A semantic basis for Quest
(Extended Abstract1)

Luca Cardelli
DEC Systems Research Center

Giuseppe Longo 2
LIENS, Ecole Normale Supérieure, Paris

1. Introduction

Type theory provides a general framework for studying many advanced programming features including polymorphism, abstract types, modules, and inheritance. (See [Cardelli Wegner 85] for a survey.) The Quest programming language [Cardelli 89] attempts to take advantage of this general framework to integrate such programming constructs into a flexible and consistent whole.

In this paper we focus on the Quest type system, by describing and modeling its most interesting features. At the core of this system is a three-level structure of kinds, types (and type operators), and values. Within this structure we accommodate impredicative type quantifiers and subtyping. Universal type quantifiers can then be used to model type operators, polymorphic functions, and ordinary higher-order functions. Existential type quantifiers can model abstract types. Subtyping supports (multiple) inheritance, and in combination with quantifiers results in bounded-polymorphic functions and partially abstract types. Subtyping is realized in a uniform way throughout the system via a notion of power kind, where $\mathcal{P}(A)$ is the kind of all subtypes of A.

Formally, Quest is an extension of Girard’s F\textsubscript{u} [Girard 72] with additional kind structure, subtyping structure, recursive types, and fixpoints at all types. Alternatively, it is a higher-order extension of the calculus studied in [Curien Ghelli 90], which is the kernel of the calculus in [Cardelli Wegner 85]. Recursion is necessary to model programming activities adequately, and causes us to abandon the Curry-Howard isomorphism between formulas and types.

New kinds and types can be easily integrated into the basic Quest system to model various programming aspects. For example, basic types can be added to model primitive values and their relations [Mitchell 84]; record and variant types can be introduced to model object-oriented programming [Cardelli 88, Wand 89, Cardelli Mitchell 89, Cook Hill Canning 90]; and set types can be introduced to model relational data bases [Ghez 87]. In all these cases, subtyping performs a major role. Many of these additional type constructions can however be encoded in a very small core system, which is the one we investigate in this paper.

The type rules we consider are very powerful, but not particularly complex or unintuitive from a programming perspective. This contrasts with the semantics of Quest, which is rather challenging. In particular, difficulties arise when we try to model simultaneously features such as contravariant function spaces, record types, subtyping, recursive types, and fixpoints. In this paper we concentrate on modeling quantifiers and subtyping; recursion is an active subject of research [Amadio 89] [Abadi Plotkin 90] [Freyd Mulry Rosolini Scott 90].

The model we present for such advanced constructions is particularly simple; the basic concepts are built on top of elementary set and recursion theory. This model has been investigated recently within the context of Category Theory, in view of the relevance of Kleene’s realizability interpretation for Category Theory and Logic. Our presentation applies and further develops, in plain terms and with no general categorical notions, the work carried on in [Longo Moggi 88] and [Bruce Longe 89]. Our work is also indebted to that by Amadio, Mitchell, Freyd, Rosolini, Scedrov, Luo and others (see references).

The presentation of the formal semantics is divided into two parts, corresponding to sections 4 and 5, where we discuss variants of the language with and without explicit coercions. However, the underlying mathematical structure is the same and the interpretations are strictly related.

The paper is organized as follows. Section 2 describes the formal theory of Quest, including its typing rules, and can be understood on its own. Sections 3, 4, and 5 are more technical and are concerned with semantics. Section 3 provides background material on partial equivalence relation (p.e.r.) models, and more specific material on subtyping. Section 4 gives meaning to Quest\textsubscript{c} (with explicit coercions), while section 5 gives meaning to Quest (with implicit subsumption).

1 Full preliminary version in [Cardelli Longo 90].
2 Currently on leave from the Dipartimento di Informatica, Università di Pisa. This author’s work has been supported in part by Digital Equipment Corporation.
2. Quest rules

In this section we discuss the typing and reduction rules for Quest. We use \(K, L, M\) for kinds; \(A, B, C\) for types and operators; \(a, b, c\) for values; \(X, Y, Z\) for type and operator variables; and \(x, y, z\) for value variables. We also use \(\mathcal{T}\) for the kind of all types, and \(\mathcal{T}(B)\) for the kind of subtypes of \(B\). In general, we use capitalized names for kinds and types, and lower-case names for values.

2.1 Terms

The pre-terms are described by the following syntax. Only those pre-terms that are validated by the rules in the following subsections are legal terms.

\[
\begin{align*}
K & ::= & \text{Kinds} & \text{the kind of all subtypes of a type} \\
\mathcal{T}(A) & & \text{the kind of operators between kinds} \\
\Pi(X::K) & & \text{the supertype of all types} \\
A & ::= & \text{Types and Operators} & \text{type and operator variables} \\
X & & \text{top} & \text{the distinguished value of type Top} \\
\Pi(X::K)B & & \text{polymorphic types} & \text{functions} \\
A & & \text{function spaces} & \text{operators} \\
\lambda(X::K)B & & \text{operators} & \text{operator application} \\
\mu(X)A & & \text{recursive types} & \text{coercions} \\
a & ::= & \text{Values} & \text{recursive values} \\
x & & \text{value variables} & \text{function application} \\
top & & \text{polymorphic functions} & \text{function instantiation} \\
\lambda(x::A)b & & \text{polymorphic functions} & \text{functions} \\
b(a) & & \text{polymorphic instantiation} & \text{function application} \\
c_{A,B}(a) & & \text{coercions} & \text{recursive values} \\
\mu(x::A)a & & \text{recursive values} & \\
\end{align*}
\]

The following abbreviations will be used:

\[
\begin{align*}
\mathcal{T} & \equiv \mathcal{T}(\text{Top}) & \text{the kind of all types} \\
\Pi(X)L & \equiv \Pi(X::T)L & \Pi(X::A)L \equiv \Pi(X::\mathcal{T}(A))L \\
\Pi(X)B & \equiv \Pi(X::T)B & \Pi(X::A)B \equiv \Pi(X::\mathcal{T}(A))B \\
\lambda(X)B & \equiv \lambda(X::T)B & \lambda(X::A)B \equiv \lambda(X::\mathcal{T}(A))B \\
\lambda(x::X)b & \equiv \lambda(x::T)b & \lambda(x::A)b \equiv \lambda(x::\mathcal{T}(A))b \\
\end{align*}
\]

From the abbreviations above we can see that this calculus includes all the terms of Fo [Girard 72] and Fun [Cardelli Wegner 85].

2.2 Judgments

The formal rules are based on eight judgment forms, listed below, together with three derived ones.

\[
\begin{align*}
\vdash E & \text{ env} & E \text{ is an environment} \\
\vdash K & \text{ kind} & K \text{ is a kind (in an environment E)} \\
\vdash A::K & \text{ type} & A \text{ has kind } K \\
\vdash A::\mathcal{T} & \text{ type} & A \text{ is a type (abbr. for } E \vdash A::T) \\
\vdash a::A & \text{ value} & a \text{ has type } A \\
\vdash K::L & \text{ kind} & K \text{ is a subkind of kind } L \\
\vdash A::B & \text{ type} & A \text{ is a subtype of type } B \\
& \quad \text{(abbr. for } E \vdash A::\mathcal{T}(B)) \\
\end{align*}
\]

\[
\begin{align*}
E \vdash K<::L & \text{ K and L are equivalent kinds} \\
E \vdash A<::B::K & \text{ A and B are equivalent types or operators of kind K} \\
E \vdash A<::B & \text{ type A and B are equivalent types (abbr. for } E \vdash A<::B::T) \\
E \vdash a+b::A & \text{ a and b are equivalent values} \\
\end{align*}
\]

A judgment like \(E \vdash a::A\) is interpreted as defining a relation between environments, value terms, and type terms. This relation is defined inductively by axioms and inference rules, as described in the following sections. The rules are then summarized in section 2.9.

2.3 Environments and variables

An environment \(E\) is a finite sequence of type variables associated with their kinds, and value variables associated with their types. We use \(\text{dom}(E)\) for the set of type and value variables defined in an environment.

\[
\begin{align*}
\text{Env} & \equiv \{ & \text{Env } & \text{Env } \} \\
\vdash E::A & \text{ kind} & \text{x} \in \text{dom}(E) \\
\vdash E::A & \text{ type} & \text{x} \in \text{dom}(E) \\
\end{align*}
\]

2.4 Equivalence and inclusion

Equivalence of kinds (\(<::>\)) is the least congruence relation over the syntax of kinds that includes the following rule involving type equivalence:

\[
\begin{align*}
\mathsf{Keq}\ [\pi] & \quad E \vdash A<::A' \text{ type} \\
& \quad E \vdash \mathcal{T}(A) <:: \mathcal{T}(A') \\
\end{align*}
\]

Equivalence of types and operators (\(<::>\)) is the least congruence relation over the syntax of types that includes \(\beta\) and \(\eta\) type conversions, \(\mu\)-expansion for contractive types (\(A::X\) means that \(A\) is contractive in \(X\)), and a rule stating that every contractive context has a unique fixpoint. (See section 2.9.)

Inclusion of recursive types is given by the following rule, working inductively from the inclusion of the recursive variables to the inclusion of the recursive bodies:

\[
\begin{align*}
\mathsf{Incl}\ [\mu] & \quad E \vdash \mu(X)A \text{ type} \\
& \quad E \vdash \mu(Y)B \text{ type} \\
& \quad E, Y::\mathcal{T}, X::Y \vdash A::B \\
& \quad E \vdash \mu(X)A <:: \mu(Y)B \\
\end{align*}
\]

Equivalence of values (\(+::\)) is the least congruence relation over the syntax of values that includes \(\beta\) and \(\eta\) value conversions together with \(\mu\)-expansion for recursive values.

The rules for recursive types and values will not be modeled in the later sections. Nonetheless, we consider them an essential part of the language, and refer the reader to [Amadio 89], [Abadi Plotkin 90], and [Freyd Mulry Rosolini Scott 90] for related and ongoing work.

The following rules state that the property of having
a kind (respectively a type) is invariant under kind (respectively type) equivalence; that is, equivalent kinds and types have the same extensions:

\[
\begin{align*}
&\text{[KExt] (Kind Extension)} \\
&E \vdash A : K \\
&E \vdash K ::= L \\
&E \vdash a : A \\
&E \vdash A ::= B \\
&E \vdash a : B \\
\end{align*}
\]

The relations of type and kind inclusion are reflexive and transitive. The subtype relation is actually defined in terms of power kinds; then all the rules written in terms of subtyping are interpreted as rules about power kinds.

2.5 Subsumption vs. coercion

The following rules reflect the set-theoretical intuitions behind the subtyping relation. We present two alternatives: subsumption and coercion. Subsumption formalizes a computationally natural way of looking at subtypes. When viewing computations as type-free activities, any element of a type is directly an element of its supertypes:

\[
\text{[TSub] (Subsumption)} \\
E \vdash a : A \\
E \vdash a : B \\
\]

A mathematical model of Quest with subsumption is given in part 5. That model is the main semantic novelty of this paper.

Before that, in part 4, we consider a system without subsumption, called Quest_C. In Quest_C, subsumption is replaced by a coercion rule, where a value of a type A must be explicitly injected into a supertype B by a coercion function \(c_{A,B}\). Invariance under type inclusion will be true only modulo coercions in the most straightforward semantics given in part 4.

\[
\text{[TSub] (Coercion)} \\
E \vdash a : A \\
E \vdash a : B \\
E \vdash c_{A,B}(a) : B \\
\]

In the semantics of Quest_C, we obtain a single coercion function \(c : \Pi(X::\tau) \Pi(Y::X) Y \to X\); then \(c(B)(A)\) gives meaning to \(c_{A,B}\).

The important intuition about coercions is that they involve little, if any, computational work. Often they are introduced as identity functions with the only purpose of "getting the types right". In compilation practice they are often removed during translation. Semantically, this will be understood in the model for Quest_C, below by observing that they are computed by (indexes of) the identity function. In Quest, the subsumption rule above is a strong (or explicit) way of saying that coercions have no computational relevance.

2.6 Power kinds

For each type A there is a kind \(\tau(A)\) of all subtypes of A. The kind \(\tau(\text{Top})\) is then the kind of all types, and is called \(\tau\). Here are the formation and introduction rules for \(\tau\); the subsumption/coercion rule serves as an elimination rule for \(\tau\).

\[
\begin{align*}
&\text{[KF \#]} \\
&E \vdash A \text{ type} \\
&E \vdash \tau(A) \text{ kind} \\

&\text{[Tincl Refl]} \\
&E \vdash A \text{ type} \\
&E \vdash A \text{ type} \\
&E \vdash A ::= \tau(A) \\
\end{align*}
\]

The subtype judgment \(E \vdash A < B\) is defined as an abbreviation for a judgment involving power kinds:

\[
E \vdash A < B \text{ iff } E \vdash A ::= \tau(B) \\
\]

The subkind judgment \(E \vdash K ::= L\) is primitive, but has very weak properties. It is reflexive and transitive, it extends monotonically to \(\tau\), and it extends to \(\Pi\) via a covariant rule:

\[
\begin{align*}
&\text{[Kind \#]} \\
&E \vdash A ::= A' \\
&E \vdash K \text{ kind} \\
&E \vdash X ::= L' \\
&E \vdash \Pi(X::\tau) ::= \Pi(X::\tau) \\
\end{align*}
\]

Note that the first rule above implies \(\tau(A) ::= \tau\).

Moreover, we have a subsumption rule on kinds:

\[
\begin{align*}
&\text{[KSub] (Kind Subsumption)} \\
&E \vdash A ::= K \\
&E \vdash K ::= L \\
&E \vdash A ::= L \\
\end{align*}
\]

Unlike type subsumption, kind subsumption is satisfied by both models in parts 4 and 5.

2.7 Operator kinds

The kind of type operators is normally written as \(K = L\) in F_0 (operators from kind \(K\) to kind \(L\)). In our system we use a more general construction \(\Pi(X::\tau)\) since \(X\) may actually occur in \(L\) within a power operator, for example in \(\Pi(X::\tau)\ tau\).

Individual operators are written \(\lambda(X::\tau)\ A\) with standard introduction, elimination, and computation rules, shown later.

2.8 The kind of types

The kind of all types \(\tau\) contains the type \(\text{Top}\), the kinds of polymorphic functions, the kinds of ordinary functions, and the recursive types.

The type \(\text{Top}\) is the maximal element in the subtype order:

\[
\begin{align*}
&\text{[TF\text{Top}]} \\
&\vdash E \text{ env} \\
&E \vdash \text{Top} \text{ type} \\
&E \vdash A < \text{Top} \\
\end{align*}
\]

Hence the power of Top is the collection of all types and, as already mentioned, we can define the kind of all types as follows:

\(\tau = \tau(\text{Top})\)

There is a canonical element of type \(\text{Top}\), called top. Moreover, any value belonging to \(\text{Top}\) is indistinguishable from:

\[
\begin{align*}
&\text{[VI\text{Top}]} \\
&\vdash E \text{ env} \\
&E \vdash a : \text{Top} \\
&\vdash b : \text{Top} \\
\end{align*}
\]

When using the subsumption rule, we obtain that every value has type \(\text{Top}\), since \(\text{Top}\) is the largest type. Moreover, every value is equivalent to top when seen as
a member of Top, and hence \(c_{A, \text{Top}}(a) \leftrightarrow c_{B, \text{Top}}(b) \) for any \(a : A \) and \(b : B \). By this, when using the coercion rule for any \(\alpha \), there is a unique coercion \(c_{A, \text{Top}}(a) \) from \(A \) into \(\text{Top} \). This rather peculiar situation will be understood in the semantics by the meaning of \(\lll \) and by the interpretation of \(\text{Top} \) as the terminal object in the intended category. \(\text{Top} \) and its properties will play a crucial role in the coding of records.

The types of polymorphic functions are modeled by an impredicative general-product construction, \(\Pi(X::K)B \). Although we do not show it here, from this product we can derive "weak" general sums, which are used in the Quest language for modeling abstract types.

The standard formation, introduction, elimination, and computation rules are complemented by rules for subtyping and coercion (shown in section 2.9).

Ordinary higher-order functions are modeled by a function space construction \(\rightarrow \). We avoid first-order dependent types \(\Pi(x : A)B \), which generalize \(A \rightarrow B \) because in practice they are hard to typecheck and compile. Again, most rules for \(\rightarrow \) are standard, but we add subtyping and coercion.

2.9 Formal system

In this section we summarize the formal systems for both Quest and Quest*. The rules of these systems are presented simultaneously as they largely coincide.

Rules are named, for example, \([\text{Text/Quest}]\)/Type Extension) extra. Here \(\text{Text} \) is the proper name of the rule. The notation /\(\text{Quest} \)/ means that this rule applies only to Quest, while the notation /\(\text{Quest}^c \)/ applies only to Quest*; otherwise the rule applies to both systems. This rule is sometimes called Type Extension in the text. Finally, extra means that this rule is actually derivable or admissible, and is listed for symmetry with other rules or for emphasis.

The rules grouped as "computation" rules may be oriented in order to provide reduction strategies.

A recursive type \(\mu(X)C \) is legal only if \(C \) is contractive in \(X \), written \(C\downarrow X \) [MacQueen/Plotkin/Sethi 86]. A type \(C \) is contractive in a (free) type variable \(X \) if and only if \(C \) has one of the following six forms: a type variable different from \(X \); \(\text{Top} \); \(\Pi(X::KC) \) with \(X \) freevariables(K) and \(C\downarrow X \); \(A \rightarrow B \); \(\lambda(X::K)B(A) \) with \(B(X'\leftarrow A) \downarrow X \); or \(\mu(X)C \) with \(C\downarrow X \) (as well as \(C\downarrow X \)).

We are conservative about the contractiveness conditions on \(\Pi(X::KC) \), and these deserve further study. The condition \(X \) free variables(K) prevents constructions such as \(\mu(X)\Pi(Y::X)X \rightarrow X \), whose semantics is unclear. The condition \(C\downarrow X \) agrees with one of the semantics we give to \(\Pi \) as a non-expansive intersection, although syntactically this restriction seems unnecessary.

Kind formation

<table>
<thead>
<tr>
<th>(\text{Kind})</th>
<th>(\text{Type})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \vdash A) kind</td>
<td>(E \vdash K) kind</td>
</tr>
<tr>
<td>(E \vdash \tau(A)) kind</td>
<td>(E \vdash X::K \Pi(X::KL)) kind</td>
</tr>
</tbody>
</table>

Kind equivalence

<table>
<thead>
<tr>
<th>(\text{Kaq Defl}) extra</th>
<th>(\text{Kaq Symm})</th>
<th>(\text{Kaq Trans})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \vdash K \lll K)</td>
<td>(E \vdash L \lll L)</td>
<td>(E \vdash K \lll L)</td>
</tr>
<tr>
<td>(E \vdash K \lll M)</td>
<td>(E \vdash L \lll M)</td>
<td>(E \vdash K \lll L)</td>
</tr>
</tbody>
</table>

Kind inclusion

<table>
<thead>
<tr>
<th>(\text{Kind Refl})</th>
<th>(\text{Kind Trans})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \vdash K \lll L)</td>
<td>(E \vdash K \lll L)</td>
</tr>
<tr>
<td>(E \vdash L \lll M)</td>
<td>(E \vdash K \lll M)</td>
</tr>
</tbody>
</table>

Type and Operator formation

<table>
<thead>
<tr>
<th>(\text{TF Top})</th>
<th>(\text{TF Inf})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \vdash \text{env})</td>
<td>(E \vdash X::\tau) (\vdash A) type (A \downarrow X)</td>
</tr>
<tr>
<td>(E \vdash \Pi(X::K)B)</td>
<td>(E \vdash \mu(X)A) type</td>
</tr>
</tbody>
</table>

Type and Operator equivalence

<table>
<thead>
<tr>
<th>(\text{TEq Defl}) extra</th>
<th>(\text{TEq Symm})</th>
<th>(\text{TEq Trans})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \vdash A \lll K)</td>
<td>(E \vdash A \lll B \lll K)</td>
<td>(E \vdash A \lll B \lll C \lll K)</td>
</tr>
<tr>
<td>(E \vdash A \lll E \vdash B \lll A \lll K)</td>
<td>(E \vdash A \lll C \lll K)</td>
<td>(E \vdash A \lll B \lll E \vdash C \lll K)</td>
</tr>
<tr>
<td>(E \vdash X \lll X \lll K)</td>
<td>(E \vdash \text{env})</td>
<td>(E \vdash \text{Top} \lll \text{Top}) type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\text{TEq Refl})</th>
<th>(\text{TEq Gg})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \vdash K \lll K')</td>
<td>(E \vdash K \lll B \lll B') type</td>
</tr>
<tr>
<td>(E \vdash \Pi(X::K)B \lll \Pi(X::K')B') type</td>
<td></td>
</tr>
<tr>
<td>(E \vdash A \lll A \rightarrow B \lll A' \rightarrow B') type</td>
<td></td>
</tr>
</tbody>
</table>

Type and Operator application

<table>
<thead>
<tr>
<th>(\text{TEq Appl})</th>
<th>(\text{TEq Abs})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \vdash B \lll B' \lll \Pi(X::K)L)</td>
<td>(E \vdash A \lll A' \lll K)</td>
</tr>
<tr>
<td>(E \vdash B(A) \lll B'(A') \lll L(X\leftarrow A))</td>
<td></td>
</tr>
</tbody>
</table>
2.10 Records and other encodings

Record types are one of the main motivations for studying type systems with subtyping [Cardelli 85]. However, in this paper we do not need to model them directly (as already done in [Bruce Longo 89]), since they can be syntactically encoded to a great extent.

More precisely, we show how to encode the record calculus of [Cardelli Wegner 85], although we do not know yet how to encode the more powerful calculi of [Wand 89] and [Cardelli Mitchell 89]. Moreover, we show how to encode the functional update problem discussed in [Cardelli Mitchell 89]; this problem cannot be represented in the calculus of [Cardelli Wegner 85].

In this section we discuss these encodings, and then we feel free to ignore records in the rest of the paper.

We start by encoding product types, in the usual way:

\[\text{A} \times \text{B} = \Pi(C)(\text{A} \rightarrow \text{B} \rightarrow C) \rightarrow C \]

pair : \(\Pi(A) \Pi(B) A \rightarrow B \rightarrow A \times B \)
\(= \lambda(A) \lambda(B) (a:A \rightarrow B) (a(b)) \)
\(\lambda(C) \lambda(f:A \rightarrow B \rightarrow C) (f(a)(b)) \)

fst : \(\Pi(A) \Pi(B) A \times B \rightarrow A \)
\(= \Pi(A) \Pi(B) \lambda(c:A \times B) c(A)(\lambda(x:A) \lambda(y:B) x) \)

snd : \(\Pi(A) \Pi(B) A \times B \rightarrow B \)
\(= \Pi(A) \Pi(B) \lambda(c:A \times B) c(B)(\lambda(x:A) \lambda(y:B) y) \)

We often use more compact notations:
\[a, b = a_{A \times B}^b = \text{pair}(A)(b)(a) \]
\[\text{fst}(c) = \text{fst}_{A \times B}(c) = \text{fst}(A)(B)(c) \]
\[\text{snd}(c) = \text{snd}_{A \times B}(c) = \text{snd}(A)(B)(c) \]

The expected rules for products are now derivable:

\[\text{E} \vdash a : A \quad \text{E} \vdash b : B \]
\[\text{E} \vdash a \times b : A \times B \]

\[\text{E} \vdash p : A \times B \quad \text{E} \vdash p : A \times B \quad \text{E} \vdash p : A \times B \]
\[\text{E} \vdash \text{fst}_{A \times B}(p) : A \]
\[\text{E} \vdash \text{snd}_{A \times B}(p) : B \]

As a first step toward records, we define extensible tuple types as iterated products ending with Top, and extensible tuple values as iterated pairs ending with Top. A similar encoding for a different calculus appears in [Fairbairn 89].

\[\text{Tuple}(A_1, \ldots, A_n) = A_1 \times (\ldots \times (A_n \times \text{top})) \]
\[\text{tuple}(a_1, \ldots, a_n) = a_1 \times (\ldots \times (a_n \times \text{top})) \]

Hence:

\[\text{E} \vdash \text{a}_1 : A_1 \ldots \text{E} \vdash \text{a}_n : A_n \]
\[\text{E} \vdash \text{tuple}(a_1, \ldots, a_n) : \text{Tuple}(A_1, \ldots, A_n) \]
\[\text{E} \vdash A_1 < \ldots < A_n \text{\text{e_\text{type}}}; \text{E} \vdash \text{a}_n : B_n \ldots \text{E} \vdash \text{a}_n : B_n \text{\text{e_\text{type}}} \]
\[\text{E} \vdash \text{tuple}(A_1, \ldots, A_n, \ldots, A_m) < \text{Tuple}(B_1, \ldots, B_n) \]

For example: Tuple(A, B) < Tuple(A) since x is monotonic, A < A, and B < Top < Top.

We now need to define tuple selectors (corresponding to product projections). This would be a family \(\text{sel}_n \) of terms selecting the i-th components of a tuple of length n.

In fact, by using subtyping it is sufficient to define a family \(\text{sel}_i \) of terms for extracting the i-th component of any tuple of sufficient length:

\[\text{sel}_1 : \Pi(A_1) A_1 \times \text{top} \rightarrow A_1 = \lambda(A_1) \lambda(t : A_1 \times \text{top}) \text{fst}_{A_1 \times \text{top}}(t) \]
\[\text{sel}_2 : \Pi(A_2) \text{top} \times A_2 \times \text{top} \rightarrow A_2 = \lambda(A_2) \lambda(t : \text{top} \times A_2 \times \text{top}) \text{fst}_{A_2 \times \text{top}}(\text{snd}_{\text{top}} \times A_2 \times \text{top})(t) \]

etc.

We can also define tuple updators, that is, terms that replace the i-th component of a tuple with a given value. The crucial point here is that these updators do not forget information about the type of the components that are not affected by the update. To achieve this effect, we must use knowledge of the encoding of tuples as pairs. Again, we can define a family \(\text{upd}_i \) instead of a family \(\text{upd}_i \).

\[\text{upd}_1 : \Pi(B_1) \Pi(B_2) \Pi(A_1) B_1 \times B_2 \rightarrow A_1 \rightarrow A_1 \times B_1 = \lambda(B_1) \lambda(B_2) \lambda(A_1) \lambda(t : B_1 \times B_2) \text{fst}_{A_1 \times B_1}(t) \]
\[\text{upd}_2 : \Pi(B_1) \Pi(B_2) \Pi(B_2) \Pi(B_2) \Pi(A_2) B_1 \times B_2 \times B_2 \rightarrow A_2 \rightarrow B_2 \times A_2 \times B_1 = \lambda(B_1) \lambda(B_2) \lambda(B_2) \lambda(A_2) \lambda(t : B_1 \times B_2 \times B_2) \text{fst}_{A_2 \times B_1}(t) \]

etc.

These definitions can be shown to solve the functional update problem [Cardelli Mitchell 89] for tuples. In the following example, we have a type of geometric points defined as Point = Tuple(\text{Int}, \text{Int}), where the integers represent respectively the x and y components. Since these are tuples, a point can have additional components, for example a color; then it is a member of \text{ColorPoint} = \text{Tuple(\text{Int}, \text{Int}, \text{Color})}. We further assume that the subrange type 0-9 is a subtype of Int.

The functional update problem consists in defining a function \text{moveX} that increments the x component of a point, returning another Point. Moreover, when applied to a \text{ColorPoint} (with adequate type parameters) this function should return a \text{ColorPoint}, and not just a Point.

One might think that \text{moveX} has type \(\Pi(A : <\text{Point}) A \rightarrow A \). This is not the case; we show that the parameter type A must change appropriately from input to output.

\[\text{Point} = \text{Tuple(\text{Int}, \text{Int})} \]
\[\text{moveX} : \Pi(B_1 : \text{Int}) \Pi(B_2 : \text{Int}) \Pi(B_2 : \text{Int}) \text{Tuple(\text{Int})} = \lambda(B_1 : \text{Int}) \lambda(B_2 : \text{Int}) \lambda(B_2 : \text{Int}) \lambda(t : \text{tuple}(B_2 \times B_2 \times B_2)) \]
\[\text{upd}_{\text{int}}(B_1)(B_2)(\text{int}((p)(\text{sel}_1(\text{int})(p)))) + 1 \]

Obviously, we have:

\[p : \text{Point} = \text{tuple}(9,0) \]
\[\text{moveX(\text{int})}(\text{Tuple(\text{int})}(p)) = \text{tuple}(10,0) : \text{Point} \]

However, note that in the following example the result does not, and must not, have type Tuple(0.9,\text{Int}):

\[p : \text{Tuple}(0.9, \text{Int}) \]
\[\text{moveX}(0.9)(\text{Tuple(\text{int})}(p)) = \text{tuple}(10,0) : \text{Point} \]
We can also verify that color is preserved:

\[\text{p : Tuple}(0.9, \text{Int}, \text{Color}) \rightarrow \text{ColorPoint} = \text{tuple}(9, 0, \text{red}) \]

\[\text{moveX}(0.9)(\text{Tuple}(\text{Int}, \text{Color}))(\text{p}) = \text{tuple}(10, 0, \text{red}) : \text{ColorPoint} \]

Hence, we obtain a moveX function with the desired properties, but only by taking advantage of the encoding of tuples as products: note that in the input type of moveX, Point is split into Int and Tuple(Int).

Now we turn to the encoding of records Rcd(l_1:A_1, ..., l_n:A_n); these are unordered product types with components indexed by distinct labels l_i.

We fix a standard enumeration of labels l^i, l^j, ... Then a record type is the shortest tuple type where the type component of label l^i is found in the tuple slot of index i, for each i. The remaining slots are filled with Top. For example:

\[\text{Rcd}(l^i:C, l^j:A) = \text{Tuple}(A, \text{Top}, C) \]

Under this encoding, record types that differ only on the order of components are equivalent, and we have the familiar:

\[E \vdash A_1 <: B_1 \ldots E \vdash A_n <: B_n \ldots E \vdash A_m \text{ type} \]

\[E \vdash \text{Rcd}(l_1:A_1, ..., l_n:A_n) <: \text{Rcd}(l_1:B_1, ..., l_n:B_n) \]

Record values are similarly encoded, for example:

\[\text{rcd}(l^i=a, l^j=a) = \text{tuple}(a, \text{Top}, c) \]

\[E \vdash a_1 : A_1 \ldots E \vdash a_n : A_n \]

\[E \vdash \text{rcd}(l_1=a_1, ..., l_n=a_n) : \text{Rcd}(l_1:A_1, ..., l_n:A_n) \]

\[E \vdash r : \text{Rcd}(l_1:A_1, ..., l_n:A_n) \]

\[E \vdash r.l_i=A_i \]

\[E \vdash r.B =: \text{Rcd}(l_1:A_1, ..., l_n:A_n) \]

\[E \vdash b:B \]

Here record selection r.l_i is defined via sel_i(r), and record update r.B is defined via upd_i(r,B).

Note that it is not possible to write a version of moveX for records solely by using the derived operators above. The functional update problem can be solved only by using knowledge of the encodings, as was done for tuples. In this respect (an encoding of) a calculus like the one in [Cardelli Mitchell 89] is still to be preferred, since it can express the moveX functions more directly.

Under the encodings above, more programs are typable than we would normally desire; this is to be expected of any encoding strategy. The important point here is that the familiar typing and computation rules are sound.

3. PER and \(\omega \)-Set

The rest of the paper describes the mathematical meaning of the Quest system described in the previous section. The goal here is to guarantee the (relative) consistency of Quest's type and equational theories. The model though is also meant to suggest consistent extensions.

In this part, we first try to give the structural (and partly informal) meaning of kinds, types, and terms, as well as their crucial properties. The reader will find the properties formally described in part 2 reflected over sets and functions, and should grasp the essence of the translation. Because of the presence of type operators, the structure of kinds is at least as rich as the type-structure of typed \(\lambda \)-calculus. Thus, kinds need to be interpreted as objects of a Cartesian Closed Category, CCC. The category we will be using is \(\omega \)-Set below. Its objects must, of course, include the kind of types, which in turn must be structured as a CCC.

In a sense, we need a frame (or global) category, inside which we may view the category of types as an object. More precisely, we will need a frame category and an internal category, but we will not go into this here, see remark 3.1.3 for references. The specific structures we use, that is \(\omega \)-Set and PER below, are described in [Longo Moggi 88], where their main categorical properties are also given. The idea of interpreting subtypes as subrelations is borrowed from [Bruce Longo 89], where the semantics of Quest's progenitor system, Bounded Fun (with coercions), was first given.

3.1 Semantics of kinds and types

The key idea in the underlying mathematical construction is to use a set-theoretic approach where the addition of some effectiveness prevents the impossibilities discussed in [Reynolds 84]. In this regard, the blend of set-theoretic intuition and elementary computability provides a simple but robust guideline for the interpretation of programming constructs.

The construction is based on Kleene's applicative structure \((\omega, \cdot)\), where \(\omega \) is the set of natural numbers, together with a standard gödelization \(\varphi \) of the computable functions in \(\omega \rightarrow \omega \), and \(\cdot \) is the operator such that \(n \cdot m = \varphi_n(m) \). However, the same mathematical construction works for any (possibly partial) combinatory algebra, in particular on any model of type-free \(\lambda \)-calculus. We prefer, in this part, Kleene's \((\omega, \cdot)\) in view of everyday's familiarity with elementary recursion theory. In part 5, though, we will base our construction on models of the type-free \(\lambda \)-calculus.

Definition 3.1.1

The category \(\omega \)-Set has:

\[\text{objects: } \langle A, I_A \rangle \in \omega \text{-Set iff } A \text{ is a set and } I_A \subseteq \omega \times A \text{ is a relation, such that } V \ni A. \exists n. n \vdash_A a \]

\[\text{morphisms: } f \in \omega \text{-Set}[A,B] \text{ iff } f: A \rightarrow B \text{ and } \exists n. n \vdash_{A\rightarrow B} f \text{, where } n \vdash_{A\rightarrow B} f \leftrightarrow \forall A. V. n. I_A \Rightarrow n. I_B \Rightarrow f(a) \]

Thus, each morphism in \(\omega \)-Set is computable in the sense that it is described by a partial recursive function that is total on \(\{p \mid p \vdash_A a\} \), for each \(a \in A \). If \(p \vdash_A a \) (we may omit the subscripts), we say that \(p \) realizes \(a \) (or \(p \) computes \(a \)).

We next define the category of types. When \(A \) is a symmetric and transitive relation on \(\omega \), we set:
\(n \ A \ m \iff n \text{ is related to } m \text{ by } A, \)
\[\text{dom}(A) = \{n \mid 1 \leq n \leq A\}, \]
\[n^A = \{m \mid 1 \leq m \leq A\} \text{ the equivalence class of } n \text{ w.r.t. } A, \]
\[Q(A) = \{n^A \mid n \in \text{dom}(A)\} \text{ the quotient set of } A. \]

Definition 3.1.2

The category \(\text{PER} \) (of Partial Equivalence Relations) has objects: \(A \in \text{PER} \iff \)

- \(A \) is a symmetric and transitive relation on \(\omega \),
- \(A \) is a morphism: \(\text{e} \in \text{PER}[A, B] \iff f: Q(A) \to Q(B) \text{ and } \exists n. \forall p. (p A p \Rightarrow p A p^B) \)

The category \(\text{PER} \) can be fully and faithfully embedded into \(\omega \text{-Set} \). In fact, for every partial equivalence relation (p.e.r.) \(A \), define the \(\omega \text{-set} \) \(\text{In}(A) = \langle Q(A), e_{\omega} \rangle \) where \(Q(A) \) are the equivalence classes of \(A \) as subsets of \(\omega \), and \(e_{\omega} \) is the usual membership relation restricted to \(\omega \times Q(A) \).

Remark 3.1.3

The crucial point is that \(\text{PER} \) may also be turned into an object of \(\omega \text{-Set} \), as it is a set; more precisely, into an internal category. Indeed, the present approach applies in a simple set-theoretic framework the results in \([\text{Hyland }, \text{Pitts } 87], [\text{Hyland Pitts } 87], [\text{Carboni Freyd Seely } 87], \) and \([\text{Bainbridge Freyd Seely Scott } 87] \). The general treatment of models, as internal categories of categories with finite limits, which was suggested by Moggi, is given in \([\text{Asperti Martini } 89] \) and \([\text{Asperti Longo } 90] \). The elegant presentation in \([\text{Meseguer } 88] \) compares various approaches. We use here the fact that \(\omega \text{-Set} \) is closed under products **indexed over itself** and, in particular, we use the completeness of \(\text{PER} \) as an internal category. The categorical products are exactly those naive indexed defined below (to avoid isomorphism). Both the explicit definition of \(\text{PER} \) as an internal category and the required (internal) adjunctions are given in detail in \([\text{Longo Moggi } 88] \) and \([\text{Asperti Longo } 90] \).

The reason for the next definitions is that we need to be able to give meaning, over these structures, to kinds and types constructed as products, as expressed in rules \([K\Pi] \) and \([T\Pi] \) in section 2.9. We take care of this point first, since it deals with the crucial aspect of impredicativity in Quest. A first idea is to try to understand those rather complex kinds and types as indexed products, in the naive sense of set theory. Namely, given a set \(A \) and a function \(G: A \to \text{Set} \), define as usual:

\[\chi_{a \in A}(G(a)) = \{f \mid f: A \to \bigcup_{a \in A} G(a) \text{ and } f(a) \in G(a)\}. \]

This product wouldn't work, but the following simple restriction to realizable maps \(f \) will.

Definition 3.1.4

Let \((A, I_A) \in \omega \text{-Set} \) and \(G: A \to \omega \text{-Set} \).

Define the \(\omega \text{-set} \) \(\langle \Pi_{a \in A} G(a), \text{TIC} \rangle \) by:

1. \(f \in \Pi_{a \in A} G(a) \iff f = \chi_{a \in A}(G(a)) \text{ and } \exists n. \forall a. \forall p. F_{a, p} \Rightarrow F_{a, p}. \]
2. \(n \text{TIC} \iff \forall a. \forall p. F_{a, p}. \]

When the range of \(G \) is restricted to \(\text{PER} \) we obtain a product in \(\text{PER} \):

Definition 3.1.5

Let \((A, I_A) \in \omega \text{-Set} \) and \(G: A \to \text{PER} \).

Let \(\Pi_{a \in A} G(a) \in \text{PER} \) be defined by:

\[n (\Pi_{a \in A} G(a)) \text{ PER } m \iff \forall a. \forall p. F_{a, p}. \text{ n - p G(a) m - q } \]

A relevant property of \(\omega \text{-Set} \) is that the products defined in 3.1.6 and 3.1.7 are isomorphic for \(G: A \to \text{PER} \).

Theorem 3.1.6

Let \((A, I_A) \in \omega \text{-Set} \) and \(G: A \to \text{PER} \). Then:

\[\langle \Pi_{a \in A} G(a), I_{\text{TIC}} \rangle = \text{In}(\langle \Pi_{a \in A} G(a) \rangle \text{ PER } \rangle \text{-Set} \).

Corollary 3.1.7

\(\omega \text{-Set} \) and \(\text{PER} \) are CCCs. Moreover, the embedding \(\text{In}: \text{PER} \to \omega \text{-Set} \) is full, faithful and preserves the structure of CCC.

What is now the structure of an exponent object in \(\text{PER} \)? Take say \(A \to B \), that is, the representative of \(\text{PER}[A, B] \). Then by definition each map \(f \in \text{PER}[A, B] \) is uniquely associated with the equivalence class of its realizers, \(\chi_{a \in A}(p^B) \in A \to B \), say, in the sense of 3.1.3.

It should be clear that the notion of realizor, or **type-free computation** computing the typed function, is made possible by the underlying type-free universe, \((\omega, \omega) \). As we will discuss later, this gives mathematical meaning to the intended type-free computations of a typed program after compilation.

In summary, our types may be essentially viewed as kinds, by a very natural (and strong) embedding. We applied this embedding in theorem 3.1.6, and gave there a unified understanding of various products and arrows in the syntax. However, theorem 3.1.6 really leads to much more than the cartesian closure of \(\text{PER} \), which is shown in corollary 3.1.7. In plain terms, 3.1.6 is the crucial step towards the meaning of the second-order (polymorphic) types, namely of the types obtained by indexing a collection of types over a kind, possibly over the collection of all types (an impredicative construction).

3.2 Inclusion and power kinds

The purpose of this section is to set the basis for the semantics of the subkind and subtype relations in Quest.

Definition 3.2.1 (subkinds)

Let \((A, I_A), (B, I_B) \in \omega \text{-Set} \).

Then \((A, I_A) \leq (B, I_B) \iff \)

\[A \subseteq B \text{ and } \forall a. \forall n. (\forall n A \Rightarrow n F_{B} a) \]

The idea in this definition is that kinds may be related by the \(\leq \) relation in \(\omega \text{-Set} \) only when they are actually subsets and when the realizability relation is defined in accordance with this. Thus there is no need of coercions (equivalently, coercions are just identity functions). Hence, the subsumption rule \([K\text{Sub}] \) for kinds is realized. Subtyping will be interpreted in \(\text{PER} \) in a more subtle way, which allows a closer look at the computational properties of the types of programs.

Definition 3.2.2 (subtypes)

Let \(A, B \in \text{PER} \).

Then \(A \subseteq B \iff \forall n. m. (\forall n A m \Rightarrow n B m) \)

Clearly the relation \(\leq \) is a partial order which turns the
objects of PER into an algebraic complete lattice. When A and B are in PER and A ≤ B, then there is a coerce c_{A,B} from A to B. It is defined by the map c_{A,B}: Q(A) → Q(B) such that c_{A,B}(n_A) = n_B, which is computed by any index of the identity function. By definition, c_{A,B} is uniquely determined by A and B. (We may omit the subscripts, if there is no ambiguity.)

Intuitively, given n such that nAn, the coercion c_{A,B} takes its A-equivalence class, ι_{n_A}, to its (possibly larger) B-equivalence class, ι_{n_B}. This is why c_{A,B} is the coercion morphism, is computed by all the indices of the identity function. Note that in general ι_{n_A} is smaller than ι_{n_B}; they coincide just when Q(A) ⊆ Q(B), a special case of A ≤ B.

Remark 3.2.2
The model suggests what sort of coercions may be generally natural: they must be computed by the type-free identity maps. This explains why coercions may disappear in compilation, even though they do not need to coincide semantically with the identity. □

The power operation is expressed in terms of quasi-functors, a weak notion of categorical transformation between categories, widely used in several settings. (See Martini 88 for recent applications to the semantics of the λ-calculus.) This interpretation is due to the blend of set-theoretical and categorical intuition at the base of the current model of subtyping in a higher-order language.

Definition 3.2.3
The power quasi-functor Π: PER → ω-Set is given by:
on objects: Π A = (Be PER | B ≤ A), f),
where ∀B ≤ A. ∀n. n f B;
on morphisms: for f: A → C and p f f,
define Π (f): Π A → Π C pointwise by:
m (Π (f))(B) = if
\exists n. m' B n' and m = p m' and n = p n'
Set then Π (f) = (Π f) f.

We interpret now the formal equivalence of kinds and types as the equality in the model. It is easy to prove that the relations ≤ for kinds and types and the quasi-functor Π satisfy the properties in the syntax. These preliminary ideas will lead to the formal interpretation of Quest in part 4. Subsumption and Quest will be dealt with in part 5. Our preliminary understanding of the interpretation of recursive types and functions is based on (Amadio 89).

In conclusion, we want a mathematical semantics which reflects the intuition of the programmer, who views a subtype almost as a subset, but not exactly, as some coercion may be allowed. Our model suggests what sort of coercions may be generally natural: they must be computed by the type-free identical maps. Note that in categories (and toposes, which deal with subobjects) one usually works up to isomorphism, while the programming understanding of subtypes and inheritance is surely different, as an isomorphism may be a very complicated program and is not likely to be computationally irrelevant.

This interpretation explains why coercions may disappear in the description of the programming language and why they do not show up at compile time, even though they do not need to be exactly the identity. In our understanding, the compilation of a typed program into its type-free version corresponds to the passage from a morphism in the category of types or kinds, PER or ω-Set, to its type-free realizers. Type coercions, in particular, are realized by identical computations.

3.3 Operator kinds
The formation, introduction, and elimination rules for operators ((KF II), (T I), and (T E II)) are easily taken care of. Definition 3.1.4 tells us that we can form a kind, the ω-set (Π a ∈ A G(a), f (G(a)), out of any kind (ω-set) (A, f) and any function G: A → ω-Set (KF II). By definition, the elements of (Π a ∈ A G(a), f (G(a))) are the (computable) functions f such that, when fed with a ∈ A, G(a) as output elements f(a) of G(a). This is exactly what rules (T I) and (T E II) formalize.

Rule (T II) is understood in the model by the behavior of a λ-term as a function. Indeed, (T II) stresses that in any model, functions are interpreted extensionally.

3.4 The kind of types
The lattice PER has ω = (ω, ω×ω) as largest element, that is, with the full relation. Clearly, ω contains just one equivalence class, ω. Thus ω gives meaning to Top, and ω to top. Moreover, Mω = Π (ω).

The crucial contravariance property of higher-order typing (with respect to subtyping) is understood by the following properties of the model:

Theorem 3.4.1
Let (A, f (f)), (A', f (f')) ∈ ω-Set and G: A → PER, G': A' → PER. Assume A' ≤ A in ω-Set and that ∀a ∈ A', G(a) ≤ G(a') in PER. Then:
Π a ∈ A G(a) ≤ Π a ∈ A' G(a'), in PER. □

Proposition 3.4.2
Let A, A', B, B' ∈ PER be such that A ≤ A' and B ≤ B'. Then A → B ≤ A' → B'. In particular, for n (A → B) n,
\n\n\n\n
Proposition 3.4.2 gives the antimonotonicity of → in its first argument, as formalized in the rules of Quest (Tind →), and required by inheritance. Moreover, and more related to the specific nature of this interpretation of →, proposition 3.4.2 reveals a nice interplay between the extensional meaning of programs and the intensional nature of the underlying structure.

Indeed, typed programs are interpreted as extensional functions in their types, as we identify each morphism in PER with the equivalence class of its realizers. That is, if f: A → B then c_{A,B}(f) ∈ A → B represents f PER[A,B] in the exponent object A → B. Assume for example that M: A → B is interpreted by f PER[A,B]. (For the moment we will call A both a type and that type’s interpretation as a p.c.r.; see part 4 where the interpretation of terms and types is given.) In the assumption of the proposition, f ∈ PER[A,B] and c(f) ∈ PER[A',B'] are distinct elements,
and live in different function spaces. The element $c(f)$ is uniquely obtained by the coercion c, which gives meaning to adjusting the types in M in order to obtain a program in $A \rightarrow B$. Also, when viewed as equivalence classes of realizers, f and $c(f)$ are different sets of numbers.

However, the intended meaning of inheritance is that one should be able to run any program in $A \rightarrow B$ on terms of type A' also, as A' is included in A. When $n \vdash_{A \rightarrow B} f$, this is exactly what $n'_{A \rightarrow B} \subseteq n'_{A' \rightarrow B}$ expresses; any computation which realizes f in the underlying type-free universe actually computes $c(f)$ also. Of course, there may be more programs for $c(f)$, in particular if A' is strictly smaller than A. Thus, even though f and $c(f)$ are distinct maps (at least because they have different types) and interpret different programs, their type-free computations are related by a meaningful inclusion, namely $n'_{A \rightarrow B} \subseteq n'_{A' \rightarrow B}$ in this model.

This elegant interplay between the extensional collapse, which is the key step in the hereditary construction of the types as partial equivalence relations, and the intensional computations is a fundamental feature of the realizability models.

3.5 Records

Formally, there is nothing to be said about the semantics of records, as they are a derived notion. However, we mention one crucial merit of the coding proposed and its meaning.

Record types should not be understood simply as cartesian products. The main reason is that the meaning of a record type R' with more fields than a record type R (but where all the fields in R are in R') should be smaller than the meaning of R. Indeed, R' contains fewer record realizers. This situation was obtained, say, in the PER interpretation of [Bruce Longo 89] by understanding record types as indexed, first-order products. That is, if I is a finite set of (semantic) labels, then $\Pi_{i \in I} A_i$ would interpret a record whose fields are interpreted by the A_i's. By theorem 3.4.1, $\Pi_{i \in I} A_i$ gives the required contravariance in the meaning of records.

In the present approach, we can use the expressive power of Quest as a higher-order language with a Top type, and model records with little effort. Record types are coded as ordered tuples. Top is the last factor of the product and replaces missing fields (with respect to the order), and by doing so it guarantees contravariance. This intuition is precisely reflected in the model, by interpreting Top as the largest p.e.r. Thus, any extension of a given record type by informative fields, that is, by fields whose meaning is different from the full relation on ω, gives smaller p.e.r.'s.

4. Semantic interpretation of Quest

In this section we give the formal semantics of Quest over the ω-Set/PER model. The basic idea, for the inductive definition, is to interpret type environments as ω-sets with a realizability notion which codes pairs as elements of a dependent sum. In this way, if for example $E = \emptyset$, $y : B$, $x : A$, then $[E]$ contains all pairs:

$$<e,a>$$

with $e \in \{y : B \}$ and $a \in \{x : A \}$ a type e

In this approach one has to interpret judgments, not just terms, as judgments contain the required information to interpret (free) variables. For example, the variable x is given meaning within the judgment $E \vdash x : A$, say, for E as above. In particular, its interpretation $\llbracket E \rrbracket \vdash x : A \llbracket e \rrbracket$, for a fixed environment value $e = <e,a> \in \llbracket E \rrbracket$, is the second projection and gives $a \in \{x : A \}$ a type e. (See also [Scedrov 1988], [Grothendieck 1988].) The projection is clearly a realizable map, that is, it is computed by the index of a partial recursive function. Note that the interpretation of closed terms depends on the judgments they appear in, in particular on the types they are assigned to.

Moreover, the meaning of a judgment gives, simultaneously, the interpretation of a construct (kind, type, or term) and makes a validity assertion; for example, it says that a given term actually lives in the given type, under the given assumptions.

Kinds, types, and terms are interpreted as maps from the ω-set interpreting the given environment to ω-Set, PER, and the intended type, respectively. As our morphisms are extensional functions, the interpretation is uniquely determined by their behavior on the elements of the environment. The indexes realizing these maps may be computed by induction, using as base the indexes for the projection functions. The crucial step is the interpretation of lambda abstraction and application for terms. For example, given a realizer p for the map $<e,A> \mapsto \llbracket E \rrbracket \vdash e \llbracket A \rrbracket$, a realizer for $e \mapsto \llbracket E \rrbracket \vdash \lambda(x : K) A : \Pi(x : K) A \llbracket e \rrbracket$ is obtained by the recursive function s of the s-m-n (or iteration) theorem, namely by an index for $n \mapsto s(p,n)$, where $s(p,n) : \Pi(x : K) A \llbracket e \rrbracket$. Similarly, any index for the universal partial recursive function gives the realizers for an applicative term. Observe that, in a fixed environment, kinds are interpreted as ω-sets, while types are p.e.r.'s.

4.1 Interpretation

We interpret, in order, environments, kinds, types, and terms.

Environments

$$E = \emptyset \quad [E] = \{\} \quad \llbracket E \rrbracket \vdash \forall e : \emptyset \llbracket e \rrbracket$$

$$E = E', x : K \quad \llbracket E \rrbracket = \{<e,a> : \llbracket E' \rrbracket \llbracket A \rrbracket \llbracket E \rrbracket \llbracket K \rrbracket \llbracket e \rrbracket \llbracket a \rrbracket \llbracket e \rrbracket, f \llbracket f \rrbracket$$

where $\llbracket a \rrbracket$ is $\llbracket E \rrbracket \llbracket f \rrbracket$ if $n \llbracket E \rrbracket \llbracket f \rrbracket$ and $m \llbracket E \rrbracket \llbracket f \rrbracket$.

Kinds

$$\llbracket E \rrbracket \vdash \forall e : \emptyset \llbracket e \rrbracket = \{0\}$$

$$\llbracket E \rrbracket \vdash \forall e : E \llbracket e \rrbracket = \emptyset$$

$$\llbracket E \rrbracket \vdash \forall e : E \llbracket e \rrbracket = \{\Pi(x : K) A \llbracket e \rrbracket\}$$

Kinds

$$\llbracket E \rrbracket \vdash \Pi(x : K) A \llbracket e \rrbracket$$

where $G : \llbracket E \rrbracket \llbracket K \rrbracket \llbracket e \rrbracket \llbracket A \rrbracket$ is given by

$$G : \llbracket E \rrbracket \llbracket K \rrbracket \llbracket A \rrbracket$$
\[\Gamma \vdash E : \Pi [E : \Gamma]\]
First, programming with explicit coercions becomes too cumbersome; much of the appeal of subtyping has to do with the flexibility and compactness provided by subsumption. Second, subsumption is intended not as an arbitrary coercion, but as a coercion that performs no work; this is essential for capturing the flavor of object-oriented programming, where subsumption is used freely as a way of viewing objects as members of different types.

Hence we feel we are justified in presenting more complex semantic techniques, based on a model \(\mathcal{D} \cdot \cdot\) of the type-free lambda calculus, in order to give a faithful representation of subsumption.

The interpretation of Quest is given in two steps. First we translate typed terms into terms of the type-free calculus, by "erasing-types". We add to the calculus only a constant symbol \(\text{top}\), in order to take care of the corresponding constant in Quest.

In the second step, we use the meaning of the erased terms to interpret typed terms. Environments, kinds, and types will be interpreted as in Quest_\text{\textit{top}} except for an "isomorphic change" in the interpretation of product types. As for types in particular, this interpretation is possible since, in view of our formal definition of subkinds and of its semantics, we had no kind coercions even in Quest_\text{\textit{top}} but just type coercions.

5.1 Preliminaries and structures

Let \(\mathcal{D} \cdot \cdot\) be a model of the type-free lambda calculus. The categories \(\mathcal{D}\text{-Set}\) and \(\text{PER}_{\mathcal{D}}\) over \(\mathcal{D} \cdot \cdot\) are defined exactly as \(\omega\text{-Set}\) and \(\text{PER}\) over \(\omega \cdot \cdot\), in 3.1.1 and 3.1.2. However, their use in the semantics of Quest will be slightly changed in a crucial point. Second-order impredicative quantification will not be interpreted exactly by the set-theoretic indexed product of realizable functions, as in 3.1.5. We will use instead an isomorphic, but not identical, interpretation of this quantification by \(\text{p.e.r.'s}\) obtained as a straightforward set-theoretic intersection. This is made possible by the following simple, but fundamental theorem, which establishes a connection between the previous interpretation of higher-order quantification and the one given in [Girard 72] and [Troelstra 73]. It was first suggested by Moggi and actually started most of the recent work on the semantics of polymorphism, by suggesting that Girard's model could be given a relevant categorical explanation. (See remark 3.1.3.) We use it here as a tool for our semantic interpretation of Quest. Note first that, if \(\{A_i\}_{i \in I}\) is a collection of p.e.r.'s, then \(\bigcap_{i \in I} A_i\) is also a p.e.r. by

\[
\forall (n(\bigcap_{i \in I} A_i)) \text{ iff } n A_i \text{ m for all } i \in I
\]

Theorem 5.1.1

Let \((A, \Gamma)\) \(\in \mathcal{D}\text{-Set}\) be such that \(\Gamma = \mathcal{D} \times A\) and let \(G : A \rightarrow \text{PER}_{\mathcal{D}}\). Then:

\(\Pi A G(a) \in \text{PER}_{\mathcal{D}}\),

Then:

\[
(\Pi A G(a))_{\text{PER}_{\mathcal{D}}} = \bigcap_{a \in A} G(a) \text{ in } \text{PER}_{\mathcal{D}}'.
\]

Proof

(See [Longo Moggi 88].) □

The key idea in the proof consists in defining the applicative or functional behavior of each equivalence class \(\pi'_S\), say, in \(S = \bigcap_{a \in A} G(a) \in \text{PER}_{\mathcal{D}'}\), by setting

\(\pi'_S : a = \pi'_S G(a)\)

This is how, to within isomorphism, \(\pi'_S\) defines a function in \(\Pi A G(a)\) (cf. 4.1.1).

Proposition 5.1.2

Let \(I \vdash \text{Env}\) and \(E \vdash K\) kind. Then, for all \(e \in \text{Env}\), \(E \vdash K\) kind \(e\) is a \(\mathcal{D}\)-set \((A, \Gamma)\) with \(\bigcap A = \mathcal{D} \times A\). □

5.2 Interpretation \(I \vdash \Gamma\)

We now translate typed terms into terms of the type-free calculus, by erasing all type information. The type-free \(\lambda\)-calculus is extended by a constant symbol, \text{top}.

Definition 5.2.1

The translation map \text{erase} from typed terms into type-free terms is defined by induction on the structure of terms:

\[
\begin{align*}
\text{erase}(x) &= x \\
\text{erase}(&\text{top}) = \text{top} \\
\text{erase}(\lambda x : A b) &= \lambda x. \text{erase}(b) \\
\text{erase}(b(a)) &= \text{erase}(b)(\text{erase}(a)) \\
\text{erase}(\lambda x : K b) &= \text{erase}(b) \\
\text{erase}(b(A)) &= \text{erase}(b) \\
\end{align*}
\]

With the preliminaries above, it is now straightforward to implement our idea: a typed term is interpreted by the equivalence class of its erasure, with respect to its type as p.e.r.. We then need to show that this interpretation is sound. Indeed, this interpretation generalizes a theorem stated in [Mitchell 86] and tidily relates to the alternative approach to the semantics of the subsumption rule [Sub / Quest] in [Bruce Longo 88]. Observe that this interpretation, in contrast to the early attempt in [Bruce Longo 88], is direct. This is made possible by the use of theorem 5.1.1, since by erasure the meaning of a second-order typed term becomes an element of the intersection of all the types which form its range. For example, the polymorphic identity function \(\lambda x : T (x : T)\) \(\lambda x : T\) \(x : T\) \(X \rightarrow X\) will be interpreted as the equivalence class of the type-free identity \(\lambda x x\), which happens to live in \(A \rightarrow A\), for any type \(A\).

Note finally that, since the interpretations of type-free terms are elements of \(\mathcal{D}\), while the elements of types as p.e.r.'s are equivalence classes, we need a choice map to obtain an environment for type-free terms from an environment for typed ones. This is done by the following definition.

Definition 5.2.2

Given \(E = E', x_1 : A_1, \ldots, A_n, \ldots \in [E]\) and \(e = \ldots < e_n, A_n >, \ldots \in [E]\), fix \(s; : \text{Var} \rightarrow \mathcal{D}\) such that:

\(s(x) \in A_n \in [E'] \rightarrow A_n \text{ type } \Gamma\)

where \([E]\) is defined as in section 4.1, and \(I \vdash \Gamma\) is the interpretation of types given below. □

Note that \(s\) is defined only on term variables and gives no meaning to \(X : K\). The interpretation below will not depend on the choice of \(s\). Recall that \(\mathcal{D} \rightarrow \mathcal{D}\) is the interpretation of type-free terms in \(\mathcal{D} \cdot \cdot\).
Environments

\mathcal{E}^* coincides with \mathcal{E} for Quest_c

Kinds
No change, except for:

$\vdash E \text{ env} \quad \forall e \in \mathcal{E}. \quad \mathcal{E} \vdash \Pi(X;K)B \text{ type } e = \bigcap_{A \in \mathcal{E} \vdash K \text{ kind } e} \mathcal{E},X;K \vdash B \text{ type } e^* \langle e,A \rangle$

Terms

$\vdash E \text{ env} \quad \forall e \in \mathcal{E}^*, \mathcal{E} \vdash a : A^* e = " \text{erase}(a)" \\mathcal{E}^* e \in \mathcal{E} \vdash A \text{ type } e^*$

Since higher-order quantification is interpreted as intersection, by an even easier proof than for Quest_c we have:

Lemma 5.2.3

If $E \vdash A \triangleleft B$ then:

$\forall e \in \mathcal{E}^*, \mathcal{E} \vdash A \text{ type } e^* \leq \mathcal{E} \vdash B \text{ type } e^* \quad \Box$

The following theorem proves the soundness of the interpretation.

Proposition 5.2.4

The interpretation $I - I^*$ is a well-defined meaning for kinds, types, and terms over \mathcal{D}-Set and $\text{PER}_\mathcal{D}$.

Corollary 5.2.5

If $E \vdash e$, then:

$\forall e \in \mathcal{E}. \quad \mathcal{E} \vdash a : A^* e \in \mathcal{E} \vdash A \text{ type } e^* \quad \Box$

It is a minor variant of the work done for Quest_c to check fully that we provided an interpretation for Quest (that is, that the analogue of theorem 4.1.2 holds for Quest). The crucial point is the validity of the subsumption rule:

\[
\begin{align*}
E \vdash a : A & \quad E \vdash A \triangleleft B \\
E \vdash a : B
\end{align*}
\]

This rule is valid simply because the interpretation of the term a, say, comes with the meaning of the entire judgment $E \vdash a : A$ or $E \vdash a : B$. We gave this meaning in such a way that it automatically coerces a to B in the semantics when interpreting $E \vdash a : B$. Indeed, the meaning of $E \vdash a : A$ is an equivalence class in the p.e.r. $\mathcal{E} \vdash A \text{ type } e^*$ (together with the assertion that it actually belongs to the class), while the meaning of $[E \vdash a : B]^e$ is an element of the p.e.r. $\mathcal{E} \vdash B \text{ type } e^*$, which is in general a larger equivalence class.

It is worth noticing the essential role of the interpretation of polymorphic types as intersections. The isomorphism between product and intersection in 5.1.1 is the core of this interpretation. (See the last two cases in 5.2.1.) It says that type erasing does not affect the meaning of polymorphic types, modulo equivalence classes, and reduces the entire challenging business of how to apply a term to a type, to a simple type coercion in the model. That is, $\mathcal{N}_S^\mathcal{D} \cdot A = \mathcal{N}_S^G(A)$, which interprets the polymorphic application for $S = \bigcap_{A \in \mathcal{E}} G(A)$ (see 5.1.2), corresponds to coercing $\mathcal{N}_S^\mathcal{D}$ to the generally larger equivalence class $\mathcal{N}_S^G(A)$.

This has a clear mathematical and computational meaning. Mathematically, it derives from the fact that the maps from any \mathcal{D}-set with the full realizability relation to a p.e.r. are constant functions. (See [Longo Moggi 88], or prove it for exercise.) This is a simple feature inherited from a deep fact: the validity of the Uniformity Principle in the Realizability Universe, which is the categorical background of this construction [Longo 88]. Computationally, it says that at run time we disregard types, or that computations are type-free, in particular the computation of a polymorphic term. However, given a computation n of type $\bigcap_{A \in \mathcal{E}} G(A)$, it happens that n is equivalent to more computations when updated to type A: namely, all those in $\mathcal{N}_S^G(A)$.

In [Bruce Longo 89] yet another interpretation of Fun, the progenitor of Quest, is given. The idea, in that paper, is to use the interpretation of the language with coercions in order to give meaning to the one without coercions. This is based on a series of theorems which relate abbreviated terms (that is, terms where all coercions are erased) to their fattenings (that is, terms where coercions are put back in place). More precisely, in our language, given $E \vdash a : A$, a judgment in Quest, abbreviated(a) is obtained by erasing all coercions. Then, for $E \vdash b : B$ in Quest, b' is a fattening when abbrev(b') = b. The $\mathcal{D}^\mathcal{E}$-interpretation of the judgment $E \vdash a : A$ in Quest, is given by setting:

$\mathcal{D} \mathcal{E} \vdash a : A e = \mathcal{E} \vdash a' : A e$

where $\mathcal{E} \vdash a' : A e$ is the semantics in part 4, for a fattening a' of a.

With some work, [Bruce Longo 89] showed that this is well defined. Indeed, it coincides with our current interpretation $I - I^*$. In other words, by the results in [Bruce Longo 89] and some further work, we claim that, given a model of the type-free λ-calculus and the realizability structures over it as models of Quest, one has:

$\mathcal{E} \vdash a : A e = I \vdash a : A e$

Observe finally that this interpretation is coherent, in the sense of [Curien Ghelli 89], since by definition it depends only on the proved judgment and not its derivation. More generally, the model satisfies the conditions in the coherence theorem in [Curien Ghelli 89].

6. Conclusions

We have described a formal system, which can be considered the kernel of the Quest language, and we have investigated a particularly attractive approach to its semantics. The formal system requires a lot of semantics models, probably more than any previous typed system. Fortunately, PER models promise to satisfy all the required features, and more (e.g. dependent types). More work needs to be done both on the syntactic side, studying the properties and the degree of completeness of the formal system, and on the semantic side, mostly with respect to recursion and recursive types.
Acknowledgements
We would like to thank Roberto Amadio and Kim Bruce. Working jointly and in parallel with them has provided us with a permanent source of ideas and inspiration. The many discussions with John Mitchell and P.-L. Curien have been essential for this work. We also thank Martin Abadi, Simone Martini, and Andre Scedrov for important suggestions, and Narciso Marti-Oliet for careful technical proofreading. Aspects of the formal system have been inspired by, and are still under investigation by many of the authors above.

References

[Wad 89] M. Wand: Type inference for record concatenation and multiple inheritance, Proc. LICS'89.