
An Interpretation of Objects and Object TypesMart��n Abadi�Digital Systems Research Centerma@pa.dec.com Luca Cardelli�Digital Systems Research Centerluca@pa.dec.comRamesh ViswanathanyIsaac Newton Institute for Mathematical SciencesR.Viswanathan@newton.cam.ac.ukAbstractWe present an interpretation of typed object-oriented con-cepts in terms of well-understood, purely procedural con-cepts. More precisely, we give a compositional subtype-preserving translation of a basic object calculus supportingmethod invocation, functional method update, and subtyp-ing, into the polymorphic �-calculus with recursive typesand subtyping. The translation techniques apply also to animperative version of the object calculus which includes in-place method update and object cloning. Finally, the trans-lation easily extends to \Self types" and other interestingobject-oriented constructs.1 IntroductionObject-oriented programming languages have introduced nu-merous ideas, structures, and techniques. Although thesecontributions are not always conceptually clear (or evensound), they are often original and useful. One of the mostbasic contributions is the notion of self; the operations asso-ciated with an object (its methods) can refer to the object asself, and invoke other operations by indirecting through self,with dynamic dispatch. A related contribution is the notionof subsumption: an object can be replaced (subsumed by)any object that supports the same or more operations; intyped languages, subsumption is systematized in rules forsubclassing and subtyping.Object-oriented programming is not limited to object-oriented languages. One can emulate objects in some proce-dural languages, such as Scheme and C. So it is possible that,despite its originality, object-oriented programming can bereduced to procedural programming. Such a reduction isnot straightforward. Interesting di�culties arise at the levelof types: the most natural de�nition of objects as records offunctions (the self-application semantics [Kam88]) does notvalidate the expected subtypings, so subsumption is blocked.�Address: Digital Systems Research Center, 130 Lytton Avenue,Palo Alto, California 94301, U.S.A.ySupported by NSF Grant CCR-9303099 and a Rosenbaum Fel-lowship. Address: Isaac Newton Institute for Mathematical Sciences,20 Clarkson Road, Cambridge, CB3 0EH, U.K.To appear in the Proceedings of the 23rd Annual ACMSIGPLAN{SIGACT Symposium on Principles of Pro-gramming Languages, January 1996, St. PetersburgBeach, Florida.

In this paper we develop an interpretation of object-oriented programming in terms of procedural programming(speci�cally, in terms of a fairly standard �-calculus withsubtyping). We show a translation of objects into records offunctions, and a translation of object types into types builtup from record types, existential types, and recursive types.These ingredients should not be surprising, but their combi-nation is new. The translation is faithful in that it respectsoperational semantics, typing rules, and subtyping rules; ityields a syntactic proof of soundness for those rules.In order to make this interpretation both manageableand precise, we develop it in the context of object calculi[AC94b]. Object calculi are formalisms analogous to �-calculi, based on objects rather than on functions. Theironly primitives are objects, method invocation, method up-date, and (for imperative calculi) cloning. Method updateis the most unusual of these, but forms of method update doappear in several languages [Lie81, And92, Tai92, MGV92,MMPN93, ALBC+93, App93, Car95]. The primitives arequite expressive: they allow representations of both class-based and object-based notions, for example classes, sub-classes, protection, prototyping, and mode switching. Whentyped, object calculi include a subtyping relation and a sub-sumption rule.We believe that our interpretation of objects is com-pelling for several reasons.� First, it makes precise the vague intuition that objectshave something to do with abstract data types and re-cursive types. That intuition has been important inprevious works that studied �-calculi with subtypingand used them to emulate objects to various extents(see the next section). The target calculus of our trans-lation is the result of those previous works.� The translation is su�ciently complicated to con�rmthat objects provide a useful abstraction independentof procedural concepts. On the other hand, it is simpleenough to serve as an explanation of objects in termsof well-understood constructs.� Finally, the translation is not limited to one particularobject calculus. With some modi�cations, it appliesboth to functional and imperative execution models;and it can be adapted to account for \Self types" and\structural rules" [AC95b], which are operationallysound but unsound in common denotational models.In the next section we review some of the background,describing related works, and give an informal overview of

our interpretation. Section 3 de�nes a �rst version of thetranslation precisely; Section 4 gives an imperative transla-tion; Section 5 deals with additional type constructs.2 Informal Review and OverviewWe �rst review a basic untyped object calculus [AC94b]since we use its notation in what follows. In this calcu-lus, an object [l1 = &(x1)b1; : : : ; ln = &(xn)bn] is a collec-tion of methods &(x1)b1; : : : ; &(xn)bn with respective namesl1; : : : ; ln; the method bodies are b1; : : : ; bn, and the vari-ables x1; : : : ; xn denote self. The order of the methods doesnot matter. The only operations on objects are methodinvocation and method update. If o is the object [l1 =&(x1)b1; : : : ; ln = &(xn)bn], then the invocation of its methodli, written o:li, consists in replacing o for xi in bi; the methodupdate o:li (&(x)b yields an object like o but where wehave li = &(x)b. For now, we take the update construct tobe functional, that is, to create a new object. Fields (in-stance variables) are easily expressible as methods that donot use their self parameters.This untyped calculus is the basis for a �rst-order calcu-lus with subtyping, called Ob1<:. In Ob1<:, an object type[l1 : B1; : : : ; ln : Bn] is the type of objects which have meth-ods l1; : : : ; ln that, when invoked, result in values of typesB1; : : : ; Bn respectively.A characteristic of object-oriented languages is that anobject with more methods can be used wherever an objectwith fewer methods is expected. In Ob1<:, this is supportedthrough a subtyping relation <:. An object type with moremethods is a subtype of an object type with fewer methodsprovided that the common methods have exactly the sameresult types; for example, [l1 : B1; l2 : B2]<:[l1; B1] for anytypes B1 and B2.The self-application semantics [Kam88] provides a sat-isfactory explanation of untyped objects as records of func-tions. Let us write fl1 = a1; : : : ; ln = ang for the record with�elds l1; : : : ; ln with a1; : : : ; an as values; a � l for extractingthe �eld l of record a; and a � l := b for updating the �eld l ofrecord a to be b. In the self-application semantics, a methodis a function of its self parameter; an object is a record ofsuch functions; method invocation is �eld selection plus self-application; method update is record update:[l1 = &(xi)bi i21:::n] 4= fli = �(xi)bi i21:::ngo:lj 4= o � lj(o)o:lj (&(y)b 4= o � lj := �(y)bThis interpretation respects the operational behavior of bothmethod invocation and method update.Unfortunately, the self-application semantics does notextend to typed systems such as Ob1<:. In particular, itdoes not validate the essential subtypings between objecttypes. Following the self-application semantics, one wouldnaturally interpret the object type A � [li : Bi i21:::n] as arecursive record type, the solution to the type equation:A = fli : A!Bi i21:::ngwhere fli : Ci i21:::ng denotes the evident record type. Be-cause of the contravariant occurrences of the object typeA, we do not obtain subtypings valid in Ob1<: such as[l1 : B1; l2 : B2]<:[l1 : B1].

In part because of this di�culty, there have been severalother interpretations of objects. Most of them were de�nedas ways of emulating objects in procedural settings, ratherthan as precise translations, so it is somewhat hard to givea full account of their scope. In short, many of them con-tributed interesting and useful techniques but they all suf-fer from limitations. The recursive-record semantics [Car88]validates the expected subtypings, but it does not modelmethod update (or even �eld update); the generator seman-tics [Coo89] deals with update, at the cost of separatingobjects from object generators. The existential interpreta-tion of [PT94, HP95] also validates the expected subtyp-ings, and models class-based constructs where methods and�elds are rigidly separated and it is only the �elds thatcan be updated; unfortunately, the translation of objectsis type-directed, and rather elaborate. An imperative in-terpretation [ESTZ95] can solve the problems of the self-application semantics with judicious side-e�ects; its mainlimitation is that it does not model the cloning constructof object-based imperative languages. Finally, some inter-pretations give up on subtyping altogether, and reduce it tocoercion functions [AC94a, R�em94]; the coercion functionsare cumbersome, destroy the
avor of the original programs,and preclude an explanation of object subtyping in terms ofmore primitive subtyping relations.At this point, a possible conclusion is that it is easy tounderstand the computational behavior of objects, but thattheir desired typing and subtyping properties make themfundamentally di�erent from records and functions. It wasthis view that originally led to the formulation of object cal-culi. Our interpretation of objects, which we discuss next,sheds some new light on this matter. It does provide arather complete account of objects in terms of records andfunctions. It applies both to class-based and object-basedconstructs, places no restrictions on method update, and val-idates the expected subtypings. On the other hand, becauseit is not straightforward, it does not remove the usefulnessof object calculi as a setting for studying object-orientedconcepts.In this paper we develop translations of several objectcalculi into �-calculi. The translations are faithful in thatthey respect the operational semantics, typing rules, andsubtyping rules of the object calculi. The �rst translationmaps Ob1<: into F<:�, the polymorphic �-calculus withsubtyping and recursive types; we preview this translationnext, explaining informally how it treats types.Consider a type A � [l1 : B1; : : : ; ln : Bn]. Because ofsubsumption, an object o containing additional methods be-sides l1; : : : ; ln can be an element of A. If we think of the\true type" of o as the type listing all its methods, thenthe type A only partially reveals the true type of o; what ispublicly visible are only the methods l1; : : : ; ln. We there-fore take the translation A� of an object type A to be a typeabstraction with representation type the true type of the ob-ject. Using the notation 9(X<:C)B for a type abstractionwith an interface B and an unknown representation type Xthat is a subtype of C, we de�ne A� as a recursive type,with the following equation:A� = 9(X<:A�)flseli : (X!B�i) i21:::n;lupdi : (X!B�i)!X i21:::n;self : Xg (1)The subtyping assumption X<:A� for the representationtype expresses that the true type is known to be a subtype2

Table 1: Operational Semantics of Ob1<: and F<:�Ob1<: If a � [li = &(xi : A)bifxig i21:::n]; j 2 1 : : : n(Eval Select) a:lj ; bjfag(Eval Update) a:lj (&(x : A0)b ; [lj = &(x : A)b; li = &(xi : A)bi i2f1:::ng�fjg]F<:� (Eval Beta) (�(x : A)bfxg)(a) ; bfag(Eval Beta2) (�(X<:A)bfXg)(A0) ; bfA0g(Eval Record Select) fli = bi i21:::ng � lj ; bj for j 2 1 : : : n(Eval Unfold) unfold(fold(A;a)) ; a(Eval Unpack) open c as X<:A;x : BfXg in dfX;xg : D ; dfC; bfCggwhere c � pack X<:A0 = C with bfXg : B0fXgof the object type. The �eld lseli is the method li treated as afunction of self. The �eld lupdi provides the ability to updatemethod li|given a new method that is a function of self, itreturns a new object. The �eld self is the object itself withall its methods (including the private ones); through self ,the methods l1; : : : ; ln can access methods not listed in theinterface.Each of the ingredients in this translation is necessary.In particular, the use of existential types in addition to re-cursive types is essential for getting the desired subtypings.Similarly, it is essential to model method update via a �eldlupdi : if method update were modeled by an update of the�eld lseli then this would leave the �eld self una�ected, sothe operational semantics would be distorted.In the next section we detail this translation of Ob1<:.In Section 4, we consider an imperative version of the trans-lation, which deals correctly with cloning but is in someways simpler than the functional one thanks to side-e�ects.In Section 5, we show that the translation of Ob1<: can beextended to account for richer object-type constructs withSelf types and variance annotations.3 Interpretation of an Object Calculus withFunctional UpdateIn this section, we describe the translation of the object cal-culus Ob1<: into the functional calculus F<:�. In Sections3.1 and 3.2, we brie
y describe the calculi Ob1<: and F<:�,and in Section 3.3, we detail the translation of Ob1<: intoF<:�. The precise typing rules for the two calculi are givenin Appendices A and B.3.1 An Object Calculus: Ob1<:The types of Ob1<: are generated by the grammar:A;B ::= Top j [li : Bi i21:::n]where n � 0. The type Top is the supertype of all typesand [li : Bi i21:::n] is the type of objects with methods lireturning results of type Bi. The terms of the calculus aresimilar to those of the untyped calculus described in Section2 except that &-bound variables have type annotations:a; b ::= x j [li = &(xi : A)bi i21:::n] j a:l j a:l (&(x : A)b

A subset of the terms generated by this grammar are iden-ti�ed as well-typed terms by a set of typing rules describedin Appendix A. The rules are used to derive judgements ofthe form E ` J , where J is an assertion and E is an en-vironment describing assumptions about the free variablesin J . The assertion � means that E is a well-formed en-vironment, A means that A is a well-formed type, A<:Bmeans that A is a subtype of B, and a : A means that ais a well-formed term of type A. An important rule, (SubObject), states that A is a subtype of A0 if A has all themethod names given in A0 and moreover the result types ofthese methods are exactly the same in A and A0 (so objecttypes are invariant in their component types).The operational semantics is de�ned via a reduction sys-tem; it is free of side-e�ects. The primitive redexes given inTable 1 correspond to method invocation and method up-date; we write bfxg to distinguish a variable x that may oc-cur free in b, and bfag for the result of replacing x with a in bonce x is clear from context. The one-step reduction relation�!o is the congruence closure of; (i.e., we can reduce anysubterm that is a redex); the many-step reduction relation�!!o is the re
exive, transitive closure of �!o. We de�neresults to be terms of the form [li = &(xi : A)bi i21:::n]; wesay that a closed term a converges, and write a +o, if thereexists a result v such that a�!!ov.3.2 A Functional Calculus: F<:�The system F<:� is the standard extension of System F withrecursive types and subtyping. While records and existen-tially quanti�ed types are encodable in terms of the otherconstructs of F<:�, we present them as primitive for sim-plicity. System F<:� is de�ned in detail in Appendix B; inthis section, we describe informally some of its constructs.Records are collections of �elds with associated values;the only operation on records is �eld extraction (writtenr � l). The basic types are function types and record types.A record type fli : Bi i21:::ng lists the �eld names and thetypes of the values associated with them. Record types arecovariant in their component types. We use the recursivetype �(X)BfXg to denote a solution to the type equationX = BfXg where X could occur free in B. The isomor-phism between �(X)BfXg and its unfolding Bf�(X)BfXggis given by the constructs fold and unfold: if a is of type�(X)BfXg then unfold(a) is of the unfolded type, and if b3

is of the unfolded type then fold(�(X)BfXg; a) is of type�(X)BfXg.The existentially quanti�ed type 9(X<:A)BfXg is thetype of a term a (roughly) if there exists a type C that isa subtype of A for which a is a term of type BfCg. Moreformally, given a term a of type BfCg, the term pack X <:A = C with a : BfXg has type 9(X<:A)BfXg. Whatwe achieve by packing a in a term of type 9(X<:A)BfXgis the hiding of information about the type C at whicha realizes 9(X<:A)BfXg. (Recall that data abstractionshave existential types [MP88].) Given a term c of type9(X<:A)BfXg, we can access its \inside" by writing theterm open c as X<:A; y : BfXg in d : D, where X standsfor the representation type and y for the \inside". We canuse X and y in d but the typing rules ensure that d can-not assume any information about X other than that it isa subtype of A, and the type D speci�ed for d must notdepend on the representation type X, i.e., X cannot occurfree in D.Table 1 speci�es reduction for F<:�. The one-step reduc-tion relation �!f is the congruence closure of;, and �!!fis the re
exive, transitive closure of �!f . As for Ob1<:, wedistinguish certain terms as results; the set of results, de-�ned in Appendix B, includes �-abstractions and records.We say that a closed term a converges, and write a +f , ifthere exists a result v such that a�!!fv.Using recursive types, we can easily de�ne a (call-by-name) �xed point operator. It is also routine to de�neletrec; we write letrec f(x1 : A1) � � � (xn : An) : B =b in c to denote a recursive de�nition of a function f oftype A1!� � �!An!B, used in the term c.3.3 TranslationWe are now ready to describe the translation of Ob1<: intoF<:�. The translation is in two parts. The �rst part is atranslation of types which maps every type A of Ob1<: to atype A� of F<:� and is de�ned by induction on the structureof types in Ob1<:.Top� = Top[li : Bi i21:::n]� = �(Y)9(X<:Y)flseli : (X!B�i) i21:::n;lupdi : (X!B�i)!X i21:::n;self : XgThe interpretation of object types given here is the sameas that of Section 2, but here we use a � rather than anequation (Equation (1)) for de�ning the existential type re-cursively. Note that in the translation of the object typeA � [li : Bi i21:::n], the �eld lseli makes the type A� covariantin B�i and the �eld lupdi makes it contravariant in B�i . Ourinterpretation thus explains the invariance of object typesin their component types as arising from a covariance dueto invocation and a contravariance due to update.The key consequence of our translation of object typesis that it gives the expected subtypings. More formally,we use the translation of types to de�ne a mapping E� forenvironments, and establish Theorem 3.1 which states thatwell-formed types ofOb1<: get mapped to well-formed typesof F<:� and that the subtyping judgements of Ob1<: arepreserved by the translation.

�� = �(E; x : A)� = E�; x : A�Theorem 3.11. If E ` � is derivable in Ob1<:, thenE� ` � is derivablein F<:�.2. If E ` A is derivable in Ob1<:, then E� ` A� is deriv-able in F<:�.3. If E ` A<:B is derivable inOb1<:, then E� ` A�<:B�is derivable in F<:�.The second part of the translation is for terms. Tomake the main ideas in the translation of terms transpar-ent, we �rst informally explain the results of the translationas untyped �-terms, omitting the type annotations associ-ated with using recursive and existential types; we make thedetails precise later. Informally, every term a of Ob1<: ismapped to its meaning, hhaii, which is a �-term. Apart fromthe typing restrictions imposed by the recursive and existen-tial types, the translation of an object type is a record typewith two �elds lseli and lupdi for each method li and a �eldself . The �eld lseli is the method li treated as a function ofself, and the �eld lupdi returns a new object when appliedto a new method treated as a function of self. With thisunderstanding, the translations of method invocation andupdate are straightforward.hha:ljii = hhaii � lselj (hhaii � self)hha:lj (&(x)bii = hhaii � lupdj (�(x)hhbii)The most delicate part of the translation of terms is thatfor objects. This may be expected since we did not do any-thing computationally interesting so far|we just delegatedresponsibility to the �elds lseli and lupdi provided by the in-terface of objects. To understand the translation of objects,it is instructive to consider �rst an incorrect attempt, whichwill also explain the presence of the �eld lupdi . Suppose wechose not to have the �eld lupdi in the record interface forobjects and instead modeled method update by an updateof the �eld lseli , i.e., for an object o � [li = &(xi)bi i21:::n],we would have thathho:lj (&(x)bii = hhoii � lselj := �(x)hhbii (wrong)Invoking a method lj of o would still be interpreted as ex-tracting the lselj �eld and applying it to the �eld self . Sincethe object o is a record with �eld lseli equal to the method bitreated as a function of its self parameter, and since methodinvocation is modeled by application to the �eld self , the�eld self then has to be the object itself. We arrive at thefollowing recursive de�nition for hhoii:hhoii = flseli = �(xi)hhbiii i21:::n; self = hhoiig (wrong)The problem with this (functional) interpretation of objectsis that when a method gets updated the object changes butsince we only update the �eld lj of the record, this changeis not re
ected in the �eld self and consequently we lose thedynamic binding of self. Thus, if some other method useslj in its body, then its invocation modeled by application4

Table 2: Translation of Ob1<: into F<:�hhxiiE = xhh[li = &(xi : A)bi i21:::n]iiE = letrec create (f1 : A�!B�1) : : : (fn : A�!B�n) : A� =fold (A�;pack X<:A� = A�with flseli = fi i21:::n;lupdi = �(g : A�!B�i)create (f1) : : : (fi�1) (g) (fi+1) : : : (fn) i21:::n;self = create (f1) : : : (fn)g : CAfXg)in create (�(x1 : A�)hhb1iiE;x1 :A) : : : (�(xn : A�)hhbniiE;xn :A)where A � [li : Bi i21:::n]hha:liiE = open unfold(hhaiiE) as X<:Ll;B ; x : flsel : (X!B�); self : Xgin (x � lsel)(x � self) : B�where B = hE; ailhha:l (&(x : A)biiE = open unfold(hhaiiE) as X<:A�; y : CAfXgin (y � lupd)(�(x : X)hhbiiE;x:A) : A�to the �eld self would not see the result of the update. So,an important idea in the context of our translation is thatmethod update is not modeled as record update. The secondidea to glean from this
awed attempt is that de�ning theobject itself recursively would not re
ect the computationalbehavior of objects accurately. Intuitively, update has nochance of working once the recursion freezes self to be thestate of the object at the time of creation, i.e., if recursionis used too soon. (Those familiar with the recursive-recordinterpretation [Car88] may note that the source of its prob-lems in modeling method update can also be traced to theearly use of recursion.)The solution is to de�ne not the object itself recursively,but the dependence of the object on its methods recursively.That is, we de�ne a function create that when applied ton methods, returns an object with those n methods and itis the de�nition of create that is recursive. An object canthen be de�ned by the application of create to its methods,as follows:For o � [li = &(xi)bi i21:::n];hhoii = letrec create (f1) � � � (fn) =flseli = fi i21:::n;lupdi = �(g) create (f1) � � � (fi�1)(g) (fi+1) � � � (fn) i21:::n;self = create (f1) � � � (fn)gin create (�(x1)hhb1ii) : : : (�(xn)hhbnii)We now de�ne the translation of terms with typing an-notations, more precisely. We use the following notation.Notation:1. For any object type A � [li : Bi i21:::n], we de�ne theF<:� type CAfXg with free variable X:CAfXg 4= flseli : (X!B�i) i21:::n;lupdi : (X!B�i)!X i21:::n;self : Xg

2. For any method name l and Ob1<: type B, we de�nethe F<:� type Ll;B by:Ll;B 4= �(Y)9(X<:Y)flsel : (X!B�); self : Xg3. Suppose, for any term a and environment E, that E `a : [: : : ; l : B; : : :] is provable in Ob1<:. Then by theminimum-types property ofOb1<: [AC94b] and by theinvariance of object types, we have that if E ` a :[: : : ; l : B0; : : :] then B � B0. So we let hE; ail be theunique type B such that E ` a : [: : : ; l : B; : : :] isprovable if it exists, and be unde�ned otherwise.For any term a in Ob1<: and environment E, Table 2de�nes a term hhaiiE of F<:�. The translation proceeds byinduction on the structure of a. In particular, the translationof a judgement E ` a : A does not depend on its derivationin Ob1<:, and consequently, we can avoid coherence issues inour proofs. The inclusion of the environment E in de�ningthe meaning of a term arises for purely technical reasons. Itis to give the necessary type annotations in the translationof method invocation. If we had omitted type annotationsfrom the target calculus or put more type information inthe syntax of the term for method invocation, we could havede�ned the meaning of the term without any dependence onthe environment.Some remarks regarding the translation of terms are inorder. The translation of method invocation explains thepresence of the �eld self in the translation of object types:using x instead of x � self would not lead to a typable re-sult. In the translation of method update, the use of �(x :X)hhbiiE;x:A is motivated by the reduction rule (Eval Up-date) which asserts:([li = &(xi : A)bi 1:::n+m]:lj (&(x : A0)b) ;[lj = &(x : A)b; : : :]with A instead of A0 in the type annotation of x in theupdated object. The use of �(x : A�)hhbiiE;x:A instead of�(x : X)hhbiiE;x:A would be acceptable from the point ofview of typing but would not �t with the rule (Eval Update).5

The following theorem states that our translation pre-serves typing judgements and the computational behaviorof terms.Theorem 3.21. If E ` a : A is derivable in Ob1<: then E� ` hhaiiE :A� is derivable in F<:�.2. If E ` a : A is derivable in Ob1<: and a�!!ob thenhhaiiE�!!f hhbiiE.The translation can serve as a basis for validating rea-soning principles for objects from reasoning principles forfunctions. In particular, we can prove that two objects areequivalent by showing that their translations are equivalent.We have been able to check a few non-trivial object equiv-alences in this manner. This proof method is not complete,because the translation is not fully abstract; however, it issound, because the translation is computationally adequate,as we show next.Let a and b be two closed Ob1<: terms of type A. Wesay that a and b are operationally equivalent at type A, andwrite a �o b : A, if we have that C[a] +o if and only ifC[b] +o for any context C[�] which is well-typed assumingthe hole [�] is of type A. We de�ne the relation of opera-tional equivalence similarly for F<:�, and write a �f b : A.The �rst part of the following theorem states that the trans-lation is computationally adequate; the second part, whichis a corollary of the �rst, states that if two Ob1<: termshave operationally equivalent translations then they are op-erationally equivalent.Theorem 3.3 Assume that ; ` a : A and ; ` b : A are de-rivable in Ob1<:. Then:1. a +o if and only if hhaii; +f .2. If hhaii; �f hhbii; : A� then a �o b : A.In summary, there are three key ideas in the translation.The �rst is that interpreting an object type as a recursivetype abstraction gives the desired subtypings. The secondis to model method invocation not as application to theobject itself, but rather to a �eld self which holds the currentvalue of the object. And �nally, by splitting each methodinto a �eld for invocation and a �eld for update and byusing recursion in a function that creates objects, we obtaindynamic binding.4 Interpretation of an Imperative ObjectCalculusIn this section, we show how the ideas embodied in the trans-lation described in Section 3 are also useful to the interpre-tation of imperative object-oriented constructs. Our formalsetting is the imperative object calculus of [AC95a].4.1 An Imperative Object CalculusThe terms of the untyped imperative object calculus aregenerated by the grammar:a; b ::= x j [li = &(xi)bi i21:::n] j a:l j a:l (&(x)bj clone(a) j let x = a in b

As the previous calculus, this imperative calculus has termscorresponding to objects, method invocation, and methodupdate. However, the operational semantics is imperativein that method names denote locations where the closuresof the corresponding methods are stored and method updateis done in place. Thus, method update has a side-e�ect ofchanging the object rather than returning a new object. Inaddition, we have two new primitives: (1) clone(a) returnsa shallow copy of the object a, i.e., an object with the samemethod suite as a stored in fresh memory locations; (2) thelet construct evaluates a term, binds it to a variable, andthen evaluates a second term with that variable in scope.Sequential evaluation (;) and eagerly evaluated �elds can bede�ned from let. The type system is given in Appendix C;it is an extension of that of Ob1<:.4.2 TranslationWe translate the imperative object calculus into an impera-tive version of F<:�, which here we describe informally. Thesyntax of this imperative version extends that of F<:� with�eld update for records (written a�l := b) and with an unini-tialized value of each type (written nil(B)). Because of thepresence of �eld update, record types must be invariant intheir components. The operational semantics of the impera-tive version is signi�cantly di�erent from that of F<:� in tworespects: (1) The �eld names in records now denote memorylocations and �eld update is done in place. It is thereforemore accurate to think of a record as a collection of mem-ory locations rather than as a collection of values. (2) In thepresence of side-e�ects, one needs to �x an evaluation order;we assume call-by-value evaluation for the target calculus.Then let x = a in b can be de�ned as (�(x)b)(a), and a; bcan be de�ned as (�(z)b)(a) for some z not free in b.The main departure from the translation described inSection 3.3 is that, in the imperative setting, we do not splita method into two distinct �elds corresponding to methodinvocation and method update. Recall that the essential rea-son for the split in the functional case was that the �eld selfwould not detect the change to a method if method updatewas modeled by record update of the �eld corresponding tothe method. However, in the presence of imperative featuresin the target calculus, we can use the �eld self to store apointer to the record itself (that is the meaning of the ob-ject), thus ensuring that any changes to the other �elds ofthe record are re
ected in self .The translation of types uses the ideas described in Sec-tion 2. In addition, we include a cloning function in thepublic interface of an object. For types we therefore have:Top� = Top[li : Bi i21:::n]� = �(Y)9(X<:Y)fli : (X!B�i) i21:::n;clone : fg!X;self : XgThe distinction between the �elds self and clone is that theformer contains a pointer to the record itself while the latterreturns a shallow copy of the record (under a dummy ab-straction). We need to distinguish the two since, in methodinvocation, one must apply the method to the object ratherthan to a shallow copy of the object. As before, the use ofa recursive type abstraction yields the desired subtypings.6

Table 3: Translation of the Imperative Object Calculus (Sketch)hhxii = xhh[li = &(xi)bi i21:::n]ii = letrec create (f1) : : : (fn) =let z = fli = fi i21:::n; clone = nil; self = nilgin z � clone := �(x)create (z � l1) � � � (z � ln);z � self := z;z � selfin create (�(x1)hhb1ii : : : (�(xn)hhbnii)hha:ljii = let x = hhaii in (x � lj)(x � self)hha:l (&(x)bii = let y = hhaii in y � lj := �(x)hhbiihhclone(a)ii = (hhaii � clone)(fg)hhlet x = a in bii = let x = hhaii in hhbiiWe give the precise de�nition of the translation of termsbelow. For now, we refer to Table 3 which states the transla-tion omitting type annotations in terms. In the translationof an object, we declare a skeletal record structure z wherethe �elds clone and self are uninitialized, and then updatethese �elds so that they can point circularly to the recordstructure. Note that we retained the idea of de�ning a createfunction recursively rather than the object itself recursively.This is necessary for cloning to return the correct copy ofthe object after updates; if we had de�ned the object recur-sively, then clone would have been frozen to return a shallowcopy of the state of the object at the time of its creation.(Cf. the semantics of [ESTZ95], which does not accommo-date cloning.) In our translation, the �eld clone is de�nedto be an abstraction so that the application of create termi-nates under call-by-value evaluation. Method invocation isinterpreted in the same way as in the functional case whilemethod update is interpreted as record update. Cloning isinterpreted as an application of the �eld clone to a dummyargument (the empty record).The precise de�nition of the translation of terms, in Ta-ble 4, relies on the following notation:Notation:1. For A � [li : Bi i21:::n], we de�ne:C impA fXg 4= fli : (X!B�i) i21;:::;n;clone : fg!X;self : Xg2. For any method name l and type B, we let:Limpl;B 4= �(Y)9(X<:Y)fl : (X!B�); self : Xg3. The type MinTyhE; ai is the minimum type of a inenvironment E, i.e., the type A such that E ` a : A0is provable if and only if E ` A<:A0; it is unde�ned ifa is not typable in E. The type hE; ail is as in Section3.3.We can prove a soundness theorem for this translation.We omit it from this paper since its statement requireslengthy de�nitions detailing and relating the operational se-mantics of the imperative calculi.

5 Extensions to Richer Object TypesIn this section, we consider richer typing disciplines for ob-jects: variance annotations, Self types, and structural rules(all described in [AC95b]); we show how our translation ex-tends to account for them. In Section 5.1, we begin by givingan overview of these typing disciplines and an informal de-scription of our interpretation for them. In Section 5.2, wedescribe an enriched object calculus more precisely. Finally,in Section 5.3, we give a translation of this object calculus.5.1 PreviewVariance AnnotationsVariance annotations are an extension to object types; theyare symbols (+, �, 0) attached to method names in objecttypes. The annotation l+ indicates that method l is onlyinvocable, l� indicates it is only updatable, and l0 indicatesthat it is both. These annotations allow �ner protection onthe access of methods, and give desirable subtyping prop-erties. Object types are covariant in the types of their +components, contravariant in the types of their � compo-nents, and invariant in the types of their 0 components.Variance annotations naturally �t in the framework ofour interpretation. Namely, we can translate object typesto the same recursive type abstractions with both recordcomponents lsel , lupd for a method l0; only the lsel compo-nent for l+; and only the lupd component for l�.Self TypesThe Self-type construct yields
exible typing for objectswith methods that return objects of the type of self. Ex-tending the notation for object types, we writeObj (X)[li : BifXg i21:::n]where Obj binds a type variable X that can occur covari-antly in the result types Bi; intuitively the variable X standsfor the type of self, called the Self type. A longer object typeis still a subtype of a shorter one:Obj (X)[li : Bi i21:::n+m]<:Obj (X)[li : Bi i21:::n]Recall that in the translation of simple object types givenby Equation 1 we viewed the representation type as the \true7

Table 4: Translation of the Imperative Object CalculushhxiiE = xhh[li = &(xi : A)bi i21:::n]iiE = letrec create (f1 : A�!B�1) : : : (fn : A�!B�n) : A� =let z : C impA fA�g = fli = fi i21:::n; clone = nil(fg!A�); self = nil(A�)gin z � clone := �(x : fg) create (z � l1) � � � (z � ln);z � self := fold(A�; pack X<: A� = A� with z : C impA fXg);z � selfin create (�(x1 : A�)hhb1iiE;x1 :A) : : : (�(xn : A�)hhbniiE;xn :A)where A � [li : Bi i21:::n]hha:liiE = open unfold(hhaiiE) as X<:Limpl;B ; x : fl : (X!B�); self : Xgin (x � l) (x � self) : B�where B = hE; ailhha:l (&(x : A)biiE = open unfold(hhaiiE) as X<:A�; y : C impA fXgin fold(A�;pack X 0<: A� = Xwith y � lj := �(x : X)hhbiiE;x:A : C impA fX 0g) : A�hhclone(a)iiE = open unfold(hhaiiE) as X<:A�; x : C impA fXgin (x � clone)(fg)where A = MinTyhE; aihhlet x : A = a in biiE = let x : A� = hhaiiE in hhbiiE;x:Atype" of an object. We take this \true type" to be the Selftype; therefore, for A � Obj (X)[li : BifXg i21:::n], we let:A� = 9(X<:A�)flseli : X!B�i fXg i21:::n;lupdi : (X!B�i fXg)!X i21:::n;self : XgWith this straightforward extension, our interpretation ac-counts for Self types.Structural RulesWhile the subtyping rules for object types assert that alonger object type is a subtype of a shorter object type,structural rules arise as consequence of the stronger \struc-tural assumption" that the only subtypes of an object typeare longer object types. An example of such a structuralrule, using the simple object types of Ob1<:, is the follow-ing modi�cation of the rule (Val Update) of Table 8:(Struct Val Update)For A � [li : Bi i21:::n]E ` C<:A E ` a : C E;x : C ` b : BjE ` a:lj (&(x : C)b : CIn our interpretation, structural assumptions on objecttypes are re
ected as structural assumptions on recursivetypes. Speci�cally, structural rules for object types are vali-dated if we strengthen the target calculus with a structuralrule for recursive types:(Struct Val Unfold)E ` C<:�(X)BfXg E ` a : CE ` unfold(a) : BfCgThe rule (Struct Val Unfold) can be seen as a consequenceof assuming that any subtype of a recursive type arises

through the re
exivity rule ((Sub Re
) of Table 7) or thesubtyping rule for recursive types ((Sub Rec) of Table 9).For example, suppose that E ` C<:�(X)BfXg becauseof (Sub Rec). Then C is of the form �(X)B0fXg and ifE ` a : C then E ` unfold(a) : B0fCg. Further, we havethat E; Y <: Top;X<:Y ` B0fXg<:BfY g. In particular,since E ` C<:C, using C for both X and Y we get thatE ` B0fCg<:BfCg and using subsumption we get the con-sequent of the rule (Struct Val Unfold).We can see informally how the rule (Struct Val Update)is validated thanks to (Struct Val Unfold). Assume thatE ` C�<:A� and E ` hhaii : C�. Using the de�nition of A�as a recursive type and applying (Struct Val Unfold), we canconclude that:E ` unfold(hhaii) : 9(X<:C�)f: : : ; lupdj : (� � �)!X; : : :gThe result of an update is of type C�, since lupdj returns aresult of type X and X<:C�. In contrast, with the weaker,non-structural rule (Val Unfold) of F<:� (Table 9), we canconclude only that E ` unfold(hhaii) : 9(X<:A�)f: : :g andthe result of the update has to be given the weaker type A�.5.2 An Enriched Object CalculusThe calculus Obstr<: is an extension of Ob1<: with varianceannotations, Self types, and structural rules. Like the se-mantics of Ob1<:, the semantics of Obstr<: is free of side-e�ects.The types of Obstr<: are generated by the grammar:A;B ::= X j Top j Obj (X)[li�i : BifXg i21:::n]where �i 2 f+;�; 0g. As described in Section 5.1, Obj bindsthe Self type, and the variance annotation �i speci�es theoperations permissible on method li.8

Table 5: Operational Semantics of Obstr<:If a � obj (X = A)[li = &(xi : X)bifX;xig i21:::n]; j 2 1 : : : n(Eval Select) a:lj ; bjfA;ag(Eval Update) a:lj ((Y <:A0; y : Y)&(x : Y)bfY; yg ; obj (X = A)[lj = &(x : X)bfX;ag;li = &(xi : X)bi i2f1:::ng�fjg]Because of Self types, the term syntax of Obstr<: is slightlydi�erent from that of Ob1<::a; b ::= x j obj (X = A)[li = &(xi : X)bi i21:::n]j a:l j a:l ((Y <:A; y : Y)&(x : Y)bAn object has the form obj(X = A)[li = &(xi : X)bi i21:::n]with X standing for the Self type. Method update is writtena:l ((Y <:A; y : Y)&(x : Y)b where A is a known type for a,Y denotes the Self type of a, y is bound to the object beingupdated (a), and x is the usual self parameter in method b.The parameter y is useful because it is given type Y whilea has the weaker type A.The typing rules for Obstr<: are structural. They appearin Appendix D.The operational semantics is de�ned via a reduction sys-tem whose redexes are given in Table 5. In the rule formethod update, note that the object a gets substituted forthe parameter y. Apart from this, the only di�erence fromthe corresponding rules of Ob1<: is the type propagation|the actual type of self gets substituted for the formal typeparameter X standing for the Self type. We denote themany-step reduction relation for Obstr<: by �!!os.5.3 TranslationWe translate Obstr<: into an extension Fstr<:� of F<:�; thisextension has the same operational semantics as F<:� butincludes a structural rule, namely the rule (Struct Val Un-fold) of Section 5.1.The translation of types combines the ideas for varianceannotations and for Self types described in Section 5.1:X� = XTop� = TopObj (X)[li�i : BifXg i21:::n]�= �(Y)9(X<:Y)f(li�i : BifXg)y i21:::n;self : Xgfor Y not free in the Bi'swhere the �elds (li�i : BifXg)y are de�ned by case analysison the variance annotation �i as follows:(l+i : BifXg)y = lseli : X!B�i fXg(l�i : BifXg)y = lupdi : (X!B�i fXg)!X(l0i : BifXg)y = (l+i : BifXg)y; (l�i : BifXg)yWe de�ne the translation of environments as in Section3.3, with the additional clause (E;X<:A)� = E�;X<:A�.

The following theorem states that well-formed environ-ments are mapped to well-formed environments, that well-formed types are mapped to well-formed types, and that thetranslation preserves subtyping judgements.Theorem 5.11. If E ` � is derivable in Obstr<: , then E� ` � is derivablein F<:�, and a fortiori in Fstr<:�.2. If E ` A is derivable in Obstr<: , then E� ` A� is deriv-able in F<:�, and a fortiori in Fstr<:�.3. If E ` A<:B is derivable in Obstr<: , then E� ` A�<:B�is derivable in F<:�, and a fortiori in Fstr<:�.We give the translation of terms in Table 6, using thefollowing notation:Notation:1. For A � Obj (X)[li�i : BifXg], we de�ne:CstrA fXg 4= f(li�i : BifXg)y i21:::n;self : Xg2. For a type A, environment E, and method name l,we de�ne the Obstr<: type hA;Eil as follows. If A �Obj (X)[: : : ; l� : BfXg; : : :], then hA;Eil is BfXg. IfA � X (a type variable) and E � E0;X<:A0; E00,then hA;Eil is hA0; E0il. In all other cases (e.g., forA � Top), hA;Eil is unde�ned.3. As in Section 4.2, the type MinTyhE; ai is the mini-mum type of a in environment E. (We can prove thatsuch a minimum type exists in Obstr<: .)If we omit type annotations then the translation of termsis basically the same as that described for Ob1<:. The mainnovelty of the translation is that it shows that we can attachsuitable type annotations to the untyped terms described inSection 3.3 so that well-typed terms of Obstr<: get mappedto well-typed terms of Fstr<:�. The following theorem statesthat the translation preserves typing judgements and com-putational behavior.Theorem 5.21. If E ` a : A is derivable in Obstr<: then E� ` hhaiiE : A�is derivable in Fstr<:�.2. If E ` a : A is derivable in Obstr<: and a�!!osb thenhhaiiE�!!f hhbiiE.9

Table 6: Translation of Obstr<: into Fstr<:�hhxiiE = xhhobj(X = A)[li = &(xi : X)bifXg i21:::n]iiE= letrec create (f1 : A�!B�1fA�g) : : : (fn : A�!B�nfA�g) : A� =fold (A�;pack X<:A� = A�with flseli = fi i21:::n;lupdi = �(g : A�!B�i fA�g)create (f1) : : : (fi�1) (g) (fi+1) : : : (fn) i21:::n;self = create (f1) : : : (fn)g : CstrA fXg)in create (�(x1 : A�)hhb1fAgiiE;x1 :A) : : : (�(xn : A�)hhbnfAgiiE;xn :A)where A � Obj (X)[li�i : BifXg i21:::n]hha:liiE = open unfold(hhaiiE) as X<:A�; x : flsel : (X!B�fXg); self : Xgin (x � lsel)(x � self) : B�fA�gwhere A =MinTyhE; ai; BfXg = hA;Eilhha:l ((Y <:A; y : Y)&(x : Y)biiE = open unfold(hhaiiE) as X<:A�; z : flupd : (X!B�fXg)!X; self : Xgin (z � lupd)((�(Y <:A�)�(y : Y)�(x : Y)hhbiiE;Y <:A;y:Y;x:Y)X (z � self)) : A�where B = hA;Eil6 ConclusionsWe have presented a new interpretation of objects and ob-ject types that preserves subtyping and behavior; its basicidea works for both functional and imperative semantics.Our interpretation is more general than previous solutionsin that it handles object-based constructs such as cloningand method update, as well as the common class-based con-structs. Moreover, it is simpler than other proposals in thesense of being syntax-directed. It is the �rst interpretationof this kind.Our interpretation o�ers insights into the nature of ob-jects. It describes, in principle, a type-safe way of codingobjects in procedural languages. However, as is the caseeven with more limited interpretations, it cannot be used inactual programming practice because of its pragmatic com-plexity. This fact con�rms the commonly held belief thatobject-oriented languages di�er signi�cantly from procedu-ral languages in practical expressive power.References[AC94a] M. Abadi and Luca Cardelli. A semantics of objecttypes. In Proceedings of the Ninth Annual Sympo-sium on Logic in Computer Science, pages 332{341,July 1994.[AC94b] M. Abadi and Luca Cardelli. A theory of primitiveobjects: Untyped and �rst-order systems. In The-oretical Aspects of Computer Software, pages 296{320. Springer-Verlag, April 1994.[AC95a] M. Abadi and L. Cardelli. An imperative object cal-culus: Basic typing and soundness. In SIPL '95 |Proceedings of the Second ACM SIGPLAN Work-shop on State in Programming Languages. Tech-nical Report UIUCDCS-R-95-1900, Department ofComputer Science, University of Illinois at Urbana-Champaign, January 1995.[AC95b] Martin Abadi and Luca Cardelli. An imperative ob-ject calculus. In P.D. Mosses, M. Nielsen, and M.I.

Schwartzbach, editors, TAPSOFT'95: Theory andPractice of Software Development, pages 471{485.Springer-Verlag LNCS 915, May 1995.[ALBC+93] O. Agesen, C. Chambers L. Bak, B.W. Chang,U. Holzle, J. Maloney, R.B. Smith, D. Ungar, andM. Wolczko. The Self 3.0 programmer's referencemanual. Sun Microsystems, 1993.[And92] B. Andersen. Ellie: a general, �ne-grained, �rst-class, object-based language. Journal of Object Ori-ented Programming, 5(2):35{42, 1992.[App93] Apple Computer, Inc. Apple, The NewtonScriptProgramming Language, 1993.[Car88] L. Cardelli. A semantics of multiple inheritance. In-formation and Computation, 76:138{164, 1988. Spe-cial issue devoted to Symp. on Semantics of DataTypes, Sophia-Antipolis (France), 1984.[Car95] L. Cardelli. A language with distributed scope.In Conference Record of the Twenty-Second An-nual ACM Symposium on Principles of Program-ming Languages, 1995.[Coo89] W.R. Cook. A Denotational Semantics of Inheri-tance. PhD thesis, Brown University, 1989.[ESTZ95] J. Eifrig, S. Smith, V. Trifonov, and A. Zwarico.An interpretation of typed OOP in a language withstate. Lisp and Symbolic Computation, 1995. Toappear.[HP95] Martin Hofmann and Benjamin Pierce. A unify-ing type-theoretic framework for objects. Journal ofFunctional Programming, 1995. To appear. Previousversion appeared in the Symposium on TheoreticalAspects of Computer Science, 1994 (pages 251{262).[Kam88] S. Kamin. Inheritance in Smalltalk-80: a denota-tional de�nition. In ACM Symp. Principles of Pro-gramming Languages, pages 80{87, 1988.[Lie81] H. Lieberman. A preview of Act1. Technical ReportAI Memo No 625, MIT, 1981.[MGV92] B.A. Myers, D.A. Giuse, and B. Vander Zanden.Declarative programming in a prototype-instance10

system: object-oriented programming without writ-ing methods. In Proc. OOPSLA '92, pages 184{200,1992.[MMPN93] O.L. Madsen, B. Moller-Pedersen, and K. Nygaard.Object-oriented programming in the Beta program-ming language. Addison-Wesley, 1993.[MP88] J.C. Mitchell and G.D. Plotkin. Abstract types haveexistential types. ACM Trans. on ProgrammingLanguages and Systems, 10(3):470{502, 1988. Pre-liminary version appeared in Proc. 12th ACM Symp.on Principles of Programming Languages, 1985.[PT94] Benjamin C. Pierce and David N. Turner. Simpletype-theoretic foundations for object-oriented pro-gramming. Journal of Functional Programming,4(2):207{248, 1994.[R�em94] D. R�emy. Programming Objects with ML-ART, anextension to ML with Abstract and Record types. InTheoretical Aspects of Computer Software. Springer-Verlag, April 1994.[Tai92] A. Taivalsaari. Kevo, a prototype-based object-oriented language based on concatenation and mod-ule operations. Technical Report LACIR 92-02, Uni-versity of Victoria, 1992.AppendixIn this appendix we summarize several calculi, giving bothgrammars and rules. We often use assertions of the formE ` Ji 8i 2 1 : : : n to indicate n hypotheses; by convention,this means E ` � when n = 0.A The Ob1<: CalculusThe calculus Ob1<: consists of the rules given in Tables 7and 8. It has the following syntax:Environments E ::= ; j E;x : ATypes A;B ::= Top j [li : Bi i21:::n]Variables x; yTerms a; b ::= x j [li = &(xi : A)bi i21:::n]j a:l j a:l (&(x : A)bResults v ::= [li = &(xi : A)bi i21:::n]B The F<:� CalculusThe calculus F<:� consists of the rules given in Tables 7 and9. It has the following syntax:Environments E ::= ; j E;x : A j E;X<:AType Variables X;YTypes A;B;C ::= X j Top j A!Bj fli : Bi i21:::ng j �(X)Aj 8(X<:A)B j 9(X<:A)BVariables x;yTerms a; b; c; d ::= x j �(x : A)b j a(b)j fli = bi i21:::ng j a � lj fold(A; b) j unfold(a)j �(X<:A)b j b(A)j pack X<:A = C with b : BfXgj open c as X<:A;x : B in d : DResults v ::= �(x : A)b j fli = bi i21:::ngj fold(A; v) j �(X<:A)bj pack X<:A = C with b : BfXgOther de�nitions of the set of results could be adopted.

The one given here is convenient for our adequacy theorem;it is however not particularly compelling. Fortunately ourtechniques are not too sensitive to changes in the de�nitionof the set of results.C The Imperative Variant of Ob1<:The typed imperative object calculus contains all the rulesof Ob1<: (described in Appendix A) and contains the typ-ing rules given in Table 10 for its additional terms. Asfor Ob1<:, we can prove a minimum-types property for thetyped imperative calculus. (This is a convenient departurefrom the original calculus of [AC95a]: the terms describedhere contain more type information.) The syntax is:Environments E ::= ; j E;x : ATypes A;B ::= Top j [li : Bi i21:::n]Variables x;yTerms a; b ::= x j [li = &(xi : A)bi i21:::n]j a:l j a:l (&(x : A)bj clone(a)j let x : A = a in bD The Obstr<: CalculusThe calculus Obstr<: consists of the rules given in Table 7, therules (Env X), (Type X), (Sub X) given in Table 9, and therules of Table 11. It has the following syntax:Environments E ::= ; j E; x : A j E;X<:AType Variables X;YTypes A;B ::= X j Topj Obj (X)[li�i : Bi i21:::n]with �i 2 f+;�; 0gVariables x; yTerms a; b ::= xj obj(X=A)[li=&(xi :X)bi i21:::n]j a:lj a:l ((Y <:A;y : Y)&(x : Y)b
11

Table 7: Common Typing RulesEnvironments(Env ;) ; ` � (Env x) E ` AE; x : A ` � ; x 62 dom(E)Subtyping(Sub Re
) E ` AE ` A<:A (Sub Trans) E ` A<:B E ` B<:CE ` A<:C(Val Subsmp) E ` a : A E ` A<:BE ` a : BTop(Type Top) E ` �E ` Top (Sub Top) E ` AE ` A<:TopVariable Typing(Val x) E0; x : A;E00 ` �E0; x : A;E00 ` x : A
Table 8: Additional Typing Rules for Ob1<:Object Types and Subtyping(Type Object) E ` Bi 8i 2 1 : : : nE ` [li : Bi i21:::n] (Sub Object) E ` Bi 8i 2 1 : : : n+mE ` [li : Bi i21:::n+m]<:[li : Bi i21:::n]Term Typings(Val Object) E; xi : A ` bi : Bi 8i 2 1 : : : nE ` [li = &(xi : A)bi i21:::n] : A ; A � [li : Bi i21:::n](Val Select) E ` a : [li : Bi i21:::n]E ` a:lj : Bj ; j 2 1 : : : n(Val Update) E ` a : A E; x : A ` b : BjE ` a:lj (&(x : A)b : A ; A � [li : Bi i21:::n]; j 2 1 : : : n12

Table 9: Additional Typing Rules for F<:�Environments(Env X) E ` AE;X<:A ` � ; X 62 dom(E)Types(Type X) E0;X<:A;E00 ` �E0;X<:A;E00 ` X (Type !) E ` A E ` BE ` A!B(Type Record) E ` Bi 8i 2 1 : : : nE ` fli : Bi i21:::ng (Type Rec) E;X<:Top ` AE ` �(X)A(Type All) E;X<:A ` BE ` 8(X<:A)B (Type Exists) E;X<:A ` BE ` 9(X<:A)BSubtyping(Sub X) E0;X<:A;E00 ` �E0;X<:A;E00 ` X<:A (Sub !) E ` A0<:A E ` B<:B0E ` A!B<:A0!B0(Sub Record) E ` Bi<:B0i; 8i 2 1 : : : n E ` Bi; 8i 2 n+ 1 : : : n+mE ` fli : Bi i21:::n+mg<:fli : B0i i21:::ng(Sub Rec) E ` �(X)A E ` �(Y)B E; Y <:Top;X<:Y ` A<:BE ` �(X)A<:�(Y)B(Sub All) E ` A0<:A E;X<:A0 ` B<:B0E ` 8(X<:A)B<:8(X<:A0)B0 (Sub Exists) E ` A<:A0 E;X<:A ` B<:B0E ` 9(X<:A)B<:9(X<:A0)B0Term Typings(Val Fun) E; x : A ` b : BE ` �(x : A)b : A!B (Val Appl) E ` b : A!B E ` a : AE ` b(a) : B(Val Record) E ` bi : Bi 8i 2 1 : : : nE ` fli = bi i21:::ng : fli : Bi i21:::ng(Val Record Select) E ` a : fli : Bi i21:::ngE ` a � lj : Bj ; j 2 1 : : : n(Val Fold) E ` b : BfAgE ` fold(A;b) : A ; A � �(X)BfXg(Val Unfold) E ` b : AE ` unfold(b) : BfAg ; A � �(X)BfXg(Val Fun2) E;X<:A ` b : BE ` �(X<:A)b : 8(X<:A)B (Val Appl2) E ` b : 8(X<:A)B E ` A0<:AE ` b(A0) : BfA0g(Val Pack) E ` C<:A E ` bfCg : BfCgE ` pack X<:A = C with bfXg : BfXg : 9(X<:A)BfXg(Val Open) E ` c : 9(X<:A)B E ` D E;X<:A;x : B ` d : DE ` (open c as X<:A;x : B in d : D) : DTable 10: Additional Typing Rules for the Imperative Calculus(Val Clone) E ` a : [li : Bi i21:::n]E ` clone(a) : [li : Bi i21:::n](Val Let) E ` a : A E;x : A ` b : BE ` let x : A = a in b : B13

Table 11: Additional Typing Rules for Obstr<:Variance Subtypings(Sub Covariant) E ` B<:B0 � 2 f0;+gE ` �B<:+B0 (Sub Contravariant) E ` B0<:B � 2 f0;�gE ` �B<:�B0(Sub Invariant) E ` BE ` 0B<:0BObject Types and Subtyping(Type Object) E;X<:Top ` BifXg 8i 2 1 : : : nE ` Obj (X)[li�i : Bi i21:::n] ; �i 2 f+;�; 0g; Bi covariant in X(Sub Object) For A � Obj (X)[li�i : BifXg i21:::n+m]; A0 � Obj (X)[li�0i : B0ifXg i21:::n]E;Y <:A ` �iBifY g<:�0iB0ifY g 8i 2 1 : : : nE ` A<:A0Term Typings(Val Object) E; xi : A ` bifAg : BifAg 8i 2 1 : : : nE ` obj (X = A)[li = &(xi : X)bifXg i21:::n] : A ; A � Obj (X)[li�i : BifXg i21:::n](Struct Val Select) For A0 � Obj (X)[li�i : BifXg i21:::n]; �j 2 f+; 0g; j 2 1 : : : nE ` a : A E ` A<:A0E ` a:lj : BjfAg(Struct Val Update) For A0 � Obj (X)[li�i : BifXg i21:::n]; �j 2 f�; 0g; j 2 1 : : : nE ` a : A E ` A<:A0 E;Y <:A;y : Y; x : Y ` b : BjfY gE ` a:lj ((Y <:A; y : Y)&(x : Y)b : A
14

