Evolution of simple systems to complex behaviours

Hernansaiz-Ballesteros RD¹, Dalchau N², Cardelli L^{2,3}, Csikász-Nagy A^{1,4}

¹ Randall Division of Cell and Molecular Biophysics and Institute of Mathematical and Molecular Biomedicine, King's College London, London, SE1 1UL, UK

² Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK

³ Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

⁴ Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary

INTRODUCTIO

Biological switches drive changes in the functional state of a system in an all-or-none fashion. These switch-like behaviours have been observed in different biological processes, like the transitions between phases of the cell cycle¹, the epigenetic changes², the regulation of polarity³, or the septation initiation⁴. A simple model able to capture the dynamics of these complex processes is a population protocol, Approximate Majority⁵ (AM), widely used in distributed computing. This algorithm describes how to drive a population of agents (molecules), initially in two different states, into a final population where all agents (molecules) are in the same state.

We investigate if this type of system could have been the ancestor of a class of biological switches, where the transitions between functional states should happen in a fast, reliable and robust way.

Microsoft Research

SUMMARY

We assumed that dynamical behaviours must be kept to obtain new systems with new functions, while keeping original features. Evolving AM, we have shown that:

- An increasing of complexity from AM is feasible. We obtain the mutual inhibition system (MI), a system usually observed in biological networks. It resembles a kinase – phosphatase pair
- From a switch-like behaviour an oscillatory behaviour can arise, keeping the dynamical properties of a switch in previous steps.

RESULTS

REFERFN

- 1. Cardelli L, Csikász-Nagy A: The cell cycle switch computes approximate majority. *Scientific reports* 2012, 2: 656.
- 2. Arkin A, Ross J, McAdams HH: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. *Genetics* 1998, 149(4):1633-1648.
- 3. Motegi F, Seydoux G: The PAR network: redundancy and robustness in a symmetry-breaking system. Philosophical Transactions of the Royal Society B: Biological Sciences 2013, 368(1629):20130010
- 4. Bajpai A, Feoktistova A, Chen JS, McCollum D, Sato M, Carazo-Salas RE et al.. Dynamics of SIN asymmetry establishment. PLoS Comput Biol 2013, 9(7):e1003147.
- 5. Angluin D, Aspnes J, Eisenstat D: A simple population protocol for fast robust approximate majority. *Distributed Computing* 2008, 21(2):87-102