An Interpretation of Objects and Object Types

Martin Abadi*
Digital Systems Research Center

ma@pa.dec.com

Luca Cardelli*
Digital Systems Research Center

luca@pa.dec.com

Ramesh Viswanathan!
Isaac Newton Institute for Mathematical Sciences

R.Viswanathan@newton.cam.ac.uk

Abstract

We present an interpretation of typed object-oriented con-
cepts in terms of well-understood, purely procedural con-
cepts. More precisely, we give a compositional subtype-
preserving translation of a basic object calculus supporting
method invocation, functional method update, and subtyp-
ing, into the polymorphic A-calculus with recursive types
and subtyping. The translation techniques apply also to an
imperative version of the object calculus which includes in-
place method update and object cloning. Finally, the trans-
lation easily extends to “Self types” and other interesting
object-oriented constructs.

1 Introduction

Object-oriented programming languages have introduced nu-
merous ideas, structures, and techniques. Although these
contributions are not always conceptually clear (or even
sound), they are often original and useful. One of the most
basic contributions is the notion of self, the operations asso-
ciated with an object (its methods) can refer to the object as
self, and invoke other operations by indirecting through self,
with dynamic dispatch. A related contribution is the notion
of subsumption: an object can be replaced (subsumed by)
any object that supports the same or more operations; in
typed languages, subsumption is systematized in rules for
subclassing and subtyping.

Object-oriented programming is not limited to object-
oriented languages. One can emulate objects in some proce-
dural languages, such as Scheme and C. So it is possible that,
despite 1ts originality, object-oriented programming can be
reduced to procedural programming. Such a reduction is
not straightforward. Interesting difficulties arise at the level
of types: the most natural definition of objects as records of
functions (the self-application semantics [Kam88]) does not
validate the expected subtypings, so subsumption is blocked.

*Address: Digital Systems Research Center, 130 Lytton Avenue,
Palo Alto, California 94301, U.S.A.

TSupported by NSF Grant CCR-9303099 and a Rosenbaum Fel-
lowship. Address: Isaac Newton Institute for Mathematical Sciences,
20 Clarkson Road, Cambridge, CB3 0EH, U.K.

To appear in the Proceedings of the 23rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, January 1996, St. Petersburg
Beach, Florida.

In this paper we develop an interpretation of object-
oriented programming in terms of procedural programming
(specifically, in terms of a fairly standard A-calculus with
subtyping). We show a translation of objects into records of
functions, and a translation of object types into types built
up from record types, existential types, and recursive types.
These ingredients should not be surprising, but their combi-
nation is new. The translation is faithful in that it respects
operational semantics, typing rules, and subtyping rules; it
yields a syntactic proof of soundness for those rules.

In order to make this interpretation both manageable
and precise, we develop it in the context of object calculi
[AC94b]. Object calculi are formalisms analogous to A-
calculi, based on objects rather than on functions. Their
only primitives are objects, method invocation, method up-
date, and (for imperative calculi) cloning. Method update
is the most unusual of these, but forms of method update do
appear in several languages [Lie81, And92, Tai92, MGV92,
MMPN93, ALBC%93, App93, Car95]. The primitives are
quite expressive: they allow representations of both class-
based and object-based notions, for example classes, sub-
classes, protection, prototyping, and mode switching. When
typed, object calculi include a subtyping relation and a sub-
sumption rule.

We believe that our interpretation of objects is com-
pelling for several reasons.

o First, it makes precise the vague intuition that objects
have something to do with abstract data types and re-
cursive types. That intuition has been important in
previous works that studied A-calculi with subtyping
and used them to emulate objects to various extents
(see the next section). The target calculus of our trans-
lation is the result of those previous works.

e The translation is sufficiently complicated to confirm
that objects provide a useful abstraction independent
of procedural concepts. On the other hand, it is simple
enough to serve as an explanation of objects in terms
of well-understood constructs.

e Finally, the translation is not limited to one particular
object calculus. With some modifications, it applies
both to functional and imperative execution models;
and it can be adapted to account for “Self types” and
“structural rules” [ACO95b], which are operationally
sound but unsound in common denotational models.

In the next section we review some of the background,
describing related works, and give an informal overview of



our interpretation. Section 3 defines a first version of the
translation precisely; Section 4 gives an imperative transla-
tion; Section 5 deals with additional type constructs.

2 Informal Review and Overview

We first review a basic untyped object calculus [AC94b]
since we use its notation in what follows. In this calcu-
lus, an object [y =¢(z1)b1,...,ln =¢(zn)bn] is a collec-
tion of methods ¢(x1)b1,...,s(zn)b, with respective names
l1,...,ln; the method bodies are b1,...,b,, and the vari-
ables x1,..., 2, denote self. The order of the methods does
not matter. The only operations on objects are method
invocation and method update. If o is the object [l =
§(x1)b1, ..., ln = ¢(xn)by], then the invocation of its method
l;, written o.l;, consists in replacing o for z; in b;; the method
update o.l; < ¢(z)b yields an object like o but where we
have I; = g(x)b. For now, we take the update construct to
be functional, that is, to create a new object. Fields (in-
stance variables) are easily expressible as methods that do
not use their self parameters.

This untyped calculus is the basis for a first-order calcu-
lus with subtyping, called Obi«.. In Obi«., an object type
[l1: B1,...,ln : By] is the type of objects which have meth-
ods l1,...,l, that, when invoked, result in values of types
Bi, ..., By respectively.

A characteristic of object-oriented languages is that an
object with more methods can be used wherever an object
with fewer methods is expected. In Obj <., this is supported
through a subtyping relation <:. An object type with more
methods is a subtype of an object type with fewer methods
provided that the common methods have exactly the same
result types; for example, [l1 : B1,l2 : B2]<:[l1, B1] for any
types B: and Bs.

The self-application semantics [Kam88] provides a sat-
isfactory explanation of untyped objects as records of func-
tions. Let us write {l1 = a1, ...,l, = an} for the record with
fields I, ... ,l, with ai,...,a, as values; a -l for extracting
the field ! of record a; and a-1 := b for updating the field ! of
record a to be b. In the self-application semantics, a method
is a function of its self parameter; an object is a record of
such functions; method invocation is field selection plus self-
application; method update is record update:

[l = ¢(a)b; "€ 2 {1 = Ma)b; 1€}
0.1; 2 5. 1;(0)
oly <oy = ol =y

This interpretation respects the operational behavior of both
method invocation and method update.

Unfortunately, the self-application semantics does not
extend to typed systems such as Obi... In particular, it
does not validate the essential subtypings between object
types. Following the self-application semantics, one would
naturally interpret the object type A = [I; : B; *<'"] as a
recursive record type, the solution to the type equation:

A = {lz A—)Bl iel...n}

where {l; : C; ’El'“"} denotes the evident record type. Be-
cause of the contravariant occurrences of the object type

A, we do not obtain subtypings valid in Obj«. such as
[ll : B1712 : B2]<Z[ll : Bl]

In part because of this difficulty, there have been several
other interpretations of objects. Most of them were defined
as ways of emulating objects in procedural settings, rather
than as precise translations, so it is somewhat hard to give
a full account of their scope. In short, many of them con-
tributed interesting and useful techniques but they all suf-
fer from limitations. The recursive-record semantics [Car88]
validates the expected subtypings, but it does not model
method update (or even field update); the generator seman-
tics [Coo89] deals with update, at the cost of separating
objects from object generators. The existential interpreta-
tion of [PT94, HP95] also validates the expected subtyp-
ings, and models class-based constructs where methods and
fields are rigidly separated and it is only the fields that
can be updated; unfortunately, the translation of objects
is type-directed, and rather elaborate. An imperative in-
terpretation [ESTZ95] can solve the problems of the self-
application semantics with judicious side-effects; its main
limitation is that it does not model the cloning construct
of object-based imperative languages. Finally, some inter-
pretations give up on subtyping altogether, and reduce it to
coercion functions [AC94a, Rém94]; the coercion functions
are cumbersome, destroy the flavor of the original programs,
and preclude an explanation of object subtyping in terms of
more primitive subtyping relations.

At this point, a possible conclusion is that it is easy to
understand the computational behavior of objects, but that
their desired typing and subtyping properties make them
fundamentally different from records and functions. It was
this view that originally led to the formulation of object cal-
culi. Our interpretation of objects, which we discuss next,
sheds some new light on this matter. It does provide a
rather complete account of objects in terms of records and
functions. It applies both to class-based and object-based
constructs, places no restrictions on method update, and val-
idates the expected subtypings. On the other hand, because
it 1s not straightforward, it does not remove the usefulness
of object calculi as a setting for studying object-oriented
concepts.

In this paper we develop translations of several object
calculi into A-calculi. The translations are faithful in that
they respect the operational semantics, typing rules, and
subtyping rules of the object calculi. The first translation
maps Obi.. into F..,, the polymorphic A-calculus with
subtyping and recursive types; we preview this translation
next, explaining informally how it treats types.

Consider a type A = [l1 : B1,...,ln : By]. Because of
subsumption, an object o containing additional methods be-
sides l1,...,ln can be an element of A. If we think of the
“true type” of o as the type listing all its methods, then
the type A only partially reveals the true type of o; what is
publicly visible are only the methods {1,...,l,,. We there-
fore take the translation A* of an object type A to be a type
abstraction with representation type the true type of the ob-
ject. Using the notation 3(X <:C)B for a type abstraction
with an interface B and an unknown representation type X
that is a subtype of C, we define A* as a recursive type,
with the following equation:

AT = 3(X<ZA*){lisel : (X—>Bl*) iGl...n7
1 (X 5B =X i€l.n
self : X} (1)

The subtyping assumption X <:A* for the representation
type expresses that the true type is known to be a subtype



Table 1: Operational Semantics of Ob;«. and F..,,

Ifa=[i=c¢xi: A)bi{z:} ’El'“"], j€L1l...n

Ob; . (Eval Select) al; ~ bj{a}
(Eval Update) a.lj &¢(x: AN ~ [lj =¢(z: A)bl; =z : A)b; ie{l"'"}_{J}]
(Eval Beta) Mz - A)b{z})(a) ~ bfa}
(Eval Beta2) AMX<A{XH(A) ~ b{A"}
Fe., (Eval Record Select) {li=b; €} l; ~ by forjel...n
(Eval Unfold) unfold(fold(A,a)) ~ a
(Eval Unpack) opencas X<:A,z: B{X} ind{X,z}: D ~ d{C,b{C}}

where ¢ = pack X<:A' = C with b{X} : B'{X}

of the object type. The field 1£¢ is the method I; treated as a
function of self. The field l;‘Pd provides the ability to update
method l;—given a new method that is a function of self, it
returns a new object. The field self is the object itself with
all its methods (including the private ones); through self,
the methods I;,...,1l, can access methods not listed in the
interface.

Each of the ingredients in this translation is necessary.
In particular, the use of existential types in addition to re-
cursive types is essential for getting the desired subtypings.
Similarly, it is essential to model method update via a field

l;‘Pd: if method update were modeled by an update of the

field 1¢¢" then this would leave the field self unaffected, so
the operational semantics would be distorted.

In the next section we detail this translation of Obj...
In Section 4, we consider an imperative version of the trans-
lation, which deals correctly with cloning but is in some
ways simpler than the functional one thanks to side-effects.
In Section 5, we show that the translation of Obi«. can be
extended to account for richer object-type constructs with
Self types and variance annotations.

3 Interpretation of an Object Calculus with
Functional Update

In this section, we describe the translation of the object cal-
culus Obq .. into the functional calculus F.,. In Sections
3.1 and 3.2, we briefly describe the calculi Oby«. and F.,
and in Section 3.3, we detail the translation of Ob«. into
F ... The precise typing rules for the two calculi are given
in Appendices A and B.

3.1 An Object Calculus: Ob;..
The types of Obi«. are generated by the grammar:

A,B = TOp | [lz . Bz iGl...n]
where n > 0. The type Top is the supertype of all types

and [I; : B_, ’El'“"] is the type of objects with methods I,
returning results of type B;. The terms of the calculus are
similar to those of the untyped calculus described in Section

2 except that ¢-bound variables have type annotations:

a,b = x| [li =¢(zi: A)b iel”'"] | a.l|al<g(x: Ab

A subset of the terms generated by this grammar are iden-
tified as well-typed terms by a set of typing rules described
in Appendix A. The rules are used to derive judgements of
the form F + J, where J is an assertion and FE is an en-
vironment describing assumptions about the free variables
in J. The assertion ¢ means that £ is a well-formed en-
vironment, A means that A is a well-formed type, A<:B
means that A is a subtype of B, and a : A means that a
is a well-formed term of type A. An important rule, (Sub
Object), states that A is a subtype of A’ if A has all the
method names given in A’ and moreover the result types of
these methods are exactly the same in A and A’ (so object
types are invariant in their component types).

The operational semantics is defined via a reduction sys-
tem; it 1s free of side-effects. The primitive redexes given in
Table 1 correspond to method invocation and method up-
date; we write b{z} to distinguish a variable = that may oc-
cur free in b, and b{a} for the result of replacing  with a in b
once x 18 clear from context. The one-step reduction relation
—>, is the congruence closure of ~+ (i.e., we can reduce any
subterm that is a redex); the many-step reduction relation
—, 1Is the reflexive, transitive closure of —,. We define
results to be terms of the form [l; = ¢(z; : A)b; ’el“'"]; we
say that a closed term a converges, and write a {}o, if there
exists a result v such that a—s>,v.

3.2 A Functional Calculus: F..,

The system F ., is the standard extension of System F with
recursive types and subtyping. While records and existen-
tially quantified types are encodable in terms of the other
constructs of F..,, we present them as primitive for sim-
plicity. System F ., is defined in detail in Appendix B; in
this section, we describe informally some of its constructs.
Records are collections of fields with associated values;
the only operation on records is field extraction (written
r +1). The basic types are function types and record types.
A record type {I; : B; ’el“'"} lists the field names and the
types of the values associated with them. Record types are
covariant in their component types. We use the recursive
type u(X)B{X} to denote a solution to the type equation
X = B{X} where X could occur free in B. The isomor-
phism between (X )B{X} and its unfolding B{u(X)B{X}}
is given by the constructs fold and unfold: if a is of type
u(X)B{X} then unfold(a) is of the unfolded type, and if b



is of the unfolded type then fold(u(X)B{X}, a) is of type
u(X)B{X).

The existentially quantified type I(X<:A)B{X} is the
type of a term a (roughly) if there exists a type C that is
a subtype of A for which a is a term of type B{C}. More
formally, given a term a of type B{C}, the term pack X <:
A = C with a : B{X} has type 3(X<:A)B{X}. What
we achieve by packing a in a term of type 3(X<:A)B{X}
is the hiding of information about the type C at which
a realizes (X <:A)B{X}. (Recall that data abstractions
have existential types [MP88].) Given a term ¢ of type
A(X<:A)B{X}, we can access its “inside” by writing the
term open ¢ as X<:A,y: B{X} in d : D, where X stands
for the representation type and y for the “inside”. We can
use X and y in d but the typing rules ensure that d can-
not assume any information about X other than that it is
a subtype of A, and the type D specified for d must not
depend on the representation type X, ¢.e., X cannot occur
free in D.

Table 1 specifies reduction for F .. The one-step reduc-
tion relation —; is the congruence closure of ~+, and —»
is the reflexive, transitive closure of — ;. As for Obi ., we
distinguish certain terms as results; the set of results, de-
fined in Appendix B, includes A-abstractions and records.
We say that a closed term a converges, and write a |}y, if
there exists a result v such that a—%yv.

Using recursive types, we can easily define a (call-by-
name) fixed point operator. It is also routine to define
letrec; we write letrec f(x1 : A1) - (xn : An) : B =
b in ¢ to denote a recursive definition of a function f of
type A1—~---—A,—B, used in the term c.

3.3 Translation

We are now ready to describe the translation of Obj <. into
F.... The translation i1s in two parts. The first part is a
translation of types which maps every type A of Ob1«. to a
type A* of F..,, and is defined by induction on the structure
of types in Obj ..

*

Top®™ = Top
[li: By ‘€ p(Y)I(X<y)
{l;el . (X—)Bl*) zel...n‘7
1P (X—Bl)—X ‘€,
self : X}

The interpretation of object types given here is the same
as that of Section 2, but here we use a y rather than an
equation (Equation (1)) for defining the existential type re-
cursively. Note that in the translation of the object type
A=l : B; "€1-"], the field 17 makes the type A* covariant
in B! and the field l;‘Pd makes it contravariant in B}. Our
interpretation thus explains the invariance of object types
in their component types as arising from a covariance due
to invocation and a contravariance due to update.

The key consequence of our translation of object types
is that it gives the expected subtypings. More formally,
we use the translation of types to define a mapping E* for
environments, and establish Theorem 3.1 which states that
well-formed types of Ob1«. get mapped to well-formed types
of F.., and that the subtyping judgements of Ob;.. are
preserved by the translation.

" = 9
(E,z: A)* = E*z:A"

Theorem 3.1

1. IfE + ¢ is derivable in Oby <., then E* F ¢ is derivable
mn F<1M’

2. If E+ A is derivable in Oby <., then E* = A" is deriv-
able in F ..

8. If B+ A<:B s derivable in Obi <., then E* - A*<:.B*

is derivable in F ...

The second part of the translation is for terms. To
make the main ideas in the translation of terms transpar-
ent, we first informally explain the results of the translation
as untyped A-terms, omitting the type annotations associ-
ated with using recursive and existential types; we make the
details precise later. Informally, every term a of Obi.. is
mapped to its meaning, {(a)), which is a A-term. Apart from
the typing restrictions imposed by the recursive and existen-
tial types, the translation of an object type is a record type
with two fields lfel and l;‘Pd for each method I; and a field
self. The field 1#¢ is the method I; treated as a function of
self, and the field l;‘Pd returns a new object when applied
to a new method treated as a function of self. With this
understanding, the translations of method invocation and
update are straightforward.

(ady) = (a) -5 ((a)) - self)
((a-lj = <()b)) {a)) - 57 (M) (b))

The most delicate part of the translation of terms is that
for objects. This may be expected since we did not do any-
thing computationally interesting so far—we just delegated
responsibility to the fields I8¢ and e 4 provided by the in-
terface of objects. To understand the translation of objects,
it is instructive to consider first an incorrect attempt, which
will also explain the presence of the field {}** 4. Suppose we
chose not to have the field l;‘Pd in the record interface for
objects and instead modeled method update by an update
of the field I{¥, i.e., for an object o = [l; = ¢(w;)b; S+,
we would have that

(ol & s(2)b)) = (o) - ;! = Ma){(b)

Invoking a method [l; of o would still be interpreted as ex-
tracting the l;el field and applying it to the field self. Since
the object o is a record with field 1¢¢ equal to the method b;
treated as a function of its self parameter, and since method
invocation i1s modeled by application to the field self, the
field self then has to be the object itself. We arrive at the
following recursive definition for {{o)):

(o) = {li = Maa)(bi)) "< self = (o)}

The problem with this (functional) interpretation of objects
is that when a method gets updated the object changes but
since we only update the field I; of the record, this change
is not reflected in the field self and consequently we lose the
dynamic binding of self. Thus, if some other method uses
l; in its body, then its invocation modeled by application

(wrong)

(wrong)



Table 2: Translation of Obj«. into F..,

(z)e = =

{lli = ¢(zi - A)b; ’61"]»3 = letrec create(fi : A"=B{) ... (fn: A*=Bp): A =

fold (A",

paCk X<A* = A*
with {lfel = fi zel...n7
17 = Xg : A" BY)

create (fl) (fi—l) (g) (fi+1) (fn) iel...n7

self = create (f1) ... (fn)}: Ca{X})

in create (A(z,

P A1) Bwya)

(Aan s A")(bn)) B,2n:a)

where A =[l; : B; "€t "]

{al)r = openunfold({a))r) as X<:L; B,z : {lsel :(X—=B"), self : X}
in (@ - 1°¢") (@ - self) : B*

where B = (L, a),

{al<=g(z: A)b)r = openunfold({{a)r) as X <A™, y: Ca{X}
in (y - 1) (MA@ : X)(b) paia) : A

to the field self would not see the result of the update. So,
an important idea in the context of our translation is that
method update i1s not modeled as record update. The second
idea to glean from this flawed attempt is that defining the
object itself recursively would not reflect the computational
behavior of objects accurately. Intuitively, update has no
chance of working once the recursion freezes self to be the
state of the object at the time of creation, ¢.e., if recursion
is used too soon. (Those familiar with the recursive-record
interpretation [Car88] may note that the source of its prob-
lems in modeling method update can also be traced to the
early use of recursion.)

The solution is to define not the object itself recursively,
but the dependence of the object on its methods recursively.
That is, we define a function create that when applied to
n methods, returns an object with those n methods and it
is the definition of create that is recursive. An object can
then be defined by the application of create to its methods,
as follows:

For o = [l; = ¢(z4)b; ey,
((o» = letrec create (fl) ce (fn) =
{l;el — fz iel...n7
l;"’d = A(g) create (f1) -+ (fi—1)

(9) (fiar) - (fn) €7,
self = create (f1) -+ (fn)}

in create (A(z1){b1))) ... (AM(zn){bn)))

We now define the translation of terms with typing an-
notations, more precisely. We use the following notation.

Notation:
1. For any object type A = [I; : B; *'"], we define the
F..,. type Ca{X} with free variable X:

Ca{X} = {I:(XoBy) €,
174 (X = Bf)— X 1€l
self : X}

2. For any method name ! and Ob; . type B, we define
the F..,, type Li,B by:

Lip = p(V)IX<Y){I* : (X=B*), self : X}

3. Suppose, for any term a and environment F, that F +
a:[...,l:B,..]is provable in Obi«.. Then by the
minimum-types property of Ob1 <. [AC94b] and by the
invariance of object types, we have that if £ + a :
[...,1:B’,..]] then B = B'. So we let (E,a), be the
unique type B such that £ F a : [...;1 : B,..]is
provable if it exists, and be undefined otherwise.

For any term a in Obi«. and environment FE, Table 2
defines a term {((a))r of F«.,. The translation proceeds by
induction on the structure of a. In particular, the translation
of a judgement F I a : A does not depend on its derivation
in Ob1 <., and consequently, we can avoid coherence issues in
our proofs. The inclusion of the environment F in defining
the meaning of a term arises for purely technical reasons. [t
is to give the necessary type annotations in the translation
of method invocation. If we had omitted type annotations
from the target calculus or put more type information in
the syntax of the term for method invocation, we could have
defined the meaning of the term without any dependence on
the environment.

Some remarks regarding the translation of terms are in
order. The translation of method invocation explains the
presence of the field self in the translation of object types:
using z instead of x - self would not lead to a typable re-
sult. In the translation of method update, the use of A(z :
X){(b)E,2:4 is motivated by the reduction rule (Eval Up-
date) which asserts:

([li = s(@y : Ay 1" =g ANb) ~
(lj =¢(z: A, ...]

with A instead of A’ in the type annotation of x in the
updated object. The use of A(z : A*){(b) 5 +:a instead of
Az : X){b)p,z:a would be acceptable from the point of
view of typing but would not fit with the rule (Eval Update).



The following theorem states that our translation pre-
serves typing judgements and the computational behavior
of terms.

Theorem 3.2

1. If EF a: A is derivable in Oby. then E* F {(a) & :
A* is derivable in F.,,.

2. If EFa: A s derivable in Obi<. and a—»,b then
{aPyp—r (b)) &

The translation can serve as a basis for validating rea-
soning principles for objects from reasoning principles for
functions. In particular, we can prove that two objects are
equivalent by showing that their translations are equivalent.
We have been able to check a few non-trivial object equiv-
alences in this manner. This proof method is not complete,
because the translation is not fully abstract; however, it is
sound, because the translation is computationally adequate,
as we show next.

Let a and b be two closed Obi«. terms of type A. We
say that a and b are operationally equivalent at type A, and
write a =, b : A, if we have that C[a] o if and only if
C[b] Jo for any context C[-] which is well-typed assuming
the hole [-] is of type A. We define the relation of opera-
tional equivalence similarly for F..,, and write a =; b : A.
The first part of the following theorem states that the trans-
lation is computationally adequate; the second part, which
is a corollary of the first, states that if two Obj«. terms
have operationally equivalent translations then they are op-
erationally equivalent.

Theorem 3.3 Assume thatOtFa: A and 0 F-b: A are de-
rivable in Ob1«.. Then:

1. a lo if and only if {a)e 5.
2. If {a)p =5 (b)g : A" thena =,b: A.

In summary, there are three key ideas in the translation.
The first is that interpreting an object type as a recursive
type abstraction gives the desired subtypings. The second
is to model method invocation not as application to the
object itself, but rather to a field self which holds the current
value of the object. And finally, by splitting each method
into a field for invocation and a field for update and by
using recursion in a function that creates objects, we obtain
dynamic binding.

4 Interpretation of an Imperative Object
Calculus

In this section, we show how the ideas embodied in the trans-
lation described in Section 3 are also useful to the interpre-
tation of imperative object-oriented constructs. Our formal
setting is the imperative object calculus of [AC95a].

4.1 An Imperative Object Calculus

The terms of the untyped imperative object calculus are
generated by the grammar:

i = ¢(zi)b; ’El'“"] | a.l | al < g(x)b
lone(a) |letx =ain b

a,b = x|[l
| ¢

As the previous calculus, this imperative calculus has terms
corresponding to objects, method invocation, and method
update. However, the operational semantics is imperative
in that method names denote locations where the closures
of the corresponding methods are stored and method update
is done in place. Thus, method update has a side-effect of
changing the object rather than returning a new object. In
addition, we have two new primitives: (1) clone(a) returns
a shallow copy of the object a, ¢.e., an object with the same
method suite as a stored in fresh memory locations; (2) the
let construct evaluates a term, binds it to a variable, and
then evaluates a second term with that variable in scope.
Sequential evaluation (;) and eagerly evaluated fields can be
defined from let. The type system is given in Appendix C;
it is an extension of that of Ob ...

4.2 Translation

We translate the imperative object calculus into an impera-
tive version of F ., which here we describe informally. The
syntax of this imperative version extends that of F ., with
field update for records (written a-! := b) and with an unini-
tialized value of each type (written nil(B)). Because of the
presence of field update, record types must be invariant in
their components. The operational semantics of the impera-
tive version is significantly different from that of F .., in two
respects: (1) The field names in records now denote memory
locations and field update is done in place. It is therefore
more accurate to think of a record as a collection of mem-
ory locations rather than as a collection of values. (2) In the
presence of side-effects, one needs to fix an evaluation order;
we assume call-by-value evaluation for the target calculus.
Then let x =a in b can be defined as (A(z)b)(a), and a; b
can be defined as (A(z)b)(a) for some z not free in b.

The main departure from the translation described in
Section 3.3 is that, in the imperative setting, we do not split
a method into two distinct fields corresponding to method
invocation and method update. Recall that the essential rea-
son for the split in the functional case was that the field self
would not detect the change to a method if method update
was modeled by record update of the field corresponding to
the method. However, in the presence of imperative features
in the target calculus, we can use the field self to store a
pointer to the record itself (that is the meaning of the ob-
ject), thus ensuring that any changes to the other fields of
the record are reflected in self.

The translation of types uses the ideas described in Sec-
tion 2. In addition, we include a cloning function in the
public interface of an object. For types we therefore have:

Top* = Top
[l : By "€t p(Y)3(X<y)
{lz . (X—)Bl*) zel...n7
clone : {}—=X,
self : X}

The distinction between the fields self and clone is that the
former contains a pointer to the record itself while the latter
returns a shallow copy of the record (under a dummy ab-
straction). We need to distinguish the two since, in method
invocation, one must apply the method to the object rather
than to a shallow copy of the object. As before, the use of
a recursive type abstraction yields the desired subtypings.



Table 3: Translation of the Imperative Object Calculus (Sketch)

(=) = =

{[li = ¢(zi)bs ’61"]» = letrec create(f1) ... (fn) =
let z = {l; = fi "', clone = nil, self = nil}

{a.l;) = 1let x={(a)
(al<=s@)b) = let y={a)
{(clone(a)) = ({a)) - clone)(

{(let z =a in b)) = 1let z = {a))

z - clone := Az)create (z-11) -+ (- 1n);
z - self := z;
z - self

in create (A(z

D{b1) - Aan){(ba)))
in (z-1;)(x - self)
in y-1; = A(z){b)

We give the precise definition of the translation of terms
below. For now, we refer to Table 3 which states the transla-
tion omitting type annotations in terms. In the translation
of an object, we declare a skeletal record structure z where
the fields clone and self are uninitialized, and then update
these fields so that they can point circularly to the record
structure. Note that we retained the idea of defining a create
function recursively rather than the object itself recursively.
This is necessary for cloning to return the correct copy of
the object after updates; if we had defined the object recur-
sively, then clone would have been frozen to return a shallow
copy of the state of the object at the time of its creation.
(Of. the semantics of [ESTZ95], which does not accommo-
date cloning.) In our translation, the field clone is defined
to be an abstraction so that the application of create termi-
nates under call-by-value evaluation. Method invocation is
interpreted in the same way as in the functional case while
method update 1s interpreted as record update. Cloning is
interpreted as an application of the field clone to a dummy
argument (the empty record).

The precise definition of the translation of terms, in Ta-
ble 4, relies on the following notation:

Notation:
1. For A=[l; : B; ’El'“"], we define:

CTPIXY 2 {l: (X—>B?) €,
clone : {}—X,

self : X}

2. For any method name | and type B, we let:

L 2 u(Y)3(X<Y){l: (X—=B"), self : X}

3. The type MinTy(E,a) is the minimum type of @ in
environment F, i.e., the type A such that £+ a: A’
is provable if and only if &/ F A<:A’; it is undefined if
a is not typable in E. The type (E,a), is as in Section
3.3.

We can prove a soundness theorem for this translation.
We omit it from this paper since its statement requires
lengthy definitions detailing and relating the operational se-
mantics of the imperative calculi.

5 Extensions to Richer Object Types

In this section, we consider richer typing disciplines for ob-
jects: variance annotations, Self types, and structural rules
(all described in [AC95b]); we show how our translation ex-
tends to account for them. In Section 5.1, we begin by giving
an overview of these typing disciplines and an informal de-
scription of our interpretation for them. In Section 5.2, we
describe an enriched object calculus more precisely. Finally,
in Section 5.3, we give a translation of this object calculus.

5.1 Preview

Variance Annotations

Variance annotations are an extension to object types; they
are symbols (T, 7, %) attached to method names in object
types. The annotation {T indicates that method { is only
invocable, !~ indicates it is only updatable, and {° indicates
that it is both. These annotations allow finer protection on
the access of methods, and give desirable subtyping prop-
erties. Object types are covariant in the types of their
components, contravariant in the types of their = compo-
nents, and invariant in the types of their ° components.

Variance annotations naturally fit in the framework of
our interpretation. Namely, we can translate object types
to the same recursive type abstractions with both record
components 1°¢, [*"? for a method {°; only the I°¢' compo-
nent for {1; and only the 1*** component for I ™.

Self Types

The Self-type construct yields flexible typing for objects
with methods that return objects of the type of self. Ex-
tending the notation for object types, we write

Obj (X)[li : Bo{XY} &

where Obj binds a type variable X that can occur covari-
antly in the result types B;; intuitively the variable X stands
for the type of self, called the Self type. A longer object type
is still a subtype of a shorter one:

Ob](X)[ll - B; l€1n+m]<0b](X)[l, . lGln]

Recall that in the translation of simple object types given
by Equation 1 we viewed the representation type as the “true



Table 4: Translation of the Imperative Object Calculus

C(@)e = e
(= (o A S =

letrec create (f1: A*—=B7) ... (fn: A"=Bp): A" =

let z: OVP{A*} = {l; = f; ‘'™, clone = nil({}—A*), self = nil(A*)}

in z - clone := Az : {}) create (z - 1y) ---

(z-la);

z - self := fold(A*,pack X<: A" = A" with z : C["P{X});

z - self
in create (A(z, : A*
where A =[l; : B; =
(al)e =
in (z 1) (z - self) : B*
where B = (E, a),
)

{al<=g(z: AbYr =
in fold( A",

{

DBwra) -

]

(Aan : A")(bn)) B,20:a)

open unfold({a)r) as X<:L;T’]L3p,x Al (X—=BY), self : X}

open unfold({a))r) as X<:A",y: C"{X}

pack X'<: A* =X
withy -l == Ao : X){(b)po:a CX’LP{X'}) A"

(elone(@)s =
in (z - clone)({})

where A = MinTy(E,a)
let z: A" ={a)r in (b)) B w:a

{(let z: A=a in b)) =

open unfold({a))p) as X<:A*, x : O/ {X}

type” of an object. We take this “true type” to be the Self
type; therefore, for A = Obj(X)[l; : Bi{X} ‘€], we let:
A* = XA X BH{X)
1 (X—=BH{X})—X €,
self : X}

With this straightforward extension, our interpretation ac-
counts for Self types.

Structural Rules

While the subtyping rules for object types assert that a
longer object type is a subtype of a shorter object type,
structural rules arise as consequence of the stronger “struc-
tural assumption” that the only subtypes of an object type
are longer object types. An example of such a structural
rule, using the simple object types of Obi., is the follow-
ing modification of the rule (Val Update) of Table 8&:

(Struct Val Update)

For A=[l; : B; €]

E-C<A EFa:C Ex:CkHb:B;
Eralj<¢(z:0)0:C

In our interpretation, structural assumptions on object
types are reflected as structural assumptions on recursive
types. Specifically, structural rules for object types are vali-
dated if we strengthen the target calculus with a structural
rule for recursive types:

(Struct Val Unfold)
ErC<pu(X)B{X} Etra:C
E Funfold(a) : B{C}

The rule (Struct Val Unfold) can be seen as a consequence
of assuming that any subtype of a recursive type arises

through the reflexivity rule ((Sub Refl) of Table 7) or the
subtyping rule for recursive types ((Sub Rec) of Table 9).
For example, suppose that £ F C<:u(X)B{X} because
of (Sub Rec). Then C'is of the form p(X)B'{X} and if
Eta:C then EFunfold(a): B'{C}. Further, we have
that B,Y <: Top, X<:Y + B'{X}<:B{Y}. In particular,
since £ F C<:C, using C for both X and Y we get that
E + B'{C}<:B{C} and using subsumption we get the con-
sequent of the rule (Struct Val Unfold).

We can see informally how the rule (Struct Val Update)
is validated thanks to (Struct Val Unfold). Assume that
EF C*"<:A* and E F {a)) : C*. Using the definition of A*
as a recursive type and applying (Struct Val Unfold), we can
conclude that:

E Funfold({a))) : (X <:C™){..., ljupd ()= X, T

The result of an update is of type C*, since ljupd returns a
result of type X and X <:C*. In contrast, with the weaker,
non-structural rule (Val Unfold) of F..,, (Table 9), we can
conclude only that E +unfold({a))): I(X<:A*){...} and
the result of the update has to be given the weaker type A*.

5.2 An Enriched Object Calculus

The calculus Obs<t:r is an extension of Obj.. with variance
annotations, Self types, and structural rules. Like the se-
mantics of Oby., the semantics of Ob%! is free of side-
effects.

The types of Ob%! are generated by the grammar:
AB u= X | Top | Obj(X)[livi : B:{X} €]
where v; € {7, 7,°}. As described in Section 5.1, Obj binds
the Self type, and the variance annotation v; specifies the

operations permissible on method ;.



Table 5: Operational Semantics of Ob%l

If a = obj(X = A)l; = s(wi : X)b{X,2:} €], j€1...n
(Eval Select) al; ~ bj{A a}

(Eval Update) al;j « (V<A y:YV)s(z: V)W{Y,y} ~ obj(X = A)[l; =<z : X)b{X,a},

li = g(ai : X)b; t€lt-mi=lo0]

str

Because of Self types, the term syntax of ObZ" is slightly
different from that of Obq«.:

a,b = x| obj(X = A)li =¢(z:: X)b; ’El'“"]
|al]|al < (Y<Ay:Y)(z:Y)b

An object has the form obj(X = A)[l; = ¢(xi : X)b; ’El'“"]
with X standing for the Self type. Method update is written
al< (Y<:A,y:Y)s(z : Y)b where A is a known type for a,
Y denotes the Self type of a, y is bound to the object being
updated (a), and z is the usual self parameter in method b.
The parameter y 1s useful because it is given type Y while
a has the weaker type A.

The typing rules for Ob¥] are structural. They appear
in Appendix D.

The operational semantics is defined via a reduction sys-
tem whose redexes are given in Table 5. In the rule for
method update, note that the object a gets substituted for
the parameter y. Apart from this, the only difference from
the corresponding rules of Ob1«. is the type propagation—
the actual type of self gets substituted for the formal type
parameter X standing for the Self type. We denote the
many-step reduction relation for Ob% by — ..

5.3 Translation

We translate Ob%’ into an extension F%¥/, of F.,.; this
extension has the same operational semantics as F., but
includes a structural rule, namely the rule (Struct Val Un-
fold) of Section 5.1.

The translation of types combines the ideas for variance
annotations and for Self types described in Section 5.1:

X = X

*

Top Top

Obj(X)[l,‘l/,‘ : B,{X} lel"'n]*
= uY)AX<Y){(Livi : BAXT &,
self :
for Y not free in the B;’s

where the fields (l;v; B,‘{X})T are defined by case analysis

on the variance annotation v; as follows:

(IF:BAXYH = I X=BX}
(I7 : Bi{x ]! 17 (X5 BHX ) =X
(17 BAXD! (@ BAXHL (17 - BAX D!

We define the translation of environments as in Section

3.3, with the additional clause (E, X <:A)" = E*, X <:A™.

The following theorem states that well-formed environ-
ments are mapped to well-formed environments, that well-
formed types are mapped to well-formed types, and that the
translation preserves subtyping judgements.

Theorem 5.1
1. If E & o is derivable in Ob%, then E* & o is derivable

in Fe.,., and a fortiori in Fs<"M
2. If E+ A is derivable in Ob%, then E* - A* is deriv-

able in F«.,., and a fortiori in Fs<"M

3. If E = A<:B is derivable in Ob% | then E* - A*<:B*

is derivable in F .., and a fortiori in Fs<"M

We give the translation of terms in Table 6, using the
following notation:

Notation:
1. For A = Obj(X)[livi : Bi{X}], we define:
N

C¥{XY £ {(Lwi: BA{X}T €,

self :

2. For a type A, environment F, and method name I,
we define the Ob% type (A, E), as follows. If A =
Obj(X)[...,lv: B{X},..], then (A, E), is B{X}. If
A = X (a type variable) and F = E', X<:A'| E",
then (A, E), is (A', E'),. In all other cases (e.g., for
A = Top), (A, E), is undefined.

3. As in Section 4.2, the type MinTy(FE, a) is the mini-
mum type of a in environment E. (We can prove that
such a minimum type exists in Ob!.)

If we omit type annotations then the translation of terms
is basically the same as that described for Ob1 .. The main
novelty of the translation is that it shows that we can attach
suitable type annotations to the untyped terms described in
Section 3.3 so that well-typed terms of Ob%! get mapped
to well-typed terms of Fs<"M The following theorem states
that the translation preserves typing judgements and com-
putational behavior.

Theorem 5.2
1. If B+ a: A is derivable in ObZ! then E* + {a))g : A*

is derivable in FZ,.

2. If B+ a: A s derivable in Obs<t:r and a—,:b then
{adyp—> s (b)) &



Table 6: Translation of Ob%! into F¥,

(he = =
(obi(X = Aty = s(i : X)bi{X} € "))

= letrec create(fi : A"=B{{A"}) ... (fn: A= B {A"}): A* =

fold (A%,

pack X <:A* = A"

with {lfel = i€l..n
1174 = (g : A*

self = create (f1) ...
in create (A(zy : A*)<<b1{A}>>E,m1;A)

7—>BZ‘{A*})

create (f1) ... (fi—1) (9) (fix1) .. (fn) ‘€17,

(fn)} : CHT{X})
(Aan : A") (oA} Eonia)

where A = Obj(X)[lﬂ,i :Bi{X} lGl...n]

{alhe =

in (@ -1 (z - self) : B*{A*}
where A = MinTy(E, a), B{X} = (A, E),

{lal<= (Y<Ay:Y)s(z: Y)Y =

open unfold({a) r) as X <:A* & : {I** . (X=B*{X}), self : X}

open unfold({a) p) as X <:A* z: {I"P? : (X B*{X})—X, self : X}

in (z - lupd)(()‘(y<3A*))‘(y YY)z Y)W B y<ayy,ey) X (2 self)) : A*

where B = (A, E)

14

6 Conclusions

We have presented a new interpretation of objects and ob-
ject types that preserves subtyping and behavior; its basic
idea works for both functional and imperative semantics.
Our interpretation is more general than previous solutions
in that it handles object-based constructs such as cloning
and method update, as well as the common class-based con-
structs. Moreover, it is simpler than other proposals in the
sense of being syntax-directed. It is the first interpretation
of this kind.

Our interpretation offers insights into the nature of ob-
jects. It describes, in principle, a type-safe way of coding
objects in procedural languages. However, as is the case
even with more limited interpretations, it cannot be used in
actual programming practice because of its pragmatic com-
plexity. This fact confirms the commonly held belief that
object-oriented languages differ significantly from procedu-
ral languages in practical expressive power.

References
[AC94a)] M. Abadi and Luca Cardelli. A semantics of object
types. In Proceedings of the Ninth Annual Sympo-
sium on Logic in Computer Science, pages 332—341,
July 1994.

M. Abadi and Luca Cardelli. A theory of primitive
objects: Untyped and first-order systems. In The-
oretical Aspects of Computer Software, pages 296—
320. Springer-Verlag, April 1994.

M. Abadi and L. Cardelli. An imperative object cal-
culus: Basic typing and soundness. In SIPL ’95 —
Proceedings of the Second ACM SIGPLAN Work-
shop on State in Programming Languages. Tech-
nical Report UITUCDCS-R-95-1900, Department of
Computer Science, University of Illinois at Urbana-
Champaign, January 1995.

Martin Abadi and Luca Cardelli. An imperative ob-
ject calculus. In P.D. Mosses, M. Nielsen, and M.I.

[AC94b]

[AC95a)]

[AC95b]

10

[ALBC*93]

[And92]

[App93]

[Car88]

[Car9s]

[Coo89]

[ESTZ95]

[HP95]

[Kam883]

[Lie81]

[MGV92]

Schwartzbach, editors, TAPSOFT’95: Theory and
Practice of Software Development, pages 471-485.
Springer-Verlag LNCS 915, May 1995.

O. Agesen, C. Chambers L. Bak, B.W. Chang,
U. Holzle, J. Maloney, R.B. Smith, D. Ungar, and
M. Wolczko. The Self 3.0 programmer’s reference
manual. Sun Microsystems, 1993.

B. Andersen. Ellie: a general, fine-grained, first-
class, object-based language. Journal of Object Ori-
ented Programming, 5(2):35-42, 1992.

Apple Computer, Inc. Apple, The NewtonScript

Programming Language, 1993.

L. Cardelli. A semantics of multiple inheritance. I'n-
formation and Computation, 76:138—164, 1988. Spe-
cial issue devoted to Symp. on Semantics of Data
Types, Sophia-Antipolis (France), 1984.

L. Cardelli. A language with distributed scope.
In Conference Record of the Twenty-Second An-
nual ACM Symposium on Principles of Program-
ming Languages, 1995.

W.R. Cook. A Denotational Semantics of Inheri-
tance. PhD thesis, Brown University, 1989.

J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico.
An interpretation of typed OOP in a language with
state. Lisp and Symbolic Computation, 1995. To
appear.

Martin Hofmann and Benjamin Pierce. A unify-
ing type-theoretic framework for objects. Journal of
Functional Programmaing, 1995. To appear. Previous
version appeared in the Symposium on Theoretical
Aspects of Computer Science, 1994 (pages 251-262).

S. Kamin. Inheritance in Smalltalk-80: a denota-
tional definition. In ACM Symp. Principles of Pro-
gramming Languages, pages 80—87, 1988.

H. Lieberman. A preview of Actl. Technical Report
Al Memo No 625, MIT, 1981.

B.A. Myers, D.A. Giuse, and B. Vander Zanden.

Declarative programming in a prototype-instance



system: object-oriented programming without writ-
ing methods. In Proc. OOPSLA ’92, pages 184—200,
1992.

O.L. Madsen, B. Moller-Pedersen, and K. Nygaard.
Object-oriented programming in the Beta program-
ming language. Addison-Wesley, 1993.

J.C. Mitchell and G.D. Plotkin. Abstract types have
existential types. ACM Trans. on Programming
Languages and Systems, 10(3):470-502, 1988. Pre-
liminary version appeared in Proc. 12th ACM Symp.
on Principles of Programming Languages, 1985.

[MMPN93]

[MPsS]

[PT94] Benjamin C. Pierce and David N. Turner. Simple
type-theoretic foundations for object-oriented pro-
gramming. Journal of Functional Programmaing,
4(2):207-248, 1994,

D. Rémy. Programming Objects with ML-ART, an
extension to ML, with Abstract and Record types. In
Theoretical Aspects of Computer Software. Springer-
Verlag, April 1994.

A. Taivalsaari. Kevo, a prototype-based object-
oriented language based on concatenation and mod-
ule operations. Technical Report LACIR 92-02, Uni-
versity of Victoria, 1992.

[Rém94]

[Tai92]

Appendix

In this appendix we summarize several calculi, giving both
grammars and rules. We often use assertions of the form
EFJ: Vi €1...ntoindicate n hypotheses; by convention,
this means F + ¢ when n = 0.

A The Ob;.. Calculus

The calculus Obq«. consists of the rules given in Tables 7
and 8. It has the following syntax:

Environments FE = 0| E,z: A

Types A,B = TOp | [lz . Bz iGl...n]

Variables z,y

Terms a,b = x| [li =¢(xi: A)b; iGl...n]
| a.l | al<g(x: A

Results v o= [l =g(x s A)by iGl...n]

B The F.., Calculus

The calculus F .., consists of the rules given in Tables 7 and
9. It has the following syntax:

Environments E :=0|FEz:A|E X<A
Type Variables X,Y
Types A,B,C == X | Top | A>B
{l: : B: '€} | p(X)A
V(X<:A)B | 3(X<:A)B
Variables T,y
Terms a,byc,d == x| Az : A)b | a(b)
{ll — bl iel...n} | a-l
fold(A,b) | unfold(a)
AX<:A) | b(A)
pack X<:A=C withb: B{X}
| open ¢ as X<:A,z: B ind: D
Results v on= Mo A | {l =b ")

| fold(A,v) | A(X<:A)b
| pack X<:A = C withb: B{X}

Other definitions of the set of results could be adopted.

11

The one given here is convenient for our adequacy theorem;
it is however not particularly compelling. Fortunately our
techniques are not too sensitive to changes in the definition
of the set of results.

C The Imperative Variant of Ob;_.

The typed imperative object calculus contains all the rules
of Ob; <. (described in Appendix A) and contains the typ-
ing rules given in Table 10 for its additional terms. As
for Oby <., we can prove a minimum-types property for the
typed imperative calculus. (This is a convenient departure
from the original calculus of [AC95a]: the terms described
here contain more type information.) The syntax is:

Environments FE = 0| E,z: A
Types A,B == Top|[li: B iGl...n]
Variables z,y
Terms a,b u= x| [l =¢(zi: A)b lGl...n]
|a.l|al<=q(z: A
| clone(a)
|letz: A=ainb

D The Ob¥! Calculus

The calculus Ob¥] consists of the rules given in Table 7, the
rules (Env X)), (Type X), (Sub X) given in Table 9, and the
rules of Table 11. It has the following syntax:

Environments E :=0|Ez:A|E,X<A
Type Variables XY
Types A/B = X | Top
| Obj(X)[l,‘l/,‘ . B; lel"'n]
with v; € {t,7,°%}
Variables T,y
Terms a,b ==z
| obj(X =A)[li =¢(zi: X)b; ’el“'"]
| a.l

|al <= (Y<:Ay:Y)(z:Y)b



Table 7: Common Typing Rules

Environments
(Env 0) —po (Bnv o) %, v & dom(E)
Subtyping
(Sub Refl) % (Sub Trans) Lr AE:E AE:E B<:C
(Val Subsmp) Eta :EAl_ aE;;A<:B
Top
(Type Top) E‘El—il_TZp (Sub Top) %
Variable Typing
(Val ) E’E;: xAAE']'Eg ; >
Table 8: Additional Typing Rules for Ob <.
Object Types and Subtyping
EFB; Viel...n EFB; Viel..n+m

(Type Object)

(Sub Object)

E l_ [lz . Bz zel...n] E l_ [lz . Bz 161...n+m]<:[li . Bz zel...n]

Term Typings
(Val Object)

—17. . L 1€l...n
Er[li=c(@i: A)b €7 A A= B ]

Eta:[li:B €

Eral;: By ’

Era:A FEx:AbFb:B
Eral; ¢(z:A)b: A

Fax,:Arb,: B, Yiel...n
]

(Val Select) j€l...n

(Val Update) L A=l B €], jel.n

12




Table 9: Additional Typing Rules for F.,,

Environments
(Env X) %, X g dom(E)
Types
(Type X) g ))((<<::27 5: N (Type —) %
(Type Record) EE'I_—?Z@ glezelln; (Type Rec) E7EA‘X|—<H1(1§?)'I_4A
(Type All) % (Type Exists) %
Subtyping
(Sub X) X (Sub =) - Eé/Zfng'i;B/

T X<A EFX<A
EFB,<:B/,Yiel...n EFEFB,, Vien+1l...n4+m
EF{l;: B; €™l {l; . Bl €171
EruX)A EFp(Y)B E,Y<:Top, X<:YF A<:B
EFu(X)A<u(Y)B
EFA<A E X<AFB<B EFA<A E X<AF B<B

(Sub Record)

(Sub Rec)

(Sub All) - =5 V(X< A)B<V(X<:A)B (Sub Exists)  —p X< A)B<I(X<ANB

Term Typings

(Val Fun) Exz:A-b: B FFb:A-B Flra:A

EF Nz A AD (Val Appl) EFb(a): B

Ebb :Bi Viel...n
EF {ll =b; lel"'"} . {ll . B; zel...n}
Ftra: {lz . B; iGl...n}

(Val Record)

(Val Record Select) FFal B , JEL1...n
Erb:B{A) B
(Val Fold) IF oAb A= #(X)B{X)
ErFb: A _
(Val Unfold) FFuntold(d) : B{AT " A=p(X)B{X}

E,X<AFb:B Erb:¥(X<:A)B EF A'<:A

(Val Fun2)  —prmpwix <y (Val Appl2) TS BT
EFC<:A  EFb{C}:B{C}

(Val Pack) Etpack X<:A=Cuwithb{X}: B{X}: I(X<:A)B{X}

(Val Open) Ebc:3(X<:A)B E+D E X<Az:Brd:D

EF (opencas X<:A,x:Bind:D): D

Table 10: Additional Typing Rules for the Imperative Calculus

Era:[l:B; "€
Et clone(a) : [l; : B; ’el“'"]
Frta:A FEx:AFb:B
Frletx:A=ainb: B

(Val Clone)

(Val Let)

13




Table 11: Additional Typing Rules for Ob%

Variance Subtypings
EFB<:B ve{ '}
E+vB<:TDB

. E+B
(Sub Invariant) EFB<TB

EFB'<B ve{ "}

(Sub Covariant) ErvB<:~B'

(Sub Contravariant)

Object Types and Subtyping
. E, X< Topt B{X} Viel...n
(Type Object) EF Obj(X)[liwr : B, &0 7]
(Sub Object) For A = Obj(X)[liv : Bi{X} '€t A = Obj(X)[liv) : B{XY} €7
EY<AruyB{Y}<w/BH{Y} Viel...n
EFA<A

. v €4{7,7,°}, B covariant in X

Term Typings
. E z;: AFb{A} : B{A} Vi€el...n
(Val ObJeCt) EF Obj(X — A)[l,‘ — C(l‘l‘ . X)b,{X} lGl...n] A
(Struct Val Select) For A’ = Obj(X)[liv; : B{X} "€ ",v; € {+,°},j€1...n
ElFa:A EFA<A
EFal;: B;{A}
(Struct Val Update) For A’ = Obj(X)[livi : Bi{X} "€, v; € {7,°},j€1...n
Eta:A FEFA<A EY<Ay:Ys:YEb:B{Y}
EFraly «E(Y<Ay:Y)z:Y)b: A

14

A= 0bj(X)[livi : Bi{X} '€")




