
Proc. LICS’94

May 30, 1995 2:44 PM Page 1

A Semantics of Object Types

Martín Abadi and Luca Cardelli

Digital Equipment Corporation, Systems Research Center

Abstract: We give a semantics for a typed object calculus, an
extension of System F with object subsumption and method over-
ride. We interpret the calculus in a per model, proving the soundness
of both typing and equational rules. This semantics suggests a syn-
tactic translation from our calculus into a simpler calculus with nei-
ther subtyping nor objects.

1. Objects, Records, and Functions
Despite the many formal accounts of object-oriented languages,

the meaning and the properties of object types remain unclear. In
particular, the soundness of object subtyping depends on invariants
difficult to capture with standard type constructions; attempts based
on record types have been inspiring but not compelling.

In order to study object types in a clear setting, we give seman-
tics to an extension of Girard’s System F [Girard, Lafont, Taylor
1989] with subtyping, recursion, and some basic object constructs.
Like all common object-oriented languages, this calculus supports
object subsumption and method override. With subsumption, a new
object with more methods can replace an old object transparently.
Override is the operation that modifies the behavior of an object, or
class, by replacing one of its methods. Neither subsumption nor
override is too hard to model in isolation, but their combination has
been problematic (see Section 6).

Our starting point is the naive view that an object is a record of
methods, and that each method is a function. When a method of an
object o is invoked, the corresponding function is applied to o. This
view of objects as records of functions is often used informally in
the literature and it underlies all implementations of standard
(single-dispatch) object-oriented languages. In this work, we extend
this view to object types.

We construct a model based on partial equivalence relations
(pers). In our interpretation, objects are records of functions, object
types are certain unions of recursive record types, and subtypes are
subsets. Along the way, we study unions of pers, and thereby obtain
a per semantics for abstract data types and partially abstract data
types. We prove the soundness of both typing and equational rules.

The per interpretation is direct enough to be informative. In
particular, it suggests a syntactic translation from our calculus to a
less unconventional extension of System F, with recursion and
records, but neither subtyping nor objects.

The rest of this introduction describes objects, their intended
behavior, and the semantic problems that our approach is designed
to solve. Some of this material is borrowed from [Abadi, Cardelli
1994b; Abadi, Cardelli 1994c], where we develop typed and un-
typed object calculi. We start by describing an untyped calculus that
includes object formation, method invocation, and method override.

An object is a collection of components [li=ai iÏ1..n], for distinct
labels li and associated methods ai. The order of these components
does not matter. A method is a function having a special parameter,
called self. A proper method makes use of its self parameter; a field
is a method that ignores self. The letter ς is used as a binder for self,
like a special λ binder; ς(x)b is a method with self parameter x and
with body b. The object containing a given method is called the
method’s host object.

A method invocation (or selection) is written o.lj, where lj is a
label of o. It reduces to the result substituting o for the self parame-
ter in the body of the method named lj. Thus, a method can be ap-
plied only to its host object; this invariant is essential for typing ob-
jects and for reasoning about them.

A method override (or update) is written o.ljfiüς(y)b. The intent
is to replace the method named lj of o with ς(y)b. Our semantics of
override is functional: the result of an override is a copy of the ob-
ject where the overridden method has been replaced by the new one.
This form of method override is more general than usual, in that it
applies to objects rather than classes; the generality does not com-
plicate our formal treatment and has advantages in simplicity and
expressiveness.

We give a direct, informal semantics of objects, viewing them
as primitive:

Primitive Semantics

Let o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o is an object with method names li and methods ς(xi)bi

o.lj Òñ bj{xj←o} selection/invocation (jÏ1..n)

o.ljfiüς(y)b Òñ [li=ς(xi)bi iÏ(1..n)-{j}, lj=ς(y)b] update/override (jÏ1..n)

Notation We write Φi iÏ1..n for a sequence Φ1,...,Φn . The substitution
of c for the free occurrences of x in b is b{x←c}. We use Òñ for
“rewrites to”, @ for definitional equality, 7 for syntactic iden-
tity, and = for provable equality between terms. We identify
terms up to renaming of bound variables.

While the primitive semantics reflects the programmer’s view
of objects, the implementations of standard object-oriented lan-
guages are based on self-application. In the self-application seman-
tics [Kamin 1988], methods are functions, objects are records, invo-
cation is record selection plus self-application, and override is
record update. We use the notation Üli=ai iÏ1..ná for the record with la-
bels li and fields ai; r†lj for record selection (extracting the lj compo-
nent of r); and r†lj:=b for record update (producing a copy of r with
the lj component replaced by b).

Page 2 May 30, 1995 2:44 PM

Self-application Semantics

For o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o @ Üli=λ(xi)bi iÏ1..ná

o.lj @ o†lj(o) = bj{xj←o} (jÏ1..n)

o.ljfiüς(y)b @ o†lj:=λ(y)b = [li=ς(xi)bi iÏ(1..n)-{j}, lj=ς(y)b] (jÏ1..n)

The provable equalities follow from the usual λ-calculus rules. They
show that the self-application semantics matches the primitive se-
mantics. Hence, untyped objects can be faithfully interpreted by λ-
abstraction, application, and record constructions. In turn, records
can be reduced to pure λ-terms.

Unfortunately, the self-application semantics does not directly
extend to typed calculi. Let us write [li:Bi iÏ1..n] for the type of ob-
jects with labels li and methods of result type Bi (iÏ1..n). By map-
ping ς to λ, the self-application semantics causes the type of each
method to be contravariant in the host object type. The contravari-
ance then blocks expected subtyping relations, such as the inclusion
of [l1:B1, l2:B2] into [l1:B1].

Let us consider, for example, the type of polar points, Point @
[ρ,θ: Real]. A proper method associated with θ could return 0.0
whenever the ρ component is not positive. In a naive self-applica-
tion semantics, the type Point is interpreted as a record type: the so-
lution of the type equation Point = Üρ,θ: Point→Realá. But this type
does not include the solution of ColorPoint = Üρ,θ: ColorPoint→-
Real, c:ColorPoint→Colorá, which is the interpretation of the type
ColorPoint @ [ρ,θ: Real, c: Color].

 Semantically, we can remedy this flaw by resorting to the rich
vocabulary of type constructions available in models. Specifically,
we interpret the type Point as the union of all the solutions to the
equations of the form X = Üρ,θ: X→Real, ... á, including for example
X = Üρ,θ: X→Realá and X = Üρ,θ: X→Real, c:X→Colorá. With this
definition, ColorPoint is forced to be a subtype of Point. Our denota-
tional semantics is based on the simple idea just described; the de-
tails necessary are, as usual, intricate.

 Returning to the world of syntax, we can reformulate the deno-
tational semantics within a typed calculus. An existential quantifier
over all possible extensions of a record type replaces the semantic
union operator. With this translation ColorPoint is not a subtype of
Point, but there is a canonical coercion from ColorPoint to Point.

The next section reviews our object calculus more formally.
Sections 3 and 4 describe a denotational semantics for the calculus.
Section 5 concerns the translation into a calculus without objects.
We conclude in Section 6 with comparisons with related work. An
appendix summarizes our formal systems. Examples and proofs can
be found in [Abadi, Cardelli 1994a].

2. A Theory of Primitive Objects
We now review the typed object calculus, leaving most rules for

the appendix. Each rule has a number of antecedent judgments
above a horizontal line and a single conclusion judgment below the
line. Each judgment has the form E ∫ ℑ , for an environment E and
an assertion ℑ depending on the judgment. An antecedent of the
form “E,Ei ∫ ℑ i ÓiÏ1..n” is an abbreviation for n antecedents “E,E1

∫ ℑ 1 ... E,En ∫ ℑ n” if n>0, and if n=0 for “E ∫ Q”, which means E is
well-formed. Instead, a rule containing “jÏ1..n” indicates that there
are n separate rules, one for each j. Environments contain typing as-

sumptions for variables; they can also contain type-variable declara-
tions and subtyping assumptions.

2.1 Object Typing and Subtyping

We start with the typing rules for objects. We give rules for
proving type judgments E ∫ B (“B is a well-formed type in the envi-
ronment E”) and value judgments E ∫ b : B (“b has type B in the
environment E”).

An object of type [li:Bi iÏ1..n] can be formed from a collection of
n methods whose self parameters have type [li:Bi iÏ1..n] and whose
bodies have types B1,...,Bn. When writing [li:Bi iÏ1..n], we always as-
sume that the li are distinct and that permutations do not matter. The
type [li:Bi iÏ1..n] exhibits only the result types Bi, and not the types of
ς-bound variables. The types of all these variables is [li:Bi iÏ1..n], so
no information is missing. When a method li is invoked, it produces
a result of type Bi. A method can be overridden while preserving the
type of its host object.

(Type Object) (li distinct)

E ∫ Bi ÓiÏ1..n
——————

E ∫ [li:Bi iÏ1..n]

(Val x) (Val Object) (where A7[li:Bi iÏ1..n])

E, x:A, E’ ∫ Q E, xi:A ∫ bi : Bi ÓiÏ1..n
————— —————————

E ∫ x: A E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (where A7[li:Bi iÏ1..n]) (Val Override) (where A7[li:Bi iÏ1..n])

E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

 A characteristic of object-oriented languages is that an object
can emulate another object that has fewer methods. We call this no-
tion subsumption, and say that an object can subsume another one.
We define a particular form of subsumption that is induced by a sub-
typing relation between object types. An object that belongs to a
given object type A also belongs to any supertype B of A, and can
subsume objects in B. The judgment E ∫ A <: B asserts A is a sub-
type of B in the environment E.

(Type Top) (Sub Top) (Sub Object) (li distinct)

E ∫ Q E ∫ A E ∫ Bi ÓiÏ1..n+m
——— ————— ——————————

E ∫ Top E ∫ A <: Top E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Val Subsumption)

E ∫ a : A E ∫ A <: B
————————

E ∫ a : B

For convenience, we add a constant, Top, a supertype of every type.
The subtyping rule for objects allows a longer object type
[li:Bi iÏ1..n+m] to be a subtype of a shorter object type [li:Bi iÏ1..n].
Moreover, object types are invariant in their components:
[li:Bi iÏ1..n+m]<:[li:Bi’ iÏ1..n] requires Bi7Bi’ for iÏ1..n. This is neces-
sary for soundness.

The full first-order calculus of objects with subtyping is called
Ob1<: (see the appendix). To facilitate comparison with other first-
order calculi, Ob1<: includes constants and their sorts, but we do not
treat them formally in this paper.

May 30, 1995 2:44 PM Page 3

2.2 Functions, Recursion, and Quantification

Functions (in the form of λ-terms) and recursive values can be
added to Ob1<: via standard rules, though functions can also be en-
coded in terms of objects [Abadi, Cardelli 1994c].

In order to add recursive types, we define a syntactic criterion
for contractiveness in the sense of [MacQueen, Plotkin, Sethi 1986].
If A is formally contractive in the variable X, then the fixpoint
µ(X)A exists and is unique. Object types are formally contractive in
all their variables.

Further, we introduce bounded universal quantifiers and exis-
tential quantifiers, obtaining bounded polymorphic functions and
partially abstract data types [Cardelli, Wegner 1985]. We invent no
new constructions. However, quantifiers can be combined with re-
cursive types to represent interesting notions, such as the Self quan-
tifier [Abadi, Cardelli 1994b]. Our starting point for second-order
calculi is F<:, as described in [Cardelli, et al. 1991], but we assume
only the simpler equational theory of [Curien, Ghelli 1992]. Within
F<: it is possible to encode bounded existential quantifiers. How-
ever, we take them as primitive along with an “eta” rule that is not
available through the encoding ((Eval Repack <:) in the appendix).

F<:µ is the extension of F<: with existentials and recursion. Ob<:µ

is the second-order calculus of objects with recursion and subtyping;
it is Ob1<: plus quantifiers and recursion. FOb<:µ is the extension of
Ob<:µ with function types. We work in FOb<:µ, although it can be
encoded in Ob<:µ [Abadi, Cardelli 1994b]. We do not know whether
Ob<:µ can be encoded in F<:µ while preserving subtypings; Section 5
deals with an encoding that translates subtypings into coercions.

2.3 Equational Theories

We associate an equational theory with each of our calculi. The
judgment E ∫ b ↔ c : A asserts that b and c are equal as elements of
A. We give only the main rules for objects and subtyping: three
rules motivated by the use of subtyping, and two evaluation rules
corresponding to the semantics of the untyped calculus.

(Eq Subsumption) (Eq Top)

E ∫ a ↔ a’ : A E ∫ A <: B E ∫ a:A E ∫ b:B
—————————— ———————

E ∫ a ↔ a’ : B E ∫ a ↔ b : Top

(Eq Sub Object) (where A7[li:Bi iÏ1..n], A’7[li:Bi iÏ1..n+m])

E, xi:A ∫ bi : Bi ÓiÏ1..n E, xj:A’ ∫ bj : Bj ÓjÏn+1..n+m
———————–——————–——————

E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A’)bi iÏ1..n+m] : A

(Eval Select) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A jÏ1..n
—————————

E ∫ a.lj ↔ bj{xj←a} : Bj

(Eval Override) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
—————————————————————

E ∫ a.ljfiüς(x:A)b ↔ [li=ς(xi:A’)bi iÏ(1..n+m)-{j}, lj=ς(x:A’)b] : A

According to (Eq Sub Object) an object can be truncated to its ex-
ternally visible collection of methods, but only if those methods do
not depend on the hidden ones. (The truncated object would not
work otherwise.) Other rules might be sound, but these already pose
interesting semantic difficulties, and give an interesting account of
object equality that suffices for many examples.

3. A Semantics of Objects
In this section and the next one we describe a semantics for our

largest calculus, FOb<:µ, with the associated equational theory. This
section concerns an untyped universe and the interpretation of un-
typed terms. The next section puts a type structure on the untyped
universe.

3.1 The Untyped Universe

The technical assumptions on the untyped universe are fairly
standard [MacQueen, Plotkin, Sethi 1986; Abadi, Plotkin 1990;
Cardone 1990; Amadio 1991]. We need to have a complete partial
order (D,≤) such that:

¢ There are strict, continuous embedding-retraction pairs (e,r)
between D and each of W®, (D→D), and (L→D)®,

W®

ew
îïïïïñ D

rw
îïïïïñ W®

(D→D)

ef
îïïïïñ D

rf
îïïïïñ (D→D)

(L→D)®

eo
îïïïïñ D

ro
îïïïïñ (L→D)®

 where

– W is a one-point set {*}; we view * as the error value;
– (D→D) is the complete partial order of continuous func-

tions from D to D;
– L is a countable set of labels {m0, m1, ...}, and (L→D) is

the complete partial order of functions from L to D; this is
roughly the set of records over these labels;

– X® denotes the lifting of X.

¢ There is an increasing sequence pn: D→D of continuous
projections with finite range and with least upper bound the
identity. Further, p0 constantly equals ®. Let ; denote function
composition, and hÁS denote the restriction of h which maps
elements outside S to ®. For all i,

pi+1(ew(*)) = ew(*)

pi+1(ef(f)) = ef(pi; f; pi) f Ï D→D

pi+1(eo(o)) = eo((o; pi)Á{m0,...,mi}) o Ï L→D

We commonly view W, D→D, and L→D as subsets of D, and
write x = * for x = ew(*), x Ï (D→D) for x Ï range(ef), and x Ï
(L→D) for x Ï eo(L→D). When x, y Ï D, m Ï L, we write x(y) for
rf(x)(y) and x(m) for ro(x)(m). Below, we omit the various e’s and
r’s. Thus, pi+1(*) is *; pi+1(f)(x) is pi(f(pi(x))); and pi+1(o)(mj) is
pi(o(mj)) if j≤i, and ® otherwise.

If x Ï D is such that pn(x) = x for some n then x is finite, and the
least n for which pn(x) = x is the rank of x. If x is finite and Üyiá is an
increasing chain then x ≤ «i yi implies that x ≤ yk for some k.

A suitable D can be constructed by applying the usual “limit of
a sequence of iterates” method to solve the domain equation D =
W® + (D→D) + (L→D)®, making sure that pi(eo((L→D)®)) is al-
ways a finite set.

3.2 The Interpretation of Untyped Terms

Next we define the interpretation of untyped terms. The inter-
pretation of typed terms will be based on the interpretation of un-
typed terms. We define the semantics function:

[] : (V→D)→(E→D)

Page 4 May 30, 1995 2:44 PM

where V is the set of variables and E the set of expressions. We call
a mapping ρ in V→D an environment and write [a] ρ for the seman-
tics of term a with an environment ρ. We write ÜÜm1=v1, ..., mn=vnáá
for the function in (L→D) that maps m1 to v1, ..., mn to vn, and maps
all other labels to *. If f is a function and l is in its domain, we write
fÜl←vá for the function that maps l to v and is identical to f else-
where. With this notation, we set:

[x] ρ = ρ(x)

[λ(x)b] ρ = λ(v) [b] ρÜx←vá

[b(a)] ρ = if [b] ρ ™ (D→D)

then [b] ρ([a] ρ)

else *
[[mi=ς(xi)ci iÏI]] ρ = ÜÜmi= [λ(xi)ci] ρ iÏIáá

[a.m] ρ = if [a] ρ ™ (L→D) and [a] ρ(m) ™ (D→D)

then [a] ρ(m)([a] ρ)

else *
[a.m fiü ς(x)c] ρ = if [a] ρ ™ (L→D)

then [a] ρÜm←[λ(x)c] ρá

else *

This definition is given in a metalanguage where v ™ V is a strict
membership test, and where conditionals and conjunctions are strict
and evaluated left to right, e.g., [a.m fiü ς(x)c] ρ=® if [a] ρ=®.

Note how the semantics turns ς’s into λ’s and objects into
records. The catch is that the denotations of object types will not be
the obvious record types. Note also that, for simplicity, overriding a
method does not produce an error if the method is not present in the
first place.

This semantics validates the reduction rules for objects. Many
of the more interesting equations for objects fail; but they do hold
under the typed semantics of the next section.

4. A Semantics of Object Types
The semantics of types is based on the metric approach of

MacQueen, Plotkin, and Sethi [MacQueen, Plotkin, Sethi 1986].
More precisely, we follow Amadio [Amadio 1991] and Cardone
[Cardone 1989] in the use of complete uniform pers and contractive
functions on pers. We rely on their work for the semantics of F<:µ,
and contribute a treatment of abstract data types and of object types.

It might be possible to obtain a semantics for FOb<:µ with stan-
dard O-categorical methods [Smyth, Plotkin 1982] instead of metric
methods. However, as in F<:µ [Abadi, Plotkin 1990], it is not clear
how to integrate subtyping into the semantics of types as functors.

4.1 Types in the Untyped Universe

Having described an untyped model, we view the types as cer-
tain binary relations on this untyped model. Intuitively, if A is a type
and RΑ is the associated relation, then (x,y) Ï RΑ means that x and y
are equal elements of A. Section 4.1.1 introduces operations on bi-
nary relations. Sections 4.1.2 and 4.1.3 concern the union operation
and metric properties.

4.1.1 Semantic Definitions

We will be dealing with binary relations over D, by convention
only those that do not have * in their domains. It is easy to show that
all our constructions preserve this property. A per is a symmetric
transitive binary relation on D. A per X is uniform if u X v implies

(pi(u)) X (pi(v)) for all i. A per X is complete if ®X® and X is closed
under limits of increasing sequences in the ≤ order. A cuper is a
complete uniform per. The set of all cupers is CUPER. Below, all
types are interpreted as cupers.

First we describe some usual operations on cupers. The func-
tion-space operation is given by:

R→T = {(f,g) Ï (D→D)2 | if xRy then f(x)Tg(y)}

If R, T Ï CUPER then R→T Ï CUPER. We can calculate meets
and joins of cupers:

 »iÏI Xi = ∩iÏI Xi «iÏI Xi = C (∪ iÏI Xi)

where C (X) is the least cuper that contains X. (The cuper C (X) is
always defined.) If Xi Ï CUPER for all i Ï I then »iÏI Xi Ï CUPER
and «iÏI Xi Ï CUPER.

The distance between two cupers is 2–r, where r is the minimum
rank where the two cupers differ, and it is 0 if the two cupers are
equal. The set of all cupers with this distance function is a complete
metric space. Furthermore, by the Banach Fixpoint Theorem, if F is
a contractive map between cupers then it has a unique fixpoint. This
is the basis of a usual interpretation of recursive types. If F(S) is a
contractive function in S on CUPER, then we write µ(S)F(S) for its
unique fixpoint.

In order to give a semantics to object types, we first define:

ÜÜmi : Ti iÏIáá = {(®,®)} ∪ {(o,o’) Ï (L→D)2 | ÓiÏI. (o(mi), o’(mi)) Ï Ti}

We view ÜÜmi : Ti iÏIáá as a record type, with fields mi and types Ti. If
Ti Ï CUPER for all i Ï I then ÜÜmi : Ti iÏIáá Ï CUPER.

Let G denote the set of all cuper functions of the form
λ(S)ÜÜmi : S→Ti iÏIáá; an element of G can be written in this form
uniquely. We say that F = λ(S)ÜÜmi : S→Ti i ÏIáá extends H =
λ(S)ÜÜmj : S→Tj jÏJáá if I ⊇ J, and write F) H. We set:

ÄÄmi:Ti iÏIÅÅ = « {µ(S)F(S) | F Ï G, F) λ(S)ÜÜmi:S→Ti iÏIáá}

The types of the form ÄÄmi:Ti iÏIÅÅ are our semantic object types. This
definition is proper because if F Ï G then F(S) is contractive in S,
and hence µ(S)F(S) exists and is unique.

In the imperfect self-application semantics of Section 1, we at-
tempt to model object types as recursive record types, but fail to ob-
tain all the expected subtypings. Here, we define an object type to
be a union of recursive record types. Each object type is designed to
contain all longer ones. We obtain the expected subtypings: if I ⊆ J
then ÄÄmj : Tj jÏJÅÅ ⊆ ÄÄmi : Ti iÏIÅÅ.

4.1.2 Understanding Unions

In this section we analyze unions of relations. This is necessary
because the definitions do not give an explicit description of the el-
ements of a union. In particular, it is not true that if (x,y) Ï S « T
then either (x,y) Ï S or (x,y) Ï T, and the definition of S « T does
not help much in pinning down what else (x,y) could be. Our first
result reduces closure to transitive closure for finite elements. The
second one enables us to reason about all elements of a union by
reasoning about the elements of its components; this is useful in
validating the elimination rules of our calculus for abstract data
types and for objects.

Lemma
If X Ï CUPER, then C (X) is the chain completion of the transi-
tive closure of the finite part of X.

May 30, 1995 2:44 PM Page 5

Lemma
If Ri Ï CUPER for all i Ï I, S Ï CUPER, f and g are continuous
functions, and for all i, (x,y) Ï Ri implies (f(x),f(y)) Ï S and
(f(x),g(y)) Ï S, then (x,y) Ï «iÏI Ri implies (f(x),g(y)) Ï S.

4.1.3 Metric Properties

Amadio has verified that the usual type constructors →, », and
µ are contractive or nonexpansive in the cuper model as in the ideal
model. In order to interpret all formally contractive type expres-
sions, we extend Amadio’s results to deal with bounds, with «, and
with object types.

Proposition
If Ti(R1,...,Rk) is nonexpansive in R1,...,Rk for all i Ï I then
ÄÄmi:Ti(R1,...,Rk) iÏIÅÅ is contractive in R1,...,Rk. If T(R1,...,Rk+1) is
contractive (nonexpansive) in R1,...,Rk+1 and S(R1,...,Rk) is non-
expansive in R1,...,Rk, then »Rk+1ÏCUPER, Rk+1⊆ S(R1,...,Rk) T(R1, ...,
Rk+1) and «Rk+1ÏCUPER, Rk+1⊆ S(R1,...,Rk) T(R1, ..., Rk+1) are contrac-
tive (nonexpansive) in R1,...,Rk.

4.2 The Interpretation of Types and Typed Terms

Sections 4.2.1 gives the interpretation of the typed calculus.
Section 4.2.2 proves the soundness of the rules under this interpre-
tation. (See the appendix for the syntax of the typed calculus and its
rules.)

4.2.1 Interpreting Typed Terms and Types

The semantics of a typed term is the semantics of its erasure: if
a is a typed term then [a] ρ = [e(a)] ρ. The erasure function is a trans-
lation from the typed terms of FOb<:µ to the untyped calculus:

e(x) = x

e(λ(x:A)b) = λ(x)e(b)

e(b(a)) = e(b)(e(a))

e(λ(X<:A)b) = e(b)

e(b(A)) = e(b)

e(pack X<:A=C, b{X}:B{X}) = e(b)

e(open c as X<:A,x:B in d:D) = e(d{x←c})

e([mi= ς(xi:A)ci iÏ1..n]) = [mi=ς(xi)e(ci) iÏ1..n]

e(a.m) = e(a).m

e(a.m fiü ς(x:A) c) = e(a).m fiü ς(x)e(c)

We omit the constructs fold and unfold, and value-level recursion.
Recursive values can be obtained with the definable í combinator;
and since we find exact solutions for recursive-type equations, fold
and unfold can both be interpreted as the identity function.

To interpret types, we define the semantics function:

[] : (TV→CUPER)→(TE→CUPER)

where TV is the set of type variables and TE the set of type expres-
sions. A mapping η in TV→CUPER is a type environment. We de-
fine [A] η, the semantics of type A with the environment η:

[X] η = η(X)

[A→B] η = [A] η→[B] η

[Ó(X<:B)A] η = »RÏCUPER, R⊆ [B]η [A] ηÜX←Rá

[Ô(X<:B)A] η = «RÏCUPER, R⊆ [B]η [A] ηÜX←Rá

[µ(X)A] η = µ(T) [A] ηÜX←Tá

[[mi:Ci iÏ1..n]] η = ÄÄmi : [Ci] η iÏ1..nÅÅ

[Top] η = (D – {*})2

Note that the relation <: is simply interpreted as cuper containment.
The definition for recursive types is proper because of the connec-
tion between contractiveness and formal contractiveness:

Proposition
If A is a well-formed type expression then [A] ηÜX←Rá is nonex-
pansive in R. If A is formally contractive in X then [A] ηÜX←Rá is
contractive in R.

4.2.2 Soundness of the Rules

We say that E and η are consistent in the usual sense: if X<:A
appears in E then η(X) ⊆ [A] η. We say that E, η, and (ρ,ρ’) are con-
sistent when, in addition, if x:A appears in E then (ρ(x),ρ’(x)) Ï
[A] η. We derive the following soundness results:

Theorem (Soundness)
Assume that η and (ρ , ρ’) are consistent with E. Then, for
derivations in FOb<:µ:

If E ∫ A then [A] η Ï CUPER.

If E ∫ A <: B then [A] η ⊆ [B] η.

If E ∫ a : A then ([a] ρ, [a] ρ’) Ï [A] η.

If E ∫ a ↔ a’ : A then ([a] ρ, [a’] ρ’) Ï [A] η.

An immediate corollary is that no well-typed term has * as its deno-
tation. It also follows that the type theory and the equational theory
are consistent.

5. A Translation and its Coherence
The interpretation of the previous section suggests many trans-

lations of the object calculus into other calculi. Finding a good trans-
lation proves rather delicate, however: we should avoid introducing
new subtyping relations or new subtyping properties in our target
calculus, lest it becomes almost as special as the source calculus.
We would like a syntactic explanation of objects in terms of more
standard constructs, with regular rules and general semantics.

Breazu-Tannen et al. [Breazu-Tannen, et al. 1991] have ex-
plored an interpretation of subtyping in terms of implicit coercions.
Their source calculus is an extension of F<: with recursion and
records. Their target calculus is a corresponding extension of Sys-
tem F. We adopt their approach, adding existential quantifiers and
rows to their target calculus. Our full target calculus appears in the
appendix.

A row is a set of labels and types li:Bi iÏ1..n, much like an in-
complete record type. A row R has kind ↑ (li iÏ1..n) if it is missing the
labels li iÏ1..n. If a row R has kind ↑ (), then ÜRá is a record type. Such
a row can be assembled from the empty row , which lacks any set
of labels, by successive additions of components l:B.

The rows we use are simpler than the ones treated in [Cardelli
1994], since we do not need rows at the value level. A record of
type Üli:Bi iÏ1..n,á can be built from components bi:Bi. The rules for
record selection and update make use of rows, and are otherwise
straightforward. Note that we have no way of extending existing
records.

Rows are a convenient but not an essential addition: they can be
encoded in F<: [Cardelli 1994], and hence in F. For simplicity we do
not consider this reduction further. We note only that the reduction
yields that the target calculus is sound.

Page 6 May 30, 1995 2:44 PM

A derivation Ψ of a judgment ℑ is written Ψ1,...,Ψn ≈≈≈≈R ℑ , where
n≥0, R is the last rule of Ψ, and Ψ1,...,Ψn are the derivations of the
assumptions of R; Ψ stands for Ψ1,...,Ψn. Further, Ψ ≈≈≈≈R ℑ stands
for a derivation of ℑ via R, and Ψ ≈≈≈≈ ℑ for an arbitrary derivation
of ℑ . We define the following translations for the types and judg-
ments of Ob1<::

A* is a type in the target calculus

(Ψ ≈≈≈≈ E ∫ A <: B)* is a term of type A*→B* in the target calculus

(Ψ ≈≈≈≈ E ∫ a : A)* is a term of type A* in the target calculus

For object types, an existential quantifier over rows replaces the
union that appears in the semantics. Further, it is convenient to rear-
range records of functions into functions that return records, so we
use types of the form Y→Üli:Bi iÏ1..n,...á instead of Üli:Y→Bi iÏ1..n,...á.

Definition (Translation of Types)

Top* @ Üá (the empty record type)

[li:Bi iÏ1..n]* @ Ô(X::↑ (li iÏ1..n)) äli:Bi* iÏ1..n,Xã X Ì FV(Bi)

where äli:Bi iÏ1..n,Xã @ µ(Y) Y→Üli:Bi iÏ1..n,Xá, for Y Ì FV(Bi)∪ {X}.
The translations of subtype and value judgments are by induc-

tion on derivations.

Definition (Translation of Subtype Judgments)

(Ψ ≈≈≈≈(Sub Refl) E ∫ A <: A)* @ λ(x:A*)x

((Ψ 1 ≈≈≈≈ E ∫ A <: B, Ψ 2 ≈≈≈≈ E ∫ B <: C) ≈≈≈≈(Sub Trans) E ∫ A <: C)* @

 λ(x:A*) (Ψ 2 ≈≈≈≈ E ∫ B <: C)* ((Ψ 1 ≈≈≈≈ E ∫ A <: B)* (x))

(Ψ ≈≈≈≈(Sub Top) E ∫ A <: Top)* @ λ(x:A*)Üá

(Ψ ≈≈≈≈(Sub Object) E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n])* @

λ(o:[li:Bi iÏ1..n+m]*)

open o as X::↑ (li iÏ1..n+m), x: äli:Bi* iÏ1..n+m,Xã

in pack X’::↑ (li iÏ1..n)=(li:Bi* iÏn+1..m,X), x: äli:Bi* iÏ1..n,X’ã

((Ψ 1 ≈≈≈≈ E ∫ a : A, Ψ 2 ≈≈≈≈ E ∫ A <: B) ≈≈≈≈(Val Subsumpiton) E ∫ a : B)* @

(Ψ 2 ≈≈≈≈ E ∫ A <: B)* (Ψ 1 ≈≈≈≈ E ∫ a : A)*

Note that if the empty record type is interpreted as containing every
value, then the coercions into it can be implemented as identity
functions. Then all the coercions generated by the translation are
implemented as identity functions as well.

Definition (Translation of Value Judgments)

(Ψ ≈≈≈≈(Val x) E’,x:A,E” ∫ x:A)* @ x

((Ψ i ≈≈≈≈ E, xi:A ∫ bi : Bi) ≈≈≈≈(Val Object) E ∫ [li=ς(xi:A)bi iÏ1..n] : A)* @

pack X::↑ (li iÏ1..n)=,

fold(äli:Bi* iÏ1..n,Xã,

λ(x:äli:Bi* iÏ1..n,Xã)

Üli=(Ψ i ≈≈≈≈ E, xi:A ∫ bi : Bi)*

{xi←pack X::↑ (li iÏ1..n)=, x:äli:Bi* iÏ1..n,Xã} iÏ1..ná)

: äli:Bi* iÏ1..n,Xã

((Ψ ≈≈≈≈ E ∫ a : [li:Bi iÏ1..n]) ≈≈≈≈(Val Select) E ∫ a.lj : Bj)* @

open (Ψ ≈≈≈≈ E ∫ a : [li:Bi iÏ1..n])* as X::↑ (li iÏ1..n), x:äli:Bi* iÏ1..n,Xã

in unfold(x)(x)†lj

((Ψ 1 ≈≈≈≈ E ∫ a : A, Ψ 2 ≈≈≈≈ E, x:A ∫ b : Bj)

≈≈≈≈(Val Override) E ∫ a.ljfiüς(x:A)b : A)* @

open (Ψ 1 ≈≈≈≈ E ∫ a : [li:Bi iÏ1..n])* as X::↑ (li iÏ1..n), x:äli:Bi* iÏ1..n,Xã

in pack X’::↑ (li iÏ1..n)=X,

fold(äli:Bi* iÏ1..n,X’ã,

λ(x’:äli:Bi* iÏ1..n,X’ã)

unfold(x)(x’)†lj:=

(Ψ 2 ≈≈≈≈ E, x:A ∫ b : Bj)*

 {x←pack X”::↑ (li iÏ1..n)=X’, x’:äli:Bi* iÏ1..n,X”ã})

: äli:Bi* iÏ1..n,X’ã

We obtain a coherence result, guaranteeing that the translation
of a judgment is independent of its derivation.

Theorem (Coherence)
If f and f’ are the translations of two Ob1<: derivations that end
with the same value or subtype judgment, then f and f’ are
provably equal in the target calculus.

Further, the congruence rules and evaluation rules for objects
are validated through the translation. So are the equational rules re-
lated to subtyping, with the exception of (Eq Sub Object). Proving
the translation of (Eq Sub Object) in the target calculus may require
additional principles, such as a bisimulation rule for abstract data
types [Aczel, Mendler 1989; Plotkin, Abadi 1993].

The translation extends to the full FOb<:µ. The coherence prob-
lems for arrows and universal quantifiers have been essentially
solved [Breazu-Tannen, et al. 1991]. We do not expect surprises
from existential quantifiers. Further work is needed on recursion
[Breazu-Tannen, Gunter, Scedrov 1990].

6. Related work
We finish with some comparisons with the most closely related

works.
¢ It is common to encode existential quantifiers from universal
quantifiers. However, to our knowledge, the detailed cuper seman-
tics of existentials as unions had not been worked out. Cardone’s
thesis describes an instructive attempt [Cardone 1990].
¢ For some time, one of us (L.C.) has searched for a satisfactory
encoding of typed objects in terms of typed records. In absence of
such encodings, various authors have defined and used rich calculi
with records (e.g., [Wand 1989; Cardelli, Mitchell 1991; Harper,
Pierce 1991; Pierce, Turner 1994]). A general encoding was not
proposed, but many object-flavored examples could be expressed
and examined. Mitchell [Mitchell 1990] proposed an encoding that
does not respect subtyping. Pierce and Turner [Pierce, Turner 1994]
sketched an encoding for objects and classes that respects subtyping,
but does not account for our method override operations on objects.
¢ Some ideas presented here originated in the study of Baby
Modula-3 [Abadi 1994]. That calculus resembles in power Ob1<:µ

(Ob1<: plus recursion), but the two are incomparable. The semantics
of Baby Modula-3 is based on ideals. A per semantics is also briefly
sketched, without a corresponding study of equational rules.
¢ Our work is closely related in spirit to that of Mitchell et al.
[Mitchell, Honsell, Fisher 1993]. The most significant difference is
that they support object extension, while we support subtyping and
subsumption. Further, they show soundness of typing by a subject
reduction proof, while we construct a model and justify an equa-
tional theory.

May 30, 1995 2:44 PM Page 7

¢ The TOOPL language [Bruce 1993] has built-in objects and
supports a form of subsumption obtained via two subtyping rela-
tions. The semantics of TOOPL is based on generators and F-
bounded quantification [Canning, et al. 1989], rather than on the
self-application semantics. Generator semantics avoid problems of
contravariance by binding self at object-formation time with a
value-level recursion. As a consequence, objects and object genera-
tors (classes) are distinct.

Appendix A: The Ob1<: Calculus

Environments E ::=   E,x:A
Type Constants K
Types A,B,C ::= K  Top  [li:Bi iÏ1..n]
Variables x,y
Constants k
Values a,b,c ::= x  k(ai iÏ1..n)

  [li=ς(xi:A)bi iÏ1..n]  a.l  a.lfiüς(x:A)b

In addition to the rules for constants [Abadi, Cardelli 1994b]
and the rules give in the text, (Type Top), (Type Object), (Sub Top),
(Sub Object), (Val Subsumption), (Val x), (Val Object), (Val Se-
lect), (Val Override), (Eq Subsumption), (Eq Top), (Eq Sub Object),
(Eval Select), and (Eval Override), we have:

(Env ) (Env x)

E ∫ A xÌdom(E)
—— ———————

 ∫ Q E,x:A ∫ Q

(Sub Refl) (Sub Trans)

E ∫ A E ∫ A <: B E ∫ B <: C
———— —————————

E ∫ A <: A E ∫ A <: C

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

(Eq x) (Eq Object) (where A7[li:Bi iÏ1..n])

E’,x:A,E” ∫ Q E, xi:A ∫ bi ↔ bi’ : Bi ÓiÏ1..n
——————— ————————————–————

E’,x:A,E” ∫ x↔x : A E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A)bi’ iÏ1..n] : A

(Eq Select)

E ∫ a ↔ a’ : [li:Bi iÏ1..n] jÏ1..n
———————————

E ∫ a.lj ↔ a’.lj : Bj

(Eq Override) (where A7[li:Bi iÏ1..n])

E ∫ a ↔ a’ : A E, x:A ∫ b ↔ b’ : Bj jÏ1..n
————————————————

E ∫ a.ljfiüς(x:A)b ↔ a’.ljfiüς(x:A)b’ : A

Appendix B: The FOb<:µ Calculus

Environments E ::=   E,x:A  E,X<:A
Type Variables X,Y
Types A,B,C,D ::= X  Top  [li:Bi iÏ1..n]  A→B

  Ó(X<:A)B  Ô(X<:A)B  µ(X)A
Variables x,y

Values a,b,c,d ::= x  [li=ς(xi:A)bi iÏ1..n]  a.l  a.lfiüς(x:A)b
  λ(x:A)b  b(a) λ(X<:A)b  b(A)
  pack X<:A=C, b{X}:B{X}
  open c as X<:A,x:B in d:D
  fold(µ(X)A, a) unfold(a)  µ(x:A)a

This calculus consists of the rules of Ob1<:, except for the rules
for constants, plus the following:

(Env X<:)

E ∫ A XÌdom(E)
———————

E,X<:A ∫ Q

(Type X<:) (Type Arrow)

E’,X<:A,E” ∫ Q E ∫ A E ∫ B
——–——— —————

E’,X<:A,E” ∫ X E ∫ A→B

(Type All<:) (Type Exists<:) (Type Rec<:)

E,X<:A ∫ B E,X<:A ∫ B E,X ∫ A A(X
————— ————— ——————

E ∫ Ó(X<:A)B E ∫ Ô(X<:A)B E ∫ µ(X)A

(Sub X) (Sub Arrow)

E’,X<:A,E” ∫ Q E ∫ A’ <: A E ∫ B <: B’
——————— —————————

E’,X<:A,E” ∫ X<:A E ∫ A→B <: A’→B’

(Sub All) (Sub Exists)

E ∫ A’ <: A E,X<:A’ ∫ B <: B’ E ∫ A <: A’ E,X<:A ∫ B <: B’
—————————–—— ——————–—————

E ∫ Ó(X<:A)B <: Ó(X<:A’)B’ E ∫ Ô(X<:A)B <: Ô(X<:A’)B’

(Sub Rec)

E ∫ µ(X)A E ∫ µ(Y)B E,Y,X<:Y ∫ A<:B
————————————————

E ∫ µ(X)A <: µ(Y)B

(Val Fun) (Val Appl)

E,x:A ∫ b : B E ∫ b : A→B E ∫ a : A
——————— ——————–——

E ∫ λ(x:A)b : A→B E ∫ b(a) : B

(Val Fun2<:) (Val Appl2<:)

E,X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’<:A
————————— —————–———————

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : B{A’}

(Val Pack<:)

E ∫ C <: A E ∫ b{C} : B{C}
—————————————————

E ∫ (pack X<:A=C, b{X}:B{X}) : Ô(X<:A)B{X}

(Val Open<:)

E ∫ c : Ô(X<:A)B E ∫ D E,X<:A,x:B ∫ d : D
—————————————————

E ∫ (open c as X<:A,x:B in d:D) : D

(Val Fold) (Val Unfold)

E ∫ a : A{X←µ(X)A} E ∫ a : µ(X)A
————————— ——————————

E ∫ fold(µ(X)A, a) : µ(X)A E ∫ unfold(a) : A{X←µ(X)A}

(Val Rec)

E,x:A ∫ a : A
——–———

E ∫ µ(x:A)a : A

Page 8 May 30, 1995 2:44 PM

(Eq Fun) (Eq Appl)

E,x:A ∫ b ↔ b’ : B E ∫ b ↔ b’ : A→B E ∫ a ↔ a’ : A
——————————— ————————————

E ∫ λ(x:A)b ↔ λ(x:A)b’ : A→B E ∫ b(a) ↔ b’(a’) : B

(Eq Fun2<:)

E,X<:A ∫ b ↔ b’ : B
——————————————

E ∫ λ(X<:A)b ↔ λ(X<:A)b’ : Ó(X<:A)B

(Eq Appl2<:)

E ∫ b ↔ b’ : Ó(X<:A)B{X} E ∫ A’<:A
——————————–————

E ∫ b(A’) ↔ b’(A’) : B{A’}

(Eq Pack<:)

E ∫ C <: A’ E ∫ A’<:A E,X<:A’ ∫ B’{X}<:B{X} E ∫ b{C} ↔ b’{C} : B’{C}
————————————————————————

E ∫ (pack X<:A=C,b{X}:B{X})↔(pack X<:A’=C,b’{X}:B’{X}) : Ô(X<:A)B{X}

(Eq Open<:)

E ∫ c ↔ c’ : Ô(X<:A)B E ∫ D E,X<:A,x:B ∫ d ↔ d’ : D
————————————————————————

E ∫ (open c as X<:A,x:B in d:D) ↔ (open c’ as X<:A,x:B in d’:D) : D

(Eq Fold<:)

E ∫ µ(X)A E ∫ µ(Y)B E,Y,X<:Y ∫ A<:B E ∫ a ↔ a’ : A{X←µ(X)A}
——————————–————————————

E ∫ fold(µ(X)A, a) ↔ fold(µ(Y)B, a’) : µ(Y)B

(Eq Unfold)

E ∫ a ↔ a’ : µ(X)A
———————————————

E ∫ unfold(a) ↔ unfold(a’) : A{X←µ(X)A}

(Eq Rec)

E,x:A ∫ a↔a’ : A
—————–—–———

E ∫ µ(x:A)a ↔ µ(x:A)a’ : A

(Eval Beta) (Eval Eta)

E ∫ λ(x:A)b : A→B E ∫ a : A E ∫ b : A→B xÌdom(E)
————————–——— —––————————

E ∫ (λ(x:A)b)(a) ↔ b{x←a} : B E ∫ λ(x:A)b(x) ↔ b : A→B

(Eval Beta2<:) (Eval Eta2<:)

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ C <: A E ∫ b : Ó(X<:A)B XÌdom(E)
———————–—––—–—— —–——–—–—————

E ∫ (λ(X<:A)b)(C) ↔ b{X←C} : B{X←C} E ∫ λ(X<:A)b(X) ↔ b : Ó(X<:A)B

(Eval Unpack<:) (where c7pack X<:A=C, b{X}:B{X})

E ∫ c : Ô(X<:A)B{X} E ∫ D E,X<:A,x:B{X} ∫ d{X,x} : D
——————————————————————

E ∫ (open c as X<:A,x:B{X} in d{X,x}:D) ↔ d{C,b{C}} : D

(Eval Repack<:)

E ∫ b : Ô(X<:A)B{X} E,y:Ô(X<:A)B{X} ∫ d{y} : D
———————————————————————

E ∫ (open b as X<:A, x:B{X} in d{pack X’<:A=X, x:B{X’}}:D) ↔ d{b} : D

(Eval Fold)

E ∫ a : µ(X)A
—————————–————

E ∫ fold(µ(X)A,unfold(a)) ↔ a : µ(X)A

(Eval Unfold)

E ∫ a : A{X←µ(X)A}
—————–———————————

E ∫ unfold(fold(µ(X)A,a)) ↔ a : A{X←µ(X)A}

(Eval Rec)

E,x:A ∫ a : A
————————————

E ∫ µ(x:A)a ↔ a{x←µ(x:A)a} : A

Formal Contractiveness.
The relation A (Y (type expression A is formally contractive

in variable Y) is defined as follows:

X (Y if X≠Y

Top (Y always

[li:Bi iÏ1..n] (Y always

A→B (Y always

Ó(X<:A)B (Y if B (X and B (Y (no requirement on A)

Ô(X<:A)B (Y if B (X and B (Y (no requirement on A)

µ(X)A (Y if A (Y

Appendix C: The Target Calculus
Environments E ::=   E,x:A  E,X::K
Kinds K ::= Type  ↑ (l1..ln)
Type/Row Vars X,Y
Types A,B,C,D ::= X  ÜRá  A→B

  Ó(X::K)B  Ô(X::K)B  µ(X)A
Rows R ::= X    l:B,R
Variables x,y
Values a,b,c,d ::= x  Üli=bi iÏ1..ná  a†l  a†l:=b

  λ(x:A)b  b(a) λ(X::K)b  b(A)
  pack X::K=C, b{X}:B{X}
  open c as X::K,x:B in d:D
  fold(µ(X)A, a) unfold(a)  µ(x:A)a

E,X,E’ stands for E,X::Type,E’. E ∫ A stands for E ∫ A::Type.
(l1..ln) is a set of labels; we write (l,l1..ln) to imply that l ≠ l1..ln.

(Env ) (Env x) (Env X)

E ∫ A xÌdom(E) E ∫ K kind XÌdom(E)
—— ——————— —————————

 ∫ Q E,x:A ∫ Q E,X::K ∫ Q

(Kind Type) (Kind Row)

E ∫ Q E ∫ Q
————— ——————

E ∫ Type kind E ∫ ↑ (l1..ln) kind

(Type X) (Type Arrow) (Type Record)

E’,X,E” ∫ Q E ∫ A E ∫ B E ∫ R::↑ ()
———— ————— ————

E’,X,E” ∫ X E ∫ A→B E ∫ ÜRá

(Type All) (Type Exists) (Type Rec)

E,X::K ∫ B E,X::K ∫ B E,X ∫ A A(X
————— ————— ——————

E ∫ Ó(X::K)B E ∫ Ô(X::K)B E ∫ µ(X)A

(Row X) (Row )

E’,X::↑ (l1..ln),E” ∫ Q E ∫ Q
—————————— —————

E’,X::↑ (l1..ln),E” ∫ X::↑ (l1..ln) E ∫  :: ↑ (l1..ln)

(Row Cons)

E ∫ R::↑ (l,l1..ln) E ∫ B
—————————

E ∫ l:B,R :: ↑ (l1..ln)

May 30, 1995 2:44 PM Page 9

(Val x) (Val Fun) (Val Appl)

E’,x:A,E” ∫ Q E,x:A ∫ b : B E ∫ b : A→B E ∫ a : A
————— ——————— ————–————

E’,x:A,E” ∫ x:A E ∫ λ(x:A)b : A→B E ∫ b(a) : B

(Val Record)

E ∫ bi : Bi ÓiÏ1..n
——————————

E ∫ Üli=bi iÏ1..ná : Üli:Bi iÏ1..n,á

(Val Select) (Val Update)

E ∫ a : Ül:B,Rá E ∫ a : Ül:B,Rá E ∫ b : B
————— —————————

E ∫ a†l : B E ∫ a†l:=b : Ül:B,Rá

(Val Fun2) (Val Appl2)

E,X::K ∫ b : B E ∫ b : Ó(X::K)B{X} E ∫ A::K
————————— ————————————

E ∫ λ(X::K)b : Ó(X::K)B E ∫ b(A) : B{A}

(Val Pack)

E ∫ A::K E ∫ b{A} : B{A}
————————————————

E ∫ (pack X::K=A, b{X}:B{X}) : Ô(X::K)B{X}

(Val Open)

E ∫ c : Ô(X::K)B E ∫ D E,X::K,x:B ∫ d : D
—————————————————

E ∫ (open c as X::K,x:B in d:D) : D

(Val Fold) (Val Unfold)

E ∫ a : A{X←µ(X)A} E ∫ a : µ(X)A
————————— ——————————

E ∫ fold(µ(X)A, a) : µ(X)A E ∫ unfold(a) : A{X←µ(X)A}

(Val Rec)

E,x:A ∫ a : A
—————

E ∫ µ(x:A)a : A

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

(Eq x)

E’,x:A,E” ∫ Q
———————

E’,x:A,E” ∫ x↔x : A

(Eq Fun) (Eq Appl)

E,x:A ∫ b ↔ b’ : B E ∫ b ↔ b’ : A→B E ∫ a ↔ a’ : A
——————————— ————————————

E ∫ λ(x:A)b ↔ λ(x:A)b’ : A→B E ∫ b(a) ↔ b’(a’) : B

(Eq Record) (Eq Select)

E ∫ bi↔bi’ : Bi ÓiÏ1..n E ∫ a↔a’ : Ül:B,Rá
——————————————— ————–——

E ∫ Üli=bi iÏ1..ná ↔ Üli=bi’ iÏ1..ná : Üli:Bi iÏ1..n,á E ∫ a†l ↔ a’†l : B

(Eq Update)

E ∫ a↔a’ : Ül:B,Rá E ∫ b↔b’ : B
————————————

E ∫ a†l:=b ↔ a’†l:=b’ : Ül:B,Rá

(Eq Fun2)

E,X::K ∫ b ↔ b’ : B
——————————————

E ∫ λ(X::K)b ↔ λ(X::K)b’ : Ó(X::K)B

(Eq Appl2)

E ∫ b ↔ b’ : Ó(X::K)B{X} E ∫ A::K
——————————————

E ∫ b(A) ↔ b’(A) : B{A}

(Eq Pack)

E ∫ A::K E,X::K ∫ B{X} E ∫ b{A} ↔ b’{A} : B{A}
————————————————————————

E ∫ (pack X::K=A, b{X}:B{X}) ↔ (pack X::K=A, b’{X}:B{X}) : Ô(X::K)B{X}

(Eq Open)

E ∫ c ↔ c’ : Ô(X::K)B E ∫ D E,X::K,x:B ∫ d ↔ d’ : D
————————————————————————

E ∫ (open c as X::K,x:B in d:D) ↔ (open c’ as X::K,x:B in d’:D) : D

(Eq Fold)

E ∫ a ↔ a’ : A{X←µ(X)A}
————————————————

E ∫ fold(µ(X)A, a) ↔ fold(µ(Y)A, a’) : µ(Y)A

(Eq Unfold)

E ∫ a ↔ a’ : µ(X)A
———————————————

E ∫ unfold(a) ↔ unfold(a’) : A{X←µ(X)A}

(Eq Rec)

E,x:A ∫ a↔a’ : A
—————–—–———

E ∫ µ(x:A)a ↔ µ(x:A)a’ : A

(Eval Beta) (Eval Eta)

E ∫ λ(x:A)b : A→B E ∫ a : A E ∫ b : A→B xÌdom(E)
————————–——— —––————————

E ∫ (λ(x:A)b)(a) ↔ b{x←a} : B E ∫ λ(x:A)b(x) ↔ b : A→B

(Eval Select) (where a7Ül=b, li=bi iÏ1..ná)

E ∫ a : Ül:B, li:Bi iÏ1..n,á
————————

E ∫ a†l ↔ b : B

(Eval Override) (where a7Ül=b, li=bi iÏ1..ná)

E ∫ a : Ül:B, li:Bi iÏ1..n,á E ∫ b’ : B
—————————————————

E ∫ a†l:=b’ ↔ Ül=b’, li=bi iÏ1..ná : Ül:B, li:Bi iÏ1..n,á

(Eval Rerecord)

E ∫ a : Üli:Bi iÏ1..n,á
————————————

E ∫ a ↔ Üli=a†li iÏ1..ná : Üli:Bi iÏ1..n,á

(Eval Beta2)

E ∫ λ(X::K)b : Ó(X::K)B E ∫ A::K
——————————–—————

E ∫ (λ(X::K)b)(A) ↔ b{X←A} : B{X←A}

(Eval Eta2)

E ∫ b : Ó(X::K)B XÌdom(E)
—–———————————

E ∫ λ(X::K)b(X) ↔ b : Ó(X::K)B

(Eval Unpack) (where c7pack X::K=A, b{X}:B{X})

E ∫ c : Ô(X::K)B{X} E ∫ D E,X::K,x:B{X} ∫ d{X,x} : D
—————————————————————

E ∫ (open c as X::K,x:B{X} in d{X,x}:D) ↔ d{A,b{A}} : D

(Eval Repack)

E ∫ b : Ô(X::K)B{X} E,y:Ô(X::K)B{X} ∫ d{y} : D
————————————————————————

E∫(open b as X::K,x:B{X} in d{pack X’::K=X,x:B{X’}}:D)↔d{b} : D

(Eval Fold)

E ∫ a : µ(X)A
—————————–————

E ∫ fold(µ(X)A,unfold(a)) ↔ a : µ(X)A

(Eval Unfold)

E ∫ a : A{X←µ(X)A}
—————–———————————

E ∫ unfold(fold(µ(X)A,a)) ↔ a : A{X←µ(X)A}

Page 10 May 30, 1995 2:44 PM

(Eval Rec)

E,x:A ∫ a : A
————————————

E ∫ µ(x:A)a ↔ a{x←µ(x:A)a} : A

Formal Contractiveness.
The relation A (Y (type expression A is formally contractive

in variable Y) is defined as follows:

X (Y if X≠Y

ÜRá (Y always

A→B (Y always

Ó(X::K)B (Y if B (Y

Ô(X::K)B (Y if B (Y

µ(X)A (Y if A (Y

References

[Abadi 1994] M. Abadi, Baby Modula-3 and a theory of objects.
Journal of Functional Programming 4(2).

[Abadi, Cardelli 1994a] M. Abadi and L. Cardelli, A theory of primi-
tive objects. To appear.

[Abadi, Cardelli 1994b] M. Abadi and L. Cardelli. A theory of primi-
tive objects: second-order systems. Proc. ESOP’94 - European
Symposium on Programming. Springer-Verlag.

[Abadi, Cardelli 1994c] M. Abadi and L. Cardelli. A theory of primi-
tive objects: untyped and first-order systems. Proc. Theoretical
Aspects of Computer Software. Springer-Verlag.

[Abadi, Plotkin 1990] M. Abadi and G. Plotkin. A per model of poly-
morphism and recursive types. Proc. 5th Annual IEEE Symposium
on Logic in Computer Science.

[Aczel, Mendler 1989] P. Aczel and N. Mendler. A final co-algebra
theorem. Proc. Category Theory and Computer Science. Springer-
Verlag.

[Amadio 1991] R.M. Amadio, Recursion over realizability structures.
Information and Computation 91(1), 55-85.

[Breazu-Tannen, et al. 1991] V. Breazu-Tannen, T. Coquand, C. Gunter,
and A. Scedrov, Inheritance and explicit coercion. Information
and Computation 93(1), 172-221.

[Breazu-Tannen, Gunter, Scedrov 1990] V. Breazu-Tannen, C. Gunter,
and A. Scedrov. Computing with coercions. Proc. 1990 ACM
Conference on Lisp and Functional Programming.

[Bruce 1993] K. Bruce. A paradigmatic object-oriented programming
language: design, static typing, and semantics. Technical Report
No. CS-92-01, revised (to appear in the Journal of Functional Pro-
gramming). Williams College.

[Canning, et al. 1989] P. Canning, W. Cook, W. Hill, W. Olthoff, and
J.C. Mitchell. F-bounded polymorphism for object-oriented pro-
gramming. Proc. ACM Conference on Functional Programming
and Computer Architecture.

[Cardelli 1994] L. Cardelli, Extensible records in a pure calculus of
subtyping. In Theoretical Aspects of Object-Oriented Program-
ming, C.A. Gunter and J.C. Mitchell, ed. MIT Press (to appear).
Also Technical Report n.81, Digital Systems Research Center, 1991.

[Cardelli, Mitchell 1991] L. Cardelli and J.C. Mitchell, Operations on
records. Mathematical Structures in Computer Science 1(1), 3-48.

[Cardelli, et al. 1991] L. Cardelli, J.C. Mitchell, S. Martini, and A. Sce-
drov. An extension of system F with subtyping. Proc. Theoretical
Aspects of Computer Software. Lecture Notes in Computer Science
526. Springer-Verlag.

[Cardelli, Wegner 1985] L. Cardelli and P. Wegner, On understanding
types, data abstraction and polymorphism. Computing Surveys
17(4), 471-522.

[Cardone 1989] F. Cardone. Relational semantics for recursive types
and bounded quantification. Proc. Automata, Languages and Pro-
gramming. Lecture Notes in Computer Science 372. Springer-
Verlag.

[Cardone 1990] F. Cardone. Tipi ricorsivi e inheritance in linguaggi
funzionali, Dipartimento di Informatica, Università di Torino.

[Curien, Ghelli 1992] P.-L. Curien and G. Ghelli, Coherence of sub-
sumption, minimum typing and type-checking in F≤. Mathemati-
cal Structures in Computer Science 2(1), 55-91.

[Girard, Lafont, Taylor 1989] J.-Y. Girard, Y. Lafont, and P. Taylor,
Proofs and types. Cambridge University Press.

[Harper, Pierce 1991] R. Harper and B. Pierce. A record calculus based
on symmetric concatenation. Proc. 18th Annual ACM Symposium
on Principles of Programming Languages.

[Kamin 1988] S. Kamin. Inheritance in Smalltalk-80: a denotational
definition. Proc. 15th Annual ACM Symposium on Principles of
Programming Languages.

[MacQueen, Plotkin, Sethi 1986] D.B. MacQueen, G.D. Plotkin, and R.
Sethi, An ideal model for recursive polymorphic types. Informa-
tion and Control 71, 95-130.

[Mitchell 1990] J.C. Mitchell. Toward a typed foundation for method
specialization and inheritance. Proc. 17th Annual ACM Sympo-
sium on Principles of Programming Languages.

[Mitchell, Honsell, Fisher 1993] J.C. Mitchell, F. Honsell, and K. Fisher.
A lambda calculus of objects and method specialization. Proc.
8th Annual IEEE Symposium on Logic in Computer Science.

[Pierce, Turner 1994] B.C. Pierce and D.N. Turner, Simple type-
theoretic foundations for object-oriented programming. Journal
of Functional Programming 4(2).

[Plotkin, Abadi 1993] G.D. Plotkin and M. Abadi. A logic for para-
metric polymorphism. Proc. International Conference on Typed
Lambda Calculi and Applications. Lecture Notes in Computer Sci-
ence 664. Springer-Verlag.

[Smyth, Plotkin 1982] M.B. Smyth and G.D. Plotkin, The category-
theoretic solution of recursive domain equations. SIAM Journal
of Computing 11(4), 761-783.

[Wand 1989] M. Wand. Type inference for record concatenation and
multiple inheritance. Proc. 4th Annual IEEE Symposium on Logic
in Computer Science.

