
Proc. LICS’94

May 30, 1995 2:39 PM Page 1

A Semantics of Object Types

Martín Abadi and Luca Cardelli

Digital Equipment Corporation, Systems Research Center

Abstract: We give a semantics for a typed object calculus, an
extension of System F with object subsumption and method over-
ride. We interpret the calculus in a per model, proving the
soundness of both typing and equational rules. This semantics
suggests a syntactic translation from our calculus into a simpler
calculus with neither subtyping nor objects.

1. Objects, Records, and Functions
Despite the many formal accounts of object-oriented

languages, the meaning and the properties of object types remain
unclear. In particular, the soundness of object subtyping depends
on invariants difficult to capture with standard type constructions;
attempts based on record types have been inspiring but not
compelling.

In order to study object types in a clear setting, we give
semantics to an extension of Girard’s System F [Girard, Lafont,
Taylor 1989] with subtyping, recursion, and some basic object
constructs. Like all common object-oriented languages, this
calculus supports object subsumption and method override. With
subsumption, a new object with more methods can replace an old
object transparently. Override is the operation that modifies the
behavior of an object, or class, by replacing one of its methods.
Neither subsumption nor override is too hard to model in
isolation, but their combination has been problematic (see Section
6).

Our starting point is the naive view that an object is a record
of methods, and that each method is a function. When a method
of an object o is invoked, the corresponding function is applied to
o. This view of objects as records of functions is often used
informally in the literature and it underlies all implementations of
standard (single-dispatch) object-oriented languages. In this work,
we extend this view to object types.

We construct a model based on partial equivalence relations
(pers). In our interpretation, objects are records of functions,
object types are certain unions of recursive record types, and
subtypes are subsets. Along the way, we study unions of pers, and
thereby obtain a per semantics for abstract data types and partially
abstract data types. We prove the soundness of both typing and
equational rules.

The per interpretation is direct enough to be informative. In
particular, it suggests a syntactic translation from our calculus to a
less unconventional extension of System F, with recursion and
records, but neither subtyping nor objects.

The rest of this introduction describes objects, their intended
behavior, and the semantic problems that our approach is
designed to solve. Some of this material is borrowed from [Abadi,
Cardelli 1994b; Abadi, Cardelli 1994c], where we develop typed
and untyped object calculi. We start by describing an untyped
calculus that includes object formation, method invocation, and
method override.

An object is a collection of components [li=ai i Ï1..n], for
distinct labels li and associated methods ai. The order of these

components does not matter. A method is a function having a
special parameter, called self. A proper method makes use of its
self parameter; a field is a method that ignores self. The letter ς is
used as a binder for self, like a special λ binder; ς(x)b is a method
with self parameter x and with body b. The object containing a
given method is called the method’s host object.

A method invocation (or selection) is written o.lj, where lj is a
label of o. It reduces to the result substituting o for the self
parameter in the body of the method named lj. Thus, a method can
be applied only to its host object; this invariant is essential for
typing objects and for reasoning about them.

A method override (or update) is written o.ljfiüς(y)b. The
intent is to replace the method named lj of o with ς(y)b. Our
semantics of override is functional: the result of an override is a
copy of the object where the overridden method has been replaced
by the new one. This form of method override is more general
than usual, in that it applies to objects rather than classes; the
generality does not complicate our formal treatment and has
advantages in simplicity and expressiveness.

We give a direct, informal semantics of objects, viewing them
as primitive:

Primitive Semantics

Let o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o is an object with method names li and methods ς(xi)bi

o.lj Òñ bj{xj←o} selection/invocation (jÏ1..n)

o.ljfiüς(y)b Òñ [li=ς(xi)bi iÏ(1..n)-{j}, lj=ς(y)b] update/override (jÏ1..n)

Notation We write Φi iÏ1..n for a sequence Φ 1,...,Φn . The
substitution of c for the free occurrences of x in b is b{x←c}.
We use Òñ for “rewrites to”, @ for definitional equality, 7 for
syntactic identity, and = for provable equality between terms.
We identify terms up to renaming of bound variables.

While the primitive semantics reflects the programmer’s view
of objects, the implementations of standard object-oriented lan-
guages are based on self-application. In the self-application
semantics [Kamin 1988], methods are functions, objects are
records, invocation is record selection plus self-application, and
override is record update. We use the notation Üli=ai iÏ1..ná for the
record with labels li and fields ai; r† lj for record selection
(extracting the lj component of r); and r†lj:=b for record update
(producing a copy of r with the lj component replaced by b).

Self-application Semantics

For o 7 [li=ς(xi)bi iÏ1..n] (li distinct)

o @ Üli=λ(xi)bi iÏ1..ná

o.lj @ o†lj(o) = bj{xj←o}

(jÏ1..n)

o.ljfiüς(y)b @ o†lj:=λ(y)b = [li=ς(xi)bi iÏ(1..n)-{j}, lj=ς(y)b]

(jÏ1..n)

Page 2 May 30, 1995 2:39 PM

The provable equalities follow from the usual λ-calculus rules.
They show that the self-application semantics matches the
primitive semantics. Hence, untyped objects can be faithfully
interpreted by λ -abstraction, application, and record
constructions. In turn, records can be reduced to pure λ-terms.

Unfortunately, the self-application semantics does not
directly extend to typed calculi. Let us write [li:Bi iÏ1..n] for the
type of objects with labels li and methods of result type Bi

(iÏ1..n). By mapping ς to λ, the self-application semantics causes
the type of each method to be contravariant in the host object
type. The contravariance then blocks expected subtyping
relations, such as the inclusion of [l1:B1, l2:B2] into [l1:B1].

Let us consider, for example, the type of polar points, Point @
[ρ,θ: Real]. A proper method associated with θ could return 0.0
whenever the ρ component is not positive. In a naive self-applica-
tion semantics, the type Point is interpreted as a record type: the
solution of the type equation Point = Üρ,θ: Point→Realá. But this
type does not include the solution of ColorPoint = Üρ,θ:
ColorPoint→-Real, c:ColorPoint→Colorá , which is the
interpretation of the type ColorPoint @ [ρ,θ: Real, c: Color].

 Semantically, we can remedy this flaw by resorting to the
rich vocabulary of type constructions available in models.
Specifically, we interpret the type Point as the union of all the
solutions to the equations of the form X = Üρ,θ: X→Real, ... á,
including for example X = Üρ,θ: X→Realá and X = Üρ,θ: X→Real,
c:X→Colorá. With this definition, ColorPoint is forced to be a
subtype of Point. Our denotational semantics is based on the
simple idea just described; the details necessary are, as usual,
intricate.

 Returning to the world of syntax, we can reformulate the
denotational semantics within a typed calculus. An existential
quantifier over all possible extensions of a record type replaces
the semantic union operator. With this translation ColorPoint is
not a subtype of Point, but there is a canonical coercion from
ColorPoint to Point.

The next section reviews our object calculus more formally.
Sections 3 and 4 describe a denotational semantics for the
calculus. Section 5 concerns the translation into a calculus
without objects. We conclude in Section 6 with comparisons with
related work. An appendix summarizes our formal systems.
Examples and proofs can be found in [Abadi, Cardelli 1994a].

2. A Theory of Primitive Objects
We now review the typed object calculus, leaving most rules

for the appendix. Each rule has a number of antecedent judgments
above a horizontal line and a single conclusion judgment below
the line. Each judgment has the form E ∫ ℑ , for an environment E
and an assertion ℑ depending on the judgment. An antecedent of
the form “E,Ei ∫ ℑ i ÓiÏ1..n” is an abbreviation for n antecedents
“E,E1 ∫ ℑ 1 ... E,En ∫ ℑ n” if n>0, and if n=0 for “E ∫ Q”, which
means E is well-formed. Instead, a rule containing “jÏ1..n”
indicates that there are n separate rules, one for each j.
Environments contain typing assumptions for variables; they can
also contain type-variable declarations and subtyping
assumptions.

2.1 Object Typing and Subtyping

We start with the typing rules for objects. We give rules for
proving type judgments E ∫ B (“B is a well-formed type in the
environment E”) and value judgments E ∫ b : B (“b has type B in
the environment E”).

An object of type [li:Bi iÏ1..n] can be formed from a collection
of n methods whose self parameters have type [li:Bi iÏ1..n] and

whose bodies have types B1,...,Bn. When writing [li:Bi iÏ1..n], we
always assume that the li are distinct and that permutations do not
matter. The type [li:Bi iÏ1..n] exhibits only the result types Bi, and
not the types of ς-bound variables. The types of all these variables
is [li:Bi iÏ1..n], so no information is missing. When a method li is
invoked, it produces a result of type Bi. A method can be
overridden while preserving the type of its host object.

(Type Object) (li distinct)

E ∫ Bi ÓiÏ1..n
——————

E ∫ [li:Bi iÏ1..n]

(Val x) (Val Object) (where A7[li:Bi iÏ1..n])

E, x:A, E’ ∫ Q E, xi:A ∫ bi : Bi ÓiÏ1..n
————— —————————

E ∫ x: A E ∫ [li=ς(xi:A)bi iÏ1..n] : A

(Val Select) (where A7[li:Bi iÏ1..n]) (Val Override) (where A7[li:Bi

iÏ1..n])

E ∫ a : [li:Bi iÏ1..n] jÏ1..n E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
————————— ————————————

E ∫ a.lj : Bj E ∫ a.ljfiüς(x:A)b : A

 A characteristic of object-oriented languages is that an object
can emulate another object that has fewer methods. We call this
notion subsumption, and say that an object can subsume another
one. We define a particular form of subsumption that is induced
by a subtyping relation between object types. An object that
belongs to a given object type A also belongs to any supertype B
of A, and can subsume objects in B. The judgment E ∫ A <: B
asserts A is a subtype of B in the environment E.

(Type Top) (Sub Top) (Sub Object) (li distinct)

E ∫ Q E ∫ A E ∫ Bi ÓiÏ1..n+m
——— ————— ——————————

E ∫ Top E ∫ A <: Top E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n]

(Val Subsumption)

E ∫ a : A E ∫ A <: B
————————

E ∫ a : B

For convenience, we add a constant, Top, a supertype of every
type. The subtyping rule for objects allows a longer object type
[li:Bi iÏ1..n+m] to be a subtype of a shorter object type [li:Bi iÏ1..n].
Moreover, object types are invariant in their components:
[li:Bi iÏ1..n+m]<:[li:Bi’ iÏ1..n] requires Bi7Bi’ for iÏ1..n. This is neces-
sary for soundness.

The full first-order calculus of objects with subtyping is
called Ob1<: (see the appendix). To facilitate comparison with
other first-order calculi, Ob1<: includes constants and their sorts,
but we do not treat them formally in this paper.

2.2 Functions, Recursion, and Quantification

Functions (in the form of λ-terms) and recursive values can
be added to Ob1<: via standard rules, though functions can also be
encoded in terms of objects [Abadi, Cardelli 1994c].

In order to add recursive types, we define a syntactic criterion
for contractiveness in the sense of [MacQueen, Plotkin, Sethi
1986]. If A is formally contractive in the variable X, then the
fixpoint µ(X)A exists and is unique. Object types are formally
contractive in all their variables.

Further, we introduce bounded universal quantifiers and exis-
tential quantifiers, obtaining bounded polymorphic functions and
partially abstract data types [Cardelli, Wegner 1985]. We invent
no new constructions. However, quantifiers can be combined with
recursive types to represent interesting notions, such as the Self
quantifier [Abadi, Cardelli 1994b]. Our starting point for second-
order calculi is F<:, as described in [Cardelli, et al. 1991], but we

May 30, 1995 2:39 PM Page 3

assume only the simpler equational theory of [Curien, Ghelli
1992]. Within F<: it is possible to encode bounded existential
quantifiers. However, we take them as primitive along with an
“eta” rule that is not available through the encoding ((Eval
Repack <:) in the appendix).

F<:µ is the extension of F<: with existentials and recursion.
Ob<:µ is the second-order calculus of objects with recursion and
subtyping; it is Ob1<: plus quantifiers and recursion. FOb<:µ is the
extension of Ob<:µ with function types. We work in FOb<:µ,
although it can be encoded in Ob<:µ [Abadi, Cardelli 1994b]. We
do not know whether O b<:µ can be encoded in F<:µ while
preserving subtypings; Section 5 deals with an encoding that
translates subtypings into coercions.

2.3 Equational Theories

We associate an equational theory with each of our calculi.
The judgment E ∫ b ↔ c : A asserts that b and c are equal as
elements of A. We give only the main rules for objects and
subtyping: three rules motivated by the use of subtyping, and two
evaluation rules corresponding to the semantics of the untyped
calculus.

(Eq Subsumption) (Eq Top)

E ∫ a ↔ a’ : A E ∫ A <: B E ∫ a:A E ∫ b:B
—————————— ———————

E ∫ a ↔ a’ : B E ∫ a ↔ b : Top

(Eq Sub Object) (where A7[li:Bi iÏ1..n], A’7[li:Bi iÏ1..n+m])

E, xi:A ∫ bi : Bi ÓiÏ1..n E, xj:A’ ∫ bj : Bj ÓjÏn+1..n+m
———————–——————–——————

E ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A’)bi iÏ1..n+m] : A

(Eval Select) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A jÏ1..n
—————————

E ∫ a.lj ↔ bj{xj←a} : Bj

(Eval Override) (where A7[li:Bi iÏ1..n], a7[li=ς(xi:A’)bi iÏ1..n+m])

E ∫ a : A E, x:A ∫ b : Bj jÏ1..n
—————————————————————

E ∫ a.ljfiüς(x:A)b ↔ [li=ς(xi:A’)bi iÏ(1..n+m)-{j}, lj=ς(x:A’)b] : A

According to (Eq Sub Object) an object can be truncated to its ex-
ternally visible collection of methods, but only if those methods
do not depend on the hidden ones. (The truncated object would
not work otherwise.) Other rules might be sound, but these
already pose interesting semantic difficulties, and give an
interesting account of object equality that suffices for many
examples.

3. A Semantics of Objects
In this section and the next one we describe a semantics for

our largest calculus, FOb<:µ, with the associated equational
theory. This section concerns an untyped universe and the
interpretation of untyped terms. The next section puts a type
structure on the untyped universe.

3.1 The Untyped Universe

The technical assumptions on the untyped universe are fairly
standard [MacQueen, Plotkin, Sethi 1986; Abadi, Plotkin 1990;
Cardone 1990; Amadio 1991]. We need to have a complete partial
order (D,≤) such that:

¢ There are strict, continuous embedding-retraction pairs
(e,r) between D and each of W®, (D→D), and (L→D)®,

W®

ew
îïïïïñ D

rw
îïïïïñ W®

(D→D)

ef
îïïïïñ D

rf
îïïïïñ (D→D)

(L→D)®

eo
îïïïïñ D

ro
îïïïïñ (L→D)®

 where

– W is a one-point set {*}; we view * as the error value;
– (D→D) is the complete partial order of continuous func-

tions from D to D;
– L is a countable set of labels {m0, m1, ...}, and (L→D) is

the complete partial order of functions from L to D; this
is roughly the set of records over these labels;

– X® denotes the lifting of X.

¢ There is an increasing sequence pn: D→D of continuous
projections with finite range and with least upper bound
the identity. Further, p0 constantly equals ®. Let ; denote
function composition, and hÁS denote the restriction of h
which maps elements outside S to ®. For all i,

pi+1(ew(*)) = ew(*)

pi+1(ef(f)) = ef(pi; f; pi) f Ï D→D

pi+1(eo(o)) = eo((o; pi)Á{m0,...,mi}) o Ï L→D

We commonly view W, D→D, and L→D as subsets of D,
and write x = * for x = ew(*), x Ï (D→D) for x Ï range(ef), and x Ï
(L→D) for x Ï eo(L→D). When x, y Ï D, m Ï L, we write x(y) for
rf(x)(y) and x(m) for ro(x)(m). Below, we omit the various e’s and
r’s. Thus, pi+1(*) is *; pi+1(f)(x) is pi(f(pi(x))); and pi+1(o)(mj) is
pi(o(mj)) if j≤i, and ® otherwise.

If x Ï D is such that pn(x) = x for some n then x is finite, and
the least n for which pn(x) = x is the rank of x. If x is finite and Üyiá
is an increasing chain then x ≤ «i yi implies that x ≤ yk for some
k.

A suitable D can be constructed by applying the usual “limit
of a sequence of iterates” method to solve the domain equation D
= W® + (D→D) + (L→D)®, making sure that pi(eo((L→D)®)) is
always a finite set.

3.2 The Interpretation of Untyped Terms

Next we define the interpretation of untyped terms. The inter-
pretation of typed terms will be based on the interpretation of un-
typed terms. We define the semantics function:

[] : (V→D)→(E→D)
where V is the set of variables and E the set of expressions. We
call a mapping ρ in V→D an environment and write [a] ρ for the
semantics of term a with an environment ρ. We write ÜÜm1=v1, ...,
mn=vnáá for the function in (L→D) that maps m1 to v1, ..., mn to vn,
and maps all other labels to *. If f is a function and l is in its
domain, we write fÜl←vá for the function that maps l to v and is
identical to f elsewhere. With this notation, we set:

Page 4 May 30, 1995 2:39 PM

[x] ρ = ρ(x)

[λ(x)b] ρ = λ(v) [b] ρÜx←vá

[b(a)] ρ = if [b] ρ ™ (D→D)

then [b] ρ([a] ρ)

else *
[[mi=ς(xi)ci iÏI]] ρ = ÜÜmi= [λ(xi)ci] ρ iÏIáá

[a.m] ρ = if [a] ρ ™ (L→D) and [a] ρ(m) ™

(D→D)

then [a] ρ(m)([a] ρ)

else *
[a.m fiü ς(x)c] ρ = if [a] ρ ™ (L→D)

then [a] ρÜm←[λ(x)c] ρá

else *

This definition is given in a metalanguage where v ™ V is a strict
membership test, and where conditionals and conjunctions are
strict and evaluated left to right, e.g., [a.m fiü ς(x)c] ρ=® if [a] ρ=®.

Note how the semantics turns ς’s into λ’s and objects into
records. The catch is that the denotations of object types will not
be the obvious record types. Note also that, for simplicity,
overriding a method does not produce an error if the method is
not present in the first place.

This semantics validates the reduction rules for objects. Many
of the more interesting equations for objects fail; but they do hold
under the typed semantics of the next section.

4. A Semantics of Object Types
The semantics of types is based on the metric approach of

MacQueen, Plotkin, and Sethi [MacQueen, Plotkin, Sethi 1986].
More precisely, we follow Amadio [Amadio 1991] and Cardone
[Cardone 1989] in the use of complete uniform pers and
contractive functions on pers. We rely on their work for the
semantics of F<:µ, and contribute a treatment of abstract data
types and of object types.

It might be possible to obtain a semantics for FOb<:µ with
standard O-categorical methods [Smyth, Plotkin 1982] instead of
metric methods. However, as in F<:µ [Abadi, Plotkin 1990], it is
not clear how to integrate subtyping into the semantics of types as
functors.

4.1 Types in the Untyped Universe

Having described an untyped model, we view the types as
certain binary relations on this untyped model. Intuitively, if A is
a type and RΑ is the associated relation, then (x,y) Ï RΑ means
that x and y are equal elements of A. Section 4.1.1 introduces
operations on binary relations. Sections 4.1.2 and 4.1.3 concern
the union operation and metric properties.

4.1.1 Semantic Definitions

We will be dealing with binary relations over D, by
convention only those that do not have * in their domains. It is
easy to show that all our constructions preserve this property. A
per is a symmetric transitive binary relation on D. A per X is
uniform if u X v implies (pi(u)) X (pi(v)) for all i. A per X is
complete if ®X® and X is closed under limits of increasing
sequences in the ≤ order. A cuper is a complete uniform per. The
set of all cupers is CUPER. Below, all types are interpreted as
cupers.

First we describe some usual operations on cupers. The func-
tion-space operation is given by:

R→T = {(f,g) Ï (D→D)2 | if xRy then f(x)Tg(y)}

If R, T Ï CUPER then R→T Ï CUPER. We can calculate meets
and joins of cupers:

 »iÏI Xi = ∩iÏI Xi «iÏI Xi = C (∪ iÏI Xi)

where C (X) is the least cuper that contains X. (The cuper C (X) is
always defined.) If Xi Ï CUPER for all i Ï I then » iÏI Xi Ï
CUPER and «iÏI Xi Ï CUPER.

The distance between two cupers is 2–r, where r is the
minimum rank where the two cupers differ, and it is 0 if the two
cupers are equal. The set of all cupers with this distance function
is a complete metric space. Furthermore, by the Banach Fixpoint
Theorem, if F is a contractive map between cupers then it has a
unique fixpoint. This is the basis of a usual interpretation of
recursive types. If F(S) is a contractive function in S on CUPER,
then we write µ(S)F(S) for its unique fixpoint.

In order to give a semantics to object types, we first define:

ÜÜmi : Ti iÏIáá = {(®,®)} ∪ {(o,o’) Ï (L→D)2 | ÓiÏI. (o(mi), o’(mi)) Ï

Ti}

We view ÜÜmi : Ti iÏIáá as a record type, with fields mi and types Ti.
If Ti Ï CUPER for all i Ï I then ÜÜmi : Ti iÏIáá Ï CUPER.

Let G denote the set of all cuper functions of the form
λ(S)ÜÜmi : S→Ti iÏIáá; an element of G can be written in this form
uniquely. We say that F = λ(S)ÜÜmi : S→Ti iÏIáá extends H =
λ(S)ÜÜmj : S→Tj jÏJáá if I ⊇ J, and write F) H. We set:

ÄÄmi:Ti iÏIÅÅ = « {µ(S)F(S) | F Ï G, F) λ(S)ÜÜmi:S→Ti iÏIáá}

The types of the form ÄÄmi:Ti iÏIÅÅ are our semantic object types.
This definition is proper because if F Ï G then F(S) is contractive
in S, and hence µ(S)F(S) exists and is unique.

In the imperfect self-application semantics of Section 1, we
attempt to model object types as recursive record types, but fail to
obtain all the expected subtypings. Here, we define an object type
to be a union of recursive record types. Each object type is
designed to contain all longer ones. We obtain the expected
subtypings: if I ⊆ J then ÄÄmj : Tj jÏJÅÅ ⊆ ÄÄmi : Ti iÏIÅÅ.

4.1.2 Understanding Unions

In this section we analyze unions of relations. This is
necessary because the definitions do not give an explicit
description of the elements of a union. In particular, it is not true
that if (x,y) Ï S « T then either (x,y) Ï S or (x,y) Ï T, and the
definition of S « T does not help much in pinning down what else
(x,y) could be. Our first result reduces closure to transitive closure
for finite elements. The second one enables us to reason about all
elements of a union by reasoning about the elements of its
components; this is useful in validating the elimination rules of
our calculus for abstract data types and for objects.

Lemma
If X Ï CUPER, then C (X) is the chain completion of the
transitive closure of the finite part of X.

Lemma
If Ri Ï CUPER for all i Ï I, S Ï CUPER , f and g are
continuous functions, and for all i, (x,y) Ï Ri implies
(f(x),f(y)) Ï S and (f(x),g(y)) Ï S, then (x,y) Ï «iÏI Ri implies
(f(x),g(y)) Ï S.

4.1.3 Metric Properties

Amadio has verified that the usual type constructors → , »,
and µ are contractive or nonexpansive in the cuper model as in the
ideal model. In order to interpret all formally contractive type

May 30, 1995 2:39 PM Page 5

expressions, we extend Amadio’s results to deal with bounds,
with «, and with object types.

Proposition
If Ti(R1,...,Rk) is nonexpansive in R1,...,Rk for all i Ï I then
ÄÄmi:Ti(R1,...,Rk) iÏIÅÅ is contractive in R1,...,Rk. If T(R1,...,Rk+1)
is contractive (nonexpansive) in R1,...,Rk+1 and S(R1,...,Rk) is
n o n e x p a n s i v e i n R1,...,Rk , t h e n
»Rk+1ÏCUPER, Rk+1⊆ S(R1,...,Rk) T(R1 , . . . , Rk+1) a n d
«Rk+1ÏCUPER, Rk+1⊆ S(R1,...,Rk) T(R1, ..., Rk+1) are contractive
(nonexpansive) in R1,...,Rk.

4.2 The Interpretation of Types and Typed Terms

Sections 4.2.1 gives the interpretation of the typed calculus.
Section 4.2.2 proves the soundness of the rules under this
interpretation. (See the appendix for the syntax of the typed
calculus and its rules.)

4.2.1 Interpreting Typed Terms and Types

The semantics of a typed term is the semantics of its erasure:
if a is a typed term then [a] ρ = [e(a)] ρ. The erasure function is a
translation from the typed terms of FOb<:µ to the untyped
calculus:

e(x) = x

e(λ(x:A)b) = λ(x)e(b)

e(b(a)) = e(b)(e(a))

e(λ(X<:A)b) = e(b)

e(b(A)) = e(b)

e(pack X<:A=C, b{X}:B{X}) = e(b)

e(open c as X<:A,x:B in d:D) = e(d{x←c})

e([mi= ς(xi:A)ci iÏ1..n]) = [mi=ς(xi)e(ci) iÏ1..n]

e(a.m) = e(a).m

e(a.m fiü ς(x:A) c) = e(a).m fiü ς(x)e(c)

We omit the constructs fold and unfold, and value-level recursion.
Recursive values can be obtained with the definable í
combinator; and since we find exact solutions for recursive-type
equations, fold and unfold can both be interpreted as the identity
function.

To interpret types, we define the semantics function:

[] : (TV→CUPER)→(TE→CUPER)

where TV is the set of type variables and TE the set of type
expressions. A mapping η in TV→C U P E R is a type
environment. We define [A] η, the semantics of type A with the
environment η:

[X] η = η(X)

[A→B] η = [A] η→[B] η

[Ó(X<:B)A] η = »RÏCUPER, R⊆ [B]η [A] ηÜX←Rá

[Ô(X<:B)A] η = «RÏCUPER, R⊆ [B]η [A] ηÜX←Rá

[µ(X)A] η = µ(T) [A] ηÜX←Tá

[[mi:Ci iÏ1..n]] η = ÄÄmi : [Ci] η iÏ1..nÅÅ

[Top] η = (D – {*})2

Note that the relation <: is simply interpreted as cuper
containment. The definition for recursive types is proper because
of the connection between contractiveness and formal
contractiveness:

Proposition
If A is a well-formed type expression then [A] ηÜX←Rá is nonex-
pansive in R. If A is formally contractive in X then [A] ηÜX←Rá

is contractive in R.

4.2.2 Soundness of the Rules

We say that E and η are consistent in the usual sense: if X<:A
appears in E then η(X) ⊆ [A] η. We say that E, η, and (ρ,ρ’) are
consistent when, in addition, if x:A appears in E then (ρ(x),ρ’(x))
Ï [A] η. We derive the following soundness results:

Theorem (Soundness)
Assume that η and (ρ, ρ’) are consistent with E. Then, for
derivations in FOb<:µ:

If E ∫ A then [A] η Ï CUPER.

If E ∫ A <: B then [A] η ⊆ [B] η.

If E ∫ a : A then ([a] ρ, [a] ρ’) Ï [A] η.

If E ∫ a ↔ a’ : A then ([a] ρ, [a’] ρ’) Ï [A] η.

An immediate corollary is that no well-typed term has * as its
denotation. It also follows that the type theory and the equational
theory are consistent.

5. A Translation and its Coherence
The interpretation of the previous section suggests many

translations of the object calculus into other calculi. Finding a
good translation proves rather delicate, however: we should avoid
introducing new subtyping relations or new subtyping properties
in our target calculus, lest it becomes almost as special as the
source calculus. We would like a syntactic explanation of objects
in terms of more standard constructs, with regular rules and
general semantics.

Breazu-Tannen et al. [Breazu-Tannen, et al. 1991] have ex-
plored an interpretation of subtyping in terms of implicit
coercions. Their source calculus is an extension of F<: with
recursion and records. Their target calculus is a corresponding
extension of System F . We adopt their approach, adding
existential quantifiers and rows to their target calculus. Our full
target calculus appears in the appendix.

A row is a set of labels and types li:Bi iÏ1..n, much like an in-
complete record type. A row R has kind ↑ (li iÏ1..n) if it is missing
the labels li iÏ1..n. If a row R has kind ↑(), then ÜRá is a record type.
Such a row can be assembled from the empty row , which lacks
any set of labels, by successive additions of components l:B.

The rows we use are simpler than the ones treated in [Cardelli
1994], since we do not need rows at the value level. A record of
type Üli:Bi iÏ1..n,á can be built from components bi:Bi. The rules for
record selection and update make use of rows, and are otherwise
straightforward. Note that we have no way of extending existing
records.

Rows are a convenient but not an essential addition: they can
be encoded in F<: [Cardelli 1994], and hence in F. For simplicity
we do not consider this reduction further. We note only that the
reduction yields that the target calculus is sound.

A derivation Ψ of a judgment ℑ is written Ψ1,...,Ψn ≈≈≈≈R ℑ ,
where n≥0, R is the last rule of Ψ , and Ψ 1,...,Ψn are the
derivations of the assumptions of R; Ψ stands for Ψ1,...,Ψn.
Further, Ψ ≈≈≈≈R ℑ stands for a derivation of ℑ via R, and Ψ ≈≈≈≈ ℑ
for an arbitrary derivation of ℑ . We define the following
translations for the types and judgments of Ob1<::

A* is a type in the target calculus

(Ψ ≈≈≈≈ E ∫ A <: B)* is a term of type A*→B* in the target calculus

(Ψ ≈≈≈≈ E ∫ a : A)* is a term of type A* in the target calculus

For object types, an existential quantifier over rows replaces
the union that appears in the semantics. Further, it is convenient to
rearrange records of functions into functions that return records,

Page 6 May 30, 1995 2:39 PM

so we use types of the form Y→Üli:Bi iÏ1..n,...á instead of Üli:Y→Bi
iÏ1..n,...á.

Definition (Translation of Types)

Top* @ Üá (the empty record type)

[li:Bi iÏ1..n]* @ Ô(X::↑ (li iÏ1..n)) äli:Bi* iÏ1..n,Xã X Ì FV(Bi)

where äli:Bi i Ï1..n,Xã @ µ (Y) Y→ Üli:Bi i Ï1..n,Xá , for Y Ì
FV(Bi)∪ {X}.

The translations of subtype and value judgments are by induc-
tion on derivations.

Definition (Translation of Subtype Judgments)

(Ψ ≈≈≈≈(Sub Refl) E ∫ A <: A)* @ λ(x:A*)x

((Ψ 1 ≈≈≈≈ E ∫ A <: B, Ψ 2 ≈≈≈≈ E ∫ B <: C) ≈≈≈≈(Sub Trans) E ∫ A <: C)* @

 λ(x:A*) (Ψ 2 ≈≈≈≈ E ∫ B <: C)* ((Ψ 1 ≈≈≈≈ E ∫ A <: B)* (x))

(Ψ ≈≈≈≈(Sub Top) E ∫ A <: Top)* @ λ(x:A*)Üá

(Ψ ≈≈≈≈(Sub Object) E ∫ [li:Bi iÏ1..n+m] <: [li:Bi iÏ1..n])* @

λ(o:[li:Bi iÏ1..n+m]*)

open o as X::↑ (li iÏ1..n+m), x: äli:Bi* iÏ1..n+m,Xã

in pack X’::↑ (li iÏ1..n)=(li:Bi* iÏn+1..m,X), x: äli:Bi* iÏ1..n,X’ã

((Ψ 1 ≈≈≈≈ E ∫ a : A, Ψ 2 ≈≈≈≈ E ∫ A <: B) ≈≈≈≈(Val Subsumpiton) E ∫ a : B)* @

(Ψ 2 ≈≈≈≈ E ∫ A <: B)* (Ψ 1 ≈≈≈≈ E ∫ a : A)*

Note that if the empty record type is interpreted as containing
every value, then the coercions into it can be implemented as
identity functions. Then all the coercions generated by the
translation are implemented as identity functions as well.

Definition (Translation of Value Judgments)

(Ψ ≈≈≈≈(Val x) E’,x:A,E” ∫ x:A)* @ x

((Ψ i ≈≈≈≈ E, xi:A ∫ bi : Bi) ≈≈≈≈(Val Object) E ∫ [li=ς(xi:A)bi iÏ1..n] : A)* @

pack X::↑ (li iÏ1..n)=,

fold(äli:Bi* iÏ1..n,Xã,

λ(x:äli:Bi* iÏ1..n,Xã)

Üli=(Ψ i ≈≈≈≈ E, xi:A ∫ bi : Bi)*

{xi←pack X::↑ (li iÏ1..n)=, x:äli:Bi* iÏ1..n,Xã}
iÏ1..ná)

: äli:Bi* iÏ1..n,Xã

((Ψ ≈≈≈≈ E ∫ a : [li:Bi iÏ1..n]) ≈≈≈≈(Val Select) E ∫ a.lj : Bj)* @

open (Ψ ≈≈≈≈ E ∫ a : [li:Bi iÏ1..n])* as X::↑ (li iÏ1..n), x:äli:Bi* iÏ1..n,Xã

in unfold(x)(x)†lj

((Ψ 1 ≈≈≈≈ E ∫ a : A, Ψ 2 ≈≈≈≈ E, x:A ∫ b : Bj)

≈≈≈≈(Val Override) E ∫ a.ljfiüς(x:A)b : A)* @

open (Ψ 1 ≈≈≈≈ E ∫ a : [li:Bi iÏ1..n])* as X::↑ (li iÏ1..n), x:äli:Bi* iÏ1..n,Xã

in pack X’::↑ (li iÏ1..n)=X,

fold(äli:Bi* iÏ1..n,X’ã,

λ(x’:äli:Bi* iÏ1..n,X’ã)

unfold(x)(x’)†lj:=

(Ψ 2 ≈≈≈≈ E, x:A ∫ b : Bj)*

 {x←pack X”::↑ (li iÏ1..n)=X’, x’:äli:Bi*
iÏ1..n,X”ã})

: äli:Bi* iÏ1..n,X’ã

We obtain a coherence result, guaranteeing that the
translation of a judgment is independent of its derivation.

Theorem (Coherence)
If f and f’ are the translations of two Ob1<: derivations that
end with the same value or subtype judgment, then f and f’
are provably equal in the target calculus.

Further, the congruence rules and evaluation rules for objects
are validated through the translation. So are the equational rules
related to subtyping, with the exception of (Eq Sub Object).
Proving the translation of (Eq Sub Object) in the target calculus
may require additional principles, such as a bisimulation rule for
abstract data types [Aczel, Mendler 1989; Plotkin, Abadi 1993].

The translation extends to the full FOb<:µ. The coherence
problems for arrows and universal quantifiers have been
essentially solved [Breazu-Tannen, et al. 1991]. We do not expect
surprises from existential quantifiers. Further work is needed on
recursion [Breazu-Tannen, Gunter, Scedrov 1990].

6. Related work
We finish with some comparisons with the most closely

related works.
¢ It is common to encode existential quantifiers from universal
quantifiers. However, to our knowledge, the detailed cuper
semantics of existentials as unions had not been worked out.
Cardone’s thesis describes an instructive attempt [Cardone 1990].
¢ For some time, one of us (L.C.) has searched for a
satisfactory encoding of typed objects in terms of typed records.
In absence of such encodings, various authors have defined and
used rich calculi with records (e.g., [Wand 1989; Cardelli,
Mitchell 1991; Harper, Pierce 1991; Pierce, Turner 1994]). A
general encoding was not proposed, but many object-flavored
examples could be expressed and examined. Mitchell [Mitchell
1990] proposed an encoding that does not respect subtyping.
Pierce and Turner [Pierce, Turner 1994] sketched an encoding for
objects and classes that respects subtyping, but does not account
for our method override operations on objects.
¢ Some ideas presented here originated in the study of Baby
Modula-3 [Abadi 1994]. That calculus resembles in power Ob1<:µ

(Ob1<: plus recursion), but the two are incomparable. The
semantics of Baby Modula-3 is based on ideals. A per semantics
is also briefly sketched, without a corresponding study of
equational rules.
¢ Our work is closely related in spirit to that of Mitchell et al.
[Mitchell, Honsell, Fisher 1993]. The most significant difference
is that they support object extension, while we support subtyping
and subsumption. Further, they show soundness of typing by a
subject reduction proof, while we construct a model and justify an
equational theory.
¢ The TOOPL language [Bruce 1993] has built-in objects and
supports a form of subsumption obtained via two subtyping rela-
tions. The semantics of TOOPL is based on generators and F-
bounded quantification [Canning, et al. 1989], rather than on the
self-application semantics. Generator semantics avoid problems
of contravariance by binding self at object-formation time with a
value-level recursion. As a consequence, objects and object
generators (classes) are distinct.

Appendix A: The Ob1<: Calculus

Environments E ::= E,x:A
Type Constants K
Types A,B,C ::= K Top [li:Bi iÏ1..n]
Variables x,y
Constants k

May 30, 1995 2:39 PM Page 7

Values a,b,c ::= x k(ai iÏ1..n)
 [li=ς(xi:A)bi iÏ1..n] a.l a.lfiüς(x:A)b

In addition to the rules for constants [Abadi, Cardelli 1994b]
and the rules give in the text, (Type Top), (Type Object), (Sub
Top), (Sub Object), (Val Subsumption), (Val x), (Val Object),
(Val Select), (Val Override), (Eq Subsumption), (Eq Top), (Eq
Sub Object), (Eval Select), and (Eval Override), we have:

(Env) (Env x)

E ∫ A xÌdom(E)
—— ———————

 ∫ Q E,x:A ∫ Q

(Sub Refl) (Sub Trans)

E ∫ A E ∫ A <: B E ∫ B <: C
———— —————————

E ∫ A <: A E ∫ A <: C

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

(Eq x) (Eq Object) (where A7[li:Bi iÏ1..n])

E’,x:A,E” ∫ Q E, xi:A ∫ bi ↔ bi’ : Bi ÓiÏ1..n
———————————————————–———
—

E’,x:A,E” ∫ x↔x : AE ∫ [li=ς(xi:A)bi iÏ1..n] ↔ [li=ς(xi:A)bi’ iÏ1..n] :

A

(Eq Select)

E ∫ a ↔ a’ : [li:Bi iÏ1..n] jÏ1..n
———————————

E ∫ a.lj ↔ a’.lj : Bj

(Eq Override) (where A7[li:Bi iÏ1..n])

E ∫ a ↔ a’ : A E, x:A ∫ b ↔ b’ : Bj jÏ1..n
————————————————

E ∫ a.ljfiüς(x:A)b ↔ a’.ljfiüς(x:A)b’ : A

Appendix B: The FOb<:µ Calculus

Environments E ::= E,x:A E,X<:A
Type Variables X,Y
Types A,B,C,D ::= X Top [li:Bi iÏ1..n] A→B

 Ó(X<:A)B Ô(X<:A)B µ(X)A
Variables x,y
Values a,b,c,d ::= x [li=ς(xi:A)bi i Ï 1. .n] a.l
a.lfiüς(x:A)b

 λ(x:A)b b(a) λ(X<:A)b b(A)
 pack X<:A=C, b{X}:B{X}
 open c as X<:A,x:B in d:D
 fold(µ(X)A, a) unfold(a) µ(x:A)a

This calculus consists of the rules of Ob1<:, except for the
rules for constants, plus the following:

(Env X<:)

E ∫ A XÌdom(E)
———————

E,X<:A ∫ Q

(Type X<:) (Type Arrow)

E’,X<:A,E” ∫ Q E ∫ A E ∫ B
——–——— —————

E’,X<:A,E” ∫ X E ∫ A→B

(Type All<:) (Type Exists<:) (Type Rec<:)

E,X<:A ∫ B E,X<:A ∫ B E,X ∫ A A(X
————— ————— ——————

E ∫ Ó(X<:A)B E ∫ Ô(X<:A)B E ∫ µ(X)A

(Sub X) (Sub Arrow)

E’,X<:A,E” ∫ Q E ∫ A’ <: A E ∫ B <: B’
——————— —————————

E’,X<:A,E” ∫ X<:A E ∫ A→B <: A’→B’

(Sub All) (Sub Exists)

E ∫ A’ <: A E,X<:A’ ∫ B <: B’ E ∫ A <: A’ E,X<:A ∫ B <: B’
—————————–—— ——————–—————

E ∫ Ó(X<:A)B <: Ó(X<:A’)B’ E ∫ Ô(X<:A)B <: Ô(X<:A’)B’

(Sub Rec)

E ∫ µ(X)A E ∫ µ(Y)B E,Y,X<:Y ∫ A<:B
————————————————

E ∫ µ(X)A <: µ(Y)B

(Val Fun) (Val Appl)

E,x:A ∫ b : B E ∫ b : A→B E ∫ a : A
——————— ——————–——

E ∫ λ(x:A)b : A→B E ∫ b(a) : B

(Val Fun2<:) (Val Appl2<:)

E,X<:A ∫ b : B E ∫ b : Ó(X<:A)B{X} E ∫ A’<:A
————————— —————–———————

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ b(A’) : B{A’}

(Val Pack<:)

E ∫ C <: A E ∫ b{C} : B{C}
—————————————————

E ∫ (pack X<:A=C, b{X}:B{X}) : Ô(X<:A)B{X}

(Val Open<:)

E ∫ c : Ô(X<:A)B E ∫ D E,X<:A,x:B ∫ d : D
—————————————————

E ∫ (open c as X<:A,x:B in d:D) : D

(Val Fold) (Val Unfold)

E ∫ a : A{X←µ(X)A} E ∫ a : µ(X)A
————————— ——————————

E ∫ fold(µ(X)A, a) : µ(X)A E ∫ unfold(a) : A{X←µ(X)A}

(Val Rec)

E,x:A ∫ a : A
——–———

E ∫ µ(x:A)a : A

(Eq Fun) (Eq Appl)

E,x:A ∫ b ↔ b’ : B E ∫ b ↔ b’ : A→B E ∫ a ↔ a’ : A
——————————— ————————————

E ∫ λ(x:A)b ↔ λ(x:A)b’ : A→B E ∫ b(a) ↔ b’(a’) : B

(Eq Fun2<:)

E,X<:A ∫ b ↔ b’ : B
——————————————

E ∫ λ(X<:A)b ↔ λ(X<:A)b’ : Ó(X<:A)B

(Eq Appl2<:)

E ∫ b ↔ b’ : Ó(X<:A)B{X} E ∫ A’<:A
——————————–————

E ∫ b(A’) ↔ b’(A’) : B{A’}

(Eq Pack<:)

E ∫ C <: A’ E ∫ A’<:A E,X<:A’ ∫ B’{X}<:B{X} E ∫ b{C} ↔ b’{C} :

B’{C}
———————————————————————
—

E ∫ (pack X<:A=C,b{X}:B{X})↔(pack X<:A’=C,b’{X}:B’{X}) :

Ô(X<:A)B{X}

Page 8 May 30, 1995 2:39 PM

(Eq Open<:)

E ∫ c ↔ c’ : Ô(X<:A)B E ∫ D E,X<:A,x:B ∫ d ↔ d’ : D
———————————————————————
—

E ∫ (open c as X<:A,x:B in d:D) ↔ (open c’ as X<:A,x:B in d’:D) :

D

(Eq Fold<:)

E ∫ µ(X)A E ∫ µ(Y)B E,Y,X<:Y ∫ A<:B E ∫ a ↔ a’ : A{X←µ(X)A}
——————————–————————————

E ∫ fold(µ(X)A, a) ↔ fold(µ(Y)B, a’) : µ(Y)B

(Eq Unfold)

E ∫ a ↔ a’ : µ(X)A
———————————————

E ∫ unfold(a) ↔ unfold(a’) : A{X←µ(X)A}

(Eq Rec)

E,x:A ∫ a↔a’ : A
—————–—–———

E ∫ µ(x:A)a ↔ µ(x:A)a’ : A

(Eval Beta) (Eval Eta)

E ∫ λ(x:A)b : A→B E ∫ a : A E ∫ b : A→B xÌdom(E)
————————–——— —––————————

E ∫ (λ(x:A)b)(a) ↔ b{x←a} : B E ∫ λ(x:A)b(x) ↔ b : A→B

(Eval Beta2<:) (Eval Eta2<:)

E ∫ λ(X<:A)b : Ó(X<:A)B E ∫ C <: A E ∫ b : Ó(X<:A)B XÌdom(E)
———————–—––—–———–——–—–————
—

E ∫ (λ(X<:A)b)(C) ↔ b{X←C} : B{X←C}E ∫ λ(X<:A)b(X) ↔ b :

Ó(X<:A)B

(Eval Unpack<:) (where c7pack X<:A=C, b{X}:B{X})

E ∫ c : Ô(X<:A)B{X} E ∫ D E,X<:A,x:B{X} ∫ d{X,x} : D
——————————————————————

E ∫ (open c as X<:A,x:B{X} in d{X,x}:D) ↔ d{C,b{C}} : D

(Eval Repack<:)

E ∫ b : Ô(X<:A)B{X} E,y:Ô(X<:A)B{X} ∫ d{y} : D
———————————————————————

E ∫ (open b as X<:A, x:B{X} in d{pack X’<:A=X, x:B{X’}}:D) ↔ d{b} : D

(Eval Fold)

E ∫ a : µ(X)A
—————————–————

E ∫ fold(µ(X)A,unfold(a)) ↔ a : µ(X)A

(Eval Unfold)

E ∫ a : A{X←µ(X)A}
—————–———————————

E ∫ unfold(fold(µ(X)A,a)) ↔ a : A{X←µ(X)A}

(Eval Rec)

E,x:A ∫ a : A
————————————

E ∫ µ(x:A)a ↔ a{x←µ(x:A)a} : A

Formal Contractiveness.
The relation A (Y (type expression A is formally contractive

in variable Y) is defined as follows:

X (Y if X≠Y

Top (Y always

[li:Bi iÏ1..n] (Y always

A→B (Y always

Ó(X<:A)B (Y if B (X and B (Y (no requirement on A)

Ô(X<:A)B (Y if B (X and B (Y (no requirement on A)

µ(X)A (Y if A (Y

Appendix C: The Target Calculus
Environments E ::= E,x:A E,X::K
Kinds K ::= Type ↑ (l1..ln)

Type/Row Vars X,Y
Types A,B,C,D ::= X ÜRá A→B

 Ó(X::K)B Ô(X::K)B µ(X)A
Rows R ::= X l:B,R
Variables x,y
Values a,b,c,d ::= x Üli=bi iÏ1..ná a†l a†l:=b

 λ(x:A)b b(a) λ(X::K)b b(A)
 pack X::K=C, b{X}:B{X}
 open c as X::K,x:B in d:D
 fold(µ(X)A, a) unfold(a) µ(x:A)a

E,X,E’ stands for E,X::Type,E’. E ∫ A stands for E ∫ A::Type.
(l1..ln) is a set of labels; we write (l,l1..ln) to imply that l ≠ l1..ln.

(Env) (Env x) (Env X)

E ∫ A xÌdom(E) E ∫ K kind XÌdom(E)
—— ——————— —————————

 ∫ Q E,x:A ∫ Q E,X::K ∫ Q

(Kind Type) (Kind Row)

E ∫ Q E ∫ Q
————— ——————

E ∫ Type kind E ∫ ↑ (l1..ln) kind

(Type X) (Type Arrow) (Type Record)

E’,X,E” ∫ Q E ∫ A E ∫ B E ∫ R::↑ ()
———— ————— ————

E’,X,E” ∫ X E ∫ A→B E ∫ ÜRá

(Type All) (Type Exists) (Type Rec)

E,X::K ∫ B E,X::K ∫ B E,X ∫ A A(X
————— ————— ——————

E ∫ Ó(X::K)B E ∫ Ô(X::K)B E ∫ µ(X)A

(Row X) (Row)

E’,X::↑ (l1..ln),E” ∫ Q E ∫ Q
—————————— —————

E’,X::↑ (l1..ln),E” ∫ X::↑ (l1..ln) E ∫ :: ↑ (l1..ln)

(Row Cons)

E ∫ R::↑ (l,l1..ln) E ∫ B
—————————

E ∫ l:B,R :: ↑ (l1..ln)

(Val x) (Val Fun) (Val Appl)

E’,x:A,E” ∫ Q E,x:A ∫ b : B E ∫ b : A→B E ∫ a : A
————— ——————— ————–————

E’,x:A,E” ∫ x:A E ∫ λ(x:A)b : A→B E ∫ b(a) : B

(Val Record)

E ∫ bi : Bi ÓiÏ1..n
——————————

E ∫ Üli=bi iÏ1..ná : Üli:Bi iÏ1..n,á

(Val Select) (Val Update)

E ∫ a : Ül:B,Rá E ∫ a : Ül:B,Rá E ∫ b : B
————— —————————

E ∫ a†l : B E ∫ a†l:=b : Ül:B,Rá

(Val Fun2) (Val Appl2)

E,X::K ∫ b : B E ∫ b : Ó(X::K)B{X} E ∫ A::K
————————— ————————————

E ∫ λ(X::K)b : Ó(X::K)B E ∫ b(A) : B{A}

(Val Pack)

E ∫ A::K E ∫ b{A} : B{A}
————————————————

E ∫ (pack X::K=A, b{X}:B{X}) : Ô(X::K)B{X}

(Val Open)

E ∫ c : Ô(X::K)B E ∫ D E,X::K,x:B ∫ d : D
—————————————————

E ∫ (open c as X::K,x:B in d:D) : D

May 30, 1995 2:39 PM Page 9

(Val Fold) (Val Unfold)

E ∫ a : A{X←µ(X)A} E ∫ a : µ(X)A
————————— ——————————

E ∫ fold(µ(X)A, a) : µ(X)A E ∫ unfold(a) : A{X←µ(X)A}

(Val Rec)

E,x:A ∫ a : A
—————

E ∫ µ(x:A)a : A

(Eq Symm) (Eq Trans)

E ∫ a ↔ b : A E ∫ a ↔ b : A E ∫ b ↔ c : A
————— ———————————

E ∫ b ↔ a : A E ∫ a ↔ c : A

(Eq x)

E’,x:A,E” ∫ Q
———————

E’,x:A,E” ∫ x↔x : A

(Eq Fun) (Eq Appl)

E,x:A ∫ b ↔ b’ : B E ∫ b ↔ b’ : A→B E ∫ a ↔ a’ : A
——————————— ————————————

E ∫ λ(x:A)b ↔ λ(x:A)b’ : A→B E ∫ b(a) ↔ b’(a’) : B

(Eq Record) (Eq Select)

E ∫ bi↔bi’ : Bi ÓiÏ1..n E ∫ a↔a’ : Ül:B,Rá
——————————————— ————–——

E ∫ Üli=bi iÏ1..ná ↔ Üli=bi’ iÏ1..ná : Üli:Bi iÏ1..n,á E ∫ a†l ↔ a’†l : B

(Eq Update)

E ∫ a↔a’ : Ül:B,Rá E ∫ b↔b’ : B
————————————

E ∫ a†l:=b ↔ a’†l:=b’ : Ül:B,Rá

(Eq Fun2)

E,X::K ∫ b ↔ b’ : B
——————————————

E ∫ λ(X::K)b ↔ λ(X::K)b’ : Ó(X::K)B

(Eq Appl2)

E ∫ b ↔ b’ : Ó(X::K)B{X} E ∫ A::K
——————————————

E ∫ b(A) ↔ b’(A) : B{A}

(Eq Pack)

E ∫ A::K E,X::K ∫ B{X} E ∫ b{A} ↔ b’{A} : B{A}
———————————————————————
—

E ∫ (pack X::K=A, b{X}:B{X}) ↔ (pack X::K=A, b’{X}:B{X}) :

Ô(X::K)B{X}

(Eq Open)

E ∫ c ↔ c’ : Ô(X::K)B E ∫ D E,X::K,x:B ∫ d ↔ d’ : D
———————————————————————
—

E ∫ (open c as X::K,x:B in d:D) ↔ (open c’ as X::K,x:B in d’:D) :

D

(Eq Fold)

E ∫ a ↔ a’ : A{X←µ(X)A}
————————————————

E ∫ fold(µ(X)A, a) ↔ fold(µ(Y)A, a’) : µ(Y)A

(Eq Unfold)

E ∫ a ↔ a’ : µ(X)A
———————————————

E ∫ unfold(a) ↔ unfold(a’) : A{X←µ(X)A}

(Eq Rec)

E,x:A ∫ a↔a’ : A
—————–—–———

E ∫ µ(x:A)a ↔ µ(x:A)a’ : A

(Eval Beta) (Eval Eta)

E ∫ λ(x:A)b : A→B E ∫ a : A E ∫ b : A→B xÌdom(E)
————————–——— —––————————

E ∫ (λ(x:A)b)(a) ↔ b{x←a} : B E ∫ λ(x:A)b(x) ↔ b : A→B

(Eval Select) (where a7Ül=b, li=bi iÏ1..ná)

E ∫ a : Ül:B, li:Bi iÏ1..n,á
————————

E ∫ a†l ↔ b : B

(Eval Override) (where a7Ül=b, li=bi iÏ1..ná)

E ∫ a : Ül:B, li:Bi iÏ1..n,á E ∫ b’ : B
—————————————————

E ∫ a†l:=b’ ↔ Ül=b’, li=bi iÏ1..ná : Ül:B, li:Bi iÏ1..n,á

(Eval Rerecord)

E ∫ a : Üli:Bi iÏ1..n,á
————————————

E ∫ a ↔ Üli=a†li iÏ1..ná : Üli:Bi iÏ1..n,á

(Eval Beta2)

E ∫ λ(X::K)b : Ó(X::K)B E ∫ A::K
——————————–—————

E ∫ (λ(X::K)b)(A) ↔ b{X←A} : B{X←A}

(Eval Eta2)

E ∫ b : Ó(X::K)B XÌdom(E)
—–———————————

E ∫ λ(X::K)b(X) ↔ b : Ó(X::K)B

(Eval Unpack) (where c7pack X::K=A, b{X}:B{X})

E ∫ c : Ô(X::K)B{X} E ∫ D E,X::K,x:B{X} ∫ d{X,x} : D
—————————————————————

E ∫ (open c as X::K,x:B{X} in d{X,x}:D) ↔ d{A,b{A}} : D

(Eval Repack)

E ∫ b : Ô(X::K)B{X} E,y:Ô(X::K)B{X} ∫ d{y} : D
———————————————————————
—

E∫(open b as X::K,x:B{X} in d{pack X’::K=X,x:B{X’}}:D)↔d{b} :

D

(Eval Fold)

E ∫ a : µ(X)A
—————————–————

E ∫ fold(µ(X)A,unfold(a)) ↔ a : µ(X)A

(Eval Unfold)

E ∫ a : A{X←µ(X)A}
—————–———————————

E ∫ unfold(fold(µ(X)A,a)) ↔ a : A{X←µ(X)A}

(Eval Rec)

E,x:A ∫ a : A
————————————

E ∫ µ(x:A)a ↔ a{x←µ(x:A)a} : A

Formal Contractiveness.
The relation A (Y (type expression A is formally contractive

in variable Y) is defined as follows:

X (Y if X≠Y

ÜRá (Y always

A→B (Y always

Ó(X::K)B (Y if B (Y

Ô(X::K)B (Y if B (Y

µ(X)A (Y if A (Y

References

[Abadi 1994] M. Abadi, Baby Modula-3 and a theory of objects.
Journal of Functional Programming 4(2).

[Abadi, Cardelli 1994a] M. Abadi and L. Cardelli, A theory of primi-
tive objects. To appear.

[Abadi, Cardelli 1994b] M. Abadi and L. Cardelli. A theory of primi-
tive objects: second-order systems. Proc. ESOP’94 - European
Symposium on Programming. Springer-Verlag.

Page 10 May 30, 1995 2:39 PM

[Abadi, Cardelli 1994c] M. Abadi and L. Cardelli. A theory of primi-
tive objects: untyped and first-order systems. Proc.
Theoretical Aspects of Computer Software. Springer-Verlag.

[Abadi, Plotkin 1990] M. Abadi and G. Plotkin. A per model of poly-
morphism and recursive types. Proc. 5th Annual IEEE
Symposium on Logic in Computer Science.

[Aczel, Mendler 1989] P. Aczel and N. Mendler. A final co-algebra
theorem. Proc. Category Theory and Computer Science.
Springer-Verlag.

[Amadio 1991] R.M. Amadio, Recursion over realizability
structures. Information and Computation 91(1), 55-85.

[Breazu-Tannen, et al. 1991] V. Breazu-Tannen, T. Coquand, C.
Gunter, and A. Scedrov, Inheritance and explicit coercion.
Information and Computation 93(1), 172-221.

[Breazu-Tannen, Gunter, Scedrov 1990] V. Breazu-Tannen, C.
Gunter, and A. Scedrov. Computing with coercions. Proc. 1990
ACM Conference on Lisp and Functional Programming.

[Bruce 1993] K. Bruce. A paradigmatic object-oriented
programming language: design, static typing, and semantics.
Technical Report No. CS-92-01, revised (to appear in the Journal
of Functional Programming). Williams College.

[Canning, et al. 1989] P. Canning, W. Cook, W. Hill, W. Olthoff, and
J.C. Mitchell. F-bounded polymorphism for object-oriented
programming. Proc. ACM Conference on Functional
Programming and Computer Architecture.

[Cardelli 1994] L. Cardelli, Extensible records in a pure calculus of
subtyping. In Theoretical Aspects of Object-Oriented Program-
ming, C.A. Gunter and J.C. Mitchell, ed. MIT Press (to appear).
Also Technical Report n.81, Digital Systems Research Center,
1991.

[Cardelli, Mitchell 1991] L. Cardelli and J.C. Mitchell, Operations on
records. Mathematical Structures in Computer Science 1(1), 3-
48.

[Cardelli, et al. 1991] L. Cardelli, J.C. Mitchell, S. Martini, and A.
Scedrov. An extension of system F with subtyping. Proc.
Theoretical Aspects of Computer Software. Lecture Notes in
Computer Science 526. Springer-Verlag.

[Cardelli, Wegner 1985] L. Cardelli and P. Wegner, On
understanding types, data abstraction and polymorphism.
Computing Surveys 17(4), 471-522.

[Cardone 1989] F. Cardone. Relational semantics for recursive
types and bounded quantification. Proc. Automata, Languages
and Programming. Lecture Notes in Computer Science 372.
Springer-Verlag.

[Cardone 1990] F. Cardone. Tipi ricorsivi e inheritance in linguaggi
funzionali, Dipartimento di Informatica, Università di Torino.

[Curien, Ghelli 1992] P.-L. Curien and G. Ghelli, Coherence of sub-
sumption, minimum typing and type-checking in F≤.
Mathematical Structures in Computer Science 2(1), 55-91.

[Girard, Lafont, Taylor 1989] J.-Y. Girard, Y. Lafont, and P. Taylor,
Proofs and types. Cambridge University Press.

[Harper, Pierce 1991] R. Harper and B. Pierce. A record calculus
based on symmetric concatenation. Proc. 18th Annual ACM
Symposium on Principles of Programming Languages.

[Kamin 1988] S. Kamin. Inheritance in Smalltalk-80: a
denotational definition. Proc. 15th Annual ACM Symposium on
Principles of Programming Languages.

[MacQueen, Plotkin, Sethi 1986] D.B. MacQueen, G.D. Plotkin, and
R. Sethi, An ideal model for recursive polymorphic types.
Information and Control 71, 95-130.

[Mitchell 1990] J.C. Mitchell. Toward a typed foundation for
method specialization and inheritance. Proc. 17th Annual ACM
Symposium on Principles of Programming Languages.

[Mitchell, Honsell, Fisher 1993] J.C. Mitchell, F. Honsell, and K.
Fisher. A lambda calculus of objects and method
specialization. Proc. 8th Annual IEEE Symposium on Logic in
Computer Science.

[Pierce, Turner 1994] B.C. Pierce and D.N. Turner, Simple type-
theoretic foundations for object-oriented programming.
Journal of Functional Programming 4(2).

[Plotkin, Abadi 1993] G.D. Plotkin and M. Abadi. A logic for para-
metric polymorphism. Proc. International Conference on Typed
Lambda Calculi and Applications. Lecture Notes in Computer
Science 664. Springer-Verlag.

[Smyth, Plotkin 1982] M.B. Smyth and G.D. Plotkin, The category-
theoretic solution of recursive domain equations. SIAM
Journal of Computing 11(4), 761-783.

[Wand 1989] M. Wand. Type inference for record concatenation
and multiple inheritance. Proc. 4th Annual IEEE Symposium on
Logic in Computer Science.

