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We present a formal calculus, termed chemtainer calculus, able to capture the complex-
ity of compartmentalized reaction systems such as populations of possibly nested vesicular
compartments. Compartments contain molecular cargo as well as surface markers in the
form of DNA single strands. These markers serve as compartment addresses and allow for
their targeted transport and fusion, thereby enabling reactions of previously separated chem-
icals. The overall system organization allows for the setup of programmable chemistry in
microfluidic or other automated environments. We introduce a simple sequential program-
ming language whose instructions are motivated by state-of-the-art microfluidic technology.
Our approach integrates electronic control, chemical computing, and material production in
a unified formal framework that is able to mimick the integrated computational and con-
structive capabilities of the subcellular matrix. We provide a non-deterministic semantics
of our programming language that enables us to analytically derive the computational and
constructive power of our machinary. This semantics is used to derive the sets of all con-
structable chemicals and supermolecular structures that emerge from different underlying
instruction sets. Since our proofs are constructive, they can be utilized to automatically
infer control programs for the construction of target structures from a limited set of resource
molecules. Finally, we present an example of our framework from the area of oligosaccharide
synthesis.

I. INTRODUCTION

Living systems are unique in that they integrate molecular recognition and information process-
ing with material production on the molecular scale. The predominant locus of this integration
is the cytoplasm, where a multitude of biochemical compounds is highly organized in vesicular
compartments that co-locate reactants of desired reactions while separating those of undesired
reactions. Surface markers on these compartments are used for vesicular trafficking, as well as
vesicle budding and fusion, thereby allowing for the fine-tuned control of biochemical reaction
cascades [1–3].

The desire to employ this complex molecular organization in next generation chemical synthesis
has led to various studies on supermolecular compartments as nanoscale “bioreactors” [4–7]. Sev-
eral pathways for vesicle fusion [8–10] have been suggested. In particular, Hadorn et al. employ
short single stranded DNA tags for the specific interaction of various reaction compartments [11–
13]. In the European Commission funded project MATCHIT [14–17], we are working in creating
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Figure 1. Example of a state of the artificial cellular matrix, where four locations (x1, x2, x3, and x4) hold
content. All other locations are empty. Location x1 contains a number of molecules in solution (2A+2B+C),
location x2 contains two chemtainers (depicted as green circles), one of them containing the molecules A
and B, location x3 holds a chemtainer encapsulated within another chemtainer, and location x4 holds
a chemtainer with three A’s being decorated with a tag σ (red line attached to the green circle), with a
separate complementary tag τ in solution (free red line). Using the syntax defined in Section II A, this system
state is described by the string x1 : 2A+2B+C ◦x2 : $%+$A+B%◦x3 : $2A+$C%%◦x4 : τ+σ$3A%.

an artificial cellular matrix that seamlessly integrates information processing and material produc-
tion in much the same way as its biological counterpart: The MATCHIT framework employs DNA
addressable bioreactors (termed chemtainers in the following), to mimic the topological organiza-
tion of the cytoplasm. DNA tags open up for DNA computing operations akin to the “key-lock”
information processing mechanism found in biological protein-protein interactions. This form of
molecular information processing is governed by autonomous chemical reaction kinetics and allows
for tight integration of chemical production and information processing. In particular, we here
employ the DNA join-and-fork gates to implement Boolean computation [18].

Whereas natural cells ultimately employ genomic information to regulate the resulting material
production network, we envision programmable electronic control by embedding chemtainers into
mechano-electronic microsystems [19, 20]. In such devices, dedicated microfluidic channels can
be designed for vesicle generation [21], DNA tag insertion, tag and chemtainer trafficking [22],
specific or unspecific fusion [23], vesicle rapture and encapsulation [24]. Possibly paired with real
time feedback, this allows for control of chemical reaction cascades at the molecular level. This
interplay of autonomous molecular computation and external electronic chemtainer manipulation
enables the programmatic setup of complex reaction cascades that allow for automated chemical
production of a desired target molecule from a limited set of chemical resources.

Here, we propose a formal calculus to describe system states and transitions in an abstract
representation of the artificial cellular matrix. We call this the chemtainer calculus. In essence, the
chemtainer calculus allows us to describe the organization and manipulation of chemical compounds
down to the molecular level in possibly nested, addressable reaction compartments. Sets, or more
precisely, multisets of such compartmentalized reagents are situated at locations, e.g., at positions of
a microfluidic machine. Several calculi for compartmentalized reaction systems have been proposed
previously [25–27]. Our syntax for nested and tagged compartments follows relatively closely the
one from brane calculi [27]. Those calculi offer transitions for compartment transformations, such
as fusion and splitting, as well as molecular reactions. Transitions are integral components of the
system state and the calculus employs a process algebra to deduce the set of possible transitions
from the current state. In the chemtainer calculus, we additionally define an explicit transition
system that operates on states externally. This organization better reflects the difference between
the chemical state transitions and external mechano-electronic control.

The calculus was designed for the architecture described in Ref. [20]. The tool chain for com-
pilation of high level directives of the chemtainer calculus into eventual electrode configurations
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Figure 2. Schematics of programmable transitions and their instructions in the chemtainer calculus.
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Figure 3. Transitions that encode gate reactions: A gate reacts with its respective input tags if the two are
not separated by a chemtainer wall. Either the gate or its inputs might be attached to a chemtainer surface,
in which case the output tags of the gate will equally be bound to the surface.

to control the mechano-electronic microfluidic hardware is presented in Ref. [28]. Yet, the general
framework discussed here is not taylored toward one specific technology. For example, instead of
microfluidic channel segments, locations could equally denote test tube arrays, or wells in a high
throughput chip.

In this article, we first design a syntax that allows us to express the rather complex system
states—or rather system arrangements—that we encounter in the artificial cellular matrix: lo-
cated multisets of tagged and possibly nested chemtainers that carry cargo. Fig. 1 schematically
depicts an example of a possible state. We then introduce transitions between states that model
possible changes of the physical state. Some of these transitions, e.g. DNA hybridization, capture
autonomous chemistry, whereas other transitions are thought to be induced by control operations
of the artificial cellular matrix. We proceed by defining a simple programming language that
consists of sequences of parametric instructions which induce transitions on the system state. In
Section III, we discuss how the underlying instruction set of the chemtainer calculus affects the
set of constructable objects, and we give our main result (Theorem 5) that a set of eight in-
structions is sufficient to construct any well-formed target state. Due to the fact that we use a
non-deterministic semantics, this proofs only demonstrates the possibility, not the probability of
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Figure 4. a) Example of an oligosaccharide target structure, consisting of specifically connected monomers of
different types (hexagons). b) Reaction cascade to synthesize the target structure. Potential side reactions
are avoided by encapsulating reactants into separate chemtainers (indicated by dashed lines).

creating a certain desired state. In Section IV, we apply our framework to the area of chemical
manufacturing, where we present an algorithm for synthesis of branched oligomer structures by
means of controlled chemtainer fusion and DNA computing.

II. THE CHEMTAINER CALCULUS

A. System state

Objects of the calculus are molecules, address tags, and chemtainers. Chemtainers repre-
sent compact microreactors, such as vesicles, oil droplets in water or water droplets in oil, DNA
nanocages, etc. They can be decorated with address tags, and can hold chemical content and
even other chemtainers within them. Here, we do not distinguish between different chemtainer
types, but we can imagine a type system for chemtainers to specify their physical properties. All
components of the system are situated at specified, discrete locations.

Our notion of space is rather simplistic: we assume a fixed set of locations; each component of
the system state is situated at a certain location; we will introduce transitions that allow collocated
components to interact (while objects at different locations may not interact), and we will introduce
transitions that induce transport from one location to another by means of state transitions. Note
that we currently do not introduce a specific topology on the set of locations (e.g., to move from
one location to another, one might need to cross a third one), but such an extension is possible.

For countable index sets JL, JM, and JT , let L = {xi; i ∈ JL} denote the set of locations,
M = {mj ; j ∈ JM} some set of molecules, and T = {sk; k ∈ JT } a set of DNA tags. We take
T = {ρ, σ, τ, . . .} if tags are explicitly given. Note that M might intersect with T or not.

The following context-free tree grammar GS for system states formalizes the above verbal in-
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terpretation:

global state S := ∅ | S ◦ S | xi : P (1)

local state P := 0 | P + P | q∗$P% | q | mj (2)

tag q := s | s∗ � s∗ (3)

with the start symbol S. Here, the vertical broken bar is a metasymbol that indicates syntactic
choice. We denote the empty state by the symbol ∅. The binary operator xi : P denotes localization,
where xi is a location identifier; the binary operator S ◦ S denotes composition of locations, while
P+P denotes composition within locations; 0 denotes the empty local state; ∗ is the Kleene operator
and signifies no or arbitrarily many repetitions of its argument. We write

q∗ = � | q + q∗ (4)

s∗ = � | s + s∗ (5)

with the empty tag � to explicitly list tag and gate sets.
Following convention, we denote chemtainers by half moon parentheses q∗$P% that enclose

the chemtainer content with address tags associated to the left parenthesis [27, 29]. Finally, the
relation s∗ � s∗ denotes DNA gates, which will be explained later. We write GS, GP, Gq∗ , and Gs∗

for the grammars with the start symbols S, P, q∗, and s∗, respectively.
To generate a state with the grammar GX, X ∈ {S,P, q∗, s∗} being a nonterminal, one recursively

applies the above production rules starting from X until the resulting state tree contains no more
nonterminal symbols. The language L(GX) is the set of all possible states that can be generated
from the start symbol X. In what follows, S, S′, S′′ ∈ L(GS), P, P ′, P ′′, Pi ∈ L(GP), q, q′, qk ∈
L(Gq∗), and s, s′, s′′, sk ∈ L(Gs∗) denote arbitrary states of the respective languages.

Informally, we interpret states of L(GS) to signify the following: the global system state is a
composition of local states, where each local state has a location identifier xi and an associated local
state description. The latter are compositions of molecules mj , gates qk, as well as chemtainers
q∗$P% with content P and gate set q∗; gate sets, in turn, are compositions of gates qk as well as
individual tags sk. See Fig. 1 for an example of a global state.

In order to conform with this interpretation, we introduce the following structural congruence
relation (an equivalence relation with additional axioms that guarantee substitutivity of equals in
context) over L(GS), L(GP), L(G∗q), and L(G∗s ):

S ◦ (S′ ◦ S′′) ≡ (S ◦ S′) ◦ S′′ (6)

S ◦ S′ ≡ S′ ◦ S (7)

S ◦ ∅ ≡ S (8)

P + (P ′ + P ′′) ≡ (P + P ′) + P ′′ (9)

P + P ′ ≡ P ′ + P (10)

P + 0 ≡ P (11)

q1 + (q2 + q3) ≡ (q1 + q2) + q3 (12)

q1 + q2 ≡ q2 + q1 (13)

q + � ≡ q (14)

s1 + (s2 + s3) ≡ (s1 + s2) + s3 (15)

s1 + s2 ≡ s2 + s1 (16)

s+ � ≡ s (17)

xi : P ◦ xi : P ′ ≡ xi : P + P ′ (18)
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S1 ≡ S2
S ◦ S1 ≡ S ◦ S2

(19)

P1 ≡ P2

xi : P1 ≡ xi : P2
(20)

P1 ≡ P2

P + P1 ≡ P + P2
(21)

q1 ≡ q2
q∗ + q1 ≡ q∗ + q2

(22)

s1 ≡ s2
s∗ + s1 ≡ s∗ + s2

(23)

s∗1 ≡ s∗2
s∗1 � s

∗ ≡ s∗2 � s∗
(24)

s∗1 ≡ s∗2
s∗ � s∗1 ≡ s∗ � s∗2

(25)

P1 ≡ P2

q∗$P1% ≡ q∗$P2%
(26)

q∗1 ≡ q∗2
q∗1$P% ≡ q∗2$P%

(27)

Thus, states that belong to the same equivalence class of ≡ represent the same physical state,
even though they might be syntactically different. Equations (6) through (18) induce monoidal
structures on (L(GS), ◦, ∅), (L(GP),+, 0), (L(Gq∗),+, �), and (L(Gs∗),+, �), where ‘:’ distributes
over ‘+’, and Equations (19) through (27) guarantee that we can substitute equals in any context.

We introduce some notational shortcuts. We write $P% := �$P%, q$% := q$0% and we
introduce the notation

nP := P + . . .+ P︸ ︷︷ ︸
n times

(28)

which emphasizes the relation to mulitsets. We also allow ourselves to drop the explicit notation
of empty locations by defining

xi : 0 ≡ ∅. (29)

With these definitions, the example state depicted in Fig. 1 can be written as

x1 : 2A+ 2B + C ◦ x2 : $%+$A+B% ◦ x3 : $2A+$C%% ◦ x4 : τ + σ$3A%. (30)

B. Transitions

We are now ready to introduce a transition system that codifies the possible outcome of both
autonomous chemical reactions, as well as externally induced operations that manipulate the system
state. Autonomous reactions, in turn, are either arbitrary chemical reactions among molecules,
which we refer to as application chemistry, or the working of DNA computing operations.

1. Application Chemistry

Reactions are just transitions of the form

P −→ P ′ (31)

where P =
∑

i νimi and P ′ =
∑

j µjmj are multisets of reactants of products with stoichiometric
coefficients νi and µi.

We ensure that chemical reactions can occur among any co-located reactants that are not
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separated by chemtainer walls:

P −→ P ′

P + P ′′ −→ P ′ + P ′′
(32)

P −→ P ′

q∗$P% −→ q∗$P ′%
(33)

P −→ P ′

xi : P −→ xi : P ′
(34)

S −→ S′

S ◦ S′′ −→ S′ ◦ S′′
(35)

We extend structural congruence to transitions by defining.

P ≡ P ′ P ′ −→ P ′′ P ′′ ≡ P ′′′
P −→ P ′′′

(36)

S ≡ S′ S′ −→ S′′ S′′ ≡ S′′′
S −→ S′′′

. (37)

In its ground form, the chemtainer calculus does not offer any transitions of the form (31).
Instead, the user of the calculus is assumed to provide a set R of autonomous transitions as
axioms.

Note that there is no particular need to restrict M to be finite. Our calculus can be applied
without adaption to an infinite set of molecules, including polymers or branched structures—an
example of which will be presented in Section IV. We also emphasize that we explicitly allow
M and T to intersect. If they do, tags can occur in the reactant and product sides of chemical
reactions, such that tags can be altered chemically.

2. DNA Gate Transitions

Here, DNA computation is implemented by join and fork gates [18] that irreversibly release a
given set of output strands s∗2 once they have bound a set of inputs s∗1, written s∗1 � s

∗
2. Note that

s∗1 � s∗2 does not physically contain the strands s∗1. Rather it means that the gate accepts those
strands as input.

If a gate is co-located with all its input tags, it can release its output tag:

s∗1 � s
∗
2 + s∗1 −→ s∗2 (38)

We have to ensure that these transitions can occur between two co-located complementary tags
in any context, unless they are separated by a chemtainer boundary. This is allowed by introducing
the following inference rules:

q + q′ −→ q′′

q + q′$P% −→ q′′$P%
(39)

q + q′ −→ q′′

(q + q′)$P% −→ q′′$P%
(40)

Examples of gate transitions are depicted in Fig. 3. Due to the inferences (32) through (37), its is
guaranteed that DNA computing operations perform in any context.
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3. Induced Transitions

We now introduce transitions that model the controlled manipulation of states through opera-
tions of the artificial cellular matrix. We introduce eight such operations, responsible for feeding
and moving of chemtainers and tags, controlled fusion of chemtainers, encapsulation of material
into chemtainers, chemtainer bursting, and flushing of content. Our exact transitions are moti-
vated by the functionalities of the underlying microfluidics architecture [20], but they also serve
as guideline how alternative transitions in other hardwares can be codified. The impact of the
exact instruction set on the constructive capabilities of the resulting calculus will be discussed in
Sections III.

Induced transitions are of the form

I : S −→ S

where I is a parameterized name. We first give the formal definition of these transitions (schematics
are shown in Fig. 2) and will afterwards comment on their particular choice. In Sec. II C, we will
introduce a small programming language based on these operations.

feed(x,mi, ν) : ∅ −→ x : $νmi% (41)

feed tag(x, s, ν) : ∅ −→ x : νs (42)

move(s, x, z) : x : (s+ q∗)$P% −→ z : (s+ q∗)$P% (43)

x : s −→ z : s (44)

tag(x) : x : s+ q∗$P% −→ x : (s+ q∗)$P% (45)

fuse(x) : x : q∗1$P%+ q∗2$P
′% −→ x : (q∗1 + q∗2)$P + P ′% (46)

flush(x) : x : P −→ ∅ (47)

wrap(x, z) : x : P −→ z : $P% (48)

burst(x) : x : q∗$P% −→ x : q∗$%+ P (49)

Transitions (41) through (49) operate strictly on the top level of the state, meaning that we do
not allow, for example, tagging or fusion of chemtainers that resides within another chemtainer.
To ensure this, we simply do not provide inference rules that would allow us to derive such transi-
tions. However, the above transitions are allowed to operate in any context through the following
inference:

I : S −→ S′

I : S ◦ S̄ −→ S′ ◦ S̄
(50)

We now comment on the individual choice of operations and their transitions. feed allows
one to feed chemtainers that are equipped with a certain number ν ∈ N of molecules of a single
molecular species into a location. This is the only means to provide elements of M. Similarly,
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feed tag allows one to feed a certain number ν ∈ N of identical tags into a location. tag has
been modeled to unspecifically attach some available tag to some container at a given location. No
means are given to specify which tag or which chemtainer is transformed in this operation. The
reason for this choice is that the actual linking of tags to a chemtainer involves linker molecules
(biotin and streptavidin) that are common to all chemtainers and tags independent of the actual
tag sequence or chemtainer type.

We provide a flush command to counteract the effect of feeding, where flushing simply removes
content at a location. The operation is most easily implemented by literally flushing the material
out of the system.

The move command allows one to move a specific tag, or a chemtainer decorated with a specific
tag from one location to another. Notably, this allows for content separation: for example, the
state x : σ$A% + τ$B% will transition into the state x : σ$A% ◦ y : τ$B% in response to the
operation move(τ, x, y). In a certain interprestation, this can be understood as chemtainer docking,
where the locations correspond to volumes of bulk fluid that themselve move along a microfluidic
channel decorated with the complementary tag (here τ). Assuming that both chemtainers are
initially at location x which is decorated with τ , the complementarily tagged chemtainer is allowed
to temporarily hybridize to the channel wall while the bulk volume—and thus the locations—
physically move along the channel. Non-matching content at the logical location x will remain at
that location, although its physical position has changed. Matching content, however, will be at a
different location, e.g. y and can be released into the corresponding bulk.

The operations fuse and wrap are more specific to the artificial cellular matrix and enable fusion
and (vesicle) encapsulation. fuse induces unspecific fusion of co-located chemtainers, leading to
mixing of both chemtainer surface and content. Besides unspecific fusion, tag specific fusion of
vesicles has been achieved experimentally [30, 31]. A version of the chemtainer calculus featuring
such tag specific fusion is presented in [32]. wrap enables encapsulation of material into vesicles,
e.g. using interface transfer: it is assumed that the material at location x resides in aqueous phase
which is first immersed into an oil phase where it forms surfactant coated water droplets—providing
the inner layer of the future vesicle. Next, the water droplet passes a surfactant covered oil-water
interface which provides the outer layer of the vesicle membrane. If the original state at x contains
chemtainers, these are equally transfered into the interor of the new chemtainer, leading to nested
chemtainers [12]. Microfluidic implementations of this protocol are presented in [33]. We will later
analyze the power of this transition system with and without the wrap operation.

Complementing encapsulation, we provide a burst operation that releases the content of a
chemtainer. We envision that burst does not fully disolve the chemtainer, but rather raptures the
chemtainer wall temporarily, for example by means of a heat or salt shock. After bursting, the
chemtainer will reconstitute itself and remain in the system, available for further processing.

In order to capture obvious implementation constraints of the physical machine, some of the
operations are restricted to subsets of L, e.g. feed(x) might require x ∈ Lfeed ⊂ L. It can be
shown that the constructive power of the calculus is not affected by this limitation, as long as
move, tag, and burst are allowed to operate on the entire set L. Likewise, we could constrain
the move command such that the target location has to be in a certain neighborhood set of the
source location in order to capture, e.g., the channel topology of microfluidic devices.

We wish to clarify one point that might be counter-intuitive. Assume, for example, the state
x : 10σ. What will be the action to the operation move(σ, x, y)? Intuitively, we might expect that
the system transitions into the state y : 10σ, meaning that all instances of σ have been moved.
However, x : 10σ is structurally equivalent to x : 9σ ◦ x : σ due to the distributive relation (18).
To this state we can apply the transition S ◦ x : σ −→ S ◦ y : σ equating S = x : 9σ, which
results into x : 9σ ◦ y : σ. Thus, move, and by similarity all other transitions, will only operate
on a single instance. There is a simple way out however: in order to move all ten instances in the
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example above, we can simply execute the move operation ten times in sequence. Our reason for
this semantics is that it allows for consistent assignment of stochastic rates in a potential stochastic
semantics [34, 35].

C. Programs

In the previous section we have informally given parametric names to transitions, such as
move(s, x, y), tag(x), a.s.o. We next interpret parametric names as elemental operations of a
programming language that can be used to operate the artificial cellular matrix. We do this by
first defining another formal language, the formal language of chemtainer programs, and then
expressing the semantics of this language by means of state transitions, the latter employing the
language L(GS) of chemtainer states.

As with states, we define programs by a recursive grammar, which we initially keep as simple
as possible:

π := ε | I;π. (51)

A program π can be either the empty program ε, or a (parametric) instruction followed by an-
other program (the remainder), with instructions being separated by semicolons. Instructions
I can be any of the formerly introduced parametric names feed(xa,mj , ν), feed tag(xa, qk, ν),
move(sk, xa, xb), tag(xa), wrap(xa, xb), fuse(xa), burst(xa), and flush(xa) with xa, xb ∈ L,mj ∈
M, qk ∈ L(Gq∗) and ν ∈ N. Each instruction I has a set of associated transitions and we write
I : S −→ S′ to denote any such associated transition (as was already done in the previous part).

Strictly, the concatenation operator ‘;’ is only defined to concatenate single instructions with
programs. In order to concatenate arbitrary programs π and π′, we introduce an additional operator
‘;’ for program concatenation through the following recursive definition:

ε;π = π (52)

(I;π);π′ = I; (π;π′) (53)

Since both concatenation operators have different domains, it is clear from the context whether
the concatenation refers to single instructions or programs. Therefore, we will drop the syntactic
differentiation and use the symbol ‘;’ for both operators.

A program π together with a system state S is expressed by the tuple 〈π, S〉 and we write
〈π, S〉 −→ S′ to denote that the program π can transform the state S into the state S′, called a
result of π. Results are defined by the following structural operational semantics [36]:

〈ε, S〉 −→ S (54)

〈π, S′′〉 −→ S I : S′ −→ S′′

〈I;π, S′〉 −→ S
(55)

〈π, S′〉 −→ S

〈I;π, S′〉 −→ S
(56)

In words, given a program that starts with instruction I with some associated transition from S′

to S′′, the second rule allows us to transform the system into S′′, thereby reducing the original
program to whatever remains after execution of I. If program execution encounters an instruction
with no associated transition that is applicable to the current state S′ (e.g. tag is asked to operate
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on an empty cell), the third rule allows us to skip the instruction without modifying the system
state. This latter rule primarily addresses erroneous conditions and ensures that a program does not
get stuck, simply because the respective molecules are not present at some point of the execution.
Using non-deterministic semantics, rule (56) might even be used when rule (55) is applicable,
thereby skipping instructions of the program sequence. This could be remedied with a stochastic
semantics that assigns an arbitrarily small transition rate to rule (56).

We can now distinguish between autonomous and induced transitions, by extending the seman-
tics with the rules

S −→ S′ 〈π, S′〉 −→ S′′

〈π, S〉 −→ S′′
(57)

〈π, S〉 −→ S′ S′ −→ S′′

〈π, S〉 −→ S′′
(58)

where S −→ S′ and S′ −→ S′′ is an autonomous transition inferred through (35). These rules
allow autonomous transitions to occur at any time during program execution without affecting the
program.

We extend structural congruence to program application using the inference rule

S ≡ S′′ 〈π, S〉 −→ S′ S′ ≡ S′′′

〈π, S′′〉 −→ S′′′
. (59)

The following two lemmas, proven in the appendix, allow for uncomplicated composition of
instructions.

Lemma 1 Program application is not context sensitive: if the application of program π on the
initial state S can lead to the result S′, the application on the composition S ◦ S̄ can lead to the
result S′ ◦ S̄, containing S′ as a substate. S̄ is an invariant of π:

〈π, S〉 −→ S′ =⇒
〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄. (60)

Lemma 2 Programs can be concatenated and the start configuration of the second program will be
the result of the first program:〈

π′, S
〉
−→ S′ ∧

〈
π′′, S′

〉
−→ S′′ =⇒

〈
π′;π′′, S

〉
−→ S′′ (61)

D. Extension: control flow directives and parallel execution

We could easily define control flow directives known from standard programming languages,
such as branched execution and loops. This is particularly interesting in the context of feedback
control. Let

p : S −→ {True,False} (62)

be a conditional over the system state. For example, f could measure whether a fluorescent signal
at a certain location exceeds a certain threshold. We could then extend our grammar to

π := ε | I;π | while f(S) do π; endwhile (63)
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to allow for conditional loops, where the semantics of the while statement are given by

〈π, S〉 −→ S′ 〈while p do π; endwhile, S′〉 −→ S′′ p = True

〈while p do π; endwhile, S〉 −→ S′′
(64)

p = False

〈while p do π; endwhile, S〉 −→ S
(65)

As evidenced with these definitions, there is nothing particular about control flow directives in the
chemtainer calculus compared to other imperative languages. In order to introduce more elaborate
control flows, the reader can simply apply standard text book procedures.

Similarly, it is straightforward to define the semantics for a language of communicating sequen-
tial processes [37, 38] that parallelizes the production process:

〈π′, S′〉 −→ S̄′ 〈π′′, S′′〉 −→ S̄′′

〈π′|π′′, S′ ◦ S′′〉 −→ S̄′ ◦ S̄′′
(66)

E. Example

To make the above definitions more familiar, we employ the chemtainer calculus in order to
decorate chemtainers with addresses and use those to mix the contents of two chemtainers.

The left column shows which parametric instruction is executed and the right column shows
the effect of its associated transition. Read from top to bottom, the left column therefore simply
gives a program that can construct some desired state denoted at the right.

∅
feed(x, P ) x : $P%

feed tag(y, σ) x : $P% ◦ y : σ

move(σ, y, x) x : σ +$P%

tag(x) x : σ$P%

(67)

To use this sequence later on in programs, we define it as the parametric macro resource(x, σ, P ).
Now, we use this macro to create two chemtainers and fuse them:

∅
resource(x, σ, P ) x : σ$P%

resource(y, ρ,Q) x : σ$P% ◦ y : ρ$Q%

move(ρ, y, x) x : σ$P%+ ρ$Q%

fuse(x) x : (σ + ρ)$P +Q%

(68)

Keep in mind that the right column only shows a possible response of the system state to the
program on the left, not the necessary response. In general, because of the ambiguity of transitions,
the system could have transitioned into alternative states in response to the same program.

III. INSTRUCTION SETS AND THEIR CONSTRUCTIVE POWER

The instructions given in Eqs. (41) through (49) serve as examples of possible operations, rather
than the final specification of an artificial cellular matrix. Potential real-world implementations
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might involve only a subset of the operations mentioned, or might enable other means of chemtainer
manipulation. It then becomes interesting to determine whether different instruction sets are
equivalent in what they can construct or whether the set of constructable states differs.

In order to approach the problem formally, we define the constructive closure ω+(Πx) ⊂ L(GS)
of the language Πx as the set of states that can be constructed from the empty state through some
program π ∈ Πx. Formally:

ω+(Πx) := {S ∈ L(GS) : ∃π ∈ Πx ∧ 〈π, ∅〉 −→ S} (69)

Similarly, we define the reset closure ω−(Πx) ⊂ L(GS) as the set of states that can be transformed
back into the empty set. Formally:

ω−(Πx) :=
{
S ∈ ω+(Πx) : ∃π ∈ Πx ∧ 〈π, S〉 −→ ∅

}
(70)

Of primary interest is of course the case ω− = ω+ where the machine can be reset from any
state. In this case, one can formally transform any initial state into any target state, thereby
programming sequences of states: if 〈π, S〉 → ∅ and 〈π′, ∅〉 → S′, the concatenation π;π′ will
transform S into S′: 〈π;π′, S〉 → S′. This result, however, is mostly of theoretical interest, as an
interim reset of the machine might not be desired when programming such state sequences. In
a practical application, one would define a distance measure between states and ensure that the
transition path length of programs is minimized, thereby preferring for example a single move
instruction over a sequence of flush;feed tag;move instructions with equal outcome.

We consider the following three incremental instruction sets:

Imin = {feed, feed tag,move, tag, fuse,flush} (71)

Iwrap = Imin ∪ {wrap} (72)

Iburst = Iwrap ∪ {burst} (73)

Let Πmin, Πwrap, and Πburst be the sets of programs over the respective instruction set. We will
show the following relations between the corresponding constructive and reset closures:

ω+(Πmin) ⊂ ω+(Πwrap) ⊂ ω+(Πburst) = L(GS)

= = ⊆

ω−(Πmin) ⊂ ω−(Πwrap) ⊂ ω−(Πburst) ⊆ L(GS).
(74)

If and only if all locations are flushable, i.e. if Lflush = L, the right-most chain of relations simplifies
to

ω+(Πburst) = ω−(Πburst) = L(GS). (75)

Diagram (74) can be decomposed into several theorems, for which we need to define the nesting
level d : L(GS)→ N of a state S or local state P as the following:

d(∅) = 0 (76)

d(0) = 0 (77)

d(mj) = 0 (78)

d(q∗) = 1 (79)

d(xi : P ) = d(P ) (80)

d(S ◦ S′) = max{d(S), d(S′)} (81)

d(P + P ′) = max{d(P ), d(P ′)} (82)

d(q$P%) = 1 + d(P ) (83)

With this definition, we can state the relations of diagram (74) more precisely:

Theorem 3 The constructive closure of Πmin is the set of states that do not contain nested chem-
tainers nor free floating molecules other than tags:

ω+(Πmin) =
{
S ∈ L(GS) : d(S) ≤ 1 ∧ S 6≡ S′ ◦ xi : mj for mj ∈M\T

}
(84)
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Theorem 4 The constructive closure of Πwrap is the set of states that do not contain free floating
molecules other than tags:

ω+(Πwrap) =
{
S ∈ L(GS) : S 6≡ S′ ◦ xi : mj for mj ∈M\T

}
(85)

Theorem 5 The constructive closure of Πburst is the entire set of states :

ω+(Πburst) = L(GS) (86)

Theorem 6 The reset closure of all instruction sets is limited to states that do not contain free
floating molecules other than tags in non-flushable locations:

ω−(Πx) ⊂
{
S ∈ L(GS) : S 6≡ S′ ◦ xi : mj for xi 6∈ Lflush ∪ Lwrap in,mj ∈M\T

}
∀x ∈ {min,wrap,burst} (87)

Proofs for all theorems are given in the appendix. Note that these proofs are constructive: for
any given target structure S ∈ ω+(Πx) we can automatically generate a program that will construct
S. This observation forms the core of a compiler that is able to generate a sequence of transitions
for building a given target structure.

The above theorems assume that the entire set of molecules M can be fed as resources. We
now address the case where only a subset MR ⊂ M of compounds can be directly provided by
feed and where chemical reactions are employed to produce compounds outside MR.

For some reaction ν1m1 + ν2m2 −→ ν3m3 + ν4m4 with m1,m2 ∈ MR, we can employ the
program

∅
resource(x, ψ, ν1m1) x : ψ$ν1m1%

resource(y, ρ, ν2m2) x : ψ$ν1m1% ◦ y : ρ$ν2m2%

move(ρ, y, x) x : ψ$ν1m1%+ ρ$ν2m2%

fuse(x) x : (ψ + ρ)$ν1m1 + ν2m2%

x : (ψ + ρ)$ν3m3 + ν4m4%

(88)

to initiate the chemical production of P ′ = ν3m3+ν4m4, where m3,m4 are not necessarily elements
of MR. Applying this procedure repeatedly allows us to obtain successively bigger subsets of M.
However, without means for content separation, the set of producible states will be constrained by
the stoichiometries of the reactions. If the artificial cellular matrix would offer content separation,
e.g. by means of electrophoresis [39], we could encode this with the induced transition

separate(x, y) : x : (q + q′)$P + P ′% −→ y : q$P%+ q′$P ′%. (89)

where the exact partitioning of chemtainer content into P and P ′ would depend on its elec-
trophoretic mobility. Continuing the above program, we could now derive

x : (ψ + ρ)$ν3m3 + ν4m4%

separate(x, y) y : ψ$ν3m3%+ ρ$ν4m4%
(90)

The tagged chemtainers are ready to be used as input for subsequent reactions. This recovers the
constructive power of the chemtainer calculus, provided that all elements ofM can be constructed
by some chain of reactions. However, in order to maintain a well-defined mapping from DNA tags
to chemtainer content, the separate operation would need to assert the correct redistribution of
surface tags along with the content separation such that products can be unambiguously identified
by their tags.
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Figure 5. Steps for preparing enzymatically activated saccharide monomers. a) Chemtainers with activated
enzymes and monomers are fed to the same location. b) A DNA gate is fed to the same location. c) Fusion
of chemtainers co-locates the reactants in a single chemtainer, to which the provided DNA gate attaches.
d) The reaction takes place inside the chemtainer while the result of chemtainer fusion is reflected by the
successful transition of the DNA gate.

IV. PROGRAMMABLE REACTION CASCADES

Here, we demonstrate how our calculus (even with the minimal instruction set Imin) can be used
to integrate chemical production with molecular computation in order to control programmable
reaction cascades. This example is motivated by and closely mimicks the synthesis of oligosac-
charides in the Golgi apparatus [1, 2]. Oligosaccharides are branched, heterogeneous polymers
composed of typically five to ten individual sugar monomers such as mannose, galactose, and glu-
cose. This diverse class of biochemicals is involved in various physiological processes pertaining e.g
to cell-cell recognition, intra- and intercellular trafficking, and metabolic modulation [40]. How-
ever, their combinatorial richness poses a challenge for chemical oligosaccharide synthesis based on
conventional chemical manufacturing techniques [41].

Biological oligosaccharide synthesis proceeds in the Golgi apparatus by adding individual
monomers one unit at a time to specific binding sites of the growing oligomer. Monomers are
attached to enzymes that promote the specific binding reactions:

Pi + E∗jMi −→ Pi+1 + Ej . (91)

Here, Pi denotes an intermediate oligomer, to which monomer Mi is added at the site j. If binding
sites are unique, a given enzyme-monomer complex E∗jMi contains all the information required to
build the specific product Pi+1 from Pi. Prior to these polymerization steps, monomers have to be
attached to the respective enzymes:

Mi + E∗j −→ E∗jMi. (92)

Chemical one-pot synthesis of a given target structure is challenging, because repetition of bind-
ings sites in the oligomer structure can lead to undesired side products. The number of potential
side products can be controlled, however, by forcing some reaction steps to occur sequentially
while others are allowed to proceed in parallel [42]. Weyland et al. [43] present an algorithm that
identifies such optimal reaction cascades. For example, assume that the structure shown in Fig. 4
can be produced with the reaction cascade

Gal + E∗Gal-4Gal + E∗Gal-4Man −→ P0 + 2 EGal-4 (93)

E∗Man-6Man + E∗Man-6Glc + E∗Man-3Glc −→ P1E
∗
Man-6 + EMan-6 + EMan-3 (94)

E∗Man-3Man + E∗Man-2Gal + E∗Gal-4Glc −→ P2E
∗
Man-3 + EMan-2 + EGal-4 (95)

P0 + E∗Man-6P1 + E∗Man-3P2 −→ P3 + EMan-6 + EMan-3 (96)

where it has to be ensured that reactions (93) through (95) occur in isolation and prior to reac-
tion (96).
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Figure 6. Steps in the programmed synthesis of compound P0 from Fig. 4. a) Initial system state, where
resource chemtainers are provided at the storage location xS and the DNA gate (α+ β + γ)� κ is provided
at the operation location x0. b) System state after chemtainers labelled α, β, and γ are moved to x0. c)
System state after fusion has been initiated in x0 and the tag has been bound. d) Chemical reactions and
gate transitions occurr autonomously at x0. e) The newly created chemtainer labelled κ with product P0 is
transferred back to xS .

Our strategy here is to employ the chemtainers in order to control the encounter of reactants
and hence the order of reactions by encapsulating reactants within chemtainers. Fusion of chem-
tainers co-locates desired reactants and triggers their polymerization. Simultaneously, DNA gate
computation on the chemtainer surface in order will reflect the change of chemtainer content after
reaction. The same DNA computation can ensure that reactions are started if and only if other
reactions have been performed beforehand. We use one location x0 for processing and one location
xS for storing intermediate products.

We start by preparing chemtainers with enzyme complexes using the program given in Equa-
tion (88). For example,

resource(x0, σ,Gal); resource(x0, ρ,E
∗
Gal-4); feed tag(x0, (σ + ρ)� β);

fuse(x0); move(β, x0, xS) (97)

creates the state xS : β$E∗Gal-4Gal%. See Fig. 5 for a graphical representation of these steps. We
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use this algorithm repeatedly to set up the machine in the following state:

xS : α$Gal% + β$E∗Gal-4Gal% + γ$E∗Gal-4Man%

+ δ$E∗Man-6Man% + ε$E∗Man-6Glc% + ζ$E∗Man-3Glc%

+ η$E∗Man-3Man% + θ$E∗Man-2Gal% + ι$E∗Gal-4Glc% (98)

With this mapping from chemical compounds to DNA tags, we translate the reaction cascade (93)
and (96) into a set of DNA gates:

(α+ β + γ)� κ (99)

(δ + ε+ ζ)� λ (100)

(η + θ + ι)� µ (101)

(κ+ λ+ µ)� ω (102)

To carry out reaction (93), we feed the gate (99) at location x0. We then progressively move
chemtainers from xA, xB, xC to x0, initiate their fusion, and transport the intermediate product
P0 back to xS (see Fig. 6 for a schematic representation):

x0 : (α+ β + γ)� κ ◦ xS : α$Gal%+ β$E∗Gal-4Gal%+ γ$E∗Gal-4Man%

move(α, xS , x0) x0 : (α+ β + γ)� κ+ α$Gal% ◦ xS : β$E∗Gal-4Gal%+ γ$E∗Gal-4Man%

move(β, xS , x0) x0 : (α+ β + γ)� κ+ α$Gal%+ β$E∗Gal-4Gal% ◦ xS : γ$E∗Gal-4Man%

move(γ, xS , x0) x0 : (α+ β + γ)� κ+ α$Gal%+ β$E∗Gal-4Gal%+ γ$E∗Gal-4Man%

tag(x0) x0 : (α+ (α+ β + γ)� κ)$Gal%+ β$E∗Gal-4Gal%+ γ$E∗Gal-4Man%

fuse(x0) x0 : (α+ β + (α+ β + γ)� κ)$Gal + E∗Gal-4Gal%+ γ$E∗Gal-4Man%

fuse(x0) x0 : (α+ β + γ + (α+ β + γ)� κ)$Gal + E∗Gal-4Gal + E∗Gal-4Man%

x0 : κ$P0 + 2 EGal-4%

move(κ, x0, xS) xS : κ$P0 + 2 EGal-4%

flush(x0) xS : κ$P0 + 2 EGal-4%
(103)

The flush instruction cleans the processing location in the case that the execution of an instruction
got skipped because of rule (56). This prevents the subsequent fuse operations from operating on
chemtainers that where intended to be kept separate.

Repeating the above algorithm with gate (100) and tags δ, ε, ζ as well as gate (101) and tags
η, θ, ι produces chemtainers with the intermediate products P0, P1, and P2 taged with κ, λ, and
µ, respectively. Eventually, the above algorithm with gate (102) and tags κ, λ, µ produces the
chemtainer ω$P3 + . . .% which can readily be moved to some output location.

Note that the above program operates over a finte set of resources, tags, and locations, in order
to build a compound from a potentially unlimited universe of target molecules, and the mapping
between tags and compounds is established only within the controlling program. This demonstrates
again the universality of the programmatic synthesis approach.

V. DISCUSSION

We have formally introduced the chemtainer calculus which is capable of capturing system
states and transitions of an artificial cytoplasm. The chemtainer calculus allows us to describe the
organization and manipulation of chemical compounds in possibly nested, addressable bioreactors.
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Elemental operations of a simple programming language are proposed, that allow for the program-
matic control of chemtainer transitions. A constructive proof is given that a programming language
based on eight elemental instructions is capable of constructing any possible system configuration
that can be expressed in the grammar of the chemtainer calculus. This proof can serve as a core
component of a compiler for automated program inference. We have presented how our machin-
ery can be used to compile and execute complex chemical synthesis protocols and have given an
example from oligosaccharide synthesis which still poses a challenging task for conventional chemi-
cal manufacturing techniques. This framework for programmable chemical synthesis demonstrates
how molecular computing and chemical production can be integrated in much the same way as in
biological systems, for example in the Golgi apparatus.

One might object that chemical synthesis in chemtainers works the same as sequential mixings
of reaction solutions in test tubes, which is a conventional methodology. What then is the added
values of chemtainers? Firstly, we point out that microfluidics in general (even without employ-
ing chemtainers), allows for the programmed set-up of reaction cascades in small volumes. This
gives a general advantage over setting up reactions in test tubes either manually or even by liquid
handling robots: as pointed out by Füchslin et al. [42], small spatial dimensions offer the possi-
bility for rapid transport of intermediate compounds among different reaction environments. The
accompanying reduction in processing times can be of crucial advantage in synthesis steps where
intermediate compounds are only stable for short periods of time. Consequently, compounds not
viable in present processing may become interesting candidates for e.g. catalysis in miniaturized
systems. Employing vesicles as reaction compartments allows for the use of even smaller reaction
volumes on the femtoliter scale. Secondly, DNA addressable reaction compartments can sometimes
avoid the need of distinct reaction environments, in the sense that all reactants can be provided
simultaneously in the same “pot”, but individual reactions are controlled by DNA-mediated vesicle
fusion. This “automated assembly” is programmed not in the microfluidic control, but in the DNA
tagging of vesicle. Although this has been not exemplified in this paper, we can envision synthesis
pathways where DNA tags participate in the reaction cascades, e.g., as aptamers. Folding the DNA
tag set with the set of chemicals would allow chemical reactions to directly “report” about their
progress, such that, e.g., a DNA tag operation is only triggered after a chemical compound has
been consumed. DNA tagged reaction compartments further allow for the extraction and recovery
of unreacted compounds by their unaltered DNA tag, and the extraction of reaction products by
their altered DNA tag. Thirdly, encapsulation of compounds into vesicular reaction compartments
offers additional advantages for chemical manufacturing in microfluidics. Compounds do not con-
taminate microfluidic channels as they are physically contained in vesicles. Vesicles can expose a
unified physical “interface” (in terms of friction, buoyancy, charge density, etc.) for microfluidic
control independent of their content. By altering the composition of membrane molecules, these
properties can be altered vastly independently from the vesicle content.

In all our derivations, we have made ample use of non-deterministic semantics: we have proven
that there exists a program that is able to induce desired transitions, and is thus able to construct
a desired state. We have not taken into account the likelihood of those transitions—especially
with respect to possible but undesired side reactions. As this is an important issue in the area
of programming chemistry, we have carefully designed our transition system with an extension
toward stochastc semantics in mind [34]. Application of these known techniques to the chemtainer
calculus would be subject of future work.
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H. Grünbacher (Springer Berlin Heidelberg, 2000) pp. 286.

[20] P. F. Wagler, U. Tangen, T. Maeke, and J. S. McCaskill, Biosystems 109, 2 (2012).
[21] K. Nishimura, H. Suzuki, T. Toyota, and T. Yomo, Journal of Colloid and Interface Science 376, 119

(2012).
[22] P. F. Wagler, U. Tangen, T. Maeke, H. P. Mathis, and J. S. McCaskill, Smart Materials and Structures

12, 757 (2003).
[23] G. Tresset and S. Takeuchi, Biomedical Microdevices 6, 213 (2004).
[24] Y. Tanand, K. Hettiarachchi, M. Siu, Y. Pan, and A. Lee, J. Amer. Chem. Soc. 128, 5656 (2006).
[25] G. Paun, Journal of Computer and System Sciences 61, 108 (2000).



20

[26] A. Regev, E. Panina, W. Silverman, L. Cardelli, and E. Shapiro, Theoretical Computer Science 325,
141 (2004).

[27] L. Cardelli, in Computational Methods in Systems Biology, edited by V. Danos and V. Schachter
(Springer, 2005) pp. 257.

[28] H. Fellermann, C. Svaneborg, S. Rasmussen, U. Tangen, T. Maeke, J. S. McCaskill,
O. Markovitch, D. Lancet, D. Sorek, B. Gill, U. Shabi, E. Shapiro, R. M. Füchslin,
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Appendix A: Grammar and equivalence relations

States:

S := ∅ | S ◦ S | xi : P (1)

P := 0 | P + P | q∗$P% | q | mj (2)

q := s | s∗ � s∗ (3)

S ◦ (S′ ◦ S′′) ≡ (S ◦ S′) ◦ S′′ (6)

S ◦ S′ ≡ S′ ◦ S (7)

S ◦ ∅ ≡ S (8)

P + (P ′ + P ′′) ≡ (P + P ′) + P ′′ (9)

P + P ′ ≡ P ′ + P (10)

P + 0 ≡ P (11)

q1 + (q2 + q3) ≡ (q1 + q2) + q3 (12)

q1 + q2 ≡ q2 + q1 (13)

q + � ≡ q (14)

s1 + (s2 + s3) ≡ (s1 + s2) + s3 (15)

s1 + s2 ≡ s2 + s1 (16)

s+ � ≡ s (17)

xi : P ◦ xi : P ′ ≡ xi : P + P ′ (18)

S1 ≡ S2
S ◦ S1 ≡ S ◦ S2

(19)

P1 ≡ P2

xi : P1 ≡ xi : P2
(20)

P1 ≡ P2

P + P1 ≡ P + P2
(21)

q1 ≡ q2
q∗ + q1 ≡ q∗ + q2

(22)

s1 ≡ s2
s∗ + s1 ≡ s∗ + s2

(23)

s∗1 ≡ s∗2
s∗1 � s

∗ ≡ s∗2 � s∗
(24)

s∗1 ≡ s∗2
s∗ � s∗1 ≡ s∗ � s∗2

(25)

P1 ≡ P2

q∗$P1% ≡ q∗$P2%
(26)

q∗1 ≡ q∗2
q∗1$P% ≡ q∗2$P%

(27)

Transitions:

s∗1 � s
∗
2 + s∗1 −→ s∗2 (38)

s+ s′ −→ s′′

s+ (s′ + t)$P% −→ (s′′ + t)$P%
(39)

q + q′ −→ q′′

(q + q′)$P% −→ q′′$P%
(40)

P −→ P ′

P + P ′′ −→ P ′ + P ′′
(32)

P −→ P ′

q∗$P% −→ q∗$P ′%
(33)

P −→ P ′

xi : P −→ xi : P ′
(34)

S −→ S′

S ◦ S′′ −→ S′ ◦ S′′
(35)

P ≡ P ′ P ′ −→ P ′′ P ′′ ≡ P ′′′
P −→ P ′′′

(36)

S ≡ S′ S′ −→ S′′ S′′ ≡ S′′′
S −→ S′′′

. (37)

∅ feed(x,mi,ν)−−−−−−−−→ x : $νmi%

(41)

∅ feed tag(x,s,ν)−−−−−−−−−→ x : νs (42)

x : (s+ q∗)$P%
move(s,x,z)−−−−−−−→ z : (s+ q∗)$P%

(43)

x : s
move(s,x,z)−−−−−−−→ z : s (44)

x : s+ q∗$P%
tag(x)−−−−→ x : (s+ q∗)$P%

(45)

x : q∗1$P%+ q∗2$P
′%

fuse(x)−−−−→ x : (q∗1 + q∗2)$P + P ′%
(46)

x : P
flush(x)−−−−−→ ∅ (47)

x : P
wrap(x,z)−−−−−−→ z : $P% (48)

x : q∗$P%
burst(x)−−−−−→ x : q∗$%+ P

(49)

Programs:

π := ε | I;π (51)

ε;π = π (52)

(I;π);π′ = I; (π;π′) (53)

〈ε, S〉 −→ S (54)

〈π, S′′〉 −→ S I : S′ −→ S′′

〈I;π, S′〉 −→ S
(55)

〈π, S′〉 −→ S

〈I;π, S′〉 −→ S
(56)

S −→ S′ 〈π, S′〉 −→ S′′

〈π, S〉 −→ S′′
(57)

〈π, S〉 −→ S′ S′ −→ S′′

〈π, S〉 −→ S′′
(58)

S ≡ S′′ 〈π, S〉 −→ S′ S′ ≡ S′′′

〈π, S′′〉 −→ S′′′
(59)
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Appendix B: Proofs

1. Proof of Lemma 1

We prove the statement:

〈π, S〉 −→ S′ =⇒
〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄. (60)

Given that there exists an inference tree that derives the clause 〈π, S〉 −→ S′, we show that there
exists a parallel inference tree that derives

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄. The statement is proven by

induction over the structure of these derivation.
Proof:

A. Assume that 〈π, S〉 −→ S′ was derived by (54) in the last step. Hence, π = ε and S′ = S. It
trivially follows that

〈
ε, S ◦ S̄

〉
−→ S ◦ S̄, as axiom (54) holds for any state.

B. Assume that 〈π, S〉 −→ S′ was derived by (55) in the last step. Hence, π = I ′;π′.

〈π′, S′′〉 −→ S′ I : S −→ S′′

〈I;π′, S〉 −→ S′
(55)

We have as induction hypothesis that 〈π′, S′′〉 −→ S′ =⇒
〈
π′, S′′ ◦ S̄

〉
−→ S′ ◦ S̄. We can

then use rule (55) to derive:

〈
π′, S′′ ◦ S̄

〉
−→ S′ ◦ S̄

I : S −→ S′′
(50)

I : S ◦ S̄ −→ S′′ ◦ S̄
(55)〈

I;π′, S ◦ S̄
〉
−→ S′ ◦ S̄

Hence, if
〈
π′, S′′ ◦ S̄

〉
−→ S′◦S̄ is derivable,

〈
I;π′, S ◦ S̄

〉
−→ S′◦S̄ is derivable by induction.

C. Assume that 〈π, S〉 −→ S′ was derived by (56) in the last step. Hence, π = I;π′.

〈π′, S〉 −→ S′

〈I;π′, S〉 −→ S′
(56)

We have as induction hypothesis that 〈π′, S〉 −→ S′ =⇒
〈
π′, S ◦ S̄

〉
−→ S′ ◦ S̄. Rule (56)

holds for any state, thus we can derive, with S substituted by S ◦ S̄:〈
π′, S ◦ S̄

〉
−→ S′ ◦ S̄

(56)〈
I;π′, S ◦ S̄

〉
−→ S′ ◦ S̄

Hence, if
〈
π′, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable,

〈
I;π′, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.

D. Assume that 〈π, S〉 −→ S′ was derived by (57) in the last step.

S −→ S′′ 〈π, S′′〉 −→ S′

〈π, S〉 −→ S′
(57)

We have as induction hypothesis that 〈π, S′′〉 −→ S′ =⇒
〈
π, S′′ ◦ S̄

〉
−→ S′ ◦ S̄. We can

then use rule (35) to derive:

S −→ S′′
(35)

S ◦ S̄ −→ S′′ ◦ S̄
〈
π, S′′ ◦ S̄

〉
−→ S′ ◦ S̄

(57)〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄

Hence, if
〈
π, S′′ ◦ S̄

〉
−→ S′ ◦ S̄ is derivable,

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.
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E. Assume that 〈π, S〉 −→ S′ was derived by (58) in the last step.

〈π, S〉 −→ S′′ S′′ −→ S′

〈π, S〉 −→ S′
(58)

We have as induction hypothesis that 〈π, S〉 −→ S′′ =⇒
〈
π, S ◦ S̄

〉
−→ S′′ ◦ S̄. Again, we

can use rule (35) to derive:

〈
π, S ◦ S̄

〉
−→ S′′ ◦ S̄

S′′ −→ S′
(35)

S′′ ◦ S̄ −→ S′ ◦ S̄
(58)〈

π, S ◦ S̄
〉
−→ S′ ◦ S̄

Hence, if
〈
π, S ◦ S̄

〉
−→ S′′ ◦ S̄ is derivable,

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by induction.

F. Finally, assume that 〈π, S〉 −→ S′ was derived by (59) in the last step.

S ≡ S′′ 〈π, S′′〉 −→ S′′′ S′′′ ≡ S′

〈π, S〉 −→ S′
(59)

We have as induction hypothesis that 〈π, S′′〉 −→ S′′′ =⇒
〈
π, S′′ ◦ S̄

〉
−→ S′′′ ◦ S̄. Thus, we

can infer:

S ≡ S′′
(19)

S ◦ S̄ ≡ S′′ ◦ S̄
〈
π, S′′ ◦ S̄

〉
−→ S′′′ ◦ S̄

S′′′ ≡ S′
(19)

S′′′ ◦ S̄ ≡ S′ ◦ S̄
(59)〈

π, S ◦ S̄
〉
−→ S′ ◦ S̄

Hence, if
〈
π, S′′ ◦ S̄

〉
−→ S′′′ ◦ S̄ is derivable, then

〈
π, S ◦ S̄

〉
−→ S′ ◦ S̄ is derivable by

induction.

2. Proof of Lemma 2

We prove the statement:〈
π′, S

〉
−→ S′ ∧

〈
π′′, S′

〉
−→ S′′ =⇒

〈
π′;π′′, S

〉
−→ S′′ (61)

Proof: Again, the proof is performed inductively over the structure of the derivation, in particular
the derivation of the clause 〈π′, S〉 −→ S′ for arbitrary derivations of the clause 〈π′′, S′〉 −→ S′′.

A. Assume that 〈π′, S〉 −→ S′ was derived by (54) in the last step. Hence, π′ = ε and S′ = S.

〈ε, S〉 −→ S (54)

For any π′′ with 〈π′′, S′〉 −→ S′′, we then have 〈π′′, S′〉 −→ S′′ = 〈ε;π′′, S′〉 −→ S′′ because
ε;π′′ = π′′ by definition of ‘;’ among programs.

B. Assume that 〈π′, S〉 −→ S′ was derived by (55) in the last step. Hence, π′ = I;π′′′. As
induction hypothesis we have that 〈π′′′;π′′, S′〉 −→ S′′ is derivable for any π′′. We can then
infer that

〈π′′′;π′′, S′〉 −→ S′′ I : S −→ S′
(55)

〈I;π′′′;π′′, S〉 −→ S′′

Hence, if 〈π′′′;π′′, S′〉 −→ S′′ is derivable, we know by induction that 〈π′;π′′, S〉 −→ S′′ is
derivable.
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C. Assume that 〈π′, S〉 −→ S′ was derived by (56) in the last step. Hence, π′ = I;π′′′. We have
as induction hypothesis that 〈π′′′;π′′, S′〉 −→ S′′ is derivable for any π′′. We can then infer
that

〈π′′′;π′′, S〉 −→ S′′
(56)

〈I;π′′′;π′′, S〉 −→ S′′

Hence, if 〈π′′′;π′′, S〉 −→ S′′ is derivable, we know by induction that 〈π′;π′′, S〉 −→ S′′ is
derivable.

D. Assume that 〈π′, S〉 −→ S′ was derived by (57) in the last step. As induction hypothesis we
have that 〈π′;π′′, S′′′〉 −→ S′′ is derivable for any π′′. We can then infer that

S −→ S′′′ 〈π′;π′′, S′′′〉 −→ S′′
(57)

〈π′;π′′, S〉 −→ S′′

Hence, if 〈π′;π′′, S′′′〉 −→ S′′ is derivable, we know by induction that 〈π′;π′′, S〉 −→ S′′ is
derivable.

E. Assume that 〈π′, S〉 −→ S′ has been derived by (58) in the last step:

〈π′, S〉 −→ S̄ S̄ −→ S′

〈π′, S〉 −→ S′
(58)

We have the second hypothesis 〈π′′, S′〉 −→ S′′, and we need to show that 〈π′;π′′, S〉 −→ S′′.
By second hypothesis and (57) with S̄ −→ S′ we obtain:

S̄ −→ S′ 〈π′′, S′〉 −→ S′′
(57)〈

π′′, S̄
〉
−→ S′′

Hence, if we have as induction hypothesis that 〈π′, S〉 −→ S̄ and
〈
π′′, S̄

〉
−→ S′′ then we

can follow 〈π′;π”, S〉 −→ S′′.

F. Finally, assume that 〈π′, S〉 −→ S′ was derived by (59) in the last step:

S ≡ S0 〈π′, S0〉 −→ S1 S1 ≡ S′

〈π′, S〉 −→ S′
(59)

We are in the case 〈π′, S0〉 −→ S1 with S ≡ S0 and S1 ≡ S′. Our second hypothesis is that
〈π′′, S′〉 −→ S′′, and we need to show that 〈π′;π′′, S〉 −→ S′′. By (59) we then have also
that 〈π′′, S1〉 −→ S′′:

S1 ≡ S′ 〈π′′, S′〉 −→ S′′
(59)

〈π′′, S1〉 −→ S′′

By induction hypothesis we have that 〈π′, S0〉 −→ S1 and 〈π′′, S1〉 −→ S′′ =⇒ 〈π′;π′′, S0〉 −→
S′′. By (59) again, 〈π′;π′′, S〉 −→ S′′.

3. Proof of Theorem 3

Proof: by induction over the structure of S.
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A. Case S ≡ ∅.
This holds in the initial state. The program to create S ≡ ∅ is ε: 〈ε, ∅〉 → ∅.

B. Case S ≡ S′ ◦ S′′ with S′, S′′ ∈ ω+(Πmin).
By induction, there exist programs π′ and π′′ such that 〈π′, ∅〉 −→ S′ and 〈π′′, ∅〉 −→ S′′.
Lemma 1 then implies that 〈π′, ∅ ◦ ∅〉 −→ S′ ◦ ∅, and 〈π′′, S′ ◦ ∅〉 −→ S′ ◦ S′′. It follows with
lemma 2 that 〈π′;π′′, ∅ ◦ ∅〉 −→ S′ ◦S′′. But ∅◦∅ ≡ ∅ and S′ ◦S′′ ≡ S, hence 〈π′;π′′, ∅〉 −→ S
due to inference rule (59).

C. Case S ≡ xi : P .

C.1. Subcase P ≡ 0.
This holds in the initial state. The program to create S ≡ xi : 0 is ε: 〈ε, ∅〉 → xi : 0.

C.2. Subcase P ≡ P ′ + P ′′.
This case can be reduced to case B. by means of the distributive relation (18): xi :
P ′ + P ′′ ≡ xi : P ′ ◦ xi : P ′′.

C.3. Subcase P ≡ q$P ′% with d(P ′) = 0.

C.3.1. Subsubcase P ≡ $0%.
This is achieved by the program π = feed(xj ,m, 0); transport(xj , xi, xk, σ) for
arbitrary m ∈M, xj ∈ Lfeed, xk ∈ Lfeed tag, σ ∈ T .

C.3.2. Subsubcase P ≡ $mj%.
This is achieved by the program π = feed(xj ,mj , 1); transport(xj , xi, xk, σ) for
xj ∈ Lfeed, xk ∈ Lfeed tag, σ ∈ T .

C.3.3. Subsubcase P ≡ $sk%.
Since d($sk%) = 2, we have to show that xi : $sk% 6∈ ω+(Πmin). Observe that

feed and feed tag either raise the nesting level of a state from 0 to 1, or leave
it invariant if it was higher than 1. The instructions tag, move and fuse leave
the nesting level unaltered, whereas flush reduces the nesting level to 0 or leaves
it invariant. Therefore, the instruction set Imin does not contain any instruction
that would increase the nesting level from 1 to 2. Therefore, S ≡ xi : $sk% is not
constructable from ∅.

C.3.4. Subsubcase P ≡ $P ′ + P ′′%.
By induction, there exists a program π such that 〈π, ∅〉 −→ xi : $P ′%◦xj : $P ′′%.
Then, for some xk ∈ Lfeed tag, σ ∈ T , the program π;π′ will produce S, where π′

is the following program:

xi : $P ′% ◦ xj : $P ′′%

feed tag(xk, σ, 1) xi : $P ′% ◦ xj : $P ′′% ◦ xk : σ

move(xk, xj , σ) xi : $P ′% ◦ xj : $P ′′%+ σ

tag(xj) xi : $P ′% ◦ xj : σ$P ′′%

move(xj , xi, σ) xi : $P ′%+$P ′′%

fuse(xi) xi : σ$P ′ + P ′′%

feed tag(xk, σ � �, 1) xi : σ$P ′ + P ′′% ◦ xk : σ � �
move(xk, xi, σ � �, 1) xi : σ$P ′ + P ′′%+ σ � �

xi : $P ′ + P ′′%
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C.3.5. Subsubcase P ≡ (sk + q)$P ′%.
By induction, there exists a program π such that 〈π, ∅〉 −→ xi : q$P ′%. Then, for
any xk ∈ Lfeed tag, the program π;π′ will produce S, where π′ is the program:

xi : q$P%

feed tag(xj , sk, 1) xi : q$P% ◦ xj : sk

move(xj , xi, sk) xi : sk + q$P%

tag(sk) xi : (sk + q)$P%

C.4. Subcase P ≡ mj .
We have to show that xi : mj 6∈ ω+(Πmin). First, observe that d(xi : mj) = 0. The
only way to introduce mj is by means of the command feed(xi,mj , 1) which will result
in a nesting level of 1. As discussed in subcase C.3.3., the only means to decrease the
nesting level is by means of the instruction flush. However, flush will transform the
state xi : $mj% into the empty state, which is not equivalent to S. Thus, there is no
program in Πmin able to generate S ≡ xi : mj . Therefore, S 6∈ ω+(Πmin).

C.5. Subcase P ≡ sk.
This is achieved by the program π = feed tag(xj , sk, 1); move(xj , xi, sk), for any xk ∈
Lfeed tag.

4. Proof of Theorem 4

Proof: The proof is identical to the one of theorem 3, where subsubcase C.3.3. is replaced by the
more general subsubcase:

C.3.3’ Subsubscase P ≡ $P ′% with d(P ′) > 0, P 6≡ P ′ + P ′′, and P 6≡ mj .
By induction, there exists a program π ∈ Πwrap, such that 〈π, ∅〉 → xj : P ′ for xj ∈ Lwrap in.
The desired state is obtained by the program π;π′, where π′ is the program

xj : P ′

wrap(xj , xk) xk : $P ′%

transport(xk, xi, xl, σ) xi : $P ′%

where xk ∈ Lwrap out, xl ∈ Lfeed tag, σ ∈ T .

5. Proof of Theorem 5

Proof: The proof is identical to the one of theorem 4 where case C.4. is replaced by:

C.4’ Case P ≡ mj .
By induction, there exists a program π ∈ Πburst, such that 〈π, ∅〉 → xi : σ$mj%. The
desired state is obtained by the program π;π′, where π′ is the program

xi : σ$mj%

burst(xi) xi : σ$%+mj

move(xi, xk, σ) xi : mj ◦ xk : σ$%

flush(xk) xi : mj



27

6. Proof of Theorem 6

Proof: Again, we proof the theorem by induction over the structure of S.

A. Case S ≡ ∅.
Nothing needs to be done in this case: 〈ε, ∅〉 → ∅.

B. Case S ≡ S′ ◦ S′′.
Just as in the proof for theorem 3, we know by induction that there exist π′, π′′ such that
〈π′, S′〉 → ∅ and 〈π′′, S′′〉 → ∅. If follows through lemmas 1 and 2 that 〈π′;π′′, S′ ◦ S′′〉 → ∅.

C. Case S ≡ xi : P .

C.1. Subcase P ≡ 0.
Nothing needs to be done in this case: 〈ε, ∅〉 → ∅.

C.2. Subcase P ≡ P ′ + P ′′.
This is structurally equivalent to xi : P ′ ◦ xi : P ′′ and is therefore reduced to case B.

C.3. Subcase P ≡ q$P ′%.

C.3.1. Subsubcase q ≡ �.

xi : $P%

feed tag(xj , σ) xi : $P% ◦ xj : σ

move(xj , xi, σ) xi : σ +$P%

tag(xi) xi : σ$P%

This reduces the problem to subsubcase C.3.2.

C.3.2. Subsubcase q ≡ sk + q′.
For xj ∈ Lflush, the following program resets the state:

xi : (sk + q)$P%

move(xi, xj , sk) xj : (sk + q)$P%

flush(xj) ∅

C.4. Subcase P ≡ mj .
If xi ∈ Lflush, the program flush(xi) will reset the state. Likewise, if xi ∈ Lwrap in, the
program wrap(xi, xj) will transform the state into xj : $mj% for any xj ∈ Lwrap out

and reduces the problem to subcase C.3.1.. On the other hand, if xi 6∈ Lflush∪Lwrap in,
we have to show that S is not an element of ω−(Πx). Note that all instructions feed,
feed tag tag, move, burst leave xi : mj invariant under transition. Thus, there is no
sequence of instructions that would transform xi : mj into the empty state. Therefore,
xi : mj 6∈ ω−(Πx) for xi 6∈ Lflush ∪ Lwrap in.

C.5. Subcase P ≡ sk.
For xj ∈ Lflush, the following program resets the state:

xi : sk

move(xi, xj , sk) xj : sk

flush(xj) ∅


