15

)
, F (off) =

(
−0.35 0

0.1 −0.25

)
.

The continuous dynamics are further affected by a 1−dimen-
sional Wiener process scaled by matrices

G(on) =

(
0.2
0.2

)
, G(off) =

(
0.3
0.3

)
.

The Poisson measures are independent of the continuous
component of the process and are given by the following
rates: λon,off = 0.41 and λoff,on = 0.38. We consider the
Borel sigma algebra over D and a measurable set A. As
the rates are independent of the continuous components, for
A ⊆ R2, qi, qj ∈ {on, off} with qi 6= qj , x ∈ R2 and h ∈ R≥0

small enough, we have the following transition kernels (see
Theorem 1):

T c(A, x, qi, k) =

∫
A

N
(
x̄|eF (qi)·hx,Γ(i, h)

)
dx̄ · e−λi,jh+∫

A

(∫ h

0

N
(
x̄|EHqi,x(s), CHqi,x,s

)
· Ωi,j,h(s)ds

)
·

(λi,j h e
−λi,jh)dx̄, where

EHqi,x(s) = eF (qi)·seF (qi)(h−s)x,

CHqi,x,s = eF (qi)·sΓ(i, s)
(
eF (qi)·s

)T
+ Γ(j, h− s), and

T d(qj , x, qi, k) =

{
e−λi,jh if qi = qj

λi,jh · e−λi,jh if qi 6= qj

In order to choose h, we need to compute constantsKd, h1,
and h2. As the rate coefficients are independent of the con-
tinuous components we have h1 = 0. It can be further de-
rived that

h2 ≤ max
x∈R2

{
|∂t

c(x′|x, qi)
∂x

|
}
,

where tc is the density function of the kernel TC . Further,
K̄d can be computed as

K̄d = max
qi∈{on,off},j∈{1,2}

{√
Γ(i, h)(j, j)

}
,

where Γ(i, h)(j, j) is the component (j, j) of matrix Γ(i, h).
Note that Kd is also independent of the continuous compo-
nent of the process.

In order to demonstrate the soundness of our method we
implement Algorithm 1 in Matlab, and compare the numer-
ical implementation with empirical results obtained by sim-
ulations. We consider the following safe region

S =
{
x ∈ R2 s.t. for i ∈ {1, 2},−0.2 ≤ xi ≤ 1

}
,

where xi is the i−th component of vector x. We select the
time interval I = [0, 2]. Firstly, we consider h = 0.1 and
dx = 0.2. For such values, the resulting abstract DTMC
is made up of 5184 states. We consider different initial
conditions and we compare the safety computed on the ab-
straction with the same property computed on the original
continuous-time model using 1000 simulations. As expected,
for any initial condition, the abstraction provides a safety
value that is a lower bound of the empirical one. We observe
a maximal error of 0.11. Note that, for h = 0.1 and dx = 0.2,
Theorem 5 guarantees a theoretical time discretization er-
ror bound of 0.2, and an uninformative space discretization
error bound (e.g. > 1). This is because, for small values of
h, the value of the constant h2 tends to increase, requiring
a finer space grid.

In order to increase the precision it is possible to decrease
h and dx at the price of more computational effort (a larger
DTMC abstraction). To guarantee a theoretical error ≤ 0.1,
we can select h = 0.03, which results in a theoretical time
discretization error ≤ 4 · 10−4. However, for such small h,
tc has very small variance, rendering h2 large. As a con-
sequence, in order to keep the error small, we would need
dx < 10−3) and the resulting DTMC would be composed of
> 106 states. This dimensionality issue arises also because
we are considering a uniform grid (dx constant). As a con-
sequence, we use the same space resolution both for states
with no probability mass and for states with large probabil-
ity mass, which are the great minority for h small. In fact,
as described in the next Section, the use of more advanced,
adaptive grid techniques [23] would allow us to meet the
given precision with a much smaller resulting DTMC – this
is targeted as future work.

8. CONCLUSIONS
We have presented a novel and formal approach to com-

pute probabilistic reachability (and dually safety) for con-
tinuous time hybrid processes with no guards and no resets,
and with continuous dynamics that can be described by lin-
ear stochastic differential equations. We have considered
an approach based on space and time discretization of the
original process, and derived uniform convergence of the al-
gorithm, as well as error bounds that can be used to tune
and control the approximation error.

The main contributions of the paper are the characteri-
zation of the kernels for the time discretizion of such pro-
cesses and the error bound for the time discretization pro-
cess. Finding formal bounds for the time discretization of
stochastic hybrid processes has been an open problem, and,
to our knowledge, only limited to results of weak conver-
gence of the approximation. We have first presented the
bound for uni-dimensional target sets, and then have shown
how to extend it to multidimensional processes.

For the space discretization we have considered an ap-
proach based on uniform gridding of the state space, insipred
by the work in [2]. Although formally correct, this approach
in combination with time discretization may result in large
DTMC abstractions. In fact, as shown in a case study, the
diameter of each grid location tends to grow as the sam-
pling time of the time discretization process decreases. A
much better solution would be to consider adaptive grid-
ding tecniques [23]. These would be extremely beneficial,
since, when the sampling time is small, the distribution of



the continuous kernel has very small variance. As a con-
sequence, only a very small set of states has non-negligible
probability mass. This is exactly the scenario where adap-
tive techniques perform better. As a future work, we plan to
merge our time discretization approach with adaptive grid-
ding techniques and to release a tool based on that.

9. PROOFS
Proof of Theorem 1. We show the derivation of the

continuous kernel. Note that the discrete kernel can be de-
rived similarly. By definition we have

T c(A, x, qi) =

∫
A

tc(x̄|x, qi)dx̄,

where tc(x̄|x, qi) is the density function of X, continuous
component of Y , assuming X(0) = x and α(0) = λi. We
define Numh

α = k as the event such that α, discrete compo-
nent of Y , jumps k times between [0, h]. By marginalizing
with respect to the number of times that α jumps during
[0, h], we have

T c(A, x, qi) =

∫
A

tc(x̄|x, qi)dx̄ =∫
A

(
tc(x̄|x, qi, Numh

α = 0) · Prob(Numh
α = 0|x, qi) +

tc(x̄|x, qi, Numh
α = 1) · Prob(Numh

α = 1|x, qi) + ε
)
dx̄

where ε ≤ Prob(Numh
α > 1|x, qi) =

1−
∑

i∈{0,1}

Prob(Numh
α = i|x, qi).

tc(x̄|x, qi, Numh
α = 0) is the normal distribution derived

from solving the linear SDE corresponding to mode qi from
initial condition x for the interval [0, h] because the solution
of a SDE is Markov. The properties of Poisson processes
give us

Prob(Numh
α = 0|x, qi) = e−λih,

and similarly

Prob(Numh
α = 1|x, qi) = λihe

−λih.

We further define Jumpi,j and Jumpsi,j as the events such
that α jumps from state qi in state qj , and α jumps from
state qi in state qj at time s, respectively. By marginalizing
tc(x̄|x, qi, Numh

α = 1) with respect to the discrete location
where we jump and the time when α jumps we get:

tc(x̄|x, qi, Numh
α = 1) =∑

qj 6=qi

∫ h

0

tc
(
x̄|x, qi, Numh

α = 1, Jumpsi,j

)
·

f(s|x, qi, Numh
α = 1, Jumpi,j)Prob(Jumpi,j)ds

The first term is a linear Gaussian model. This class of
models has been extensively studied in literature [9]. More
specifically, it has a Gaussian distribution whose variance
and expectation can be derived from Lemma 3. As a conse-
qeunce, we have

tc(x̄|x, qi, Jumpsi,j) = N (x̄|E,C), where

E = eF (qi)·seF (qi)(h−s)x, and

C = eF (qi)·sΓ(i, s)
(
eF (qi)·s

)T
+ Γ(j, h− s)).

P rob(Jumpi,j) =
λij

λi
is the probability of jumping in qj

at the next jump. and f(s|x, q,Numh
α = 1, Jumpi,j) is the

density function of the jumping time conditioned on the fact
that we jump in [0, h]. This can be derived from properties
of Poisson processes as

f(s|x, q,Numh
α = 1, Jumpi,j) = (λj − λi)

e(λjs−λjt−λis)

e(−λit) − e(−λjt)
.

Proof of Theorem 2. For each q ∈ Q, Xq is an al-
most surely bounded and uniformly continuous GP in I,
time interval of interest. This guarantees the existence of
a sequence {δn} with δn → 0 such that φ(δn) ≤ 2−n (see
Theorem 2.1.3 of [5]), where

φ(δn) = E

max
q∈Q

{
sup

s,s′∈I:|s′−s|≤δn
(X(s)−X(s′))

} .
Set h = min{δn, 2−n}and εn = 2−

n
2 . For a set of a sampling

times Σ = {t1, ..., t|Σn|}, with step distance h > 0, call S ⊆
Rn the safe set and,

Sεn = {x ∈ S : |x− ∂S| ≤ εn},

where ∂S is the boundary of S, and | · | stands for euclidean
metric distance. Define the events

An = {∀ti ∈ Σn, . X(ti) ∈ Sεn}

and

B = {∃t ∈ I s.t. X(t) 6∈ S}.

Using the rules of probability we get

P (An ∧ Bc) = P (An) · (1− P (B|An))

By definition of probability we have that

0 ≤ P (B|An)

≤ P (∃ti ∈ Σn s.t. sup
t∈[ti,ti+h]

(X(t)−X(i)) > εn)

≤ P (∃ti ∈ Σn s.t. sup
t∈[ti,ti+h]

(X(t)−X(i)) > εn)

≤
|Σn|∑
i=1

P

(
sup

t∈[ti,ti+h]

(X(t)−X(i)) > εn

)
,

with X(ti) ∈ Sεn .
In order to bound P (supt∈[ti,ti+h](X(t)−X(i)) > εn) we

need to take into account that during [ti, ti +h] the discrete
state may hit a transition. However, there is no reset for the
continuous components. As a consequence, it is enough to
assume that, during [ti, ti + h], X always evolves accoridng
to the ”worst” behaving Xq. Then, being Xq a GP, we can
make use of the Borell’s bound [4, 5]. Given an interval
I and a centered and bounded Guassian process Xq with
σI = supt∈I(σ(t)), supremum of the standard deviation of
the process, the Borrell bound guarantees that

Prob

(
sup
t∈I

Xq(t) > u

)
≤ exp

−
(
u−E[supt∈IXq(t)]

)2
/(σ2

I)

Applying this result to our case for intervals of the type
[ti, ti +h], and for u = εn = 2−

n
2 , where n ≥ 3 we have that



|Σn|∑
i

P

(
sup

t∈[ti,ti+h]

(X(t)−X(ti)

)
> εn)

≤ |Σn| exp
−

(
2
−n

2 −2−n

)2

2−2n ≤ |Σn| exp
−
(

2n−2
n
2 +1

)

At this point, the last, and non-trivial, step in order to derive
our convergence results and relative error bounds is to show
that

lim
n→∞

|Σn| exp
−
(

2n−2
n
2 +1

)
= 0.

In fact, as

0 ≤ P (B|An) ≤ |Σn| exp
−
(

2n−2
n
2 +1

)
,

this would guarantee that

Psafe(X,S, I) = lim
n→∞

P (An ∧ Bc) = lim
n→∞

P (An).

To do that, it is sufficient to show that h = 2−n

C
, for some

constant C. In fact, this implies |Σn| = I·C
2−n .

Recall that we chose h such that for all ti ∈ Σn,

E

[
sup

t∈[ti,ti+h]

(X(t)−X(ti))

]
≤ 2−n.

As a consequence, it is enough to take h as the greatest
interval smaller than 2−n such that this condition is verified.
For ti ∈ Σn call X̄i = X(t) − X(ti). We can now make
use of the Dudley integral (or entropy integral) [4], which
guarantees that for ti ∈ Σn,

E[ sup
t∈[ti,ti+h]

(X̄i)] ≤

K

∫ diam([ti,ti+h])
2

0

√
ln(N([ti, ti + h], d, ε))dε,

where K ≥ 12 is a constant and d is a pseudo-metric defined
as

d(t, t+ dt) =
√
E[(X(t+ dt)−X(t))2].

N([ti, ti + h], d, ε) represents the smallest number of balls
of radius ε, which covers [ti, ti + h], under metric d, where
diam([ti, ti + h]) is defined as

diam([ti, ti + h]) = sups′,s∈[ti,ti+h]d(s′, s)

and with our assumptions, it is possible to show that there
exists a constant Kd such that

d(t, t+ h) ≤ Kd · h

Moreover, for T̄i = [ti, ti + h] ⊆ R≥0 we have

N(T̄i, d, ε) ≤
Kdh

2ε
+ 1,

This can be easily understood thinking at the geometry of
the problem. As a consequence, we have

E

[
sup
t∈T̄i

(X̄i(t))

]
≤ K

∫ √2·2−n−1

0

√
ln

(
Kdh

2ε
+ 1

)
dε

Now, our property is satisfied if we chose h such that

K

∫ √2·2−n

0

√
ln

(
Kdh

2ε
+ 1

)
dε ≤ 2−n.

The integral inequality we need to solve cannot be solved
analytically. However, as Kdh > 0, we can write

K

∫ √2·2−n

0

√
ln

(
Kdh

2ε
+ 1

)
dε ≤ K

∫ √2·2−n

0

√
Kdh

2ε
dε

= K

√
Kdh

2

∫ √2·2−n

0

√
1

ε
dε = K

√
Kdh

2
2

√√
22−n.

Asking for this quantity to be smaller than 2−n, we obtain
the following bound for the sampling time h :

h ≤ min

{
2−n

2
√

2K2Kd

, 2−n
}
.
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