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INTRODUCTION SUMMARY

Biological switches drive changes in the functional state of a system in an all-or-none fashion. wEsz " lu’i ) We assumed that dynamical behaviours must be kept to
These switch-like behaviours have been observed in different biological processes, like the | [ | “‘j’:"' ,l —Q@E,l obtain new systems with new functions, while keeping
transitions between phases of the cell cycle?, the epigenetic changes?, the regulation of polaritys3, S*Tr"ﬂ p:'}: r - i original features. Evolving AM, we have shown that:

or the septation initiation*. A simple model able to capture the dynamics of these complex L y l*b l,l 4_/‘ - An irTcreasing of co.mple.x?ty from AM is feasible. We
processes is a population protocol, Approximate Majority> (AM), widely used in distributed .ﬁ REERRE 4\‘ obtain the mutua! |nh|b|t|c?n system (Ml), a system
computing. This algorithm describes how to drive a population of agents (molecules), initially in ) _ . . usually observed in biological networks. It resembles
two different states, into a final population where all agents (molecules) are in the same state. Z . s C T — a kinase — phosphatase pair

- From a switch-like behaviour an oscillatory behaviour
can arise, keeping the dynamical properties of a
switch in previous steps.

aPAR feedback loop mutual exclusion pPAR feedback loop

We investigate if this type of system could have been the ancestor of a class of biological switches, where the transitions between functional
states should happen in a fast, reliable and robust way.

RESULTS

Time(s) ~ Time(s)

" - Time-course diagrams of Approximate Majority (AM). ] oo
] Nz : S(J Initial conditions: 00=2 PP=1; 00=1 PP=2
NP The system was solved using a deterministic method

All kinetic rates are equal to 1.
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Time(s)

Time(s)
Introduction of a new conformation (OP).
The system is faster. Bistability is kept. k,=k,=k,=k;=1

Gene Duplication. Double amount of protein
Faster system. Bistability is kept.

Accumulation | Allosteric Accumulation Loss O,f
. . catalytic

of variants changes of variants T
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Allosteric changes in the intermediary conformations

e N OO cannot dephosphorylate buried sites (PO) 3 :
—_ N N} - OO0 reduces its activity over OP (k;=1 -> k;=0.5) S .. f S
E oP oP . . ] - PP
S - Allosteric changes in PP block the dephosphorylation by = ; NS
5 OO and allow the autodephosphorylation (k,=1 -> k,=0.1) 9 . —
<} - PP cannot phosphorylate buried sites (OP) L 1
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Time(s) Time(s) Time(s) Time(s)

Allosteric changes in the catalytic conformations.
Bistability is kept. It restores AM’s dynamics. k,=k,=k,=k;=1

N E N Lose of catalytic activity due to accumulation of variants
:: : - Each species have one catalytic state and another inactive state.
: — - The system resembles a mutual inhibition (MI) system.

Loss of catalytic activity due to accumulation of variants
Bistability is kept but it is unbalanced.
Once state is a better attractor.
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- 00 active state autodephosphorylates and activates itself.
- 00 active state dephosphorylates PP and inhibit it.

- PP active state autophosphorylates and activates itself.

- PP active state phosphorylates OO and inhibit it.
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