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Abstract. 

 

A relation between recursive object types, called 

 

matching

 

, has
been proposed as a generalization of subtyping. Unlike subtyping,
matching does not support subsumption, but it does support inheritance
of binary methods. We argue that matching is a good idea, but that it
should not be regarded as a form of F-bounded subtyping (as was origi-
nally intended). We show that a new interpretation of matching as high-
er-order subtyping has better properties. Matching turns out to be a
third-order construction, possibly the only one to have been proposed for
general use in programming.

 

1  Introduction

 

Subtyping is one of the most basic and best understood concepts in object-ori-
ented programming. The subtyping relation can be defined rather naturally for
first-order constructions such as record types, object types, function types, and
recursive types [9, 16]. It can be extended to second-order constructions such as
quantifiers for polymorphism and for data abstraction [19, 23], and to type op-
erators [21, 35]. In programming, subtyping is the basis for both subsumption
and inheritance.

Unfortunately, the subtyping relation does not hold between some recur-
sively defined object types that arise commonly [15, 24]. This failure of subtyp-
ing is necessary for soundness. The standard, pragmatic solution is to weaken
type definitions so that subtyping is achieved, and to use dynamic type tests to
recover lost type information (as for example in Modula-3 [34]). A better solu-
tion is to employ Self types (as in [4, 5]), but this helps only for covariant occur-
rences of recursion variables (e.g., not for binary methods [11]). 

Recently, a relation between recursive object types, called 

 

matching

 

, has
been proposed to circumvent this problem [14]. Unlike subtyping, matching
does not support subsumption, but it does support inheritance of binary meth-
ods and parameterization. The original interpretation of matching was in terms
of F-bounded subtyping. We show that a new interpretation of matching as
higher-order subtyping has better properties, and produces the expected typ-
ing rules.

In the next section we explain the basic issues by means of examples and
we hint at a solution based on the informal concept of protocol. In section 3 we
introduce the matching relation, which is intended to capture the notion of pro-
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tocol extension. In section 4 we present type operators, which are a formal
counterpart for protocols. In the following two sections, we use type operators
to explain matching. In section 5 we discuss a tentative formalization of match-
ing in terms of F-bounded subtyping. In section 6 we present a more satisfacto-
ry formalization of matching in terms of higher-order subtyping. In section 7
we apply our techniques to express classes and inheritance.

 

2  The Power and Limits of Subtyping

 

In this section we introduce two examples that we use throughout the paper.
The first example is that of two types in the subtyping relation. Thanks to sub-
typing, simple techniques allow us to express classes with inheritance. In the
second example, subtyping fails. We describe informally the notion of protocol
extension, which is a possible replacement for subtyping.

 

2.1  Objects Types and Subtyping

 

We introduce our notation and some basic typing rules in the context of our
first example. This example illustrates how subtyping works.

We consider two types Inc and IncDec containing an integer field and some
methods:

A type of the form 

 

µ

 

(X)A is a recursive type. For now we assume that a re-
cursive type and its unfolding are equivalent, in the sense that we consider

 

µ

 

(X)A{X} = A{

 

µ

 

(X)A{X}}. We refer to this as the 

 

unfolding property 

 

of recursive
types. Thus, we have Inc = [n:Int, inc

 

+

 

:Inc] and IncDec = [n:Int, inc

 

+

 

:IncDec,
dec

 

+

 

:IncDec].
A type of the form [v

 

i

 

:B

 

i

 

 

 

i

 

Ï

 

I

 

, m

 

j
+

 

:C

 

j

 

 

 

j

 

Ï

 

J

 

] is an object type, where the v

 

i

 

 are up-
datable fields and the m

 

j

 

 are methods; we always indicate a method type by a

 

+

 

 sign. For example, the type [n:Int, inc

 

+

 

:Inc] has a field n of type Int and a meth-
od inc with result type Inc.

A typical object of type Inc is:

Here p : Inc means that p has type Inc. The binder 

 

ς

 

 binds the self variable of
the method inc. The code self.n := self.n +1 is the body of the method inc; the
method returns the updated self. Update may be either functional (returning a
new object) or imperative (modifying self in place); either semantics will do for
the purposes of this paper.

Inc  

 

@

 

   

 

µ

 

(X)[n:Int, inc

 

+

 

:X]
IncDec  

 

@

 

   

 

µ

 

(Y)[n:Int, inc

 

+

 

:Y, dec

 

+

 

:Y]

p : Inc   

 

@

 

[n = 0,
 inc = 

 

ς

 

(self: Inc) self.n := self.n +1]
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The method inc can be understood roughly as the function 

 

λ

 

(self: Inc) self.n
:= self.n +1, of type Inc

 

→

 

Inc. However, we prefer to avoid the 

 

λ

 

 notation since
the method is never explicitly applied to an argument. Instead, the method is
invoked by writing p.inc; when p.inc is executed, p is bound to the self param-
eter.

Subtyping (<:) is a reflexive and transitive relation on types. For recursive
types we have the rule:

Two recursive types are in the subtyping relation when their bodies are in the
subtyping relation under the assumption that the recursion variables are in the
subtyping relation [9].

For object types, we have the rule:

A longer object type is a subtype of a shorter one. In addition, the result type of
a method may be smaller in a subtype than in a supertype; the type of a field
must be the same [2, 5]. The latter condition (the invariance of field types) is
necessary for soundness, because fields can be updated.

Object types are often defined recursively; therefore, it is convenient to re-
gard the combination of a recursive type and an object type as a single construc-
tion of the form:

In this view, the recursion variable X is often called ÒMyTypeÓ or ÒSelfÓ: it is
the type of the self parameter of methods. Combining the previous rules for
subtyping, we obtain the following derived rule for recursive object types: 

By applying this derived rule to our example, we obtain:

The subtyping relation between IncDec and Inc allows 

 

subsumption

 

: we can
treat a member of IncDec as a member of Inc. The general rule for subsumption
is:

 

2.2  Inheritance

 

The subtyping relation between IncDec and Inc plays an important role in in-

 

µ

 

(X)A{X} <: 

 

µ

 

(Y)B{Y}
if X <: Y implies A{X} <: B{Y}
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IncDec <: Inc

 if   a : A   and   A <: B   then   a : B
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heritance. From our perspective, inheritance is obtained by writing sufficiently
polymorphic code fragments that can be instantiated and reused for imple-
menting objects of several types. We can express the polymorphism of these
fragments with bounded universal quantification. For example, consider a
function that increments the field n of its argument and returns the modified
argument; this function works for arguments of type Inc, and also for argu-
ments of subtypes of Inc. This is written:

To typecheck the body of pre-inc, we use rules implying that if X <: Inc and
self:X then self.n:Int and, for b:Int, self.n:=b : X. (See [5] for a discussion of these
rules.)

We call a code fragment such as pre-inc a 

 

pre-method

 

. By polymorphic spe-
cialization of pre-inc we can obtain code suitable for implementing the method
inc in an object of type Inc or IncDec:

Thus, the generic pre-method pre-inc, which was presumably first written for
building objects of type Inc, can be reused for building objects of type IncDec,
because IncDec <: Inc. The reuse does not require retypechecking the pre-meth-
od.

 

2.3  Classes

 

Pre-method reuse can be systematized by assembling collections of pre-meth-
ods into 

 

classes

 

. A class for an object type A can be described as a collection of
pre-methods and initial field values, plus a way of generating new objects of
type A. Such a collection could be taken as primitive; instead, we choose to rep-
resent classes as objects [2, 5]. Although it may be mildly confusing at first, this
reduction of classes to objects has the advantage of making explicit the typing
properties of methods and of object constructors.

In a class for an object type A, the pre-methods are parameterized over all
subtypes of A, so that they can be reused (inherited) by any class for any sub-
type of A. Let A be a type of the form 

 

µ

 

(X)[v

 

i

 

:B

 

i

 

 

 

i
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j
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j

 

{X} 

 

j
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J

 

]. As part of a class
for A, a pre-method for m

 

j

 

 would be stored in a field of type 

 

Ó

 

(X<:A)X

 

→

 

C

 

j

 

{X}. 
For example, IncClass and IncDecClass are the types of classes for Inc and

IncDec, respectively:

pre-inc : 

 

Ó

 

(X<:Inc)X

 

→

 

X   

 

@

 

λ

 

(X<:Inc) 

 

λ

 

(self:X) self.n := self.n+1

pre-inc(Inc) : Inc

 

→

 

Inc
pre-inc(IncDec) : IncDec

 

→

 

IncDec
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A typical class of type IncClass reads:

The code for new is regular: it assembles all the pre-methods and initial field
values of the class into a new object. The variable classSelf denotes the incClass
object, and classSelf.inc is pre-inc.

Inheritance is obtained by extracting a pre-method from a class and reusing
it for constructing another class. For example, the pre-method pre-inc of type

 

Ó(X<:Inc)X→X in a class for Inc could be extracted and reused as a pre-method
of type Ó(X<:IncDec)X→X in a class for IncDec:

This example of inheritance requires the subtyping Ó(X<:Inc)X→X <:
Ó(X<:IncDec)X→X, which follows from the subtyping rules for quantified
types and function types: 

In summary, inheritance from a class for Inc to a class for IncDec is enabled
by the subtyping IncDec <: Inc. Unfortunately, inheritance is possible and de-
sirable even in situations where such subtypings do not exist. As we shall see
in the rest of the paper, a more general treatment of inheritance requires a more

IncClass   @
[new+: Inc,
 n: Int,
 inc: Ó(X<:Inc)X→X]

IncDecClass   @
[new+: IncDec,
 n: Int,
 inc: Ó(X<:IncDec)X→X,
 dec: Ó(X<:IncDec)X→X]

incClass : IncClass   @
[new = ς(classSelf: IncClass) 

[n = classSelf.n, 
 inc = ς(self:Inc) classSelf.inc(Inc)(self)]

 n = 0,
 inc = pre-inc]

incDecClass : IncDecClass   @
[new = ς(classSelf: IncDecClass)[...],
 n = 0,
 inc = incClass.inc,
 dec = ...]

Ó(X<:A)B <: Ó(X<:AÕ)BÕ if AÕ<:A and if X<:A implies B<:BÕ
A→B <: AÕ→BÕ if AÕ <: A and B <: BÕ
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sophisticated treatment of classes, based on relations between object types oth-
er than subtyping.

2.4  Binary Methods

We now consider an example similar to the one of Inc and IncDec, but with bi-
nary methods. The first parameter of a binary method is self and the second pa-
rameter must have the same type as self. In our example, we consider a
recursive object type Max, with a field n and a binary method max. Our intent
is that max takes two objects (self and other) and returns the object that has the
greatest value for the field n.

We consider also a type MinMax with an additional binary method min:

When we attempt to reproduce the development of the previous sections,
we immediately run into a difficulty: the subtyping MinMax <: Max does not
hold according to the rules we have adopted. Moreover, it would be unsound
to ignore this failure, as it is easy to construct examples where allowing
MinMax <: Max leads to run-time errors.

Technically, an attempt to prove MinMax <: Max fails at the point where
we try to verify that X→X <: Y→Y under the assumption that X <: Y. Since the
occurrences of X and Y on the left of → are contravariant, we would need Y <:
X, which is the opposite of the assumption we have available. 

We may now observe that the development in section 2.1 relies on the fact
that the type for the method inc is covariant with respect to the recursion vari-
able that represents Self. Whenever this covariance condition is violated, as
with binary methods, a longer recursive object type is not a subtype of a shorter
recursive object type. 

The failure of subtyping has dire consequences beyond the loss of sub-
sumption. We can still parameterize over the subtypes of Max, for example
writing a pre-method for max:

However, this parameterization is of no benefit, since the pre-method cannot be
specialized at type MinMax. Similarly, we lose inheritability of pre-methods:
since Ó(X<:Max)X→X is not a subtype of Ó(X<:MinMax)X→X, the pre-method
pre-max cannot be reused in building a class for MinMax.

The lack of inheritance is most disappointing, because the code for pre-max
can in fact be given any type of the form:

Max   @   µ(X)[n:Int, max+:X→X]

MinMax   @   µ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

pre-max : Ó(X<:Max)X→X→X   @
λ(X<:Max) λ(self:X) λ(other:X)

if self.n>other.n then self else other
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Without inheritance, we may have to rewrite the code for pre-max for many
types of this form, retypechecking it in each case. In particular, we may have to
write:

The body of the pre-method (namely, if self.n>other.n then self else other) does
not change. We would be able to reuse pre-max if only we could write down an
appropriate polymorphic type for it.

2.5  Protocols

Our difficulties with inheritance can be traced back to the fact that MinMax is
not a subtype of Max. Although there is no hope of forcing this subtyping, there
is hope of finding some other useful formal relationship between these types.
In this section we introduce the notion of protocol, in order to capture an intui-
tive relationship between Max and MinMax. Our discussion is informal, but we
will soon see how to formalize the notions described here.

The protocol of an object characterizes its interface, much like the type of
the object; the protocol consists of the names of fields and methods of the object,
together with their types. The protocol can be derived from the type of the ob-
ject, and differs from it only by the absence of recursion. Informally, the proto-
col of a recursive object type µ(X)[vi:Bi iÏI, mj

+:Cj{X} jÏJ] is the collection of names
and types:

For now, we use Self as a keyword, without pondering what it means. The pro-
tocols of Max and MinMax are:

We introduce also a protocol-extension relation, with the following tentative
definition: 

In this definition, we treat Self as a type (and assume, for example, that Self <:
Self). We may now assert that the protocol of MinMax extends the protocol of
Max:

Ó(X<:µ(Y)[n:Int, max+:Y→Y, ... (anything) ... ])X→X→X

pre-maxÕ : Ó(X<:MinMax)X→X→X   @
λ(X<:MinMax) λ(self:X) λ(other:X)

if self.n>other.n then self else other

vi:Bi iÏI, mj
+:Cj{Self} jÏJ

MaxProtocol @   n:Int, max+:Self→Self
MinMaxProtocol @   n:Int, max+:Self→Self, min+:Self→Self

vi:Bi iÏI, mj
+:Cj{Self} jÏJ   extends   vi:Bi iÏIÕ, mj

+:CjÕ{Self} jÏJÕ

if Cj{Self} <: CjÕ{Self} for all jÏJÕ, with IÕ⊆ I and JÕ⊆ J

MinMaxProtocol   extends   MaxProtocol
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This is not the same as asserting (incorrectly) that MinMax is a subtype of Max.
When properly formalized, the notion of protocol extension could be used

in parameterization, in place of subtyping. For example, when parameterizing
over a type X, we would like to be able to express the constraint that the proto-
col of X extends MaxProtocol, meaning that the protocol of X includes a field n
of type Int and a method max of type Self→Self. We could then say that, for
every such X, the function pre-max has type X→X→X. We will see how to ex-
press this constraint as an appropriate polymorphic type, and will be able to
write pre-max so that it is inheritable.

3  Matching
There have been several theoretical and practical approaches that capture con-
cepts similar to that of protocol [15, 18, 22, 25, 26, 28, 29, 30, 31, 33]. Recently,
Bruce et al. [10, 14] proposed axiomatizing the protocol-extension relation as if
it were a relation between recursive object types, called matching. In this section
we start considering that proposal. We identify some basic properties of match-
ing and then show how we use matching for inheritance of binary methods. 

3.1  Basic Properties of Matching

We write A <# B to mean that A matches B; that is, that the protocol of A ex-
tends the protocol of B. We do not yet consider how to prove the assertion A <#
B, but we expect to have, for example:

In particular, we may write X <# A, where X is a variable. We may then
quantify over all types that match a given one, as follows:

We call Ó(X<#A)B match-bounded quantification, and say that occurrences of X in
B are match-bound. 

Using match-bounded quantification, we can rewrite the polymorphic
function pre-inc in terms of matching rather than subtyping:

It remains to see why this code fragment typechecks. Some of the necessary
properties are:

IncDec <# Inc
MinMax <# Max

Ó(X<#A)B{X}

pre-inc : Ó(X<#Inc)X→X   @
λ(X<#Inc) λ(self:X) self.n := self.n+1

pre-inc(IncDec) : IncDec→IncDec
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Similarly, we can write a polymorphic version of the function pre-max:

For typechecking this code fragment, we need:

Thus, the use of match-bounded quantification enables us to express the
polymorphism of pre-max. The treatment of pre-max is not substantially differ-
ent from that of pre-inc: contravariant and covariant occurrences of Self are
treated uniformly.

We have not used subsumption in either of these examples. In fact, since
we think of matching as protocol extension, we do not expect a subsumption-
like property to hold for matching:

The properties that we have attributed to matching must hold regardless.
The absence of a subsumption-like property can pose a problem. Knowing

that A <# B is not quite as good as knowing that A <: B. For example, imagine
that we forget that IncDec <: Inc and attempt to get by with IncDec <# Inc. Then
we could not typecheck code such as:

where we apply a function of type Inc→Inc to an object of type IncDec. We can
circumvent this difficulty by turning inc into a polymorphic function of type
Ó(X<#Inc)X→X:

Thus, at least in this example, we can do without subtyping (and subsumption),
provided that we have the foresight of introducing sufficient parameterization.
However, this parameterization may be cumbersome. 

Despite this example, it is not clear whether matching can completely re-
place subtyping; we leave this as an open issue. We do not regard matching as

if X<#Inc and x:X then x.n : Int
if X<#Inc and x:X and b:Int then x.n:=b : X

pre-max : Ó(X<#Max)X→X→X   @
λ(X<#Max) λ(self:X) λ(other:X)

if self.n>other.n then self else other

pre-max(MinMax) : MinMax→MinMax→MinMax

if X<#Max and x:X then x.n : Int

a : A   and   A <# B   need not imply   a : B

inc : Inc→Inc   @
λ(x:Inc) x.n := x.n+1

λ(x:IncDec) inc(x)

pre-inc : Ó(X<#Inc)X→X   @
λ(X<#Inc) λ(x:X) x.n := x.n+1

λ(x:IncDec) pre-inc(IncDec)(x)
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a replacement for subtyping, but rather as a complement to subtyping.

3.2  Classes with Matching

We can now revise our treatment of classes from section 2.3, adapting it for
matching. A class for an object type A can again be described as a collection of
pre-methods and initial field values, plus a way of generating new objects of
type A. The pre-methods are now parameterized over all object types matching
A, so that they can be inherited by any class for an object type matching A. For
example, MaxClass and MinMaxClass are the types for classes for Max and
MinMax, respectively:

A typical class of type MaxClass reads:

The code for new typechecks assuming that Max <# Max, so that class-
Self.max(Max)(self) : Max→Max. The pre-method pre-max is as given in sec-
tion 3.1. 

A typical class of type MinMaxClass reads:

The implementation of max is taken from maxClass, that is, it is inherited. The
inheritance typechecks assuming that Ó(X<#Max)X→X→X <: Ó(X<#Min-

MaxClass   @
[new+: Max,
 n: Int,
 max: Ó(X<#Max)X→X→X]

MinMaxClass   @
[new+: MinMax,
 n: Int,
 max: Ó(X<#MinMax)X→X→X,
 min: Ó(X<#MinMax)X→X→X]

maxClass : MaxClass   @
[new = ς(classSelf: MaxClass) 

[n = classSelf.n, 
 max = ς(self:Max) classSelf.max(Max)(self)],

 n = 0,
 max = pre-max]

minMaxClass : MinMaxClass   @
[new = ς(classSelf: MinMaxClass)[...],
 n = 0,
 max = maxClass.max,
 min = ...]
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Max)X→X→X. Thus, we are still using some subtyping and subsumption as a
basis for inheritance.

3.3  Discussion

In light of these examples, we may conclude that the idea of a matching relation
is attractive:

¥ The fact that MinMax matches Max is reasonably intuitive, since the tex-
tual definition of MinMax does in fact match the textual definition of
Max (with Self matching Self, and ignoring the additional components of
MinMax). If anything, it is counterintuitive that subtyping should fail.

¥ Matching handles contravariant occurrences of Self and inheritance of
binary methods.

¥ Matching is meant to be directly axiomatized as a relation between
types, so the typing rules of a programming language that includes
matching can be explained directly. 

¥ Matching is simple from the programmerÕs point to of view, in compar-
ison with more elaborate type-theoretic mechanisms that could be used
in its place.

By examining examples, we have identified a few necessary properties of
matching. However, we still have to settle on the exact typing rules for match-
ing. These rules turn out to be different in proposed languages such as TOOPLE
[10] and PolyTOIL [14]. The differences are subtle but fundamental. For exam-
ple, in PolyTOIL matching is a transitive relation, while in TOOPLE it is not. We
may further ask whether matching should be reflexive, or invariant under sub-
stitution. These questions, and more, inevitably arise in trying to design a pro-
gramming language based on a matching relation. 

We return to these questions in sections 5 and 6, where we consider two al-
ternative formalizations of matching. 

4  Type Operators
As we discussed in section 2, we are looking for formal relationships between
the types Max and MinMax. These relationships might suggest a precise defi-
nition of matching, clarifying what we mean by the assertion MinMax <# Max;
they might also suggest alternatives to matching. 

In this section we introduce a theory of type operators that will enable us
to express formal relationships between types. 

4.1  Type Operators and Recursive Object Types

A type operator is a function from types to types [27]. We use the notations and
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rules of the lambda calculus for type operators: we write λ(X)B{X} for the type
operator that maps each type X to a corresponding type B{X}, write F(A) for the
application of the type operator F to the type A, and let (λ(X)B{X})(A) = B{A}.

We often move back and forth between type operators and their fixpoints.
In one direction, we write F* for the fixpoint of the type operator F. In the op-
posite direction, we have the notation AOp:

When D{X} is an object type [vi:Bi iÏI, mj
+:Cj{X} jÏJ], the type operator AOp is

a formalization of the protocol of A. In this case AOp is λ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ];

this type operator is analogous to the protocol vi:Bi iÏI, mj
+:Cj{Self} jÏJ, but differs

in being fully formal (e.g., it does not mention the keyword Self). In the exam-
ple of Max and MinMax, we obtain:

The unfolding property of recursive types yields: 

Note that AOp is defined in terms of the syntactic form µ(X)D{X} of A. In
particular, the unfolding D{A} of A is not necessarily in a form such that D{A}Op

is defined. Even if D{A}Op is defined, it need not equal AOp. For example, con-
sider:

Thus, we may have two types A and B such that A = B but AOp ≠ BOp. This is a
sign of trouble to come.

4.2  F-bounded Subtyping 

F-bounded subtyping [15] was invented to support parameterization in the cas-
es where simple subtyping is not sufficient. In the F-bounded approach, the
property A <: BOp(A) is seen as a statement that the protocol of A extends the
protocol of B. 

We can explain this approach by reference to our examples. One common
property of the types Max and MinMax is that they are both post-fixpoints of

F* abbreviates µ(X)F(X)

AOp abbreviates λ(X)D{X} whenever A 7 µ(X)D{X}

MaxOp 7   λ(X)[n:Int, max+:X→X]
MinMaxOp 7   λ(Y)[n:Int, max+:Y→Y, min+:Y→Y]

MaxOp* =   µ(X) MaxOp(X)   =   µ(X) [n:Int, max+:X→X]   =   Max
MaxOp* =   MaxOp(µ(X) MaxOp(X))   =   MaxOp(Max)

D{X} @ µ(Y) X→Y

A @ µ(X) D{X}
D{A} 7 µ(Y) A→Y = A (by the unfolding property)

AOp 7   λ(X) D{X}
D{A}Op 7   λ(Y) A→Y ≠ AOp
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MaxOp, that is:

As we said, MaxOp is a formalization of the protocol of Max. The property
X <: MaxOp(X) is seen as asserting that the protocol of X extends the protocol of
Max. This view is justified because a recursive object type A such that A <:
[n:Int, max+:A→A] often has the shape µ(Y)[n:Int, max+:Y→Y, ... ].

Since Max and MinMax are both post-fixpoints of MaxOp, it is useful to pa-
rameterize over all types X with the property that X <: MaxOp(X). Thus, a func-
tion of type:

can be instantiated for the types Max and MinMax, with instances of types
B{Max} and B{MinMax}. In particular, this form of parameterization leads to a
general typing of pre-max, and permits the inheritance of pre-max:

The code of pre-max is well-typed because X <: MaxOp(X) and self:X imply self
: [n:Int, max+:X→X] by subsumption; similarly, other : [n:Int, max+:X→X]. The
instantiation pre-max(Max) is well-typed because Max = MaxOp(Max).

As this example shows, the unfolding property of recursive types is critical.
In general, given a function f : Ó(X<:A{X})B{X}, we would expect to be able to
write f(µ(X)A{X}); but f(µ(X)A{X}) is well-typed only if µ(X)A{X} <:
A{µ(X)A{X}}, and this condition holds naturally if µ(X)A{X} = A{µ(X)A{X}}.

Quantification of the form Ó(X<:A{X})B{X} is called F-bounded quantifica-
tion; it is characterized by the constraint X <: A{X}. This form of quantification
is peculiar in that the variable X is bounded by a type where X occurs. We usu-
ally encounter F-bounded quantification with A{X} of the form G(X) (for exam-
ple, MaxOp(X)).

4.3  Higher-Order Subtyping

A second common property of Max and MinMax can be brought to light by de-
fining a pointwise subtype order on type operators:

Just like type operators correspond to protocols, the subtype order on type op-
erators is a direct formalization of the notion of protocol extension. 

Max <: MaxOp(Max) ( = Max)
MinMax <: MaxOp(MinMax) ( = [n:Int, max+:MinMax→MinMax])

Ó(X<:MaxOp(X))B{X}

pre-max : Ó(X<:MaxOp(X))X→X→X   @
λ(X<:MaxOp(X)) λ(self:X) λ(other:X) 

if self.n>other.n then self else other

pre-max(Max) : Max→Max→Max
pre-max(MinMax) : MinMax→MinMax→MinMax

F ': G if, for all X,   F(X) <: G(X)
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With this definition, we obtain:

Hence, we may want to parameterize over all type operators X with the prop-
erty that X ': MaxOp. A polymorphic function of type:

can be instantiated, by application to the type operators MaxOp and MinMaxOp;
the corresponding instances have types B{MaxOp} and B{MinMaxOp}. We need
to be careful about how X is used in B{X}, because X is now a type operator. Our
general strategy is to take the fixpoint of X whenever required; for example, we
can obtain a typing for pre-max, as follows:

The code of pre-max is well-typed because X':MaxOp implies X* = X(X*) <:
MaxOp(X*) by definition of ':, and self:X* implies self : MaxOp(X*) = [n:Int,
max+:X*→X*] by subsumption; similarly, other : [n:Int, max+:X*→X*].

In this derivation we have used the unfolding property X*=X(X*). An alter-
native, that greatly simplifies the treatment of higher-order theories, is to as-
sume only an explicit isomorphism between each recursive type and its
unfolding, with no equality between the types. Two term-level primitives, fold
and unfold, realize the isomorphism:

When we abandon the equality X*=X(X*), we need to modify the code of pre-
max; it suffices to write unfold(self).n and unfold(other).n instead of self.n and
other.n.

4.4  Semantic Equivalence

We have encountered types of the forms Ó(X<:D(X))B{X} and Ó(Y':D)B{Y*},
where D is a type operator and where if X is a type then B{X} is a type. We
sketch an informal argument that Ó(X<:D(X))B{X} and Ó(Y':D)B{Y*} are se-
mantically equal.

Let us consider a model of types in terms of sets of some sort, such as an
ideal model or a per model [7, 8, 12, 17, 20, 32]. In these models, the interpreta-
tion of a type is a set, and the interpretation of a type operator is a function on

MaxOp ': MaxOp

MinMaxOp ': MaxOp

Ó(X':MaxOp)B{X}

pre-max : Ó(X':MaxOp)X*→X*→X*   @
λ(X':MaxOp) λ(self:X*) λ(other:X*) 

if self.n>other.n then self else other

pre-max(MinMaxOp) : MinMax→MinMax→MinMax

fold : A{µ(X)A{X}}→µ(X)A{X}
unfold : µ(X)A{X}→A{µ(X)A{X}}
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sets. Quantification is interpreted by intersection. Type recursion is interpreted
by unique fixpoints of contractive operators. 

Let S, F, and G be the interpretations of A, λ(X)B{X}, and D, respectively.
Then, ëX⊆ S F(X) is the interpretation of Ó(X<:A)B{X}, and fix(F) is the interpre-
tation of µ(X)B{X}. Moreover, let G)F mean that F and G are contractive and
that, for all T, G(T) ⊆  F(T) [13]; the interpretation of Ó(X':D)B{X} is ëU)G F(U).
The contractiveness requirement for G)F is motivated by types of the form
Ó(Y':D)...Y*... : the interpretation of Y* requires Y to be contractive; addition-
ally we assume that D is syntactically restricted so that its interpretation is a
contractive operator. In particular, λ(X)[vi:Bi iÏI, mj

+:Cj{X} jÏJ] is a suitable D.
Under these assumptions, we can now prove that Ó(X<:D(X))B{X} and

Ó(Y':D)B{Y*} are semantically equal, that is, that ëX⊆ G(X) F(X) and ëU)G F(fix
U) are equal sets:

¥ First, ëU)G F(fix U) is included in ëX⊆ G(X) F(X): If T⊆ G(T) then there ex-
ists H such that H)G and (fix H) = T. An appropriate choice is H =
λ(X)(G(X)∩T). We have that H)G because H(X)⊆ G(X) for all X and be-
cause contractiveness is preserved by intersection. In addition, H(T) =
G(T)∩T = T, since T⊆ G(T), so T is the fixpoint of H.

¥ Conversely, ëU)G F(fix U) includes ëX⊆ G(X) F(X): It suffices to notice that
if H)G then (fix H) = H(fix H) ⊆  G(fix H). Therefore, given H)G, there
exists T⊆ G(T) such that T = (fix H), as needed.

The proof of equality uses a binary intersection operation on types. This op-
eration is available in the models of interest, but is not always available syntac-
tically. Therefore, the equality may not apply to particular syntactic systems. 

Despite the equality, the higher-order framework is semantically more ex-
pressive than the F-bounded framework. The type Ó(Y':D)Ó(Z':Y)BÕ{Y*,Z*} is
not of the form Ó(Y':D)B{Y*}, because of the plain occurrence of Y in the bound
Z':Y. This type has no direct analogue in terms of F-bounded quantification.

4.5  Discussion

F-bounded subtyping and higher-order subtyping are both formal counter-
parts of protocol extension. These two kinds of subtyping have equal expres-
sive power in many examples; this fact is consistent with the semantic equality
established in section 4.4. F-bounded subtyping is appealing because it is a sim-
ple extension of second-order subtyping. Higher-order subtyping is appealing
because it makes clear that protocols have to do with type operators. 

The idea of using higher-order subtyping instead of F-bounded subtyping
seems to have occurred to a number of people, including the Abel group at HP
(Canning, Cook, Hill, and Olthoff), John Mitchell, and later Luca Cardelli. Al-
though the idea dates back to at least 1989, apparently it was never written
down, except in e-mail exchanges. The equality of section 4.4, due to Mart�n
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Abadi, appears in a 1990 e-mail exchange.
In the next two sections, we will see how F-bounded subtyping and higher-

order subtyping can be used to interpret the matching relation. F-bounded sub-
typing was the original intended interpretation of matching [10]. Higher-order
subtyping is our new interpretation. It is important to ask whether the two in-
terpretations give rise to the same rules. As we will see, they do not. Higher-
order subtyping has some definite advantages.

5  Matching as F-bounded Subtyping
Starting in this section, we consider translating a language with a primitive
matching relation to a language without it. We refer to the former as the source
language and to the latter as the target language. In this section, the target lan-
guage is based on F-bounded subtyping.

5.1  The F-bounded Interpretation

The properties of F-bounded subtyping discussed in section 4.2 suggest that we
may interpret matching in terms of F-bounded subtyping. To be precise, we
would need to write a formal translation. The central idea of the translation is
however rather simple; it is expressed by the following two clauses:

Since matching is defined on object types of the source language, we must un-
derstand the type variable X as ranging only over those types, and not over ar-
bitrary types of the source language. The typing rules of the source language
can enforce this constraint, provided there is a separate category of object types,
and a way for asserting that a type belongs to this category. An important rule
of the source language would say that, under the assumption X <# A, the type
variable X is an object type. 

This translation is not defined when the right-hand side of <# is a variable,
as in the case of cascading quantifiers:

An expression of the form Ó(X<:AOp(X)) Ó(Y<:XOp(Y)) ... does not make sense
as the translation of this type, because XOp is not defined. Hence, we must adopt
the restriction that, whenever Ó(X<#A)B is a type of the source language, the
type A must have the form µ(X)[vi:Bi iÏI, mj

+:Cj{X} jÏJ]. Therefore, the type struc-
ture supported by this translation is somewhat irregular: type variables are not
allowed in places where object types are allowed. 

Next we examine other aspects of the F-bounded interpretation, finding
several shortcomings.

A <# B 1 A <: BOp(A)
Ó(X<#A)B{X} 1 Ó(X<:AOp(X))B{X}

Ó(X<#A) Ó(Y<#X) ... 1 ?
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5.2  Reßexivity and Transitivity

If A is an object type of the source language, then we would expect that A <#
A. This reflexivity rule is necessary for justifying the instantiation f(A) of a
polymorphic function f : Ó(X<#A)B. According to the F-bounded interpreta-
tion, whenever AOp is defined, we obtain:

because A =AOp(A) by the unfolding property of recursive types. However, if
A is a type variable X, then XOp is not defined, so X <: XOp(X) does not make
sense. Hence, reflexivity does not hold in general.

Turning now to transitivity, if A, B, and C are object types of the source lan-
guage, then we would expect that A <# B and B <# C imply A <# C; this would
mean:

As in the case of reflexivity, we run into difficulties with type variables. More-
over, we can see that transitivity fails even for closed types, with the following
counterexample:

We have both A <# B and B <# C, but we do not have A <# C (because
[p+:A→Int, q:Int] <: [p+:B→Int] fails). 

We can trace this problem back to the definition of DOp, which depends on
the exact syntax of the type D. Because of the syntactic character of that defini-
tion, two equal types may behave differently with respect to matching. In our
example, we have B = C by the unfolding property of recursive types (which is
important for F-bounded quantification, as we discussed in section 4.2). De-
spite the equality B = C, we have A <# B but not A <# C.

5.3  Matching Self

According to the F-bounded interpretation, two types that look rather different
may match. Consider two types A and AÕ such that:

This holds when A <: AÕOp(A), that is, when [vi:Bi iÏI, mj
+:Cj{A} jÏJ] <: [vi:Bi iÏI,

mj
+:CjÕ{A} jÏJÕ]. It suffices that, for every jÏJÕ:

For example, we have:

A <# A 1 A <: AOp(A)

 A <: BOp(A)   and   B <: COp(B)   imply   A <: COp(A)

A @   µ(X)[p+: X→Int, q: Int]
B @   µ(X)[p+: X→Int]
C @   µ(X)[p+: B→Int]

A 7 µ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ] 

<# µ(X)[vi:Bi iÏI, mj
+:CjÕ{X} jÏJÕ] 7 AÕ

Cj{A} <: CjÕ{A}
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Intuitively, the variable X on the left matches the type [v:Int] on the right. Since
X is the Self variable, we may say that Self matches not only Self but also other
types (here [v:Int]). This treatment of Self is both sound and flexible. On the oth-
er hand, it can be difficult for a programmer to see whether two types match.

6  Matching as Higher-Order Subtyping
In section 5 we discussed some shortcomings of the F-bounded interpretation.
In this section we argue that, in contrast, the interpretation of matching as high-
er-order subtyping is satisfactory, and specifically that it does not share those
shortcomings.

6.1  The Higher-Order Interpretation

The higher-order interpretation relies on two translations of types of the source
language. In certain contexts, types in the source language are interpreted as
types of the target language, while in other contexts they are interpreted as type
operators of the target language. 

These two translations, TypeÜAá and OperÜAá, can be informally summa-
rized as follows. For object types of the source language, we set:

For other types, we set:

Here we assume the restriction that, whenever Ó(X<#A)B is a type of the source
language, A must be an object type, that is, either a match-bound variable or a
type of the form µ(X)[vi:Bi iÏI, mj

+:Cj{X} jÏJ]. For example, µ(X)[l:Ó(Y<#X)B, ... ] is
not allowed, while Ó(X<#A) [l:Ó(Y<#X)B, ... ] is.

When X <# A is the bound of a quantifier, we distinguish the occurrences

µ(X)[v:Int, m+:X] <# µ(X)[m+: [v:Int]]

OperÜXá   1 (assuming that X is match-bound)
X

OperÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á   1 

λ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

TypeÜXá   1 (when X is match-bound)
X*

TypeÜµ(X)[vi:Bi iÏI, mj
+:Cj{X} jÏJ]á   1 

µ(X)[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{X}á jÏJ]

TypeÜXá 1 X (when X is not match-bound)
TypeÜA→Bá 1 TypeÜAá→TypeÜBá

TypeÜÓ(X<#A)Bá 1 Ó(X':OperÜAá)TypeÜBá
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of X in a type context (as in X→X) from the ones in an operator context (as in
Ó(Y<#X)...). The bound is translated as X ': AOp; the occurrences of X in a type
context are translated as X*, while the occurrences in an operator context are
translated simply as X. For instance:

This translation is well-defined on type variables, so now there are no problems
with cascading quantifiers.

Given these two translations of types, the translation of matching is now:

The higher-order interpretation does not use the unfolding property of re-
cursive types for the target language; instead, it uses explicit fold and unfold
primitives as explained in section 4.3. On the other hand, the higher-order in-
terpretation is incompatible with the unfolding property of recursive types in
the source language, because OperÜµ(X)A{X}á and OperÜA{µ(X)A{X}}á are in gen-
eral different type operators. The unfolding property of recursive types is con-
venient for programming, but it is not an essential feature and it is the origin of
technical complications. We are fortunate to be able to drop it throughout.

6.2  Reßexivity and Transitivity

Reflexivity is now satisfied by all object types, including variables; for every ob-
ject type A, we have:

This follows from the reflexivity of ':, given that OperÜAá is a well-defined type
operator for every object type A of the source language.

Similarly, transitivity is satisfied by all triples A, B, and C of object types,
including variables:

This follows from the transitivity of ':. The counterexample of section 5.2 does
not apply, because there B <# C does not hold under the higher-order interpre-
tation.

6.3  Matching Self

With the higher-order interpretation, the relation:

TypeÜÓ(X<#Max) Ó(Y<#X) X→Yá   1
Ó(X':MaxOp) Ó(Y':X) X*→Y*

A <# B 1 OperÜAá ': OperÜBá for A, B object types

A <# A 1 OperÜAá ': OperÜAá

A <# B   and   B <# C   imply   A <# C   1   
OperÜAá ': OperÜBá   and   OperÜBá ': OperÜCá   

imply   OperÜAá ': OperÜCá
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holds when the type operators corresponding to A and AÕ are in the subtyping
relation, that is, when:

For this, it suffices that, for every j in JÕ:

Since Self is µ-bound, all the occurrences of Self are translated as Self*. Then, an
occurrence of Self* on the left can be matched only by a corresponding occur-
rence of Self* on the right, since Self is arbitrary. In short, Self matches only itself.
This property makes it easy for programmers to glance at two object types and
tell whether they match. On the other hand, it may be convenient to let Self
match more types, as in the F-bounded interpretation, but the higher-order in-
terpretation does not allow it.

7  Inheritance and Classes via Higher-Order Subtyping
It is possible to make rigorous the translation of section 6, thus proving that
matching can be explained in terms of higher-order subtyping. We do not do
this here, but instead give further evidence by writing some examples and by
showing that the basic properties of matching are supported and that binary
methods can be inherited. See [6] for a more systematic treatment.

In section 3.1, we listed the following expected typings:

The higher-order interpretation induces the following term translations:

For the first typing, we have unfold(x):X(X*). Moreover, from X':IncOp we
obtain X(X*) <: IncOp(X*) = [n:Int, inc:X*]. Therefore, unfold(x):[n:Int, inc:X*],
and unfold(x).n:Int.

For the second typing, we have again unfold(x):X(X*) with X(X*) <: [n:Int,
inc:X*]. We then use a typing rule for field update in the target language [5].
This rule says that if a:A, c:C, and A <: [v:C,...] then (a.v:=c) : A. In our case, we
have unfold(x):X(X*), b:Int, and X(X*) <: [n:Int, inc:X*]. We obtain (un-
fold(x).n:=b) : X(X*). Finally, by folding, we obtain fold(unfold(x).n:=b) : X*. 

Applying our higher-order translation to MaxClass from section 3.2, we ob-

A 7 µ(Self)[vi:Bi iÏI, mj
+:Cj{Self} jÏJ] 

<# µ(Self)[vi:Bi iÏI, mj
+:CjÕ{Self} jÏJÕ] 7 AÕ

[vi:TypeÜBiá iÏI, mj
+:TypeÜCj{Self}á jÏJ] 

<: [vi:TypeÜBiá iÏI, mj
+:TypeÜCjÕ{Self}á jÏJÕ] for an arbitrary Self

 TypeÜCj{Self}á   <:   TypeÜCjÕ{Self}á 

if X<#Inc and x:X then x.n : Int
if X<#Inc and x:X and b:Int then x.n:=b : X

if X':IncOp and x:X* then unfold(x).n : Int
if X':IncOp and x:X* and b:Int then fold(unfold(x).n:=b) : X*
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tain:

The corresponding translation at the term level produces:

It is easy to check that pre-max is well typed, similarly to the derivation of the
first typing above. 

The instantiations pre-max(MaxOp) and pre-max(MinMaxOp) are both le-
gal. Since pre-max has type Ó(X':MaxOp)X*→X*→X*, this pre-method can be
used as a component of a class of type MaxClass. Moreover, a higher-order ver-
sion of the rule for quantifier subtyping yields:

so pre-max has type Ó(X':MinMaxOp)X*→X*→X* by subsumption, and hence
pre-max can be reused as a component of a class of type MinMaxClass.

8  Conclusions
As we have seen, there are situations in programming where one would like to
parameterize over all ÒextensionsÓ of a recursive object type, rather than over
all its subtypes. Both F-bounded subtyping and higher-order subtyping can be
used for capturing the notion of extension; however, they are probably too
complex for overt use in programming. Using a primitive matching relation is
more appropriate. Thus, the concept of matching represents a step forward to-
wards practical and flexible type theories for object-oriented programming. 

Still, F-bounded subtyping and higher-order subtyping have an important
role to play in explaining the semantics of matching and in justifying its rules.

MaxClass   @
[new+: Max,
 n: Int,
 max: Ó(X':MaxOp)X*→X*→X*]

maxClass : MaxClass   @
[new = ς(classSelf: MaxClass) 

fold(
[n = classSelf.n, 
 max = ς(self:MaxOp(Max)) 

classSelf.max(MaxOp)(fold(self))]),
 n = 0,
 max = pre-max]

pre-max : Ó(X':MaxOp)X*→X*→X*   @
λ(X':MaxOp) λ(self:X*) λ(other:X*) 

if unfold(self).n>unfold(other).n then self else other

Ó(X':MaxOp)X*→X*→X*   <:   Ó(X':MinMaxOp)X*→X*→X*
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We have presented two interpretations of matching:

As these interpretations show, matching stems from subtyping. The former in-
terpretation motivated the concept of matching, and led to the typing rules of
TOOPLE, which are based directly on the F-bounded interpretation. The latter
interpretation leads to rules that are much closer to the ones of PolyTOIL.

Although both interpretations can be soundly adopted, they require differ-
ent assumptions and yield different rules. In particular, the higher-order inter-
pretation does not assume the unfolding property of recursive types, which
seems necessary for the F-bounded interpretation; this simplification is techni-
cally advantageous in a higher-order setting. Additionally, the higher-order in-
terpretation validates reflexivity and transitivity properties for matching; these
properties do not hold under the F-bounded interpretation. Thus, we believe
that the higher-order interpretation is preferable; it should be a guiding princi-
ple for programming languages with matching.
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