Modern Concurrency Abstractions for C*

Nick Benton, Luca Cardelli, and Cédric Fournet

Microsoft Research

Abstract. Polyphonic C* is an extension of the C¥ language with new
asynchronous concurrency constructs, based on the join calculus. We de-
scribe the design and implementation of the language and give examples
of its use in addressing a range of concurrent programming problems.

1 Introduction

1.1 Languages and Concurrency

Concurrency is an important factor in the behaviour and performance of modern
code: concurrent programs are difficult to design, write, reason about, debug,
and tune. Concurrency can significantly affect the meaning of virtually every
other construct in the language (beginning with the atomicity of assignment),
and can affect the ability to invoke libraries. Yet, most popular programming
languages treat concurrency not as a language feature, but as a collection of
external libraries that are often underspecified.

Considerable attention has been given, after the fact, to the specification of
important concurrency libraries [5,15,14, 9] to the point where one can usually
determine what their behaviour should be under any implementation. Yet, even
when the concurrency libraries are satisfactorily specified, the simple fact that
they are libraries, and not features of the language, has undesirable consequences.

Many features can be provided, in principle, either as language features or as
libraries: typical examples are memory management and exceptions. The advan-
tage of having such features “in the language” is that the compiler can analyze
them, and can therefore produce better code and warn programmers of potential
and actual problems. In particular, the compiler can check for syntactically em-
bedded invariants which would be difficult to extract from a collection of library
calls. Moreover, programmers can more reliably state their intentions through a
clear syntax, and tools other than the compiler can more easily determine the
programmers’ intentions. Domain Specific Languages [29, 20] are an extreme ex-
ample of this linguistic approach: new ad-hoc languages are routinely proposed
not to replace general-purpose language, but to facilitate domain-specific code
analysis by the simple fact of expressing domain-related features as primitive
language constructs.

* An earlier version of this work was presented at the FOOL9 workshop in January
2002 Portland, Oregon.

We believe that concurrency should be a language feature and a part of
language specifications. Serious attempts in this direction were made beginning
in the 1970’s with the concept of monitors [16] and the Occam language [19]
(based on Hoare’s Communicating Sequential Processes [17]). The general notion
of monitors has become very popular, particularly in its current object-oriented
form of threads and object-bound mutexes, but it has been provided at most as
a veneer of syntactic sugar for optionally locking objects on method calls.

Many things have changed in concurrency since monitors were introduced.
Communication has become more asynchronous, and concurrent computations
have to be “orchestrated” on a larger scale. The concern is not as much in the
efficient implementation and use of locks on a single processor or multiprocessor,
but on the ability to handle asynchronous events without unnecessarily blocking
clients for long periods, and without deadlocking. In other words, the concern is
shifting from shared-memory concurrency to message- or event-oriented concur-
rency.

These new requirements deserve programming constructs that can handle
well asynchronous communications and that are not shackled to the shared-
memory approach. Despite the development of a large collection of design pat-
terns [23] and of many concurrent languages [2, 28, 1], only monitors have gained
widespread acceptance as programming constructs.

An interesting new linguistic approach has emerged recently with Fournet
and Gonthier’s join calculus [12,11], a process calculus well-suited to direct
implementation in a distributed setting. Other languages, such as JoCaml [8] and
Funnel [27], combine similar ideas with the functional programming model. Here
we propose an adaptation of join calculus ideas to an object-oriented language
that already has an existing threads-and-locks concurrency model.

1.2 Asynchronous Programming

Asynchronous events and message passing are increasingly used at all levels of
software systems. At the lowest level, device drivers have to respond promptly
to asynchronous device events, while being parsimonious on resource use. At the
Graphical User Interface level, code and programming models are notoriously
complex because of the asynchronous nature of user events; at the same time,
users hate being blocked unnecessarily. At the wide-area network level, e.g. in
collaborative applications, distributed workflow or web services, we are now ex-
periencing similar problems and complexity because of the asynchronous nature
and latencies of global communication.

All these areas naturally lead to situations where there are many asyn-
chronous messages to be handled concurrently, and where many threads are
used to handle them. Threads are still an expensive resource on most systems.
However, if we can somewhat hide the use of messages and threads behind
a language mechanism, then many options become possible. A compiler may
transform some patterns of concurrency into state machines, optimize the use
of queues, use lightweight threads when possible, avoid forking threads when
not necessary, and use thread pools. All this is really possible only if one has a

handle on the spectrum of “things that can happen”: this handle can be given
by a syntax for concurrent operations that can both hide and enable multiple
implementation techniques.

Therefore, we aim to promote abstractions for asynchronous programming
that are high-level, from the point of view of a programmer, and that enable mul-
tiple low-level optimizations, from the point of view of a compiler and run-time
systems. We propose an extension of the C* language with modern concurrency
abstraction for asynchronous programming. In tune with the musical spirit of
C* and with the “orchestration” of concurrent activities, we call this language
Polyphonic CF.!

1.3 C! and .NET

C* is a modern, type-safe, object-oriented programming language recently intro-
duced by Microsoft as part of Visual Studio.NET [10]. C¥ programs run on top
of the .NET Framework, which includes a multilanguage execution engine and
a rich collection of class libraries.

The .NET execution engine provides a multithreaded execution environ-
ment with synchronization based on locks potentially associated with each heap-
allocated object. The C* language includes a lock statement, which obtains
the mutex associated with a given object during the execution of a block. In
addition, the .NET libraries implement many traditional concurrency control
primitives such as semaphores, mutexes and reader/writer locks, as well as an
asynchronous programming model based on delegates.? The .NET Framework
also provides higher-level infrastructure for building distributed applications and
services, such as SOAP-based messaging and remote method call.

The concurrency and distribution mechanisms of the .NET Framework are
powerful, but they are also undeniably complex. Quite apart from the bewilder-
ing array of primitives which are more or less ‘baked in’ to the infrastructure,
there is something of a mismatch between the 1970s model of concurrency on a
single machine (shared memory, threads, synchronization based on mutual exclu-
sion) and the asynchronous, message-based style which one uses for programming
web-based applications and services. C# therefore seems an ideal testbed for our
ideas on language support for concurrency in mainstream languages.

2 Polyphonic C! Language Overview

This section describes the syntax and semantics of the new constructs in Poly-
phonic C* and then gives a more precise, though still informal, specification of
the syntax.

1 Polyphony is musical composition that uses simultaneous, largely independent,
melodic parts, lines, or voices (Encarta World English Dictionary, Microsoft Cor-
poration, 2001).

2 An instance of a delegate class encapsulates an object and a method on that object
with a particular signature. So a delegate is more than a C-style function pointer,
but slightly less than a closure.

2.1 The Basic Idea

To C¥’s fairly conventional object-oriented programming model, Polyphonic C*
adds just two new concepts: asynchronous methods and chords.

Asynchronous Methods Conventional methods are synchronous, in the sense
that the caller makes no progress until the callee completes. In Polyphonic C*,
if a method is declared asynchronous then any call to it is guaranteed to return
(essentially) immediately. Asynchronous methods never return a result and are
declared by using the async keyword instead of void. Calling an asynchronous
method is much like sending a message, or posting an event.

Since asynchronous methods have to return immediately, the behaviour of a
method such as

async postEvent(EventInfo data) {
// large method body

}

is the only thing it could reasonably be: the call returns immediately and ‘large
method body’ is scheduled for execution in a different thread (either a new
one spawned to service this call, or a worker from some pool). However, this
kind of definition is actually rather rare in Polyphonic C!. More commonly,
asynchronous methods are defined using chords, as described below, and do not
necessarily require new threads.

Chords A chord (also called a ‘synchronization pattern’, or ‘join pattern’)
consists of a header and a body. The header is a set of method declarations
separated by ‘&’. The body is only executed once all the methods in the header
have been called. Method calls are implicitly queued up until/unless there is a
matching chord. Consider for example

class Buffer {
string Get() & async Put(string s) {
return s;

}
}

The code above defines a class Buffer declaring two instance methods which
are defined together in a single chord. The first method string Get() is a syn-
chronous method taking no arguments and returning a string. The second
method async Put(string s) is asynchronous (so returns no result) and takes a
string argument.

If buff is a instance of Buffer and one calls the synchronous method buff . Get()
then there are two possibilities:

— If there has previously been an unmatched call to buff.Put(s) (for some
string s) then there is now a match, so the pending Put(s) is de-queued and
the body of the chord runs, returning s to the caller of buff . Get().

— If there are no previous unmatched calls to buff.Put(.) then the call to
buff . Get() blocks until another thread supplies a matching Put(.).

Conversely, on a call to the asynchronous method buff.Put(s), the caller will
never wait but there are two possible behaviours with regard to other threads:

— If there has previously been an unmatched call to buff.Get() then there is
now a match, so the pending call is de-queued and its associated blocked
thread is awakened to run the body of the chord, which will return s.

— If there are no pending calls to buff . Get() then the call to buff.Put(s) is
simply queued up until one arrives.

Exactly which pairs of calls will be matched up is unspecified, so even a single-
threaded program such as

Buffer buff = new Buffer();

buff . Put(”blue”);

buff . Put("sky”);

Console. Write(buff .Get() + buff.Get());

is non-deterministic (printing either ”bluesky” or ”skyblue”).?

Note that the implementation of Buffer does not involve spawning any threads
— whenever the body of the chord runs, it does so in a preexisting thread (viz.
the one which called Get()). The reader may at this point wonder what the rules
are for deciding in which thread a body runs, or how we know to which method
call the final value computed by the body will be returned. The answer is that
in any given chord, at most one method may be synchronous. If there is such
a method, then the body runs in the thread associated with, and the value is
returned to, the call to that method. If there is no such method (i.e. all the
methods in the chord are asynchronous) then the body runs in a new thread
and there is no value to return.

It should also be pointed out that the Buffer code, trivial though it is, is
unconditionally thread-safe. The locking that is required (for example to prevent
the argument to a single Put being returned to two distinct Gets) is generated
automatically by the compiler. More precisely, deciding whether any chord is
enabled by a call and, if so, removing the other pending calls from the queues and
scheduling the body for execution is an atomic operation. There is, however, no
mutual exclusion between chord bodies beyond that which is explicitly provided
by the synchronization in the headers.

The Buffer example uses a single chord to define two methods. It is also
possible (and common) to have multiple chords involving a given method. For
example:

class Buffer {
int Get() & async Put(int n) {

3 Of course, in any real implementation the nondeterminism in this very simple exam-
ple will be resolved statically, so different executions will always produce the same
result, but this is not part of the official semantics.

return n;

}

string Get() & async Put(int n) {
return n.ToString();

}
}

Now we have defined a method for putting integers into the buffer, but two
methods for getting them out (which happen to be distinguished by type rather
than name). A call to Put() can synchronize with a call to either of the Get()
methods. If there are pending calls to both Get()s, then which one synchronizes
with a subsequent Put() is unspecified.

3 Informal Specification

3.1 Grammar

The syntactic extensions to the C* grammar [10, Appendix C] are very minor.
We add a new keyword, async, and add it as an alternative return-type:

return-type = type|void | async

This allows methods, delegates and interface methods to be declared asyn-
chronous. In class-member-declarations, we replace method-declaration with chord-
declaration:

chord-declaration =

method-header [& method-header|* body
method-header ::=

attributes modifiers return-type member-name(formals)

We call a chord declaration trivial if it declares a single, synchronous method
(i.e. it is a standard C* method declaration).

3.2 Well-Formedness
Extended classes are subject to a number of well-formedness conditions:

— Within a single method-header:
1. If return-type is async then the formal parameter list formals may not
contain any ref or out parameter modifier.*
— Within a single chord-declaration:
2. At most one method-header may have a non-async return-type.

4 Neither ref nor out parameters make sense for asynchronous messages, since they
are both passed as addresses of locals in a stack frame which may have disappeared
when the message is processed.

3. If the chord has a method-header with return-type type, then body may
use return statements with type expressions, otherwise body may use
empty return statements.

4. All the formals appearing in method-headers must have distinct identi-
fiers.

5. Two method-headers may not have both the same member-name and
the same argument type signature.

6. The method-headers must either all declare instance methods or all de-
clare static methods.

— Within a particular class:

7. All method-headers with the same member-name and argument type
signature must have the same return-type and identical sets of attributes
and modifiers.

8. If it is a value class (struct), then only static methods may appear in
non-trivial chords.

9. If any chord-declaration includes a virtual method m with the override
modifier®, then any method n which appears in a chord with m in the
superclass containing the overridden definition of m must also be over-
ridden in the subclass.

Most of these conditions are fairly straightforward, though Conditions 2 and 9
deserve some further comment.

Condition 9 provides a conservative, but simple, sanity check when refining
a class that contains chords since, in general, implementation inheritance and
concurrency do not mix well [24]. Our approach is to enforce a separation of
these two concerns: a series of chords must be syntactically local to a class or
a subclass declaration; when methods are overridden, all their chords must also
be completely overridden. If one takes the view that the implementation of a
given method consists of all the synchronization and bodies of all the chords in
which it appears then our inheritance restriction seems not unreasonable, since
in (illegal) code such as

class C {
virtual void f() & virtual async g() { /* bodyl */ }
virtual void f() & virtual async h() { /* body2 */ }

}

class D: C {
override async g() { /* body3 */ }
}

one would, by overriding ¢(), have also ‘half’ overridden f().

> In C*, methods which are intended to be overridable in subclasses are explicitly
marked as such by use of the virtual modifier, whilst methods which are intended
to override ones inherited from a superclass must explicitly say so with the override
modifier.

More pragmatically, removing the restriction on inheritance makes it all too
easy to introduce inadvertent deadlock (or ‘async leakage’). If the above code
were legal, then code written to expect instances of class C' which makes match-
ing calls to f() and g() would fail to work when passed an instance of D — all
the calls to g() would cause body3 to run and all the calls to f() would deadlock.

Note that the inheritance restriction means that code such as

class C {
virtual void f() & private async g() { /* bodyl %/ }

}

is incorrect: declaring just one of f() and g() to be virtual makes no sense, as
overriding one requires the other to be overridden too. It is also worth observing
that there is a transitive closure operation implicit in our inheritance restriction:
if f() is overridden and joined with g() then because g() must be overridden, so
must any method A() which is joined with g() and so on.

It is possible to devise more complex and permissive rules for overriding.
Our current rule has the advantage of simplicity, but we refer the reader to [13]
for a more thorough study of inheritance in the join calculus, including more
advanced type systems for its control.

Well-formedness Condition 2 above is also justified by a potentially bad in-
teraction between existing C* features and the pure join calculus. Allowing more
than one synchronous call to appear in a single chord would give a potentially
useful rendez-vous facility (provided one also added syntax allowing results to
be returned to particular calls). But one would then have to decide in which
of the blocked threads the body ran, and this choice is observable. If this were
simply because thread identities can be obtained and checked for equality, the
problem would be fairly academic. However, since reentrant locks are associated
with threads, the choice of thread could make a significant difference to the syn-
chronization behaviour of the program, thus making & ‘very’ non-commutative.

Of course, it is not hard to program a rendez-vous explicitly in Polyphonic
C*. In the following example, calls from different threads of the methods f and
g will wait for each other and then exchange arguments before proceeding.

class RendezVous {
public int f(int i) & async gotj(int j) {
goti(i); return j;

}

public int g(int j) {
gotj(7); return waitfori();

int waitfori() & async goti(int i) {
return i;
}
}

3.3 Typing Issues

We treat async as a subtype of void and allow ‘covariant return types’ just in
the case of these two (pseudo)types. Thus

— an async method may override a void one,
— a void delegate may be created from an async method, and
— an async method may implement a void method in an interface

but not conversely. This design makes intuitive sense (an async method is a
void one, but has the extra property of returning ‘immediately’) and also max-
imises compatibility with existing code (superclasses, interfaces and delegate
definitions) which makes use of void.

4 Programming in Polyphonic C*

Having introduced the language, we now show how it may be used to address a
range of concurrent programming problems.

4.1 A Simple Cell Class

We start with an implementation of a simple one-place cell class. Cells have two
public synchronous methods: void Put(Object o) and Object Get(). A call to
Put blocks until the cell is empty and then fills the cell with its argument. A call
to Get blocks until the cell is full and then removes and returns its contents:

class OneCell {
public OneCeli() {

empty();

public void Put(Object 0) & async empty() {
contains(o);

}

public Object Get() & async contains(Object o) {
empty();
return o;
}
}

In addition to the two public methods, the class uses two private asynchronous
methods, empty() and contains(Object o), to carry the state of cells. There is a
simple declarative reading of the constructor and the two chords which explains
how this works:

constructor: When a cell is created, it is initially empty().

put-chord: If we Put an Object o into a cell which is empty() then the cell
contains(0).

get-chord: If we Get() the contents of a cell which contains an Object o then
afterwards the cell is empty() and the returned value is o.

implicitly: In all other cases, Puts and Gets wait.

The technique of using private asynchronous methods (rather than fields) to
carry state is very common in Polyphonic C#. Observe that the constructor es-
tablishes, and every body in class OneCell preserves, a simple and easily verified
invariant:

There is always exactly one pending asynchronous method call: either
an empty() or a contains(o), for some Object o.

(In contrast there may be an arbitrary number of client threads blocked with
pending calls to Put or Get, or even concurrently running statement return o
within the last body.) Hence one can also read the class definition as a direct
specification of an automaton:

get()

m

put(o)

4.2 Reader-Writer Locks

As a more realistic example of the use of asynchronous methods to carry state
and chords to synchronize access to that state, we now consider the classic prob-
lem of protecting a shared mutable resource with a multiple-reader, single-writer
lock. Clients each request, and then release, either shared access or exclusive ac-
cess, using the corresponding public methods Shared, ReleaseShared, Exclusive,
and ReleaseFxclusive. Requests for shared access block until no other client has
exclusive access, whilst requests for exclusive access block until no other client
has any access. A canonical solution to this problem using traditional concur-
rency primitives in Modula 3 may be found in [4]; using Polyphonic Cf, it can
be written with just five chords:

class ReaderWriter

{
ReaderWriter() { Idle(); }

public void Shared() & async Idle() { S(1); }
public void Shared() & async S(int n) { S(n+1); }
public void ReleaseShared() & async S(int n) {

if (n ==1) Idie(); else S(n—1);
}
public void Exclusive() & async Idle() {}
public void ReleaseExclusive() { Idle(); }

}

Provided that every release follows the corresponding request, the invariant is
that the state of the lock (no message, a single message Idle (), or a single message
Shared(n) with n > 0) matches the kind and number of threads currently holding
the lock (an exclusive thread, no thread, or n sharing threads).

It is a matter of choice whether to use private fields or parameters in private
messages. In the example above, n makes sense only when there is an S message
present. Nonetheless, we could write instead the following equivalent code:

class ReaderWriterPrivate

{
ReaderWriter() { Idle(); }
private int n; // protected by S()

public void Shared() & async Idle() { n=1; S(); }
public void Shared() & async S() { n++; S(); }
public void ReleaseShared() & async S() {

if (——n == 0) Idle(); else S();

public void Exclusive() & async Idle() {}
public void ReleaseEzclusive() { Idle(); }

Our model of concurrency provides basic fairness properties. In cases when
some application-specific fairness is required, one can supplement it with pro-
grammed fairness. For instance, we could further refine our code to implement
some fairness between readers and writers, by adding extra shared states, T(),
when we don’t accept new readers, and IdleEzclusive (), when we provide the
exclusive lock to a previously-selected thread.

class ReaderWriterFair
... // same content as above, plus:

public void ReleaseShared() & async T() {
if (——n == 0) IdleEzclusive(); else T();

public void Exclusive() & async S() { T(); wait(); }
void wait() & async IdleExclusive() {}

}

4.3 Combining Asynchronous Messages

The external interface of a server which uses message-passing will typically con-
sist of asynchronous methods, each of which takes as arguments both the pa-
rameters for a request and somewhere to send the final result or notification
that the request has been serviced. For example, using delegates as callbacks, a
service taking a string argument and returning an integer might look like:

delegate async IntCallback(int result);

class Service {
public async Request(string arg, IntCallback cb) {
int r;
// do some work

¢b(r); // send the result back

}
}

A common client-side pattern then involves making several concurrent asyn-
chronous requests and later blocking until all of them have completed. This may
be programmed as follows:

class Join2 {
public void wait(out int 7, out int j)
& public async first(int fst)
& public async second(int snd) {
1= fst; j = snd,;
}

}
// Client code...

int 7,5;

Join2 z = new Join2();

servicel . Request(argl ,new IntCallback(z.fst));
service2 . Request(arg2,new IntCallback(z.snd));
// do something useful in the meantime...

// now wait for both results to come back
z.wait(i,j);

// and do something with i and j

The call to z.wait(i,j) will block until/unless both of the services have replied
by invoking their respective callbacks on z. Once that has happened, the two
results will be assigned to i and j and the client will proceed. Generalising Join2
to an arbitrary number of simultaneous calls, or defining classes which wait for
conditions such as ‘at least 3 out of 5 calls have completed’ is straightforward.

4.4 Active Objects

Some concurrent object oriented languages take as primitive the notion of ac-
tive objects. These have an independent thread of control associated with each
instance which is used to process (typically sequentially) messages sent (typi-
cally asynchronously) from other objects. One way to express this pattern in
Polyphonic C* is via inheritance from an abstract base class:

public abstract class ActiveObject {
protected bool done;

abstract protected void ProcessMessage();

public ActiveObject () {
done = false;
mainLoop();

}

async mainLoop() {
while (!done) {
ProcessMessage();
}
}
}

The constructor of ActiveObject calls the asynchronous method mainLoop()
which spawns a new message-handling thread for that object. Subclasses of
ActiveObject then define chords for each message to synchronize with a call
to ProcessMessage(). Here, for example, is a skeleton of an active object which
multicasts stock quote messages to a list of clients:

public class StockServer : ActiveObject {
private ArrayList clients;

public async AddClient(Client c¢) // add new client
& void ProcessMessage() {
clients . Add(c);

}

public async WireQuote(Quote g) // new quote off wire
& void ProcessMessage() {
foreach (Client ¢ in clients) {
c. UpdateQuote(q); // and send to all clients

}
}

public async CloseDown() // request to terminate
& void ProcessMessage() {

done = true;

}
}

Interestingly, one cannot move the CloseDown() chord to the superclass (to
share it amongst all ActiveObjects) since that would violate the restriction on
combining overriding with synchronization which we described in Section 3.2.

4.5 Custom Schedulers

In Polyphonic C*, we have to both coexist with and build upon the existing
threading model. Because these threads are relatively expensive, and are the
holders of locks, C# programmers often need explicit control over thread usage.
In such cases, Polyphonic Cf is a convenient way to write what amount to custom
schedulers for a particular application.

To illustrate this point, we present an example in which we dynamically
schedule series of related calls in large batches, to favour locality. (This is loosely
related to what is sometimes called ‘staged’ or ‘pipelined’ computation [21].)
The two following classes model such batch computations, represented as Heavy
objects that have large startup costs and limited concurrency. Pragmatically,
those costs may be due to a large code and data footprint. The helper class
Token enables us to limit the number of active Heavy objects, here 2.

class Token {
public void Grab() & public async Release() {}
public Token(int n) { for (int ¢ = 0; ¢ < n; i++) Release(); }
}
class Heavy {
static Token tk = new Token(2); // limits parallelism
public Heavy (int ¢) { tk.Grab (); ...; } // rather slow
public int Work(int p) { return ...; } // rather fast
public void Close() { tk.Release(); }

The class below implements our scheduler. To each task, Burst provides a
front-end that attempts to organise calls into long series that share the startup
cost. A burst can be in two states, represented by either idle () or open(). The
state is initially idle. When a first thread tries to access the resource, the state
becomes open, then this thread proceeds with the potentially-blocking Heavy(q)
call. As long as the state is open, subsequent callers are queued-up. When the
first thread completes its own task, and before releasing the Heavy resource, it
also processes the tasks for all pending calls and resumes their threads with the
respective results. Meanwhile, the state is still open, and new threads may be
queued-up, so the process is repeated until no other thread is present. Eventually,
the state becomes idle again. The helper class Thunk is used to block each
queued-up thread and resume it with the result r, in asynchronous message-
passing style.

class Burst {
int others = 0; int g;
public Burst(int ¢) { this.q = ¢; idle (); }

public int Work(int p) & async idle() {
open();
Heavy h = new Heavy(q);
int r = h.Work(p);
helpful (h); // any delayed threads?
h.Close();
return r;

}

public int Work(int p) & async open() {
others++; open();
Thunk t = new Thunk(); delayed(t,p);
return ¢. Wait(); // usually blocking

}

void helpful (Heavy h) & async open() {

if (others == 0) idle();

else {
int batch = others; others = 0;
open();

while(batch—— > 0) extraWork(h);
helpful (h); // newly—delayed threads?

void extraWork(Heavy h) & async delayed(Thunk t,int p) {
t.Done(h. Work(p));
}
}

class Thunk {
public int Wait() & public async Done(int r) {
return r;
}

}

We omit the code that allocates an array of Burst objects to be shared by all
threads, and some performance test code, which unsurprisingly exhibits a large
speedup when concurrent threads call Burst rather than directly calling Heavy.

5 Implementation

This section describes the implementation of chords using lower-level concur-
rency primitives. The compilation process is best explained as a translation from
a polyphonic class to a plain C class. The resulting class has the same name

and signature as the source class, and also has private state and methods to deal
with synchronization.

5.1 Synchronization and State Automata

In the implementation of a polyphonic class, each method body combines two
kinds of code, corresponding to the synchronization of polyphonic method calls
(generated from the chord headers) and to their actual computation (copied
from the chord bodies), respectively.

We now describe how the synchronization code is generated from a set of
chords. Since synchronization is statically defined by those chords, we can ef-
ficiently compile it down to a state automaton. This is the approach initially
described in [22], though our implementation does not construct explicit state
machines.

The synchronization state consists of pending calls for any method that oc-
curs in a chord, that is, threads for regular methods and messages for asyn-
chronous methods. However, synchronization effectively depends on a much sim-
pler state that records only the presence of pending calls; the actual parameters
and the calling contexts become relevant only after a chord is fired. Hence, the
whole synchronization state can be summarized in a word, with a single bit that
records the presence of (one or more) pending calls, for every method appear-
ing in a least a chord. Accordingly, every chord declaration is represented as
a constant word with a bit set for every method appearing in that chord, and
the synchronization code checks whether a chord can be fired by comparing the
synchronization word with these precomputed bitmasks.

Performance considerations The cost of polyphonic method calls should be
similar to the cost of regular method calls unless a synchronized method call
blocks waiting for async messages—in that case, we cannot avoid paying the
rather high cost of dynamic thread scheduling.

When an asynchronous method is called, it performs a bounded amount of
computation on the caller thread before returning.

When a regular, synchronized method is called, the critical path to optimize
is the one in which, for at least one chord, all complementary asynchronous
messages are already present. In that case, the synchronization code retrieves
the content of the complementary messages, updates the synchronization state,
and immediately proceeds with the method body. Conversely, when there is
no such chord, the thread must be suspended, and the cost of running our
synchronization code is likely to be small as compared to lower-level context-
switching and scheduling.

Firing a completely asynchronous chord is always comparatively expensive
since it involves spawning a new thread. Hence, when an asynchronous message
arrives, it makes sense to check for matches with synchronous chords first. We
also lower the cost of asynchronous chords by using .NET’s thread pool mecha-
nism rather than simply spawning a fresh operating system thread every time.

The scheduling policy of the thread pool is not optimal for all applications, how-
ever, so we may use attributes to allow programmer control over thread creation
policy.

Low-level Concurrency The code handling the chords must be uncondition-
ally thread-safe, for all source code in the class. To this end, we use a single,
auxiliary lock to protect our private synchronization state. (We actually use the
regular object lock for one of the queues.) Locking occurs only for short periods
of time, for each incoming call that goes through the chords, so hopefully the
lock will nearly always be available.

This lock is independent of the regular object lock, which may be used as
usual to protect the rest of the state and prevent race conditions.

5.2 The Translation

We now present, by means of a simple example, the details of the translation
of Polyphonic C* into ordinary C¥. The translation presented here is actually
an abstraction of that which we have implemented. For didactic purposes, we
modularise the translated code by introducing auxiliary classes for queues and
bitmasks, whereas our current implementation effectively inlines the code con-
tained in these classes.

Supporting Classes The following value class (structure) provides operations
on bitmasks:

struct BitMask {
private int v; // = 0;
public void set(int m) { v |= m; }
public void clear(int m) { v &= "m; }
public bool match(int m) { return ("v & m)==0; }

}

Next, we define the classes that represent message queues. To every asyn-
chronous method, the compiler associates a message-queue that stores pending
messages for that method, with an empty property for testing its state and two
methods add and get for adding an element to the queue and getting an element
back (when asserting that the queue is not empty). The implementation of each
queue depends on the message contents (and, potentially, on compiler-deduced
invariants); it does not necessarily use an actual queue.

A simple case is that of single-argument asynchronous messages (here, int
messages); these generate a thin wrapper on top of the standard queue library:

class int@ {
private Queue g;

public ntQ() {¢ = new Queue(); }
public void add(int i) { ¢q.Enqueue(i); }

public int get() {return (int) ¢.Dequeue(); }
public bool empty {get{return ¢.Count == 0;}}

}

Another important case of message-queue deals with empty (no argument)
messages. It is implemented as a single message counter.

class void@ {
private int n;
public voidQ() { n = 0; }
public void add() { n++; }
public void get() { n——; }
public bool empty {get{ return n==0; }}

Finally, for synchronous methods, we need classes implementing queues of
waiting threads. As with message queues, there is a uniform interface and a
choice of several implementations.

Method yield is called to store the current thread in the queue and awaits
for additional messages; it assumes the thread holds some private lock on a
polyphonic object, and releases that lock while waiting. Conversely, method
wakeup is called to wake up a thread in the queue; it immediately returns and
does not otherwise affect the caller thread.

The code below implements synchronization using monitors, the low-level
interface to object locks in CF.

class thread@ {
private Quecue ¢;
public threadQ() { ¢ = new Queue(); }
public bool empty {get{ return (q.Count == 0); }}
public void yield(object myCurrentLock) {
q.Enqueue(Thread. Current Thread);
Monitor. Ezit(myCurrentLock);

try {
Thread.Sleep(Timeout. Infinite);

catch (ThreadInterruptedException) {}
Monitor. Enter(myCurrentLock);
q.Dequeue();

}

} public void wakeup() {((Thread) q.Peek()).Interrupt();}

(The specification of monitors guarantees that an interrupt on a non-sleeping
thread does not happen until the thread actually does call Thread.Sleep, hence
it s correct to release the lock before entering the try catch statement.)

As the thread awakens in the catch clause, it first reacquires the lock, which
might block the thread again; we expect this case to be uncommon. The thread
which is then de-queued and discarded is always the current thread.

class Token {
public Token(int initial_tokens) {
for (int ¢ = 0; ¢ < initial_tokens ; i++) Release();
}
public int Grab(int id) & public async Release() {
return id;
}
}

class Token {
private const int mGrab = 1 << 0;
private const int mRelease = 1 << 1;
private thread@ GrabQ = new threadQ();
private v0idQ Release@ = new v0idQ();

private const int mGrabRelease = mGrab | mRelease;
private BitMask s = new BitMask();
private object mlock = GrabQ;

private void scan() {
if (s.match(mGrabRelease)) GrabQ.wakeup();
}
public Token(int initial_tokens) {
for (int i = 0; ¢ < initial_tokens ; i++) Release();
}
[OneWay| public void Release() {
lock(mlock) {
Release.add();
if (!s.match(mRelease)) {
s.set(mRelease);

scan(); }}

public int Grab(int id) {
Monitor.Enter(mlock);
if (!s.match(mGrab)) goto now;
later :
GrabQ.yield(mlock); if (GrabQ.empty) s.clear(mGrab);
now:
if (s.match(mRelease)) {
Release@.get (); if (ReleaseQ.empty) s.clear(mRelease);
scan();
Monitor. Exit(mlock);

return id; // source code for the chord

}
telse{

s.set(mGrab); goto later; }}

Fig. 1. The Token class and its translation

Generated Synchronization Code Figure 1 shows a simple polyphonic class
Token (from Section 4.5, though with the addition of a parameter (rather point-
lessly) passed to and returned from the Grab method) and its translation into
ordinary C¥, making use of the auxiliary classes defined above. Token imple-
ments an n-token lock. It has a regular synchronous method, an asynchronous
method, and a single chord that synchronizes the two.

We now describe what is happening in the translations of the two methods:

Code for Release After taking the chord lock, we add the message to the
queue and, unless they were already messages stored in Release@, we update
the mask and scan for active chords.

In a larger class with chords that do not involve Release, the scan() statement
could be usefully inlined and specialized: we only need to test patterns where
async Release() appears; besides, we know that the mRelease bit is set.

The use of OneWay The reader unfamiliar with C* may wonder why the
translation of the Release() method is prefixed with ‘[OneWay]’. This is a
C¥ attribute® which indicates to the .NET infrastructure that where appropri-
ate (e.g. when calling between different machines) calls of Release() should be
genuinely non-blocking. The translation adds this attribute to all asynchronous
methods.

Code for Grab After taking the chord lock, we first check whether there are
already deferred Grabs stored in Grab@. If so, this call cannot proceed for now
so we enqueue the current thread and will retry later.

Otherwise, we check whether there is at least one pending Release message
to complete the chord int Grab(int id) & async Release(). If so, we select this
chord for immediate execution; otherwise we update the mask to record the
presence of deferred Grabs, enqueue the current thread and will retry later. (In
classes with multiple patterns for Grab, we would perform a series of tests for
each potential chord.) Notice that it is always safe to retry, independently of the
synchronization state.

Once a chord is selected, we still have to update Release@) and the mask.
(Here, we don’t have asynchronous parameters; more generally, we would read
them from the queue and bind them to local variables.) At least in some cases, we
must check whether there are still enough messages to awaken another thread;
this is achieved by scan(). Finally, we release the lock and enter the block asso-
ciated with the selected chord.

5 Attributes are a standardized, declarative way of adding custom metadata to .NET
programs. Code-manipulating tools and libraries, such as compilers, debuggers or
the object serialization libraries can then use attribute information to vary their
behaviour.

Why rescanning? One may wonder why we systematically call scan() after
selecting a chord for immediate execution (just before releasing the lock and ex-
ecuting the guarded block). In our simple example, this is unnecessary whenever
we already know that this was the last scan() call or the last Release() message.
In general, however, this may be required to prevent deadlocks. Consider for
instance the polyphonic class

class Foo {
void m1() & async s() &
void m2() & async s() {..
void m3() & async t() {..

}

and the following global execution trace, with four threads:

async t() {...}
}

Thread 1 calls mI() and blocks.

Thread 2: calls m2() and blocks.

Thread 0: calls ¢() then s(), awaking Thread 1
Thread 3: calls m3() and succeeds, consuming ().
Thread 1: retries m1() and blocks again.

With this scheduling, Thread 3 preempts Thread 1 and “steals” its message
t(). Although Thread 1 blocks again, the remaining message s() suffices to run
Thread 2. But if neither Thread 3 nor Thread 1 awakes Thread 2, we have a
race condition leading to a deadlock.

Accordingly, in our implementation, the synchronization code in Thread 3
performs an additional scan() that awakes Thread 2 in such unfortunate cases.

In many special cases, the final scan() could safely be omitted, but identifying
these cases would complicate the translation unnecessarily.

Deadlock Freedom Next, we sketch a proof that our translation does not
introduce deadlocks. (Of course, calls involving a chord that is never fired may
be deadlocked, and our translation must implement those deadlocks.)

We say that an object is active when there are enough calls in the queues to
trigger one of its patterns; assuming a fair scheduling of running processes, we
show that active states are transient. We prove the invariant: when an object is
active, at least one thread on top of a queue is scheduled for execution and can
succeed.

— After scan(), the invariant always holds.

— An object becomes active when an asynchronous message is received, and
this always triggers a scan.

— A thread whose polyphonic call succeeds (and thus consumes asynchronous
messages) also triggers a scan.

When the algorithm awakes a thread, it is guaranteed that this thread may
succeed if immediately scheduled, but not that it will necessarily succeed.

Fully Asynchronous Chords To complete the description of our implementa-
tion, we explain the compilation of fully asynchronous chords. When such chords
are fired, there is no thread at hand to execute their body, so a new thread must
be created.

To illustrate this case, assume the class Token also contains the asynchronous
method declaration

public async live(string s,int id) {
Grab(id); Release ();
Console. WriteLine(s);

}

The generated code is messy but straightforward:

private class liveArgs {
public string s; public int id;
public liveArgs(string s, int id) {
this.s = s; this.id = id;
}
}

private void liveBody(object o) {
liveArgs a = (liveArgs)o;
string s = a.s; int id = a.id;
Grab(id); Release (); // async chord body code
Console. WriteLine(s);
}
[OneWay|
public void live(string s,int id) {
liveArgs a = new liveArgs(s,id);
WaitCallback ¢ = new WaitCallback(liveBody);
ThreadPool. Queue User Workltem(c,a);

}
}

We use an auxiliary class liveArgs to pass the parameters to the new thread,
and a delegate to the host object’s liveBody method to resume execution within
the same object context.

More generally, for a chord containing several asynchronous methods, the
code in the live method above would occur instead of m@Q).wakeup() to fire the
pattern in method scan().

6 Current Status and Future Work

We have two prototype implementations of Polyphonic C*. The first is a modified
version of the ‘official’ C¥# compiler, which is written in C++, whilst the second
is a simpler source-to-source translator written in ML. The latter has proven
invaluable in explaining the language to others and is also considerably more

straightforward to modify and maintain, though it does not cope with the full
language. As our initial experiences using Polyphonic C¥ have been positive, we
are building a more robust, full-featured and maintainable implementation using
an ‘experimentation-friendly’ C#-in-C* compiler written by another group within
Microsoft Research.

We have written a number of non-trivial samples in Polyphonic C#, including
some web combinators along the lines of [6], an animated version of the dining
philosophers, a distributed stock-dealing simulation built on .NET’s remoting
infrastructure” and a multithreaded client for the TerraServer [3] web service
[25].

Amongst the other areas for further work on Polyphonic C* which we think
are particularly interesting are:

Concurrency Types As suggested in our examples, it is relatively easy to state
and verify invariants in polyphonic classes, often from the shape of the chords
and the visibility of their methods.

Several type systems and other static analyses have been developed in similar
settings to automate the process, and check (or even infer) at compile time some
behavioural properties such as

1. There is one, or at most one, pending message for this asynchronous method,
or for this set of methods.

2. Calls to this method are always eventually processed (partial deadlock-
freedom).

The potential benefits are obvious: the compiler can catch more programming
errors, and otherwise produce more efficient code. While these tools are still
rather complex, this is a very active area of research in concurrency [26, 18, 7].
(Needless to say, it would be much more difficult to check those properties on a
code that directly uses threads and locks instead of chords.)

Timeouts and Priorities In terms of expressiveness, it is tempting to supplement
the syntax for chords with some declarative support for priorities or timeouts
and, more generally, to provide a finer control over dynamic scheduling. We have
a plausible-looking design for a timeout mechanism which we plan to implement
and evaluate soon.

Optimizations There are many opportunities for optimizing the simple-minded
implementation described here. Some of these require proper static analysis,
whereas others could usefully be implemented on the basis of more naive compile-
time checks:

— Lock optimization. There are situations when we could safely ‘fuse’ successive
critical sections which are protected by the same lock, for example when a
bounded series of asynchronous messages are sent to the same object, or
when a chord body sends messages to this.

" Remoting provides remote method call over TCP (binary) or HTTP (SOAP).

— Queue optimization. ‘Affine’ methods, for which it can be determined that
there can be at most one pending call on a particular object, may be compiled
without queues.

— Thread optimization. Purely asynchronous chords which only perform very
brief terminating computations (such as sending other messages) can also be
compiled to run in the invoking thread, rather than a new one. This is a very
desirable optimization, since it is not uncommon to have a public method
which arguably should be asynchronous but which is only used to synchronize
with, and then send, other (typically private) asynchronous messages. In
such cases, one usually prefers not to pay the cost of thread startup and
so defines the method as void rather than async, although this damages
compositionality, for example by preventing one from instantiating an async
delegate with the method. Concrete examples of this situation are provided
by the ReleaseShared and ReleaseEzclusive methods of the ReaderWriter
class from Section 4.2 — although the potentially-blocking calls to obtain
the lock clearly have to be synchronous, the methods for the relinquishing
it could safely and neatly be made asynchronous were it not for the fact
that they would then be handled by an expensive new threadpool task.
Unfortunately, using static analysis to detect that a non-trivial chord body
will always terminate ‘quickly’ is rather hard, so it may be that programmer
annotation is a better solution to this problem.

Pattern-Matching There are situations in which it would be convenient to specify
chords which are only enabled if the values passed as arguments to the methods
satisfy additional constraints. For example, one might wish to correlate related
messages using code something like this:

async Sell(string item, Client seller)
& async Buy (string item, Client buyer) {
// match them up...

}

in which the item parameters passed to the two calls are required to be equal
for the pattern to match. An alternative syntax for the above might be to use
‘guards’:

async Sell(string sellitem, Client seller)
& async Buy (string buyitem, Client buyer)
& (sellitem == buyitem) {

// match them up...

}

One could even imagine allowing richer conditions (e.g. sellprice <= buyprice)
in guards, though it would be a very bad idea to allow guard expressions to
call methods (including accessing properties) since they might have arbitrary
side-effects, be evaluated an unpredictable number of times and have arbitrary
semantics (there is no guarantee that implementations of Equals define equiv-
alence relations, for example). For these reasons we intend to add only rather
restricted matching to the language.

7 Conclusions

Asynchronous concurrent programming is becoming more important and wide-
spread but is still extremely hard. We have designed and implemented a join-
based extension of C* which is simple, expressive, and can be efficiently imple-
mented. In our experience, writing correct concurrent programs is considerably
less difficult in Polyphonic C* than in ordinary C* (though we would certainly
not go so far as to claim that it is easy...).

The integration of the join-calculus constructs with objects and the existing
platform support for concurrency is not entirely straightforward — our imple-
mentation is slightly constrained by the threads and locks model and some uses
of existing libraries and frameworks require a little ‘impedence matching’. Nev-
ertheless, the new constructs seem to work very well in practice.

Acknowledgements Thanks to Mark Shinwell, who did the initial implementation
work on the Polyphonic C* compiler during an internship at Microsoft Research.

References

1. G. Agha, P. Wegner, and A. Yonezawa. Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993.

2. P. America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1(4):366-411, 1989.

3. T. Barclay, J. Gray, and D. Slutz. Microsoft TerraServer: A spatial data warehouse.
In Proceedings of ACM SIGMOD, May 2000. Also Microsoft Research Tech Report
MS-TR-99-29.

4. A. D. Birrell. An introduction to programming with threads. Research Report 35,
DEC SRC, January 1989.

5. A. D. Birrell, J. V. Guttag, J. J. Horning, and R. Levin. Synchronization primi-
tives for a multiprocessor: A formal specification. Research Report 20, DEC SRC,
August 1987.

6. L. Cardelli and R. Davies. Service combinators for web computing. Software
Engineering, 25(3):309-316, 1999.

7. S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: Model checking message-
passing programs. In Proceedings of the 29th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, 2002.

8. S. Conchon and F. Le Fessant. Jocaml: Mobile agents for Objective-Caml. In First
International Symposium on Agent Systems and Applications (ASA’99)/Third
International Symposium on Mobile Agents (MA’99), pages 22-29. IEEE Com-
puter Society, October 1999. Software and documentation available from http:
//pauillac.inria.fr/jocaml.

9. D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended static checking.
Research Report 159, DEC SRC, December 1998.

10. ECMA. Standard ECMA-334: C¥ Language Specification, December 2001.

11. C. Fournet and G. Gonthier. The join calculus: a language for distributed
mobile programming. In Proceedings of the Applied Semantics Summer School
(APPSEM), Caminha, September 2000. To appear. Draft available from http:
//research.microsoft.com/"fournet.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proc. POPL’96, pages 372-385. ACM, January 1996.

C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheritance in the join-
calculus (extended abstract). In FST TCS 2000: Foundations of Software Tech-
nology and Theoretical Computer Science, volume 1974 of LNCS, pages 397-408,
New Delhi, India, December 2000. Springer-Verlag. Full version available from
http://research.microsoft.com/"fournet.

J. Gosling, B. Joy, and G. Steele. Threads and locks. In The Java Language
Specification, chapter 17. Addison Wesley, 1996.

Y. Gurevich, W. Schulte, and C. Wallace. Investigating Java concurrency using
abstract state machines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of Lecture
Notes in Computer Science, pages 151-176. Springer, 2000.

C. A. R. Hoare. Monitors: An operating system structuring concept. Communi-
cations of the ACM, 17(10):549-557, October 1974.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

A. Igarashi and N. Kobayashi. A generic type system for the Pi-Calculus. In Pro-
ceedings of the 28th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM, 2001.

INMOS Limited. Occam Programming Manual. Prentice-Hall Int., 1984.

S. Kamin, editor. Proceedings of the First ACM-SIGPLAN Workshop on Domain-
Specific Languages, Paris, France, January 1997.

J. R. Larus and M. Parkes. Using cohort scheduling to enhance server performance.
Technical Report MSR-TR~2001-39, Microsoft Research, March 2001.

F. Le Fessant and L. Maranget. Compiling join-patterns. In U. Nestmann and
B. C. Pierce, editors, HLCL ’98: High-Level Concurrent Languages, volume 16(3)
of FElectronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
September 1998.

D. Lea. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, second edition edition, 1999.

S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In AghaWegnerYonezawa [1], chapter 4, pages
107-150.

Microsoft Corporation. Terraservice. http://terraserver.microsoft.net/.

H. R. Nielson and F. Nielson. Higher-order concurrent programs with finite com-
munication topology. In Proceedings of the 21st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM, 1994.

M. Odersky. Functional nets. In Proc. European Symposium on Programming,
volume 1782 of LNCS, pages 1-25. Springer Verlag, 2000.

M. Philippsen. Imperative concurrent object-oriented languages: An annotated
bibliography. Technical Report TR-~95-049, International Computer Science Insti-
tute, Berkeley, CA, 1995.

J. C. Ramming, editor. Proceedings of the First USENIX Conference on Domain-
Specific Languages, Santa Barbara, California, October 1997.

