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Letter from the Editor

This past May a meeting was held in Edinburgh to discuss the last outstanding issues in the design
of Standard ML, completing a process that began in the spring of 1983. The three reports
contained in this issue of Polymorphism are the results of that meeting and the work of several
small groups that hammered out the remaining details in the months that followed. They supersede
earlier proposals that appeared in Polymorphism 1.3 (Dec 1983).

The first report describes the final form of the Core Language. This has undergone several careful
reviews and revisions over the past two years, and is expected to be quite stable from this point on.
The Core Language has been almost fully implemented and its operational semantics has been
defined. The principal changes since the last version are the addition of record types and real
numbers, and a number of relatively minor revisions of the syntax, including the introduction of
new keywords fun and datatype. The basic I/O facilities described in the note by Bob Harper are
also the result of several design iterations and appear to be sufficiently well understood that little
revision should be necessary. While the module facilities described in the third paper have been
under consideration for almost as long as the core language, the fact that they contain quite a few
new concepts makes it more likely that the experience of implementing these facilities and making
use of them will suggest some revisions. For this reason, the report on modules is more
expository and somewhat less formal than the other two documents. At some point in the not too
distant future the material in all three documents should be unified to yield a reference manual for
Standard ML.

In our next issues we hope to report on the state of various implementations of Standard ML and
present formal semantic definitions of the language. We also take this opportunity to solicit your
contributions. Short, informal summaries of research related to ML, LCF, Hope, or associated
topics would be particularly appreciated. Please indicate clearly that your contributions are intended
for Polymorphism, so they don't get lost amongst all the other interesting mail we receive.

‘We are printing our complete current mailing list in this issue so that you can inform us about any
errors or omissions. Remember that our distribution policy is to send Polymorphism to individuals
who serve as representatives for their institutions or research groups, in the hope that they will take
care of further distribution to their local communities.

Finally, we must report that Luca Cardelli is moving on to a new job at DEC Systems Research
Center in Palo Alto and will no longer be serving as coeditor. He will be missed, but we hope that
he will continue to contribute in the future and we thank him for his efforts in helping to produce
Polymorphism over the past three years.

David MacQueen
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1. Introduction
1.1 How this proposal evolved

ML is a strongly typed functional programming language, which has been used
by a number of people for serious work during the last few years [1]. At the
same time HOPE, designed by Rod Burstall and his group, has been similariLy used
[2]. The original DEC-10 ML was incomplete in some ways, redundant in others.
Some of these inadequacies were remedied by Cardelli in his VAX version; others
could be put right by importing ideas from HOPE.

In April '83, prompted by Bernard Sufrin, I wrote a tentative proposal to
consolidate ML, and while doing so became convinced that this consolidation was
possible while still keeping its character. The main strengthening came from
generalising the "varstructs" of ML - the patterns of formal parameters - to the
patterns of HOPE, which are extendible by the declaration of new data types.
Many people immediately discussed the initial proposal. It was extremely lucky
that we managed to have several separate discussions, in large and small groups,
in the few succeeding months; we could not have chosen a better time to do the
job. Also, Luca Cardelli very generously offered to freeze his detailed drartt
ML manual [3] until this proposal was worked out.

The proposal went through a second draft, on which there were further
discussions. The results of these discussions were of two kinds. First, it
became clear that two areas were still unsettled: Input/Output, and Modules for
separate compilation. Second, many points were brought up about the remaining
core of the language, and these were almost all questions of fine detail. The
conclusion was rather clear; it was obviously better to present at first a
definition of a Core language without the two unsettled areas. This course was
further justified by the fact that the Core language appeared to be almost
completely unaffected by the choice of Input/Output primitives and of separate
compilation constructs. Also, there were already strong proposals, from
Cardelli and MacQueen respectively, for these two vital facilities.

A third draft [4] of the Core language was discussed in detail in a design
meeting at Edinburgh in June '84, attended by nine of the people mentioned
below; several points were ironed out, and the outcome was reported in [5]. The
meeting also looked in detail at the MacQueen Modules proposal ana the Cardelli
Input/Output proposal, and agreed on their essentials.

During the ensuing year, having an increasingly firm design of MacQueen's
Modules, we were able to assess the language as a whole. The Modules proposal,
which is the most adventurous part of the language, reachea a state of precise
definition. At a final design meeting, which was held in Edinburgh in May 1985
and attended by fifteen people (including twelve named below), the Modules
design was discussed and warmly accepted; it appears as 61 We also took
advantage of the meeting to tidy up the Core Language, and to settle finalily the
primitives for Input/Output. The final Core language design is presented in
this document; the Input/Output facilities are aetailed in [T7].

The main contributors to Standard ML, through their work on ML and on HOPE,
are:

Rod Burstall, Luca Cardelli, Michael Gordon, David MacQueen,
Robin Milner, Lockwood Morris, Malcolm Newey, Christopher Wadsworth.

The language also owes much to criticisms and suggestions from many other
people: Guy Cousineau, Bob Harper, Jim Hook, Gerard Huet, Dave Matthews, Robert
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Milne, Kevin Mitchell, Brian Monahan, Peter Mosses, Alan Mycroft, Larry Paulson,
David Park, David Rydeheard, Don Sannella, David Schnmidt, John Scott, Stefan
Sokolowski, Bernard Sufrin, Philip Wadler. Most of them have expressed strong
support for the design; any inadequacies which remain in the Core Language are
my fault, but I have tried to represent the consensus.

1.2 Design principles

The proposed ML is not intended to be the functional language. There are too
many degrees of freedom for such a thing to exist: lazy or eager evaluation,
presence or absence of reterences and assignment, whether and how to handle
exceptions, types-as-parameters or polymorphic type-checking, and so on. Nor is
the language or its implementation meant to be a commercial product. It aims to
be a means for propagating the craft of functional programming and a venicle for
further research into the design of functional languages.

The over-riding design principle is to restrict the Core language to ideas
which are simple and well-understood, and also well-tried - either in previous
versions of ML or in other functional languages (the main other source being
HOPE, mainly for its argument-matching constructs). One effect of this
principle has been the omission of polymorphic references and assignment. There
is indeed an elegant and sound scheme for polymorphic assignment worked out by
Luis Damas, and described in his Edinburgh PhD thesis; however, it may be
susceptible to improvement with further study. Meanwhile there is the advantage
of simplicity in keeping to the well-understood polymorpnic type-checking
discipline which derives from Curry's Combinatory Logic via Hindley.

A second design principle is to generalise well-tried ideas where the
generalisation is apparently natural. This has been applied in generalising ML
"varstructs"™ to HOPE patterns, in broadening the structure of declarations
(following Cardelli's declaration connectives which go back to Robert Milne's
Ph.D. Thesis) and in allowing exceptions which ecarry values of arbitrary
polymorphic type. It should be pointed out here that a difficult decision had
to be made concerning HOPE's treatment of data types - present only in embryonic
form in the original ML - and the labelled records and variants which Cardelli
introduced in his VAX version. Each treatment has advantages which the other
lacks; each is well-rounded in its own terms. Though a combination of these
features 'was seen to be possible, it seemed at first (to me, but some
disagreed!) to entail too rich a language. Thus the HOPE treatment alone was
adopted in [5]. However, at the design meeting of June '84 it was agreed to
experiment with at least two different ways of adding labelled records to the
Core as a smooth extension. The outcome - decided at the May '85 meeting - is
the inclusion of a form of labelled records (but not variants) nearly identical
to Cardelli's, and its marriage with the HOPE constructions now appears
harmonious.

A third principle is to specify the language completely, so that programs
will port between correct implementations with minimum fuss. This entails,
first, precise concrete syntax (abstract syntax is in some senses more important
- but we do not all have structure editors yet, and humans still communicate
among themselves in concrete syntax!); seconu, it entails exact evaluation rules
(e.g. we must specify the order of evaluation of two expressions, one applied to
the other, because of side-effects and the exception mechanism). At a level
which is not fully formal, this document and its sister reports on Modules and
on Input/Output constitute a complete description; however, we intend to augment
them both with a formal definition and with tutorial material.



1.3 An example

The following declaration illustrates some constructs of the Core language.
A longer expository paper should contain many more examples; here, we hope only
to draw attention to some of the less familiar ideas.

The example sets up the abstract type 'a dictionary , in wnich each entry
associates an item (of arbitrary type 'a) with a key (an integer). Besides the
null dictionary, the operations provided are for looking up a key, and for
adding a new entry which overrides any old entry with the same key. A natural
representation is by a list of key-item pairs, ordered by key.

abstype 'a dictionary =

dict of (int # 'a)list (* dict is the datatype .}
(* constructor, available #¥)
with (* only in the with part. ¥)

yal nulldict = diect nil
(* The function lookup may ¥)

exception lookup : unit (® raise an exception. #)

fun lookup (key:int) (# 'a is the result type. ¥)
(dict entrylist :'a dictionary) :'a =

let fun search nil = raise lookup (¥ An auxiliary clausal ¥)

| search ((k,item)::entries) = (# function declaration. #)

if key=k then item
else if key<k then raise lookup
else search entries

in search entrylist

end
fun enter (newentry as (key, item:'a)) (¥ A layered pattern. %)
(dict entrylist) :'a dictionary =
let fun update nil = [ newentry ] (* A singleton list. %)

| update ((entry as (k,_))::entries) =

if key=k then newentry::entries
else if key<k then newentry::entry::entries
else entry::update entries
in dict(update entrylist)
end
end (* ena of dictionary ¥)

After the declaration is evaluated, five identifier bindings are reported, and
recorded in the top-level enviromment. They are the type binding of dictionary,
the exception binding of lookup, and three typed value bindings:

nulldict : 'a dictionary

lookup : int => 'a dictionary => 'a

enter : int # 'a => 'a dictionary -> 'a dictionary
The layered pattern construct "as" was first introduced in HOPE, and yields both
brevity and efficiency. The discerning reader may be able to find one furtner
use for it in the declaration.



2. The bare language
2.1 Discussion

It is convenient to present the language first in a bare form, containing
enough on which to base the semantic description given in Section 3. Things
omitted from the bare language description are:

(1) Derived syntactic forms, whose meaning derives from their equivalent
forms in the bare language (Section 6);

(2) Directives for introducing infix identifier status (Section 4);
(3) Standard bindings (Section 5);

(4) References and equality (Section 7);

(5) Type-checking (Section 9).

The principal syntactic objects are expressions and declarations. The
composite expression forms are application, record formation, raising and
handling exceptions, local declaration (using let) and function abstraction.

Another important syntactic class is the class of patterns; these are
essentially expressions containing only variables and value constructors, and
are used to create value bindings. Declarations may declare value variables
(using value bindings), types with associated constructors or operations (using
type and datatype bindings), and exceptions (using exception bindings). Apart
from this, one declaration may be local to another (using local), and a sequence
of declarations is allowed as a single declaration.

An ML program is a series of declarations, called top-level declarations,
dec1 ; __ decn ;

each terminated by a semicolon (where each deci is not itself of the form
"dec ; dec'"). In evaluating a program, the bindings created by dec1 are
reported before dec2 is evaluated, and so on. In the complete language, an
expression occurring in place of any deci is an abbreviated form (see Section
6.2) for a declaration binding the expression value to the variable "it"; such
expressions are called top-level expressions.

The bare syntax is in Section 2.8 below; first we consider lexical matters.

2.2 Reserved words

The following are the reserved words used in the Core language. They may not
(except =) be used as identifiers. In this document the alphabetic reserved
words are always underlined.

abstype and andalso as case do datatype

else end exception fn fun handle if in
infix infixr 1let 1local nonfix of op open
orelse raise rec then type val with while



2.3 Special constants

An integer constant is any non-empty sequence of digits, possibly preceded by
a negation symbol (7).

A real constant is an integer constant, possibly followed by a point (.) ana
one or more digits, possibly followed by an exponent symbol (E) and an integer
constant; at least one of the optional parts must occur, hence no integer
constant is a real constant. Examples: 0.7 , ~3.32E5 , 3E°7 . Non-examples:
23, .3, 4.E5 , 1E2.0 .

A string constant is a sequence, between quotes ("), of =zero or more
printable characters, spaces or escape sequences. Each escape 8sequence 1is
introduced by the escape character \, and stands for a character sequence. The
allowed escape sequences are as follows (all other uses of \ being incorrect):

\n A single character interpreted by the system as enu-of-line.

\t Tab.

\"c The control character c, for any appropriate c.

\ddd The single character with ASCII code ddd (3 decimal digits).

\'l n

\\ \

b R iR This sequence is ignored, where f__f stands for a sequence of one

or more formatting characters (a subset of the non-printable
characters including at least space, tab, newline, formfeea).
This allows one to write long strings on more than one line, by
writing \ at the end of one line ana at the start of the next.

2.4 Identifiers

Identifiers are used to stand for six different syntax classes which, if we
had a large enough character set, would be disjoint:

value variables (var) type variables (tyvar)
value constructors (con) type constructors (tycon)
exception names (exn) record labels (lab)

An identifier is either alphanumeric: any sequence of letters, digits, primes
(') and underbars (_) starting with a letter or prime, or symbolic: any sequence
of the following symbols

Vit & ol oo mauligt £ .2 e 2.8 % 7 0 %] %

In either case, however, reserved words are excluded. This means thnat for
example ? and | are not identifiers, but ?? and |=| are identifiers. The only
exception to this rule is that the symbol =, which is a reserved word, is also
allowed as an identifier to stand for the equality predicate (see Section 7.2).
The identifier = may not be rebound; this precludes any syntactic ambiguity.

A type variable (tyvar) may be any alphanumeric identifier starting with a
prime. The other five classes (var, con, exn, tycon, lab) are represented by
identifiers not starting with a prime; the class 1lab is also extended to
include the numeric labels #1, #2, #3, __ .

Type variables are therefore disjoint from the other five classes.
Otherwise, the syntax class of an occurrence of identifier id is determined
thus:



(1) At the start of a component in a record type, record pattern or record
expression, 1id is a record label.

(2) Elsewhere in types id is a type constructor, and must be within the scope
of the type binding or datatype binding which introduced it.

(3) Following exception, raise or handle, or in the context "exception exn = id",
id is an exception name.

(4) Elsewhere, id is a value constructor if it occurs in the scope of a datatype
binding which introduced it as such, otherwise it is a value variable.

It follows from (4) that no declaration must make a hole in the scope of a value
constructor by introducing the same identifier as a variable; this is because,
in the scope of the declaration which introduces id as a value constructor, any
occurrence of id in a pattern is interpreted as the constructor and not as the
binding occurrence of a new variable.

The syntax-classes var, con, tycon and exn all depena on which bindings are
in force, but only the classes var and con are necessarily disjoint. The
context determines (as described above) to which class each identifier
occurrence belongs.

In the Core language, an identifier may be given infix status by the infix or
infixr directive; this status only pertains to its use as a var or a con. If id
has infix status, then "exp1 id exp2" (resp. "patl id pat2") may occur wherever
the application "id(expl,exp2)" (resp. "id(patil,pat2)") would otherwise occur.
On the other hand, non-infixed occurrences of id must be prerixed by the keyword
fiop", Infix status is cancelled by the nonfix directive. (Note: the tuple
expression "(expl,exp2)" is a derived form of the numerically labelled record
expression. "{#1=zexpl,#2=exp2}", and a similar derived form exists for
numerically labelled record patterns. See Section 6.1. )

2.5 Comments

A comment is any character sequence within comment brackets (¥ #) in which
comment brackets are properly nested. An ummatched comment bracket should be
detected by the compiler.

2.6 Lexical analysis

Each item of lexical analysis is either a reserved word, a numeric label, a
special constant or an identifier; comments and formatting characters separate
items (except within string constants; see Section 2.3) ana are otherwise
ignored. At each stage the longest next item is taken.

As a consequence of this simple approach, spaces or parentheses are needed
sometimes to separate identifiers and reserved words. Two examples are

a:= 1Ib or a:=(1b) but not a:=!b
(assigning contents of b to a)
=~ :int->int or (7):int=->int but not ~:int->int

(unary minus qualified by its type)

Rules which allow omission of spaces in such examples would alsc forbid certain
symbol sequences as identifiers; moreover, such rules are hard to remember. It
seems better to keep a simple scheme and tolerate a few extra spaces or
parentheses.



2.7 Delimiters

Not all constructs have a terminating reserved word; this would be verbose.
But a compromise has been adopted; end terminates any construct which declares
bindings with local scope. This involves only the let, local ana abstype
constructs.

2.8 The bare syntax

The syntax of the bare language is presented in the adjacent table. The
following metasyntactic conventions are adopted:

Conventions
(1) The brackets "<< >>" enclose optional phrases.

(2) Repetition of iterated phrases is represented by "_". this must not be
confused with "...", a reserved word used in flexible record patterns.

(3) For any syntax class s, we define the syntax class s _seq as follows:

s seq ::= S
(s1, __ ,8n) (n>1)

(4) Alternatives are in order of decreasing precedence.

(5) L (resp. R) means left (resp. right) association.
The syntax of types binds more tightly that that of expressions, so type
constraints should be parenthesized if not followed by a reserved word.

Each iterated construct (e.g. match, handler, ..) extends as far right as

possible; thus parentheses may also be needed around an expression which
terminates with a match, e.g. "fn match", if this occurs within a larger match.



THE SYNTAX OF THE BARE LANGUAGE

EXPRESSIONS exp PATTERNS pat
aexp ::= apat ::=
var (variable) 3. (wildecard)
con (constructor) var (variable)
{ labl=exp1, __, (record,n>0) con (constant)
labn=expn } { labl=pat1, __ , (record,n>0)##
( exp ) labn=patn <<, ...>>}
( pat )
exp ::=
aexp (atamic) pat ::=
exp aexp L(application) apat (atomic)
exp : ty L(constraint) con apat L(construction)
exp handle handler R(handle exc'ns) pat : ty L(constraint)
raise exn with exp (raise exc'n) var<<:ty>> as pat R(layered)
let dec in exp end (local dec'n)
fn match (function) VALUE BINDINGS vb
vb: wis=
match ::= pat = exp (simple)
rule!l | __ | rulen (n21) vb1 and __ and vbn (multiple,n>2)
rec vb (recursive)
rule ::= :
pat => exp IYPE BINDINGS tb
thusss
handler ::= <{<tyvar_seq>>tycon
hrulel |} __ |} hrulen (n>1) = ty (simple)
tb1 and _ and tbn (multiple,n>2)
hrule ::=
exn with match DATATYPE BINDINGS db
? => exp ; db &=
<<tyvar_seq>>tycon
= constrs (simple)
db1 and __ and dbn (multiple,n>2)
DECLARATIONS dec constrs ::=
dec ::= conl<<of ty1>>! ___ | conn<<of tynd>>
yal vb (values)
type tb (types) EXCEPTION BINDINGS eb
datatype db (datatypes) eb ::=
abstype db (abstract exn<<:ty>><< =zexn'>>(simple)
with dec end datatypes) eb! and _ and ebn (multiple,n>2)
exception eb (exceptions)
local dec in dec' end (local dec'n) TYPES ty
dec1<<;>> __ decen<<;>> (sequence,n>0) ty 2i=
tyvar (type variable)
<<ty_seg>>tycon (type constr'n)
{ lab1atyl,
PROGRAMS : decl1 ; __ decn ; labn:tyn } (record type,n>0)
ty => ty' R(function type)
( ty)

#% The reserved word "..." is called the record wildecard. If it is absent,
then the pattern will match any record with exactly those components which
are specified; if it is present, then the matched record may also contain
further components. If it occurs when n=0, then the preceding comma is
omitted; "{...}" is a pattern which matches any record wnatever.




3. Evaluation
3.1 Environments and Values

Evaluation of phrases takes place in the presence of an ENVIRONMENT ana a
STORE. An ENVIRONMENT E has two components: a value environment VE associating
values to variables and to value constructors, and an exception enviromment EE
associating exceptions to exception names. A STORE S associates values to
references, which are themselves values. (A third component of an enviromment, a
type environment TE, is ignored here since it is relevant only to type-checking
and compilation, not to evaluation.)

A yvalue v is either a constant (a nullary constructor), a construction (a
constructor with a value), a record, a reference, or a function value. A record
value is a set of label-value pairs, written "{labi=vl, __ ,labn=vn}", in which
the labels are distinct; note that the order of components is immaterial. The
labels labi in a record value must be either all identifiers, or else they must
be the numeric labels #1, #2, __ , #n; the two kinds of label may not be mixed.
A function value f is a partiai function which, given a value, may return a
value or a packet; it may also change the store as a side-effect.

An exception e, associated to an exception name exn in any exception
environment, is an object drawn from an infinite set (the nature of e is
immaterial, but see Section 3.8). A packet p=(e,v) is an exception e paired

with a value v, called the excepted value. Neitner exceptions nor packets are
values.

Besides possibly changing S (by assignment), evaluation of a phrase returns a
result as follows: ’

Phrase Result
Expression \' or p
Value binding VE or p
Type or datatype binding VE
Exception binding EE
Declaration E or= p

For every phrase except a handle expression, whenever its evaluation aemands the
evaluation of an immediate subphrase which returns a packet p as result, no
further evaluation of subphrases occurs and p is also the result of the phrase.
This rule should be remembered while reading the evaluation rules below. In
presenting the rules, explicit type constraints (:ty) have been ignored since
they have no effect upon evaluation.

3.2 Environment manipulation

We may write <(id1,v1) _ (idn,vn)> for a value enviromment VE (the idi being
distinct). Then VE(idi) denotes vi, <> is the empty value environment, and
VE+VE' means the value enviromment in which the associations of VE' supersede
those of VE. Similarly for exception environments. If E=(VE,EE) and
E'=(VE',EE'), then E+E' means (VE+VE',EE+EE'), E+VE' means E+(VE',<>), etec.
This implies that an identifier may be associated both in VE and in EE without
conflict.
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3.3 Matching patterns

The matching of a pattern pat to a value v either fails or yields a value
environment. Failure is distinct from returning a packet, but a packet will be
returned when all patterns fail in applying a match to a value (see Section

3.4). 1In the following rules, if any component pattern fails to match then the
whole pattern fails to match.

The following is the effect of matching a pattern pat to a value v, in each
of the cases for pat (with failure if any condition is not satisfied):

- ¢ the empty value enviromment <> is returned.

var

the value environment <(var,v)> is returned.
con<<pat>> : if v = cond<v'>> then pat 1s matched to v', else failure.

var as pat

pat is matched to v returning VE; then <(var,v)>+VE is
returned.

{ labl=patl, __ , labn=patn, <<, ...>>} :

if v={ labi=vl, __ ,labm=vm } , where mdn if "..." is
present and m=n otherwise, then pati is matched to vi
returning VEi, for each i; then VE1+ __ +VEn is returned.
3.4 Applying a match
Assume enviromment E. Applying a match "pati=>exp1| __ |patn=>expn" to value

v returns a value or packet as follows. Each pati is matched to v in turn, from
left to right, until one succeeds returning VEi; then expi is evaluated in
E+VEi. If none succeeds, then the packet (ematch,()) is returned, where ematch
is the standard exception bound by predeclaration to the exception name "match".
But matches which may fail are to be detected by the compiler and flagged with a
warning; see Section 10(2).

Thus, for each E; a match denotes a function value.

3.5 Evaluation of expressions

Assume enviromment E=(VE,EE). Evaluating an expression exp returns a value
or packet as follows, in each of the cases for exp:

var : the value VE(var) is returned.

con : the value VE(con) is returned.

exp aexp ¢ exp is evaluated, returning function value f; then
aexp is evaluated, returning value v; then f(v) is
returned.

{ labl=zexpl, __ , labn=expn } :
the expi are evaluated in sequence, from left to
right, returning vi respectively; then the record
{ labl=vi, __ , labn=vn } is returnea.

raise exn with exp ¢ exp is evaluated, returning value v; then the
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packet (e,v) is returned, where e = EE(exn).

exp handle handler : exp is evaluated; if exp returns a value v, then

v is returned; if it returns a packet p = (e,v)

then the handling rules of the handler are scanned

from left to right until a rule is found which

satisfies one of two conditions:

(1) it is of form "exn with match" and e=EE(exn),
in which case match is applied to v;

(2) it is of form "? => exp'", in which case exp'
is evaluated.

If no such hrule is found, then p is returnea.

let dec in exp end : dec is evaluated, returning E'; then exp is
evaluated in E+E'.

fn match

f is returned, where f is the function of v gained
by applying match to v in enviromment E.

3.6 Evaluation of value bindings

Assume enviromment E = (VE,EE). Evaluating a value binding vb returns a
valué environment VE' or a packet as follows, by cases of vb:

pat = exp : exp is evaluated in E, returning value v; then pat is
matched to v; if this returns VE', then VE' is returned,
and if it fails then the packet (ebind,()) is returned, where
ebind is the standard exception bound by predeclaration to
the exception name "bind".

vb1 and ___ and vbn: vbl,__,vbn are evaluated in E from left to right, returning
VE1, __ ,VEn; then VE1+ __ +VEn is returned.

rec vb : vb is evaluated in E', returning VE', wnere E' = (VE+VE',EE).
Because the values bound by "rec¢ vb"™ must be function values
(see 10(4)), E' is well defined by "tying knots" (Landin).

3.7 Evaluation of type and datatype bindings

The components VE and EE of the current environment do not affect the
evaluation of type bindings or datatype bindings (TE affects their type-checking
and compilation). Evaluation of a type binding Jjust returns the empty value
enviromment <>; the purpose of type bindings in the Core language is merely to
provide an abbreviation for a compound type. Evaluation of a datatype binding
db returns a value enviromnment VE' (it cannot return a packet) as follows, by
cases of db:

<<tyvar_seg>>tycon = coni<<of ty1>> | __ | conn<<of tynd>> :
the value environment VE' = <(coni,vi), __ ,(conn,vn)> is
returned, where vi is either the constant value com. (if
uof tyi"™ is absent) or else the function which maps v to
coni(v). Other effects of this datatype binding are deait
with by the compiler or type-checker, not by evaluation.

db1 and _ and dbn : dbl, __ , dbn are evaluated from left to right, returning
VE1, __ ,VEn; then VE' = VE1+ __ +VEn is returned.
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3.8 Evaluation of g (it

Assume enviromment E = (VE,EE). The evaluation of an exception binding eb
returns an exception environment EE' as follows, by cases of eb:

exn << =zexn'>> ¢ EE' = <(exn,e)> is returned, where
(1) if exn' is present then e = EE(exn'); this is
a non-generative exception binding since it merely
re-binds an existing exception to exn;
(2) otherwise e is a previously unused exception; this
is a generative exception binding.

ebl and __ and ebn : ebl, __ ,ebn are evaluated in E from left to right,
returning EE1,__,EEn; then EE' = EE1+__+EEn is returned.
3.9 Evaluation of declarations

Assume enviromment E = (VE,EE). Evaluating a declaration dec returns an
environment E' or a packet as follows, by cases of dec:

yal vb ¢ vb is evaluated, returning VE'; then E' (VE',<>) is returnea.

type tb : E' = (<>,<>) is returned.

datatype db : db is evaluated, returning VE'; then E!'

(VE',<>) is returned.

abstype db with dec end :
db is evaluated, returning VE'; then dec is evaluated in E+VE',
returning E'; then E' is returned.

exception eb : eb is evaluated, returning EE'; then E' = (<>,EE') is returnea.

local dec1 in dec2 end :
dec1 is evaluated, returning E1, then dec2 is evaluated in E+E1,
returning E2; then E' = E2 is returned.

deci<<;>> ___ decn<l<;>>
each deci is evaluated in E+E1+ __ +E(i-1), returning Ei, for i =

1,2, __ ,n; then E' = (<>,<>)+E1+ __ +En is returned. Thus when
n=0 the empty enviromment is returned.

Each declaration is defined to return only the new environment which it makes,
but the effect of a declaration sequence is to accumulate enviromments.

3.10 Evaluation of programs

The evaluation of a program "decl ; __ decn ;" takes place in the initial
presence of the standard top-level environment ENVO containing all the standard
bindings (see Section 5). For i>0 the top-level enviromment ENVi, present after
the evaluation of deci in the program, is defined recursively as follows: deci

is evaluated in ENV(i-1) returning environment Ei, and then ENVi = ENV(i-1)+Ei.
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4. Directives

Directives are included in ML as (syntactically) a subclass of declarations.
They possess scope, as do all declarations.

There is only one kind of directive in the standard language, namely those
concerning the infix status of value variables and constructors. Others,
perhaps also concerned with syntactic conventions, may be included in extensions
of the language. The directives concerning infix status are:

Ainfix<<pr>> <<d>> id1 _ idn
nonfix id1 __ idn

where d is a digit. The infix and infixr directives introduce infix status for
each idi (as a value variable or constructor), and the nonfix directive cancels
Ay The digit d (default 0) determines the precedence, and an infixed
identifier associates to the left if introduced by infix, to the right if by
infixr. Different infixed identifiers of equal precedence associate to the
left. As indicated in Appendix 1, the precedence of infixed application is just
weaker than that of application.

While id has infix status, each occurrence of it (as a value variable or
constructor) must be infixed or else preceded by op. Note that this includes
occurrences of the identifier within patterns, even binding occurrences of
variables.

Several standard functions and constructors have infix status (see Appendix
3) with precedence; these are all left associative except "::".

It may be thought better that the infix status of a variable or constructor
should be established in some way within its binding occurrence, rather than by

a separate directive. However, the use of directives avoids problems in
parsing.

The use of local directives (introduced by Jlet or local) imposes on the
parser the burden of determining their textual scope. A quite superricial

analysis is enough for this purpose, due to the use of end to delimit 1loecal
scopes.
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5. Standard bindings

The bindings of this section form the standard top-level enviromment ENVO.
5.1 Standard type constructors

The bare language provides the record type "{labil:tyl, __ , labn:tyn}" for

each n>0, and the infixed function-type constructor "->n, Otherwise, type
constructors are postfixed. The following are standard:

Type constants (nullary constructors) : unit, bool,int,real,string
Unary type constructors ¢ list,ret

None of the identifiers ->, #, unit, bool, int, real, string, list, ref may be
redeclared as type constructors. ( "#" js used in the type of n-tuples, a
derived form of record type.)

The constructors unit, bool and list are fully defined by the following
assumed declaration

infixr 5 ::
type unit = {}
datatype bool = true | false
and 'a list = nil | op :: of {#1:'a, #2:'a list}

The word "™unit"™ is chosen since the type contains just one value "{}", the empty
record. This is why it is preferred to the word "void" of ALGOL 68.

The type constants int, real and string are equipped with speciar constants
as described in Section 2.3. The type constructor ref is for constructing
reference types; see Section 7.

5.2 Standard functions and constants

All standard functions ana constants are listea in Appendix 3. There is not
a lavish number; we envisage function libraries provided by each implementation,
together with the equivalent ML declaration of each function (though the
implementation may be more efficient). In time, some such library functions may
accrue to the standard; a likely candidate for this is a group of array-handling
functions, grouped in a standard declaration of the unary type constructor
"array".

Most of the standard functions and constants are familiar, so we need mention
only a few critical points:

(1) explode yields a list of strings of size 1; implode is iterated string
concatenation (”). ord yields the Ascii code number of the rirst
character of a string; chr yields the Ascii character (as a string of
size 1) corresponding to an integer. The ordering relations <, >, <= and
>= on strings use the lexicographic order; for this purpose, the newline
character "\n" is identified with linefeed.

(2) ref is a monomorphic function, but in patterns it may be used
polymorphically, with type 'a =>'a ref .
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(3) The character functions ord and chr, the arithmetic operators ¥, /, div,
mod, + and - , and the standard functions floor, sqrt, exp and 1ln may
raise standard exceptions (see Section 5.3) whose name in each case is
the same as that of the function. This occurs for ord wnen the string is
empty; for chr when the the integer is not an Ascii code; and for the
others when the result is undefined or out of range.

(4) The values r = amod d and q = a div d are determinea by the conaition
d¥q + r = a , where either 0<r<d or d<r<0 . Thus the remainder takes
the same sign as the divisor, and has lesser magnitude. The result of
arctan lies between +pi/2, and 1n (the inverse of exp ) is the
natural logarithm. The value floor(x) is the largest integer < x; thus
rounding may be done by floor(x+0.5) .

(5) Two multi-typed functions are included as quick debugging aids. The
function print :ty->ty is an identity function, wnich as a side-effect
prints its argument exactly as it would be printea at top-level. The
printing caused by "print(exp)" will depend upon the type ascribed to
this particular occurrence of exp ; thus print is not a normal
polymorphic function. The function makestring :ty->string is similar,
but instead of printing it returns as a string what print would produce
on the screen. Since top-level printing is not fully specified, programs
using these two functions should not be ported between implementations.

5.3 Standard exceptions

All predeclared exception names are of type unit. There are three special
ones: match, bind and interrupt. These exceptions are raised, respectively, by
failures of matching and binding as explainea in Sections 3.4 ana 3.6, and by an
interrupt generated (often by the user) outside the program. Note, however,
that match and bind exceptions cannot occur unless the compiler has given a
warning, as detailed in Section 10(2),(3), except in the case of a top-level

declaration as indicated in 10(3).
The only other predeclared exception names are
ord chr # / div mod + - floor sqrt exp 1n
Each name identifies the corresponding standard function, which is ill-defined
or out of range for certain arguments, as detailed in Section 5.2. For example,

using the derived handle form explained in Section 8.2, the expression

3 div x handle div => 10000

will return 10000 when x = O.
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tyl1 & __ % tyn

Expressions :
0)
( expl, __ , expn )
raise exn
case exp of match
Af exp then expl else exp2
exp orelse exp'
exp andalso exp'

( expl; __ ; expn; exp )

let dec in
expl; __ 3 expn end

while exp do exp'

[ exp1 , __ , expn ]

Handling rules :

exn => exp

Patterns :
0
( patl, __ , patn )
[ pat1t, __ , patn ]
{ __, id<<:ty>><<as pat>>, __}

{ #1:ty1, __ , #n:tyn }

{1} (no space in "()")
{ #1=exp1, __ , #n=expn } (n>2)
raise exn with ()

(fn match) (exp)

case exp of true=>exp1 | false=>exp2

Af exp then true else exp!

Af exp then exp' else false

case expl of () =>

gas__e‘exagt (L) => exp (n>1)
let dec in

(exp1; __ ; expn) end
let val rec £ = £n () =>

Af exp then (exp'; f()) else ()

in f() end
expl:: __ ::expn::nil (n20)
exn with () => exp
{1 (no space in "()")
{ #1=pat1, __ , #n=patn } (n>2)
pati:s: __ ::patn::nil (n>0)
{ __, id=1d<<:ty>><<as pat>>, __ }
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Each derived form may be implemented more efficiently than its equivalent
form, but must be precisely equivalent to it semantically. The type-checking of
each derived form is also defined by that of its equivalent form. The
precedence among all bare and derived forms is shown in Appendix 1.

The derived type "ty1l # __ # tyn" is called an (n-)tuple type, and the values
of this type are called (n-)tuples. The associated derived forms of expressions
and patterns give exactly the treatment of tuples in the previous ML proposal

[5].

The shortened raise form is only admissible with exceptions of type umt.
The shortened form of handling rule is appropriate whenever the excepted value
is immaterial, and is therefore (in the full form) matchea to the wildcard
pattern.

The final derived pattern allows a label ana its associated variable to be
elided in a record pattern, when they are the same identifier.

[}

6.2 Bindings and Declarations

A new syntax class fb, of function bindings, is introduced. Function
bindings are a convenient form of value binding for function declarations. The
equivalent form of each function binding is an ordinary value binding. These
new function bindings must be declared by "fun", not by "yal"; however, the bare
form of value binding may still be used to declare functions, using val or yal
rec.

DERIVED FORM .E_QLIIJLALENI_E&RM'
Function bindings fb :

var apati11l __ apatind<:ty>>= expl var = fn x1 => __ fn xn =>

| — case (X11 = Xn)
. of (apat11, __ , apatin) => explI<L:ity>>
| var apatml __ apatmn<<:ty>>= expm b
| Gpata, __, apatmn) => expm<<:ty>>
( where the xi are
new, and m,n>1 )
fb1 and __ and fbn vb1 and ___ and vbn

( where vbi is the
equivalent of fbi )

fun fb yval rec vb ( where vb is the
equivalent of fb )

exp yal it = exp

The last derived declaration (using "it") is only allowed at top-level, for
treating top-level expressions as degenerate declarations; "it" is just a normal
value variable.
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7. References and equality
7.1 References and assignment

Following Cardelli, references are provided by the type constructor "ref".

Since we are sticking to monomorphic references, there are two overloaded
functions available at all monotypes mty:

(1) ref : mty -> mty ref, which associates (in the store) a new reference
with its argument value. "ref" is a constructor, and may be used
polymorphically in patterns, with type 'a -> 'a ref .

(2) op := : mty ref * mty -> unit , which associates its first (reference)
argument with its second (value) argument in the store, and returns () as
result.

The polymorphic contents function "!"™ is provided, and is equivalent to the
declaration "fun !(ref x) = x".

7.2 Equality

The overloaded equality function op = : ety # ety => bool is available at
all types ety which admit equality, according to the definition below. The
effect of this definition is that equality will only be applied to values which
are built up from references (to arbitrary values) by value constructors,
including of course constant values. On references, equality means identity; on
objects of other types ety, it is defined recursively in the natural way.

The types which admit equality are as follows, assuming that abbreviations
introduced by type bindings have first been expanded out:

(1) A type ty admits equality iff it is built from arbitrary reference types by
the record type construction and by type constructors which admit equality.

(2) The standard type constructors bool, int, real, string and list all admit
equality.

Thus for example, the type (int ® 'a ref)list admits equality, but
(int * 'a)list and (int -> bool)list do not.

A user-defined type constructor tycon, declared by a datatype binding db
whose form is

{<tyvar_seq>>tycon = coni<<of ty1>> | __ | conn<<of tyn>>

admits equality within its scope (but, if declared by abstype, only within the
with part of its declaration) iff it satisfies the following condition:

(3) Each construction type tyi in this binding is built from arbitrary reference
types and type variables, either by type constructors which already admit
equality or by tycon or any other type constructor declared by simultaneously
with tycon, provided these other type constructors also satisfy the present
condition.

The first paragraph of this section should be enough for an intuitive

understanding of the types which admit equality, but the precise definition is
given in a form which is readily incorporated in the type-checking mechanism.
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8. Exceptions
8.1 Discussion

Some discussion of the exception mechanism is needed, as it goes a little
beyond what exists in other functional languages. It was proposed by Alan
Mycroft, as a means to gain the convenience of dynamic exception trapping
without risking violation of the type discipline (and indeed still allowing
polymorphic exception-raising expressions). Brian Monahan puv forward a similar
idea. Don Sannella also contributed, particularly to the nature of the derived
forms (Section 8.2); these forms give a pleasant way of treating standard
exceptions, as explained in Section 5.3.

The rough and ready rule for understanding how exceptions are handled is as
follows. If an exception is raised by a raise expression

raise exn with exp
which lies in the textual scope of a declaration of the exception name exn, then
it may be handled by a handling rule

exn with match

in a handler, but only if this handler is in the textual scope of the same
declaration. Otherwise it may only be caught by the universal handling rule

? => exp! .

This rule is perfectly adequate for exceptions declared at top level; some
examples in Section 8.4 below illustrate what may occur in other cases.

8.2 Derived forms

A handler discriminates among exception packets in two ways. First, it
handles just those packets (e,v) for which e is the exception bound to the
exception name in one of its handling rules; second, the match in this rule may
discriminate upon v, the excepted value. Note however that, if a universal
handling rule "? => exp'" is activated, then all packets are handled without
discrimination. Thus "?" may be considered as a wildcard, matching any packet.
It should be used with some care, bearing in mind that it will even handle
interrupts.

A case which is likely to be frequent is when discrimination is required upon
the exception, but not upon the excepted value; in this case, the derived
handling rule

exn => exp'

is appropriate for handling. Further, exceptions of type unit may be raised by
the shortened form

raise exn

since the only possible excepted value is ().
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8.3 An example

To illustrate the generality of exception handling, suppose that we have
declared some exceptions as follows:

exception oddlist :int list and oddstring :string

and that a certain expression exp:int may raise either of these exceptions and
also runs the risk of dividing by zero. The handler in the following handle
expression would deal with these exceptions:

exp handle oddlist with [] => 0
i [x] => 2#x
| Xty => x div y
| oddstring with "" => 0
| 8 => size(s)-1
Il div => 10000

Note that the whole expression is well-typed because in each handling rule the
type of each match-pattern is the same as the exception type, and because the
result type of each match is int , the same as the type of exp. The last
handling rule is the shortened form appropriate for exceptions of type unit .

Note also that the last handling rule will handle div exceptions raised by
exp , but will not handle the div exception which may be raised by "x div y"
within the first handling rule. Finally, note that a universal handling rule

12 => 50000

at the end would deal with all other exceptions raised by exp .

8.4 Some pathological examples

We now consider some possible misuses of exception handling, which may arise
from the fact that exception declarations have scope, and that each evaluation
of a generative exception binding creates a distinct exception. Consider a
simple example:

exception exn : bool;
fun f(x) =
let exception exn:int in
Af x > 100 then raise exn with x else x+1
end;
£(200) handle exn with true=>500 | false=>1000;

The program is well-typed, but useless. The exception bound to the outer exn is
distinet from that bound to the inner exn; thus the exception raised by f(200),
with excepted value 200, could only be handled by a handler within the scope of
the inner exception declaration - it will not be handled by the handler in the
program, which expects a boolean value. So this exception will be reported at
top level. This would apply even if the outer exception declaration were also
of type int; the two exceptions bound to exn would still be distinct.

On the other hand, if the last line of the program is changed to

£(200) handle ? => 500 ;
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then the exception will be caught, and the value 500 returned. A universal
handling rule (i.e. containing nen) catches any exception packet, even one
exported from the scope of the declaration of the associated exception name, but
cannot examine the excepted value in the packet, since the type of this value
cannot be statically determined.

Even a single textual exception binding - if for example it is declared
within a recursively defined function - may bind distinct exceptions to the same
identifier. Consider another useless program:

fun f(x) =
let exception exn in
Af p(x) then a(x) else
if q(x) then f(b(x)) handle exn => c(x)
else raise exn with d(x)
end;
£iv);

Now if p(v) is false but q(v) is true, the recursive call will evaluate f(b(v)).
Then, if both p(b(v)) and q(b(v)) are false, this evaluation will raise an exn
exception with excepted value d(b(v)). But this packet will not be handled,
since the exception of the packet is that which is bound to exn by the inner -
not outer - evaluation of the exception declaration.

These pathological examples should not leave the impression that exceptions
are hard to use or to understand. The rough and ready rule of Section 8.1 will
almost always give the correct understanding.

9. Iype-checking

The type discipline is exactly as in original ML, and here only a few points
about type-checking will be discussed.

In a match "pati=dexpl | __ | patn=Dexpn", the types of all pati must be the
same (ty say), and if variable var occurs in pati then all free occurrences of
var in expi must have the same type as its occurrence in pati. In addition, the
types of all the expi must be the same (ty' say). Then ty->ty' is the type of
the match. The type of "fn match" is the type of the match.

The type of a handler rule "exn with match™ is ty', where exn has type ty and
match has type ty->ty'. The type of a universal handling rule "? => exp" is the
type of exp . The type of a handler is the type of all its handling rules
(which must therefore be the same), and the type of "exp handle handler" is that
of both exp and handler. The type of "raise exn with exp" is arbitrary, but exp
and exn must have the same type. Exceptions may be polymorphic; any exn must
have the same type at all occurrences within the scope of its declaration.

A type variable is only explicitly bound (in the sense of variable-binding in
lambda-calculus) by its occurrence in the tyvar_seq on the left hand side of a
simple type or datatype binding "<<tyvar_segq>>tycon = _ ", and then its scope
is the right hand side. (This means for example that bound uses of 'a in both
tb1 and tb2 in the type binding "tb1 and tb2" bear no relation to each other.)
Otherwise, repeated occurrences of a type variable may serve to link explicit
type constraints. The scope of such a type variable is determined by its first
occurrence (ignoring all occurrences which 1lie within scopes already thus

determined). If this first occurrence is in an exception declaration, then it
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- has the same scope as the declared exception(s); otherwise, its scope is the
smallest val (or fun) declaration in which it lies. For example, consider

fun G(f:'a=>'b)(x:'a) = let val y:'b = f(x)
and Id = (fn x:'c => x)
in (Id(x):'a, Id(y):'b) end

Here the scope of both 'a and 'b is the whole fun declaration, while the scope
of '¢ is Jjust the yal declaration. Note that this allows "Id"™ to be used
polymorphically after its declaration. Moreover, type-checking must not further
constrain a type variable within its scope. Thus for example the declaration
"fun Apply(f:'a=>'b)(x:'a):'b = x" - in which "x" has been written in error in
place of "f(x)" - will be faulted since it requires 'a and 'b to be equated.

A simple datatype binding "<<tyvar_seq>>tycon = __ " is generative, since a
new unique type constructor (denoted by tycon) is created by each textual
occurrence of such a binding. A simple type binding "<<tyvar_seq>>tycon = ty",

on the other hand, is non-generative; to take an example, the type binding
" tg couple = 'a ¥ 'a " merely allows the type expression "ty couple"™ to
abbreviate "ty # ty" (for any ty) within its scope. There is no semantic

significance in abbreviation; in the Core language it is purely for brevity,
though in Modules non-generative type-bindings are essential in matching
Signatures. However, the type-checker should take some advantage of non-local
type abbreviations in reporting types at top-level; in doing this, it may need
to choose sensibly between different possible abbreviations for the same type.

Some standard function symbols (e.g. =,+) stand for functions of more than
one type; in these cases the type-checker should complain if it cannot determine
from the context which is intended (an explicit type constraint may be needed).
Note that there is no implicit coercion in ML, in particular from int to real;
the conversion function real:int->real must be used explicitly.

10. Syntactic restrictions

(1) No pattern may contain the same variable twice. No binding may bind the
same identifier twice. No record type, record expression or record pattern
may use the same label twice. In a record type or expression, either all
labels must be identifiers or they must be the numeric labels #1, __ , #n for
some n. The same applies to record patterns, except that some numeric labels
may be absent if "..." is present.

(2) In a match "pati=>exp1 | __ | patn=>expn", the pattern sequence patl, _ ,
patn should be irredundant and exhaustive. That is, each patj must match
some value (of the right type) which is not matched by pati for any i<j, and
every value (of the right type) must be matched by some pati. The compiler
must give warning on violation of this restriction, but should still compile
the match. Thus the "match" exception (see Section 3.4) will only be raised
for a match which has been flagged by the compiler. The restriction is
inherited by derived forms; in particular, this means that in the function
binding "var apatl __ apatnd<:ty>> = exp" (consisting of one clause only),
each separate apati should be exhaustive by itself.

(3) For each value binding "pat = exp" the compiler must issue a report (but
still compile) if either pat is not exhaustive or pat contains no variable.
This will (on both counts) detect a mistaken declaration like "val nil = exp"
in which the user expects to declare a new variable nil (whereas the language
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dictates that nil is here a constant pattern, so no variable gets declared).
However, these warnings should not be given when the binding is a component
of a top-level declaration yal vb ; e.g. fyal x::1 = expl and y = exp2" is
not faulted by the compiler at top level, but may of course generate a "bind"
exception (see Section 3.6).

(4) For each value binding "pat = exp" within rec, exp must be of the form
"fn match". The derived form of value binding given in Section 6.2
necessarily obeys this restriction.

(5) In the left hand side "<<tyvar_seq>>tycon" of a simple type or datatype
binding, the tyvar_seq must contain no type variable more than once. The
right hand side may contain only the type variables mentioned on the left.
Within the scope of the declaration of tycon, any occurrence of tycon must be
accompanied by as many type arguments as indicated by the <<tyvar_seqg>> in
the declaration.

(6) Assume temporarily that locally declared datatype constructors have been
renamed so that no two textually distinct datatype bindings bind
identically-named datatype constructors. Then, if the typechecker ascribes
type ty to a program phrase p , every datatype constructor in ty must be
declared with scope containing ©p . For example, if ty is ascribed to
exp in "let dec in exp end" then ty must contain no datatype constructor
declared by dec , since ty is also the type ascribed to the whole let
expression.

(7) Every global exception binding - that is, not localised either by let or by
local - must be explicitly constrained by a monotype.

(8) If, within the scope of a type constructor tycon, a type binding tb or
datatype binding db binds (simultaneously) one or more type constructors
tyconl, __ , tyconn then: (a) if the identifiers tyconi are all distinct from
tycon, then their value constructors (if any) must also have identifiers
distinet from those (if any) of tycon; (b) if any tyconi is the same
identifier as tycon, then any value constructor of tycon may be re-bound as a
value constructor-for one of tyconl, __ , tyconn, but is otherwise considered
unbound (as a variable or value constructor) within the scope of tb or
db , unless it is bound again therein. This constraint ensures that the
scope of a type constructor is identical with the scopes of its associated
value constructors, except that in an abstype declaration the scope of the
value constructors is restricted to the with part.

11. Relation between the Core language and Modules.

The sister report [7] on ML Modules describes how ML declarations are grouped
together into Structures which can be compiled separately. Structures, and the
Functors which generate them, may not be declared locally within ML programs,

but only at top-level or local to other Structures and Functors; this means that
the Core language is largely unaffected by their nature.

However, Structures and their components (types, values, exceptions and other
Structures) may be accessed from ML programs via qualified names of the form

1d1e oo sddn.id (n21)
where id1, __ , idn are Structure names, each idi is the name of a component
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structure of id(i-1) for 1<i&n, and id is either a type constructor, a value
constructor, a value variable, an exception name or a Structure name declared as
a component of Structure idn. Thus the syntax classes tycon, con, var and exn
are extended to include qualified names. Further, the declaration

open id1. __ .idn (n21)

(where id1, _ , idn are as above) allows the components of the Structure
id1. __ .idn to be named without qualification in the scope of the declaration.

Each Structure is equipped with a Signature, which determines the nature and
type of each component, and this permits static analysis and type-checking for
programs which use the Structure.

12. Conclusion

This design has been under discussion for over two years. In the conclusion
(Section 11) of [5] we predicted that a few infelicities of design would emerge
during the last year, and this has happened. But they are satisfyingly few.
Use of the language by a wider community will probably raise further suggestions
for change, but against this we must set the advantage of maintaining complete
stability in the language. We shall adopt a policy of minimum change.

At the same time, extensions to ML - ones which preserve the validity of all
existing programs - may be suggested either by practical need or by increased
theoretical understanding. Examples of the latter may be the introduction of
polymorphic assignment, or the extension of the equality predicate to a wider
class of types. We hope that these extensions will be made when appropriate.
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APPENDIX 1.  SYNTAX : EXPRESSIONS and PATTERNS

(See Section 2.8 for conventions and remarks)

aexp ::=
<<Lop>dvar (variable)
<<op>>con (constructor)
{ labl=expl1, __ , labn=expn } (record, n>0)
() (0-tuple)
( exp? , _ , expn ) (n-tuple, n>2)
[ exp1 , __ , expn ] (1ist, n>0)
( expl ; __ ; expn ) (sequence, n>1)
exp ::=
aexp (atomic)
exp aexp L(application)
exp id exp' (infixed application)
exp : ty L(constraint)
exp andalso exp' (conjunction)
exp orelse exp' (disjunction)
exp handle handler R(handle exception)
raise exn <<with exp>> (raise exception)
if exp then expl else exp2 (conditional)
while exp do exp' (iteration)
let dec in exp1 ; __ ; expn end (local declaration, n>1)
case exp of match (case expression)
fn match (function)
match ::= handler ::= :
rulel | __ | rulen (n2>1) hrulel |} __ || hrulen (n21)
rule ::= hrule ::=
pat => exp exn with match
exn => exp
? => exp
apat ::=
— (wildecard)
<<gp>>var (variable)
con (constant)
{ labl=patil, __ , labn=patn <<, ...>>} (record,n>0) ¥#
0 (0-tuple)
( patt , __ , patn ) (tuple, n>2)
[ pat1 , __ , patn ] (1ist, n>0)
( pat )
pat ::=
apat (atomic)
<<op>>con apat L(construction)
pat con pat!’ (infixed construction)
pat : ty L(constraint)
<Lgp>d>var<<:ty>> as pat R(layered)

#% Tf n=0 then omit the comma; "{...}" is the pattern which matches any record.
If a component of a record pattern has the form "id=id<<:ty>><<as pat>>",
then it may be written in the elided form "id<<:ty>><<as pat>>".
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APPENDIX 2. SYNTAX : TYPES, BINDINGS, DECLARATIONS
(See Section 2.8 for conventions)

ty 2:=
tyvar (type variable)
<<ty_seq>>tycon (type construction)
{ labl:tyl, __ , labn:tyn } (record type, n>0)
tyl # __ # tyn (tuple type, n>2)
tyl => ty2 R(function type)
( ty)
vh B 2=
pat = exp (simple)
vbl and _ and vbn (multiple, n>2)
rec vb (recursive)
fb §3=
<Lgop>>var apatl1 __ apatind<:ty>> (elausal function,
P o = m,n>1) ##
! <Lop>>var apatml __ apatmnd<:ty>> = expm
fb1 and __ and fbn (multiple,n>2)
tb :i3=
<{<tyvar_seg>>tycon = ty (simple)
tb1 and ___ and tbn (multiple,n>2)
db 3:=
<<tyvar_seq>>tycon = constrs (simple)
db1 and _ and dbn (multiple,n>2)
constrs ::=
<<op>>conik<of ty1>> | __
I <<op>>conn<<of tyn>> (n21)
eb ::=
exn<<:ty>><< =exn'>> (simple)
eb1 and __ and ebn (multiple, n>2)
dec ::=
yval vb (value declaration)
fun fb (function declaration)
type tb (type declaration)
datatype db (datatype declaration)
abstype db with dec end (abstract type declaration)
exception eb (exception declaration)
local dec in dec' end (local declaration)
exp (top-level only)
dir (directive)
dec1<<;>> __ decn<l<;>> (declaration sequence,n>0)
dir ::=

infix<<pr>> <<d>> id1 _ idn
nonfix id1 __ idn

(declare infix,0£d<9)
(cancel infix)

## Tf var has infix status then op is required in this form; alternatively

var may be infixed in any clause. Thus, at the start of any clause,
nop var (apat,apat') __ " may be written "(apat var apat') _ ";
the parentheses may also be dropped if ":ty" or n=" follows immediately.
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APPENDIX 3.  PREDECLARED VARIABLES and CONSTRUCTORS

In the types of these bindings, "num" stands for either int or real, and "nums"
stands for integer, real or string (the same in each type). Similarly "ty"
stands for an arbitrary type, "mty" stands for any monotype, and "ety" (see
Section T7.2) stands for any type admitting equality.

nonfix Anfix
nil : 'a list Precedence 7 :
map : ('a=>'b) => 'a list / : real # real -=> real
=> 'b list div : int # int <> int
rev : 'a list => 'a list mod : " " L
8 :num * num -> num
true,false : bool
not : bool => bool Precedence 6 :
o+ H " n "
- ¢ num <> num - " " "
abs : num <> num “ ¢ string ¥* string -> string
floor . : real => int
real : int <> real Precedence 5 :
sqrt : real -> real e 2 'a ® '3 1ist => 'a list
sin, cos,arctan : real -> real @ : 'alist # 'a list
exp,1ln ¢ real => real -> 'a list
Precedence U :
size : string -> int = : ety # ety => bool
chr : int => string On " " "
ord ¢ string -> int < : nums ¥ nums -> bool
explode : string -> string list > L " "
implode ¢ string list <> string = " L L
>= n n n
ref : mty -> mty ref
! : 'aref =>'a Precedence 3 :
o : ('b=>'c) ® ('a=>'b)
print sty => ty => ('a=>'e)
makestring : ty => string := ¢ mty ref # mty -> unit

Special constants: as in Section 2.3.

Notes:
(1) The following are constructors, and thus may appear in patterns:
nil true false ref HE- and all special constants.
(2) Infixes of higher precedence bind tighter. "::" associates to the right;
otherwise infixes of equal precedence associate to the left.

(3) The meanings of these predeclared bindings are discussed in Section 5.2.
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Standard ML Input/Output

Robert W. Harper
June 6, 1985

1 Introduction

This document describes the Standard ML [1] character stream input/output
system. The basic primitives defined below are intended as a simple basis that
may be compatibly superseded by a more comprehensive I/O system that provides
for streams of arbitrary type or a richer repertoire of I/O operations. The I/O
primitives are organized into two modules, one for the basic I/O primitives that
are required to be provided by all implementations, and one for extensions to the
basic set. An implementation may support any, all, or none of the functions in
the extended 1/O module, and may extend this module with new primitives. If an
implementation does not implement a primitive from the set of extensions, then
it must leave it undefined so that unsupported features are recognized at compile
time.

The fundamental notion in the SML I/O system if the (finite or infinite)
character stream. There are two types of stream, instream for input streams, and
outstream for output streams. These types are provided by the implementation
of the basic I/O module. Interaction with the outside world is accomplished
by associating a stream with a producer (for input streams) or a consumer (for
output streams). The notion of a producer and a consumer is purely metaphorical.
Their realization is left to each implementation; the SML programmer need be
aware of their existence only insofar as it is necessary to imagine the source (or
sink) of characters in a stream. For instance, ordinary disk files, terminals, and
processes are all acceptable as producers or consumers. A given implementation
may support a range producers and consumers; all implementations must allow
disk files to be associated with input and output streams.

Streams in SML may be finite or infinite; finite streams may or may not have a
definite end. A natural use of an infinite stream is the connection of an instream
to a process that generates an infinite sequence, say of prime numbers represented
as numerals. Most often streams are finite, though not always terminated. Or-
dinary disk files are a good example of producers of finite streams of characters.



Processes as producers give rise to the notion of an unterminated finite stream
— a process may at any time refuse to supply an more characters to a stream,
a condition which is, of course, undetectable. All subsequent input requests will
therefore wait forever. Primitives are provided for detecting the end of an input
stream and for terminating an output stream.

The stream types provided by the basic I/O module are abstract, and as such
have no visible structure. However, it is helpful to imagine that each stream has
associated with it a buffer that mediates the interaction between the ML system
and the producer or consumer associated with that stream, and a control object,
which is used for device—specific mode—setting and control. A typical example of
the use of the control object is to modify the character processing performed by
a terminal device driver.

In the spirit of simplicity and generality, this proposal does not treat such
implementation—dependent details as the resolution of multiple file access (both
within and between processes), and the names of files and processes. The window
between the SML system and the operating system is limited to two primitives,
each of which takes a string parameter whose interpretation is implementation—
specific. One convention must be enforced by all implementations — end of line is
represented by the single newline character, \n, regardless of how it is represented
by the host system. However, since end of file is a condition, as opposed to a
character, the means by which this condition is indicated on a terminal is left to
the implementation.

2 Basic I/O Primitives

The fundamenta) I/O primitives are packaged into a structure with signature
BasicIO (see Figure 1). A structure matching this signature (and having the
semantics defined below) must be provided by every SML implementation. It is
implicitly open’d by the standard prelude so that these identifiers may be used
without the qualifier BasicIO.

The type instream is the type of input streams and the type outstreanm is
the type of output streams. The exception io_failure is used to represent all of
the errors that may arise in the course of performing I/O. The value associated
with this exception is a string representing the type of failure. In general, any
I/O operation may fail if, for any reason, the host system is unable to perform
the requested task. The value associated with the exception should describe the
type of failure, insofar as this is possible.

The standard prelude binds std_in to an instream and binds std_out to an
outstream. For interactive ML processes, these are expected to be associated with
the user’s terminal. However, an implementation that supports the connection of



signature BasicI0 = sig
(* Types and exceptions *)
type instream
type outstrean
exception io_failure: string

(* Standard input and output streams #*)
val std_in: instream
val std_out: outstream

(* Stream creation #)
val open_in: string -> instream
val open_out: string -> outstream

(* Operations on input streams %)
val input: instream #* int -> string
val lookahead: instream -> string
val close_in: instream -> unit

val end_of_stream: instream -> bool

(* Operations on output streams #)
val output: outstream * string -> unit
val close_out: outstream -> unit

end

Figure 1: Basic I/O Primitives

processes to streams may associate one process’s std_in with another’s std_out.

The open_in and open_out primitives are used to associate a disk file with
a stream. The expression open_in(s) creates a new instream whose producer
is the file named s and returns that stream as value. If the file named by s
does not exist, the exception io_failure is raised with value "Cannot open "“s.
Similarly, open_out(s) creates a new outstream whose consumer is the file s,
and returns that stream.

The input primitive is used to read characters from a stream. Evaluation of
input(s,n) causes the removal of n characters from the input stream s. If fewer
than n characters are currently available, then the ML system will block until
they become available from the producer associated with s.! If the end of stream

1The exact definition of ®available” is implementation—dependent. For instance, operating sys-
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signature ExtendedI0 = sig
val execute: string -> instream * outstream
val flush_out: outstream -> unit
val can_input: instream * int -> bool
val input_line: instream -> string
val open_append: string -> outstream
val is_term_in: instream -> bool
val is_term_out: outstream -> bool
end

Figure 2: Extended I/O Primitives

is reached while processing an input, fewer than n characters may be returned.
In particular, input from a closed stream returns the null string. The function
lookahead(s) returns the next character on instream s without removing it
from the stream. Input streams are terminated by the close_in operation. This
primitive is provided primarily for symmetry and to support the reuse of unused
streams on resource-limited systems. The end of an input stream is detected by
end_of stream, a derived form that is defined as follows:

val end_of_stream(s) = (lookahead(s)="")

Characters are written to an outstream with the output primitive. The string
argument consists of the characters to be written to the given outstream. The
function close_out is used to terminate an output stream. Any further attempts

to output to a closed stream cause io_failure to be raised with value "Output
stream is closed".

3 Extended I/O Primitives

In addition to the basic I/O primitives, provision is made for a some exten-
sions that are likely to be provided by many implementations. The signature
ExtendedIO (see Figure 2) describes a set of operations that are commonly used

but are either too complex to be considered primitive or to be implementable on
all hosts.

The function execute is used to create a pair of streams, one an instream and
one an outstream, and associate them with a process. The string argument to

tems typically buffer terminal input on a line-by-line basis so that no characters are available
until an entire line has been typed.



execute is the (implementation—dependent) name of the process to be executed.
In the case that the process is an SML program, the instream created by execute
is connected to the std_out stream of the process, and the outstream returned
is connected to the process’s std_in.

The function £lush out ensures that the consumer associated with an out-
stream has received all of the characters that have been written to that stream.
It is provided primarily to allow the ML user to circumvent undesirable buffering
characteristics that may arise in connection with terminals and other processes.
All output streams are flushed when they are closed, and in many implementa-
tions an output stream is flushed whenever a newline is encountered if that stream
is connected to a terminal.

The function can_input takes an instream and a number and determines
whether or not that many characters may be read from that stream without
blocking. For instance, a command processor may wish to test whether or not
a user has typed ahead in order to avoid an unnecessary prompt. The exact
definition of “currently available” is implementation—specific, perhaps depending
on such things as the processing mode of a terminal.

The input_line primitive returns a string consisting of the characters from
an instream up through, and including, the next end of line character. If the
end of stream is reached without reaching an end of line character, all remaining
characters from the stream (without an end of line character) are returned.

Files may be open for output while preserving their contents by using the
open_append primitive. Subsequent output to the outstream returned by this
primitive is appended to the contents of the specified file.

Basic support for the complexities of terminal I/O are also provided. The pair
of functions is_term_in and is_term_out test whether or not a stream is asso-
ciated with a terminal. These functions are especially useful in association with
std_in and std_out because they are opened as part of the standard prelude. A
terminal may be designated as the producer or consumer of a stream using the
ordinary open_in and open_out functions; an implementation supporting this ca-
pability must specify a naming convention for designating terminals. Terminal
I/O is, in general, more complex than ordinary file I/O. In most cases the Ex-
tendedI0 module provided by an implementation will have additional operations
to support mode control. Since the details of such control operations are highly
host—dependent, the functions that may be provided are left unspecified.
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ABSTRACT

This document describes and motivates the design of a set of con-
structs to support generic modular programming in Standard ML. The
basic constructs are structures, which are essentially packaged environ-
ments, signatures, which are the type specifications of structures, and func-
tors, which are mappings from structures to structures. The_treatment of
inheritance and sharing relationships between structures is the most impor-
tant and characteristic feature of the design.

October 3, 1985



Contents

1. Introduction

1.1. Language constructs for modularity
1.2. A note on terminology
1.3. Overview

2. The Language

2.1. Structures
2.1.1. Structure expressions
2.1.2. Structure declarations
2.1.3. Accessing structure components
2.1.4. Evaluating structure expressions
2.1.5. Structure equivalence
2.2. Signatures
2.2.1. Type specifications
2.2.2. Signature expressions and declarations
2.2.3. Inferred signatures
2.3. Inheritance
2.3.1. Inherited types and signature closure
2.3.2. Inherited exceptions
2.3.3. Inherited objects
2.3.4. Discussion
2.4. Functors
2.4.1. Functor declarations
2.4.2. Multiple instances
2.5. Type propagation
2.6. Coherence and sharing constraints
2.7. Type abstraction
2.8. Signature and type checking
2.8.1. Signature matching
2.8.2. Typing structure components
2.8.3. Checking sharing constraints
2.9. Miscellaneous notes
2.9.1. Restrictions on module and signature declarations
2.9.2. Sharing constraints in signatures
2.9.3. Recursive modules
2.9.4. Views

3. Conclusions and Future Work

Appendix A: Syntax



Modules for Standard ML

David MacQueen

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction

Writing large programs in ML, as in any language, poses difficult problems of organ-
ization. Many modern programming languages contain constructs designed to help organ-
ize large systems. These constructs, variously known as modules, packages, or clusters,
make it possible to partition a large software system into reasonably-sized components and
provide secure methods for combining these components to form complete programs.
They often support separate compilation of program components and make it possible to
assemble libraries of shareable, generic components. They also typically support some
form of data abstraction.! The use of such constructs to impose structure on large pro-
grams is often called “‘programming in the large” in contrast to ‘‘programming in the
small”’, which is concerned with the detailed implementation of algorithms in terms of
data structures and control constructs. The purpose of this proposal is to demonstrate that
there are natural ways to extend the core ML language to support modular programming.

Besides the practical concerns of programming in the large, there are theoretical
problems that motivate us to develop a notion of module for ML. One of these is the
need to extend the power of the polymorphic type system by introducing parameterization
with respect to types with associated operations. Another is the desire for a more funda-
mental approach to type abstraction. Finally, there is the problem of treating environ-
ments as first-class entities that can be typed, named, and sprocessed.

Fortunately, there is a conceptual framework for dealing with these theoretical prob-
lems which also gracefully supports the requirements of programming in the large. This
framework is inspired by the theory of dependent types as developed in intuitionistic type
theory [ML82, NS84] and the closely related ideas of second-order lambda calculus
[REY85, MP85, CW85], both of which can be viewed as generalizations of the basic
polymorphic type system of ML. The Pebble language of Burstall and Lampson [BL84,
BURS84] has strong parallels with this proposal, but there are some important differences
concerning the treatment of types and the critical issue of inheritance and sharing.

1.1. Language constructs for modularity

There are at least two starting points for developing a theory of modularity. One
can start from type theory and explore notions like existential types and dependent pro-
duct types, or one can analyze the large-scale structure of programs more directly by
developing a calculus of environments. These approaches are complementary; indeed,
notions like existential and dependent types arise naturally when one attempts to provide a
type system for describing environments and their relations. Here we begin by thinking
about modularity in terms of the creation and manipulation of environments.

! Here data abstraction simply means that one can associate some operations with a given type and
then hide the structure of that type so that it can only be used via the designated operations.
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In its simplest form, a module is (syntactically) just a collection of declarations
viewed as a unit, or (semantically) the environment defined by those declarations. Com-
plications arise when we try to isolate the declarations from their context and then abstract
with respect to that context. We want to isolate the declarations in order to make explicit
the interfaces between components of a program and to limit and control these interfaces
for the sake of information hiding and separate compilation. We want to abstract with
respect to the context to achieve flexible, generic program units (parametric modules).
Abstraction and its complement, application, as in typed lambda calculus, provide the glue
with which we will build programs from their components.

The three central notions of this proposal are structures, signatures, and functors. A
structure is simply an environment, defined most directly by an encapsulated declaration
(think of ‘‘structure’” as short for ‘‘environment structure’ if you like). A signature
represents the type information associated with a structure and serves as an interface
specification for the structure; roughly speaking, it indicates what names are bound in the
structure, and what their types are. A functor is a function that maps structures to struc-
tures, and is defined by functional abstraction of a structure expression with respect to
structure names that occur free in it. It expresses in a uniform way how one environment
is defined in terms of others. Structures and functors are collectively referred to as
modules. ’

There is a naive analogy between values, types, and functions on the one hand, and
structures, signatures, and functors on the other (see BUR84). There is also an important
distinction in kind between structures and values: structure expressions are ‘‘big’ expres-
sions denoting environments in which “little”’ expressions denoting values can be
evaluated. Furthermore, the environment represented by a structure may be a mixed
environment containing type bindings and exception bindings as well as simple value bind-
ings. The question of whether to formally distinguish structures from ordinary values,
and signatures from ordinary types, is therefore a critical issue in this design.

Two related systems, SOL [MP85] and Pebble [BL84], both treat their respective
analogues of our structures (called data algebras and bindings, respectively) as just another
kind of value, and the corresponding types (existential types and declarations, respectively)
as ordinary types. But they accomplish this in quite different ways: SOL restricts the use
of data algebras in such a way that they cannot carry any type information, while Pebble
abandons the distinction between values and types, treating types as a kind of value.

In this design, on the other hand, the distinction between values and types is strictly
maintained, but structures are allowed to carry type information. In fact, a structure that
contains a type binding together with bindings of related functions can be thought of as an
interpreted type, i.e. a type whose behavior is determined by the associated functions
rather than by its structure alone. Such structures are hybrid entities inhabiting an area
between the domain of values and the domain of simple types. Thus structures are not
ordinary values, nor are signatures ordinary types. The extended ML described here is a
stratified language, with values and types on one level and structures, functors, and signa-
tures on another. The two levels are related, of course, but they do not mix; functions
cannot be applied to structures nor can functors be applied to values. We resist the temp-
tation to merge these two levels, as is done in Pebble, because if we did we would forgo
the possibility of static type checking.

Another crucial issue for the design of modules is the treatment of dependency. It is
clearly useful to define new structures in terms of old ones, and such definitions introduce
dependencies between structures. In certain circumstances, such as when a type from the
old structure appears in the signature of the new structure, the new structure cannot be
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used independently of the old one, and we say that the dependence is explicit. Explicit
dependencies must be taken into account when we abstract with respect to a structure; in
effect, abstraction with respect to a structure often entails abstraction with respect to all
other structures on which it explicitly depends. The essence of a parametric module
design is the method used to manage the interaction of dependency and abstraction. This
is another issue on which this proposal differs fundamentally from SOL, which does not
allow explicit dependencies, and Pebble (see [MAC86] for a fuller discussion of these
issues and an explanation of the foundations of this design).

1.2. A note on terminology

The term ‘“‘structure’ is meant to be suggestive of the universal algebra notion of a
mathematical structure consisting of some carrier sets and a collection of operations over
the carriers. ‘‘Signature’ is a conventional mathematical term for the specification of the
type structure of such ‘‘structures”. “‘Functor” is a word borrowed from category theory,
where it designates a mapping between categories, which for our purposes can be con-
sidered collections of mathematical structures like partially ordered sets, groups, etc.
Strictly speaking, functors operate not only on the structures themselves, but also on
structure-preserving maps (or ‘“‘morphisms’) between structures. Our use of the term
functor does not include this morphism mapping aspect, since there is no analogue of the
notion of morphism in our theory of modules.

In this treatment, the concept of a structure is taken as primary, with signatures and
functors playing secondary roles. However in the informal presentation of Pebble in
[BURS84] signatures are called ‘“‘interfaces” and structures “implementations’ (of inter-
faces), suggesting that interfaces have the central role. Clearly the terminology reflects a
judgement about the relative importance of the basic notions.

As indicated above, the terminology in SOL is ‘“‘data algebra’ for what corresponds
to a (certain kind of) structure, and ‘“existential type’ for signature. The closely related
language of [CW85] uses “package” and ‘“existential type” respectively. “Existential
type”” and ‘“data algebra” are too specialized to apply to structures and signatures as
presented here, but “‘package” seems a reasonable alternative to “structure”.

1.3. Overview

The purpose of this document is to present extensions to the ML Core Language
[MIL85] for the support of modular, parametric programming. The style is descriptive
and tutorial, and the document is not meant to serve as a formal reference manual for the
new language facilities. A number of details are left to be resolved later when experience
has been gained with preliminary implementations of the design.

Section 2 describes the new constructs and attempts to provide intuitive motivations
for them. It also covers the important topics of inheritance (§2.3), type propagation
(82.5), sharing (§2.6), and a new treatment of type abstraction based on structure abstrac-
tion (§2.7). Section 3 indicates areas where further development is required and suggests
possible extensions and variations. Appendix A provides an informal syntax for the new
language constructs. Some familiarity with Standard ML is assumed.



2. The Language

In this section we introduce the proposed extensions to Standard ML and informally
describe their semantics and typing rules. An informal syntax in the style used in
[MIL85] is provided in Appendix A.

2.1. Structures

As mentioned above, a structure is essentially a heterogeneous environment. It con-
sists of a set of bindings, possibly including type bindings, value bindings, and exception
bindings. We also permit the definition of a structure to include structure declarations,
yielding a notion of component substructure. In order to limit the ways in which a struc-
ture can depend on its context, the definition of a structure can only refer to other struc-
tures and functors and pervasive primitive types and values.

2.1.1. Structure expressions

There are three forms of structure expressions: encapsulated declarations, functor
applications, and structure names (either simple or qualified — see §2.1.3). The basic
form of structure expression is the encapsulated declaration, which is simply an ordinary
ML declaration surrounded by the keywords “struct ... end.” For example, the fol-
lowing structure expression represents an implementation of stacks:

struct
datatype ‘a stack = nilstack | push of ‘a * ‘a stack
exception pop: unit and top: unit
fun empty(nilstack) = true
| empty _ = false
and pop(push(_,s)) = s
| pop _ = raise pop
and top(push(x,_)) = x
| top _ = raise top
end

Certain restrictions must be imposed on the declarations that make up the body of an
encapsulated declaration. These restrictions are embodied in the following rules.

(1) Structure closure. In order to isolate the interface between a structure and its con-
text, a structure expression (in particular an encapsulated declaration) is not allowed
to contain global references to types, values or exceptions, except for pervasive prim-
itives of the language like int, nil, etc. It can, however, contain global refer-
ences to other structures, signatures, and functors, including qualified names refer-
ring to arbitrary components of other structures. The closure rule for signatures
given in §2.3.1 will further restrict how such global references may be used.’

(2) No redeclaration. Type and substructure names should be declared only once at top
level within a given encapsulated declaration. Furthermore, the same name should
not be used for both a type component and a substructure within a given structure.
The first restriction is meant to prevent ‘“‘orphans” (e.g. value components whose
types are not expressible because certain types have been hidden by redeclaration),

2 Schemes for separate compilation may add more stringent closure requirements for structures (and
functors) to be separately compiled. For instance, they might require no global references to struc-
tures or functors.
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and thereby simplify the problem of assigning signatures to structures. The second
restriction prevents ambiguity in sharing constraints (§2.6).

(3) Monomorphic exceptions.  Exception components of structures must have

monomorphic types because, like exceptions declared at top level, their scope is of
indefinite extent.

Since functors are structure-valued mappings, structures may also be denoted by
functor applications such as F(strl,str2), where F is the name of a functor and str/ and
str2 are structure expressions. The third form of structure expression consists of a name
currently bound to a structure, i.e. a structure variable. These include both simple names
and qualified names referring to a structure component of a named structure (§2.1.3), e.g.
EListEq.Eq in §2.4. Any of these forms may be used wherever a structure expression

is allowed, i.e. the right hand side of a structure declaration or an argument of a functor
application.

2.1.2. Structure declarations

A structure declaration binds a structure to a name, and is written in the usual ML
style with the declaration keyword “structure”, i.e.

structure name = Sstructure expression

The structure presented presented above, for instance, could be named ‘“Stack” by the
following declaration:

structure Stack =
struct
datatype ‘a stack = nilstack | push of ‘a * ‘a stack

s o

end

As with other sorts of declarations, one can combine several simultaneous structure bind-
ings separated by ‘““and” in a single structure declaration, as in

structure A = struct ... end
and B = struct ... end
and C = struct ... end

Mutually recursive structure definitions are not allowed, however, for reasons discussed in
§2.9.2.

An encapsulated declaration defining a structure may itself include structure declara-
tions, and we call the resulting components substructures. Substructures are used to make
a structure self-contained; see the discussion of inheritance in §2.3. Structure declarations
can appear only at top level, or immediately (i.e. at *“‘top level”) within an encapsulated
declaration. In particular, structure declarations cannot appear inside let expressions or
local declarations. See §2.9.1 for further discussion.

2.1.3. Accessing structure components

The bindings making up a structure can be thought of as defining named components
of the structure, as in a record. To refer to such components we use qualified names,
which are formed in the conventional way by appending a period followed by a component
name to the name of the structure. For instance, Stack.empty refers to the function
empty defined in the structure Stack. If the qualified name designates a substructure
of a structure, then it too can be qualified; e.g. A.B.x denotes the component named x
of the substructure named B of a structure named A. We can view a structure
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declaration as simultaneously defining the structure name and all the qualified names
derived from it. Qualifiers can be attached only to names; they do not apply to other
forms of structure expressions. Qualified names are treated as single lexical units; the
period is not an infix operator.

Direct access to the bindings of a structure is provided by the ‘“open’ declaration,
which is analogous to the “with” clause of Pascal. For example, in the scope (determined
in the usual way) of the declaration

open Stack

the names stack, empty, pop, etc. refer to the corresponding components of the
Stack structure. It is as though the body of the structure definition had been inserted in
the program at that point, except that the bindings are not recreated, but are instead sim-
ply “borrowed” from the opened structure. Open declarations follow the usual rules for
visibility, so that if A and B are two structures containing a binding of x (of the same
flavor, of course), then after opening both A and B with the declaration ‘“‘open Aj;
open B”, the unqualified identifier x will be equivalent to B.x. The x component of
A can still be referred to as A.x, unless B also contains a structure binding of A. Note
that an open declaration can give rise to the same sorts of visibility violations (e.g. rede-
fining a constructor) as would have resulted from the textual substitution of the structure’s
body, and such violations should be reported by the compiler.

When an infix identifier is used as a qualifier, the qualified name does not inherit its
infix status. Thus if “+” is declared to be infix in a structure A, A.+ is not an infix
identifier. However, when an identifier is made visible by opening a structure, it retains
its infix status, if any.

Several structures can be opened in a single declaration. Thus “open A B C” is
equivalent to “open A; open B; open C.”

2.1.4. Evaluating structure expressions

The evaluation of a structure expression str depends on its form, and assumes a
current structure environment SE that binds structures and functors to names. Informally,
evaluation proceeds as follows:

(1) If str is a simple name, then its binding in SE is returned. If it is a qualified name,
then it is used as an access path starting with SE and the designated substructure is
returned.

(2) If stris an encapsulated declaration, then the body declarations are evaluated relative
to SE and the pervasive value, exception, and type environments of ML (that is, the
environments binding the built-in primitives of the language).® The resulting environ-
ment is packaged as a structure and returned.

(3) If stris a functor application, say str = M (stry,...,str,), the parameter structures are
evaluated relative to SE yielding structures Sy, - - - ,S, and then the ‘“‘body” of the
definition of M, which is a structure expression, is evaluated in a structure environ-
ment derived from SE by binding S, - - - ,S, to the corresponding formal parameter
variables of M. In other words, functor applications are evaluated in a conventional
call-by-value fashion.

3 Note that the rules for evaluating ordinary type and value declarations must be modified to use a

structure environment for the interpretation of qualified names appearing in type and value expres-
sions.
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To evaluate a simple structure declaration one evaluates the defining structure
expression in the current structure environment SE and returns the binding of the name on
the left hand side to the resulting structure. Simultaneous structure declarations are
evaluated in sequence, with all structure expressions evaluated in SE, and the set of bind-
ings is returned. If evaluation of a structure expression causes an (untrapped) exception,
then the declaration has no effect.

2.1.5. Structure equivalence

For certain purposes, such as checking sharing constraints (§2.6) we must be able to
determine whether two (references to) structures are considered equal or equivalent.
Here structures are treated somewhat like datatypes: each evaluation of an encapsulated
declaration or functor application creates a distinct new structure, and all references to
this structure are considered equal. Thus after the following declarations

structure S1 = struct ... end

structure S2

s1

the names S1 and S2 refer to the same structure and are ‘“‘equal.” On the other hand,
after

structure S1 = struct ... end

structure S2 = struct ... end

S1 and S2 are not equal, even if the right-hand-sides of the two definitions are identical.

2.2. Signatures

For every declaration (in context), the ML type inference mechanism will yield a
corresponding type specification, or signature. For instance, in the case of the stack struc-
ture the signature of the body declaration is

datatype ’‘a stack = nilstack | push of ‘a * ‘a stack
exception pop: unit and top: unit

val empty: ‘a stack -> bool

and pop: ‘a stack -> ‘a stack

and top: ‘a stack -> ‘a

The signature captures the essence of the declaration, in the sense that it contains all the
information that is required to compile any code lying in the scope of that declaration.

2.2.1. Type specifications

Note that in this example the specification of the type constructor stack is identical
to its declaration. This is because the interface information required to use a datatype
directly, e.g. to do pattern matching over the type, consists of the name and arity of the
type constructor and the names and types of the data constructors, and thus essentially
reiterates all the information in the declaration. It is important to realize, however, that
while the declaration creates a unique type, the corresponding specification can be satis-
fied by any number of distinct, though structurally isomorphic, types.* A similar com-

ment applies to exception specifications, which also may be identical to the corresponding
declaration.

* This redundancy between declarations and specifications of datatypes is not really related to the
generative nature of the datatype declarations. Even if unions were purely structural, or if the type
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An alternate type specification for stack would omit the data constructors and
leave the internal structure of the type unspecified:

type ‘a stack . . .

A client program using this weaker signature (e.g. a functor having a parameter of this
signature) would not be able to operate directly on stack values using pattern matching
because the constructors for stack would not be visible to it, but it would be able to use
the explicitly provided operations on stacks, which we think of as the interpreting functions
for the type. Later we shall see that such partial specifications in conjunction with struc-
ture parameters yield a natural form of type abstraction.

2.2.2. Signature expressions and declarations

Just as we need type expressions to specify constraints on variable bindings and func-
tion parameters, we need signature expressions to explicitly constrain structure bindings
and structure parameters of functors. We represent a signature either by an explicit signa-
ture expression such as

sig
type elem .
val eq: elem * elem -> bool

end

or by a name bound to a signature by a signature declaration such as

signature EQ =

sig

type elem

val eq: elem * elem -> bool
end

We can use a signature as a constraint when declaring a structure, as in
structure E: EQ = struct ... end

As usual, such constraints provide a measure of redundancy because the declarations in
the body of the structure expression must agree with the explicitly specified signature.
However, the signature matching rules (§2.8.1) allow a kind of forgetful coercion from a
structure to a restriction or subset of that structure, so the definiens may be richer than
the specified signature, in the sense of having extra components. In this case, the signa-
ture constraint serves an editing function, allowing us to discard some components of the
defining structure. When used in this way, the signature constraint acts as an “export”
specification.

Another critical use of signature constraints is to specify the “type” of parameters of
functors, where they provide information necessary for the type checking and compilation
of the functor body.

The order of specifications in a signature is significant, in the sense that a structure
will match a signature only if it binds its component names in the same order as they are
specified in the signature. Furthermore, any well-formed signature must obey the

declaration was a simple type identity like “type t = (int*int->bool)xstring”, it would
still be tempting in certain circumstances to let the definition of the type reside in the signature, so
that it could be shared by all clients and implementors of that signature. This idea of putting shared
type definitions into an interface is used in C/Mesa [MMS79].



following rules:

(1) Unique specification. Within each category (structure, type, value, and exception) a

name can be specified at most once. A name cannot be specified as both a structure
and a type.

(2) Specification before use. A name must be specified (as a structure or type) before it
can appear in other specifications, except in the case of mutually recursive datatype
specifications, where the names of the recursive types may appear in one another’s
constructor specifications.

(3) Signature closure. Signatures may not contain free names other than pervasive primi-
tives (e.g. int and bool) and the names of previously declared signatures.

(4) Monomorphic exceptions. Exception specifications must have monomorphic type con-
straints.

The unique specification rule reflects the fact that a signature specifies the type of an
environment, and an environment can have at most one binding for a name in each
category. The specification before use rule reflects the usual requirement that names must
be defined before they are used, except in the case of mutually recursive definitions. The
signature closure rule is a way of insuring that structures will have self-contained, indepen-
dent interfaces. It is discussed further in §2.3.1. The monomorphic exception rule follows
from the corresponding rule for structure expressions.

2.2.3. Inferred signatures

It is convenient to omit the explicit signature constraint from a structure declaration
under certain circumstances, e.g. when the structure is used in a very limited context and
its signature is ‘“‘obvious”. In many such cases, a signature for the structure may be
inferred from its definition using the specifications generated by the ML type inference
mechanism. However, for various reasons a structure expression (an encapsulated
declaration in particular) may not have a unique signature. For example, the structure
expression

struct

type t = int

fun £ x = x+1 { :int -> int }
end

would match any of the following signatures, depending on which occurrences of int are
‘“abbreviated” to t:

sig type t wval f: int->int end
sig type t wval f: t->int end
sig type t wval f: int->t end

sig type t wval f: t->t end
Given that t denotes int, the four different specifications for £ express the same typ-
ing, so the inferred type of £ does not distinguish between them.
On the other hand, given
structure A =
struct

datatype ‘a D = d of ‘a
end

the structure expression
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struct

type t = int D

val £(d(x)) = d(x+1)
end

has the following potential signatures, only the last of which satisfies the signature closure
rule (the others contain free references to the structure A):

sig type t val f: A.D->A.D end
sig type t wval f: t->A.D end
sig type t val f£: A.D->t end
sig type t val f: t->t end

In general, the algorithm for inferring a well-formed signature for a structure expression
(or determining that it has none) is rather complex, and may not be fully implemented by
a given compiler. Furthermore, there will not always be a unique well-formed signature.
Hence it is advisable to provide an explicit signature when in doubt.

2.3. Inheritance

It will of course be commonplace to define new structures in terms of old ones. In
such cases the new structure will be called the derived structure and the older structures
on which it is based will be know as its antecedents.’ Antecedent structures are
“imported” into the definition of the derived structure simply by being referred to in that
definition. There is no special “import’ declaration.

Clearly a derived structure “‘depends’” on its antecedents, but the nature of that
dependence varies according to how the antecedents are used in the definition. The prin-
cipal distinction is between antecedents which are relevant only to the implementation of
the derived structure, and those which are relevant to its use as well.

As an example where the antecedent is relevant only to the implementation, imagine
a symbol table structure SymTab having the following signature

signature SYMTAB =

sig
type ‘a table
val nilst: ’‘a table
and extend: ‘a table -> “a table
and contract: ‘a table -> ‘a table
and putst: string * ‘a * ‘a table -> ’‘a table
and access: string * “a table -> ‘a
exception access: string
and putst: string

end

Suppose that SymTab implements its type constructor table in terms of stacks as
defined in the Stack structure of §2.1.2. The signature SYMTAB does not mention
stacks, and we can assume that it is irrelevant to the user of SymTab whether stacks of
any sort were used in its implementation. In this case, the fact that SymTab depends on

5 An antecedent structure is simply one whose name appears in the definition of the derived structure.
The relation of being an antecedent is not transitive, but we might use the term ancestor for its tran-
sitive closure. Note that the antecedent relation is not the same as the substructure relation.
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its antecedent Stack can remain implicit because it is only relevant to the internal
makeup of SymTab.

The principal reasons why an antecedent structure might be relevant to the use of a
derived structure are:

e The derived structure uses types inherited from an antecedent in an “‘external”

or ‘“‘visible” way, i.e. in such a way that the inherited types appear in the sig-
nature of the derived structure (§2.3.1).

e Exceptions inherited from the antecedent structure are raised within functions
of the derived structure (§2.3.2).

e An antecedent structure with state is used as a medium of communication with
the derived structure (i.e. structures as objects) (8§2.3.3).

We say that a derived structure depends explicitly on an antecedent when the antecedent is
relevant to the use of the derived structure for any of these reasons, and in this case we
call the antecedent structure a prerequisite of the derived structure.

The manner in which we deal with explicit dependence is one of the most charac-
teristic features of this language proposal. The dependency may be (and in certain cir-
cumstances, must be) acknowledged by incorporating prerequisite structures in the derived
structure as substructures. This makes structures self-contained, ir the sense that when-
ever we have access to a structure, we also have access, through its substructures, to any
antecedents that can help us make use of the structure. Achieving this kind of self-
sufficiency was the basic motivation for introducing the notion of substructure in the first
place. Technically, the combination of the derived structure with its antecedents
corresponds to forming an element of a dependent product; see [MACS6] for further
details.

2.3.1. Inherited types and signature closure

Here we consider the first form of essential dependency: the visible inheritance of
types. We will see that one side effect of the inclusion of prerequisite structures is that
signatures become closed, context-independent expressions.

We will investigate the phenomenon of type inheritance in terms of a fairly realistic
example. First we define a structure Exp that implements a data type of expressions with
associated operations.

signature EXP =
sig
datatype id = Id of string
datatype exp = Var of id
! App of id * (exp list)
val oper: exp -> id
and ntharg: exp * int -> exp
and varsof: exp -> id list

end

structure Exp: EXP =
struct
datatype id = Id of string
datatype exp = Var of id
i App of id * (exp list)
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fun oper(App(x,_)) = x
and ntharg(App(_,args), n) = nth(args,n)
and varsof(Var i) = i
| varsof (App(_,args)) = concat(map(varsof, args))

end

Now suppose we want to define another structure Subst that implements substitutions
for these expressions. We might (improperly) define this structure as follows:

structure Subst: SUBST =
struct

type subst = (Exp.id * Exp.exp) list

fun lookup(id,nil) = Exp.Var id
i lookup(id,(id’,e)::1) = if id=id’ then e else lookup(id,1l)

fun substitute s (Exp.Var id) = lookup(id, s)
! substitute s (Exp.App(id,args)) =

Exp.App(id, map(substitute s, args))

end
where

signature SUBST =
sig
type subst
val lookup: Exp.id * subst -> Exp.exp
and substitute: subst -> Exp.exp -> Exp.exp
end

The derived structure Subst depends essentially, and overtly on its antecedent Exp,
because it contains the functions lookup and substitute that operate on types inher-
ited from Exp. Clearly it will not be possible to make use of Subst except in a context
where Exp is also available. In fact, we could view Subst as being merely an enrichment
of the basic structure Exp.

Note also that if we define Subst directly in terms of Exp as above we get an
inferred signature that contains global references to Exp and is therefore context depen-
dent. We regard this as an unfortunate side effect that we would like to avoid.®

As indicated above, we will require the structure Subst to be ‘“‘closed” by incor-
porating Exp as a substructure and defining the rest of its components in terms of that
substructure rather than directly in terms of Exp. The definition of Subst still refers to
Exp of course, but only in the definition of the substructure; essentially, we will have
“internalized”” Exp. The new definition of Subst and its signature are

structure Subst: SUBST
struct
structure E = Exp
type subst = (E.id * E.exp) list
fun lookup(id,nil) E.Var id
i lookup(id,(id’,e)::1) = if id=id’ then e else lookup(id,1)

® It is possible to think of signatures as functions of structures under certain circumstances. See the
discussion of dependent function types in [MAC86].
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fun substitute s E.Var(id) = lookup(id, s)
]

1 substitute s E.App(id,args) =

E.App(id, map(substitute s, args))
end

signature SUBST =
sig
structure E: EXP
type subst
val lookup: E.id * subst -> E.exp
and substitute: subst -> E.exp -> E.exp
end

Note that the signature of the new Subst is completely closed (except for the reference
to signature EXP), since the external references to Exp have been replaced by references
to the locally bound structure variable E.

We make it mandatory that structures which visibly inherit types from antecedent
structures should be closed in this way, by imposing the signature closure rule of §2.2.2.
This rule strengthens the original structure closure rule of §2.1.1.by limiting the role
played by global structure and functor references. It also uncouples the signature environ-
ment from the structure environment, insuring that the meaning of a signature will not
depend on the structure environment.

2.3.2. Inherited exceptions

Although an inherited type is the most obvious reason why an antecedent structure
may be relevant to the use of the derived structure, there are other less obvious reasons.
The first has to do with exceptions. Suppose that we define a structure StackUser
using the structure Stack from §2.1.2 and a function £ defined in StackUser calls
Stack.pop:

structure StackUser =
struct

fun £(...) = ...Stack.pop(s)...

end

Assuming that the type Stack.stack does not appear in the signature of StackUser,
the dependence is not overt but it is still essential. Whenever we call the function
StackUser.f it may cause the exception Stack.pop to be raised, and if we wish to
trap that particular exception the antecedent structure Stack must also be available.

The idea of incorporating relevant antecedents as substructures also provides a way
of explicitly acknowledging dependence based on inheritied exceptions such as
Stack.pop. If we were to change the definition of StackUser to

structure StackUser =
struct
structure MyStack = Stack
fun £(...) = ...MyStack.pop(s)...

end
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then we would be assured that wherever StackUser was used one would have access to
the exception Stack.pop as StackUser.MyStack.pop. However, in this case the
inclusion of Stack as a substructure is not required to close the signature of
StackUser, so it is not enforced by the language. We might say that Exp was a man-
datory prerequisite of Subst but Stack is only an optional prerequisite of
StackUser. If Stack is not included, we will not be able to selectively trap the pop
exception unless independent access to Stack has somehow been provided.

2.3.3. Inherited objects

The other circumstance where it is useful or necessary to know about the antecedent
occurs when that antecedent maintains some private state variables that may be used for
indirect communication with the derived structure. Consider, for example, a structure
Buf that implements a buffer with operations put and get, and another derived struc-

ture BufUser that gets values from Buf and processes them:

structure Buf =
struct
local

val buffer

array(...)

in
fun get() =
and put(x)
end
end

structure BufUser =
struct

fun £(svs) = < w.BAf.get( ).,
end

Clearly BufUser does not inherit any types from Buf, and we may assume that func-
tions in BufUser do not raise exceptions defined in Buf. But Buf is still relevant to
the use of BufUser because it can be used to communicate values to BufUser. Once

again we can acknowledge this essential dependence by including Buf as a substructure of
BufUser:

structure BufUser =
struct
structure MyBuf = Buf

fun f(...) = ...MyBuf.get()...
end

As in the case of exception inheritance this inclusion is optional.

2.3.4. Discussion

(1) As indicated above, only visible inheritance of types forces a prerequisite struc-
ture to be included as structure. The other cases are optional, but if we abstract with
respect to a structure to form a functor (see §2.4) it is convenient for that structure to
include all its prerequisites. Otherwise it may be necessary to provide those prerequisites
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as separate parameters.

On the other hand, substructures may be included even when there is no dependency
involved. For instance, a structure might include several substructures simply as a means
of packaging together a collection of loosely related utilities. Also remember that an arbi-
trary structure expression can be used to define a substructure, so a substructure may be a
newly derived structure possibly including antecedents as its substructures.

(2) It is possible to avoid including whole substructures by causing only individual
types, exceptions, or values to be inherited in the derived structure. For instance, Subst
could have been defined as

structure Subst: SUBST =
struct
type my_id = Exp.id
and my_exp = EXp.exp
and subst = (my_id * my_exp) list

end
with the closed signature

signature SUBST =
sig
type my_id
and my_exp
and subst
val lookup: my_id * subst -> my_exp
and substitute: subst -> my_exp -> my_exp
end

Similar ad hoc declarations could be used to incorporate the Stack.pop exception in
StackUser and the Buf.put function in BufUser.

To some extent the question of whether whole structures or individual types and
values should be inherited is one of taste, but this proposal tacitly assumes that well
designed structures will form the most natural units of inheritance.

(3) In some cases, an antecedent structure as a whole is not essential, but one of its
substructures is. In such cases, it is possible to include only the relevant substructure of
the antecedent, or even some new structure derived from it. For example, a Unify
structure defined in terms of Subst might only need to inherit Subst.E, as in

structure Unify =

struct
structure Expr = Subst.E
fun unify(Expr.var(id), e): Expr.exp = ...

end
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2.4. Functors

2.4.1. Functor declarations

A functor is defined by abstracting a structure expression with respect to some or all
of the free structure variables occurring in it. The result is a kind of function that can be
applied to structures to produce new structures.

For example, suppose E is a structure of signature EQ as defined in §2.2.2. We will
assume that E consists of a type and an associated equality predicate. We can define a
derived structure EListEq that implements membership and list equality predicates for
lists of elements of type E.elem as follows:

signature LISTEQ = sig

structure Eqg: EQ

val member: Eg.elem * Eg.elem list -> bool

and eglists: Eg.elem list * Eg.elem list -> bool
end

structure EListEq: LISTEQ =

struct :
structure Eq = E
fun member(e,nil) = false
| member(e,e’::1) = Eq.eq(e,e’) orelse member(e,l)
and eqlists(nil,nil) = true

eqlists(nil,_) = false
eqlists(_,nil) = false
eqlists(e1::11,e2::12) = Eqg.eq(el1,e2) andalso eqlists(11,12)

end

Note that E appears free in the body of the definition of EListEq and that the definition
is uniform in E: EQ (i.e. it makes sense independently of the value of E). We can
therefore abstract with respect to E to define a functor ListEq that provides list
membership and equality predicates over any such structure:

functor ListEq (E: EQ): LISTEQ =

struct
structure Eq = E
fun member(e,nil) = false
| member(e,e’::1) = Eqg.eq(e,e’) orelse member(e,l)
and eqglists
end

The result signature specification, LISTEQ in this example, is optional, but the parameter
signature specification is always required. As in the case of ordinary structure declara-
tions, type inference is used to determine an anonymous result signature if one is not
explicitly specified.

The body, or right hand side, of a functor declaration need not be an encapsulated
declaration; it can be any sort of structure expression. Thus if F1 and F2 were functors
of appropriate types, we could define another functor in terms of them by declaring

functor F3(A: SigA) = F1(A, F2(A))

Functors are always declared using this sugared syntax, with the arguments following
the functor name on the left hand side, because there are no free-standing functor
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expressions corresponding to lambda expressions for ordinary functions. Functors may not
be passed as parameters to other functors, they can only be applied to structures. Thus
functors are analogous to first-order functions that can only be applied to nonfunctional
values. The “types” of functors are also left implicit; that is, we do not provide for the

expres7sion of “higher-order” signatures. See [MAC86] for further discussion of this
point.

2.4.2. Multiple instances

A functor can of course be applied many times to a variety of arguments. Indeed,
the basic point of abstraction is to be able to “instantiate” the structure forming the body
in the different contexts provided by the actual parameters, thereby creating specialized
copies of the abstracted structure.

However, even when a structure has no antecedent structures it is sometimes useful
to turn that structure into a nullary functor with an empty parameter list. This occurs typ-
ically when the structure defines some state variables and functions that operate on that
state; such structures are analogous to objects in languages like Simula 67 and Smalltalk.
For example, the functor StackFun defined below produces a new stack structure each
time it is applied (“instantiated”)‘8

functor StackFun () =
struct
local
val stack: int list ref = ref nil
{local stack data structure}

in
fun push x = (stack := x :: !stack)
and pop () = (stack := tl(!stack))
and top () = hd(!stack)
end
end

StackFun()
StackFun()

structure Stack1
and Stack2

Note that the structures produced by this functor do not contain a stack type; they
are stacks. The stack functor is a generator of stack objects, each with its own internal
data structures representing the state of a stack. It is therefore quite similar to a class in
Simula or Smalltalk. The closest thing to a stack type in this implementation is the result
signature of the functor, i.e.

sig
val push: int -> unit
and pop: unit -> unit
and top: unit -> int
end

7 This restriction might be relaxed in a future version. It would, for instance, be reasonable and
probably useful to allow Curried functors that would effectively produce functors as results. The
language presented in [MACB86] permits nested abstractions.

8 Here ref constructs updateable references to values, ! dereferences, and hd, t1, and :: (infix
cons) are the usual primitive functions for lists.
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which gives the interface, or set of functions available for operating on each stack object.

2.5. Type propagation

Ordinary type declarations do not hide the identity or structure of the types they
name. Thus within the scope of a declaration such as

type t = int * int

t is simply an abbreviation for the type intx*int and will match it during type checking.
The same is true of type declarations within explicit structure definitions. For instance,
after the declaration

structure A: sigA =
struct
type t = int * int

end

the qualified name A.t is also just an abbreviation for the type int*int, and will
match intxint in type checking. Qualified references via an explicitly defined structure
name such as A are said to be ‘“‘transparent”, and A is said to “propagate’ the identity of
its type component A.t. Note that type components are not made “‘abstract” simply by
being placed inside a structure.

On the other hand, references via bound structure variables (i.e. functor formal
parameters) are said to be ‘“‘opaque’, because they cannot be seen as denoting anything
beyond themselves. Thus in the body of

functor F(X: sigA) =
struct
s wlos Lo se
end

the qualified type name X.t has no external referent and in type checking matches only
itself. In general, references via ‘‘structure constants” (i.e. names that denote a particu-
lar structure) are transparent, while references via bound structure variables (functor
parameters) are opaque. The use of opaque references to achieve type abstraction is dis-
cussed further in §2.7.

The notions of transparent and opaque reference are relative ones, depending on
context. Consider the following definition:

functor G(X: sigA): sigG =
struct
structure B: sigB =
struct
type s = X.t list

end
B.s
end

Within the body of the functor definition B.s transparently denotes X.t 1list, while
X.t is opaque as before. After instantiating the functor body by the definition

structure C: sigG = G(A)
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the qualified reference C.B.s transparently denotes A.t list = (intsint) list.
Note how type components are “‘propagated’ through functor calls.

As a further illustration, consider the following structure with signature EQ (defined
in §2.2.2):

structure IntEq: EQ =

struct

type elem = int

val eq = (op =): int*int -> bool
end

IntEq interprets the type int by associating with it the standard equality predicate for
integers. The qualified name IntEq.elem is just another name for int, and conse-
quently the type of IntEq.eq is

IntEq.elem * IntEg.elem -> bool = int * int -> bool

and we are therefore justified in using IntEq.eq with ordinary integer expressions, as in
IntEq.eq(3, 2%5). The point is that building a structure around a type does not alter
or hide the identity or form of the type. In particular, it does_not make the type
“abstract”.

To see how type propagation applies when we make one structure a substructure of
another and when a new structure is created by a functor application, consider the
declaration

structure IntListEq = ListEq(IntEq)
By type propagation we have

IntListEqg: LISTEQ

IntListEq.Eq = IntEq

IntListEq.Eqg.elem = int
IntListEg.member: int * int list -> bool

Here is a somewhat more involved example involving lexicographic ordering of lists
of ordered elements (/\ in LexOrd denotes strict boolean conjunction, assumed to be
primitive):

signature ORDSET =

sig

type s

val le: s *# s -> bool
end

functor LexOrd (O: ORDSET): ORDSET =

struct
type s = O.s list
fun le(nil,_) = true

{ le(_,nil) = false
i le(x::1, y::m) = if O.le(x,y) /\ O.le(y,x) then le(l,m)
else O.le(x,y)
end
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structure IntOrd: ORDSET =

struct
type s = int
val le = (op <=)
end

{ IntOrd: ORDSET
IntOrd.s = int
IntOrd.le: int * int -> bool }

structure IntListOrd = LexOrd(IntOrd)
{ IntListOrd: ORDSET
IntListOrd.s = int list
IntListOrd.le: int list % int list -> bool }

These typings justify applying IntListOrd.le to ordinary integer list expressions, as in

IntListOord.le([1, x+1], (2%y)::1)

Note that in this example, the result structure of LexOrd is simply an ORDSET; it
does not inherit the parameter ORDSET, O, as a substructure. Thus although the element
type propagates from the parameter to the result, the ordering on elements does not.

The previous examples entail adding an interpretation to an existing type. When a
structure defines a type component in terms of a (generative) datatype, however, a new
type is created unique to that structure. That type cannot, of course, be operated on by
previously defined functions (except in a trivial way by polymorphic functions), but it will
propagate as the structure is used to build other structures. The internal constituents of
the datatype will be accessible if and only if the associated constructors are exported, so a
form of type abstraction can be obtained by defining the representation type as a datatype
and failing to export the constructors. The more general approach to abstraction
explained in §2.7 relies on the opacity of parameter references instead of the generative
nature of datatype definitions is discussed.

2.6. Coherence and sharing constraints

Complex programs will be built as layered hierarchies of structures, with higher level
structures defined in terms of facilities provided by lower level structures, and this
hierarchical organization will be (partially) reflected in the substructure relationships. It
will be common for several higher level structures to share the same lower level
antecedents, so the substructure dependency graph will be an acyclic directed graph in
general, rather than a simple tree. In fact, such shared antecedents are essential for com-
munication and cooperation between the higher level structures. Informally, we say that
structures are coherent when they can cooperate by virtue of shared antecedents.

In the absence of parameterization, coherence comes about naturally *“by construc-
tion”. That is, higher level structures are simply defined in terms of the same antecedent
structures. We can illustrate this point in terms of the following simplified outline of a set
of structures implementing a parser.
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structure Symbol =
struct
datatype symbol = mksymbol of string =
val mksymbol: string -> symbol =
and egsymbol: symbol * symbol -> bool =
end

structure AbstSyntax =
struct

structure Symb

type term = .

val Idname: term -> Symb.symbol =

Symbol

end

structure SymTable
struct
structure Symb
type info =
and table =
val mktable: unit -> table =
and lookup: Symb.symbol * table -> info =

Symbol

end

structure Parser =
struct
structure AS AbstSyntax
structure ST SymTable
val symtable = ST.mktable()
fun parse(...) =
.. ST.lookup(AS.Idname(t), symtable)
end

The functions ST.lookup and AS.Idname can be composed in the definition of
Parser because both of their types involve the type Symbol.symbol inherited from the
structure Symbol. Because of the sharing relationship (Figure 1),

Parser.AS.Symb = Symbol = SymTable.Symb
the actual types of the functions are

ST.lookup: Symbol.symbol * SymTable.table -> SymTable.info
AS.Idname: AbstSyntax.term -> Symbol.symbol

and therefore they may be composed.
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Parser

N

AbstSyntax SymTable

~N 7

Symbol
Figure 1. The dependency graph for the parser structures.

Note that because of type propagation, it is not strictly necessary that AbstSyntax
and SymTable share the same substructure Symbol. They might be based on two dif-
ferent Symbol structures, Symbol1 and Symbol2 say, that coincidentally share the
same  representation  type symbol, i.e. AbstSyntax.Symb.symbol =
SymTable.Symb.symbol. Such “accidental” compatibility would probably not be desir-
able, since the common representation type (e.g. int) might be interpreted quite dif-
ferently in the two structures (e.g. as indices into two different symbol table data struc-
tures).

Now suppose we wanted to use the parser mechanism implemented in the structure
Parser with various abstract syntaxes and various implementations of symbol tables. To
do this we would convert Parser into a functor by abstracting with respect to both
AbstSyntax and SymTable. The definition of the Parser functor would look some-
thing like this:

functor ParserFun(AbstSyntax: ABSTSYNTAX, Symtable: SYMTABLE)
struct
structure AS = AbstSyntax
val symtable = SymTable.mktable()
fun parse(...)
SymTable.lookup(AS.Idname(t), symtable)

end

where ABSTSYNTAX and SYMTABLE are the signatures of the original AbstSyntax and
SymTable structures.

Now consider the expression ‘“‘SymTable.lookup(AS.Idname(t), symtable)”
in the body of the functor ParserFun. In the structure Parser this had type checked
correctly because it was known ‘“‘manifestly” that the operations shared the same type
symbol. But now AbstSyntax and SymTable no longer refer to particular, known
structures; they are formal parameters representing arbitrary structures of the specified
signatures. These signatures insure that each parameter has a substructure Symb of sig-
nature SYMBOL (the signature of the structure Symbol), but they do not insure that
these two substructures are the same. We can infer that

AbstSyntax.Idname: AbstSyntax.term -> AbstSyntax.Symb.symbol
SymTable.lookup: SymTable.Symb.symbol * SymTable.table
-> SymTable.info

but we cannot presume that

AbstSyntax.Symb.symbol = SymTable.Symb.symbol (=)
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and therefore the expression in question does not type check.

The problem is that the functor parameter specification does not insure the required
“coherence”, or overlapping heritage, between the two parameter structures. The solution
is to add to the parameter specification of ParserFun a sharing constraint that asserts

the desired sharing of antecedent structures between the parameters. The modified
declaration is

functor ParserFun (AbstSyntax: ABSTSYNTAX, SymTable: SYMTABLE
sharing AbstSyntax.Symb = SymTable.Symb) = . .

The sharing constraint could have specified only that the type symbol must be shared, as
in (*), but as pointed out before, requiring that the entire Symb substructures be shared
guarantees that they will be interpreted in the same way by the associated operations.

In general, the parameter sharing specification for a module can include several
multi-equations of the form path| = ... = path, , each relating a set of parameter sub-
structures of the same signature or a set of type components. The equations involving
types can contain at most one ‘‘absolute” type term (i.e. a type term involving only per-
vasive primitives). This rule precludes constraints like “int = bool.”

There is another kind of sharing involved in the definition of functors, namely the
sharing between parameter structures and the result structure. This sort of sharing is
important because it determines how the result depends on the parameters, and this
dependence information is essential for performing static checking of other sharing con-
straints. In some formulations functional dependencies of this sort are expressed using
dependent function types (see [MAC86]). But in this design, functional dependencies are
not explicitly declared but are inferred from the definitions of functors. It may be useful
to make these inferred dependency specifications available to the user in some form.

2.7. Type abstraction

The present form of abstract type declaration in Standard ML depends on the gen-
erative nature of the datatype construct and uses the device of restricting the scope of the
associated constructors to a body in which interpretive functions for the type are defined.
Outside of that body, one cannot use the constructors to access the internal structure
(representation) of the type, so it is considered to be “abstract”.

Another, less artificial notion of type abstraction is provided by structure abstraction
as used in the formation of functors. If a parameter signature contains a simple type
specification, such as

type complex

then so far as the body of that functor is concerned the type complex must be treated as
abstract, because it is essentially a formal parameter whose potential bindings are
unknown. Thus, as suggested by Reynolds [Rey74], type abstraction can be reduced to a
kind of lambda abstraction over types and their associated interpretive functions (which in
his case were nested or curried abstractions, but in our case have been uncurried by pack-
aging the type and its functions together in a structure parameter). The structures to
which the functor is later applied supply implementations of the abstraction specified by
the parameter signature. Thus structure abstraction enforces the separation between
implementation and use of the abstraction, while functor application makes the connection
between the abstraction and its implementation(s).

We can employ this view of type abstraction as functional abstraction over structures
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to provide a new form of abstract type declaration. The idea is to regard the scope of the
declaration (e.g. at top level the rest of the program, i.e. all further top level declarations)
as implicitly forming the body of a functor that is abstracted with respect to a structure of
the signature specifying the abstract type and its interpreting functions. The implementa-
tion of the abstract type is regarded as the argument to which this functor is applied. The
definition and use of an abstraction with signature ABST and implementation structure
Impl therefore correspond roughly to the following declarations:

functor User (A: ABST) =

struct
silecir BT wisve {scope of abstraction}
end

User (Impl)

But as usual we sugar the combined abstraction and application as a declaration construct,
in this case using the keyword “‘abstraction’ (in place of the usual keyword “struc-
ture’’):

abstraction A: ABST = Impl

A

In the scope of this declaration, references via A are treated as opaque, as though A were
a functor formal parameter. As with ordinary structure declarations, the open declara-
tion, “open A”, makes it possible to refer directly to the types and operations of A
without using qualified names, but these abbreviated forms of reference remain opaque.

As noted in §2:5, the normal structure declaration does not provide type abstractions
because the rules of type propagation make references to type components transparent.
Consider the following program fragment:

signature POINT =
sig
type point
val x_coord: point -> int

end

structure P: POINT =

struct
type point = int % int
fun x_coord(x,_) = x
end

v ePrXicoorai(i3e4 ). e

The last expression is legal because P.point is recognized as equivalent to intxint,
but if we declared P as an abstraction, as in
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abstraction P: POINT
struct

type point = int * int

fun x_coord(x,_)

1
]

end

then the expression “P.x_coord(3,4)" would fail to type check. In practice, the hiding
of the types in an abstraction can be accomplished by ‘‘freezing” the type bindings so that
they are not expanded in the process of type matching (i.e. they match “by name”).

The distinction between ‘‘structure’ and “abstraction’ declarations is remin-
iscent of the distinction between let and lambda bindings with regard to polymorphism.
The type propagation rules are designed to let us take advantage of our knowledge of the
explicit definition of a structure, including its type components; when we define an
abstraction, we choose not to take advantage of this knowledge.

2.8. Signature and type checking

2.8.1. Signature matching

The type checking of structure and functor definitions involves one-way matching of
a candidate signature against a target signature. When checking a structure expression,
including a functor body, against its declared signature, the declared signature is the tar-
get and the inferred signature of the expression is the candidate. When checking a func-
tor application, the declared parameter signature is the target and the signature of the
corresponding actual parameter is the candidate. The matching relationship is written as
“candidate matches target”.

The matching process uses the fact that polymorphic types in value specifications are
considered generic, and will therefore match any instance. Thus the specification

val x: “a list -> bool
in a candidate signature will match the corresponding specification
val x: int list -> bool

in the target signature, but not the other way around.

We also permit a candidate signature to match a smaller target signature, i.e. one
which specifies only a subset of the bindings specified in the candidate signature. This
provides an implicit forgetful coercion from the ‘richer” candidate signature to the
“poorer’ target signature. For example, the candidate signature

sig
datatype ’‘a stack = nilstack | push of ‘a * ‘a stack
exception pop: unit and top: unit
val empty: “a stack -> bool
and pop: ‘a stack -> ‘a stack
and top: ‘a stack -> ‘a
end

will match the following target signature
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sig
type ‘b stack
val push: ‘b * ‘b stack -> ‘b stack
and empty: ‘b stack -> bool
and pop: ‘b stack -> ‘b stack
end

Note that a datatype specification in the candidate signature may match a simple type
specification in the target, as in the case of the stack type in this example. Further-
more, when this occurs, a constructor from the candidate type specification, such as push
in this case, may match a value specification in the target. As specified in the target sig-
nature, push is an ordinary function and cannot be used as a constructor in pattern
matching. When the target signature contains a datatype specification, the candidate must
also specify a datatype and the two specifications must match exactly (modulo type vari-
able names and the order of constructors).

Note also that the order of specifications in a signature is significant in signature
matching. It would be possible to extend the automatic forgetful coercion to also deal
with reorderings that did not violate the specification before use rule.

The process of pure signature matching proceeds as follows:

1. Match corresponding substructures:
For each substructure spec

structure X: SIGX

in the target, there must be a corresponding substructure spec with the same name
structﬁre X: SIGX’
in the candidate, and SIGX’ must match SIGX. Note that forgetful coercions can be
used in matching substructure signatures, recursively to any depth.
2. Match corresponding types:

a. For each simple type spec in the target there must be a corresponding type spec
(simple or datatype) in the candidate with the same arity.

b. For each datatype spec
datatype (’al,..,’am) tycon = con_1 of ty1 |
i con_n of tyn
in the target there must be a corresponding type spec
datatype (‘al,..,’am) tycon = con_1 of ty1’ |
i con_n of tyn’

in the candidate (modulo change of bound type variables and permutation of the
order of the data constructors), and the types tyi and tyi’ must agree assuming

the identity of corresponding substructures and types in the candidate and target
signatures.

3. Match corresponding value and exception bindings:
a. For every value specification

val id: ty

in the target, there is a corresponding specification
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val id: ty*

in the candidate, and ty is an instance of ty’, assuming the identity of
corresponding substructures and types of the candidate and target signatures.

b. Specifications of exceptions in the target and candidate must match exactly (they
are both monotypes).

When matching the signature of an actual structure against a declaration signature
constraint or a functor parameter specification, we need to modify the above procedure to

take into account the type bindings in the structure itself. For example, consider the
declarations

signature POINT =

sig
type point
val origin: point
end
structure P: POINT = -
struct
type point = int * int
val origin = (0,0)
end

The inferred signature of the structure expression in the declaration of P is

sig

type point

val origin: intsint
end

which does not match the signature POINT according to the above procedure because
point and int*int will not match in step 3.b. If we modify that step to take into
account the type bindings in the actual structure (P in this case), then these types will
match. (This is a sort of inverse process to type propagation.)

2.8.2. Typing structure components

The type propagation behavior discussed in §2.5 is implemented by the rules for typ-
ing references to structure components. The type specs for values and exceptions in a sig-
nature are specifications relative to the actual type components of structures having that
signature. Therefore, to get the true type of a value or exception component we instan-
tiate the type spec in the signature using the type bindings in the structure itself.

Consider, for instance, the structure IntOrd from the example on lexicographic
orderings, whose signature is ORDSET. What is the type of the qualified identifier
IntOrd.le? The type specification of le in ORDSET is s*s->bool, where s is the
type component of the signature, so to get the type of IntOrd.le we instantiate that
type with the type bound to s in IntOrd, namely int, yielding the type intxint-
>bool.

If the type of a structure value component is polymorphic, it can always be used
generically, even if the structure is a formal parameter of a functor. This is because the
signature matching rules insure that the corresponding value component of the actual
parameter will indeed be as polymorphic as the specification in the parameter signature.
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2.8.3. Checking sharing constraints

Sharing constraints can be checked statically based on two sources of information.
The first source is the current structure environment, which contains information on all
substructure relationships among existing structures. If functor M is defined by

functor M(X: SIGX, Y: SIGY sharing X.U = Y.V)

and we want to check the application M(A,B) where A and B are actual structures, then
we simply check that A.U and B.V are the same substructure or type.

When the parameters of a functor application are formal structure variables or com-
pound structure expressions we rely on a combination of declared sharing constraints
among the formal variables and statically inferred sharing propagation specifications for
the functors involved. Each functor’s sharing propagation specifications are inferred and
recorded implicitly by the compiler. See [MAC86] for further discussion of type specifica-
tions for functors.

2.9. Miscellaneous notes

2.9.1. Restrictions on module and signature declarations

Signatures and functors may only be declared at top level, while structures may only
be declared at top level or as components of other structures (including the bodies of func-
tor definitions). In particular, structures and functors cannot be declared within functions
or conditional expressions.

These restrictions are intended to prevent dynamic and conditional creation of struc-
tures, and thus insure that the whole hierarchy of structures is statically evident to the
compiler. This makes it possible for the compiler to statically interpret the indirections
involved in qualified names and produce code for efficient dynamic reference to structure
components even when these lie several layers deep in the hierarchy.

The restrictions should not be bothersome for those structures that implement inter-
preted types; after all, types are rarely declared within functions or conditional expres-
sions. For those structures implementing ‘“‘objects”, the restriction may indeed have a
constraining effect, but the use of structures as objects is already limited by the fact that
structures are not values and may not be manipulated by functions.

2.9.2. Sharing constraints in signatures

Strictly speaking, sharing constraints are only required in functor parameter specifi-
cations. But when sharing constraints specify sharing between substructures of a single
structure, it would be reasonable to allow them to be included in the signature of that
structure. Such “intrastructure’ sharing constraints could reduce the number of con-
straints required in functor parameter specifications, which would concentrate on “inter-

structure” constraints. For example, the result signature for the Parser functor (§2.6)
might be defined as

signature PARSER =
sig
structure AS: ABSTSYNTAX
and ST: SYMTABLE
sharing AS.Symb = ST.Symb

end
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A related extension would be to allow type identities as type specifications in signa-
tures, as in the following two examples
sig
type t = int list
val £: t -> int
end

sig
structure A: SIGA
type t = A.s * A.s

end

Both of these extensions would presumably continue to obey the signature closure
rule, i.e. the sharing equations and type identities would refer only to locally specified
types and structures.

2.9.3. Recursive modules

There are two problems that would have to be solved before mutually recursive
structure definitions could be admitted. First, it would have to be possible to detect all
indirect circularities among the type and value declarations of the mutually recursive struc-
tures and make sure that these conformed to the usual rules: circular type definitions
could involve only datatypes and circular value definitions could involve only functions
defined explicitly by lambda (i.e. fun) expressions. This requirement could probably be
satisfied by insisting that all the recursive structures are defined by encapsulated declara-
tions (i.e. “‘struct’ ... end” forms) and that none of the structures is used as an argu-
ment of a functor within any of the definitions.

The more serious problem is that mutually recursive structure definitions would gen-
erally involve cyclical substructure relationships. Consider the following declaration

structure rec A = struct

structure Ab = B

datatype a = a1 | a2 of B.b
end
struct

structure Ba A

datatype b = b1 | b2 of A.a
end

and B

What signatures should be inferred for A and B? It is clear that their signatures would
also have to involve mutual recursion, such as

signature rec SIGA

sig
structure Ab: SIGB
datatype a = a1 I a2 of B.b
end
sig
structure Ba: SIGA
datatype b = b1 | b2 of A.a
end

and SIGB

Circularities in the substructure relationship and mutually recursive signatures do not
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appear to be inherently problematic or infeasible, but there consequences have not yet
been explored in sufficient depth for them to be incorporated in the current proposal.

Mutually recursive functors seem to present even greater difficulties. Consider, for
instance,

struct
structure Ab

end

struct
structure Ba

end

functor rec A ()

B()

and B ()

A()

An instantiation of A or B would not terminate, or if it did terminate by some trick of
lazy evaluation the resulting substructure graph would not be well founded. This situation
is not atypical, so it does not appear to be possible to make sensible use of recursive func-
tors.

2.9.4. Views

Sometimes one wants to make an structure X of signature SIG1 masquerade as an
structure of some other, presumably simpler signature SIG2, so that X can be passed to
a functor requiring a SIG2 parameter. If SIG2 is a simple subset of SIG1 then the for-
getful coercion discussed in §2.8 will do the job. But in general a more serious transfor-
mation involving a change of names will be required. This process can be thought of as
creating a new “‘view’ of the structure [GOG83], or as applying a “‘signature morphism”
to the structure. Such a signature transformation can easily be expressed as a functor, or
as an ad hoc definition of a new derived structure.

For example, suppose the signature SET is defined as follows

signature SET =
sig
structure E: EQ
type set
val singleton: E.elem -> set
and union: set * set -> set
and member: E.elem * set -> bool
and subset: set * set -> bool
and egsets: set * set -> bool
end

Now suppose we wanted to consider an SET structure as an ORDSET ordered by the sub-
set relation, so that we could lexicographically order lists of sets. The functor that
expresses this view uniformly on all SET structures is (see 5 for definition of ORDSET)

functor SetOrd (S: SET) : ORDSET =

sStruct
type s = S.set
val le = S.subset
end

If IntSet: SET is a structure implementing sets of integers we can get an ordering of
lists of sets of integers by

structure IntSetListOrd = LexOrd(SetOrd(IntSet))
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Alternatively, we could create an ad hoc view of IntSet as an ORDSET by using a
structure expression as follows.

structure IntSetListOrd = LexOrd(struct
type elem = IntSet.set
val le = IntSet.subset
end)

Note, however, that these new views are new structures, though they do share with the
old structures, e.g. IntSetListOrd.s = IntSet.set.

3. Conclusions and Future Work

It should be emphasized that this design is tentative and to a large extent untested.
[t needs to be proved through (1) implementation, (2) extensive use in real programming,
and (3) thorough formalization and theoretical analysis. The proposal has been influenced
by a mixture of theoretical and practical influences, and a number of compromises have
been made that may not turn out to be optimal.

One of the major goals of the design is to support separate compilation of structures
and modules. But a good deal of work remains to be done to actually implement separate
compilation. The main task is to devise a scheme for representing and maintaining per-
sistent environments of signatures, structures, and modules. These environments might be
called “libraries” or ‘“‘systems”. On top of this facility one should be able to build tools
for version maintenance analogous to Unix’s make command and makefiles.

There are also a number of directions in which the design could be extended or
modified such as

(1) Pebble-like dependent function types (as in the language described in [MACS86]).

(2) Type declarations residing in signatures, where they can be shared by both users and
implementors of the signature.

(3) User-supplied pervasive bindings, i.e. letting the user declare bindings that will per-
vade the whole system like the built-in primitives do.

(4) Conditional structure expressions: it appears possible to differentiate between opaque
(or abstract) structures and transparent ones, and it seems possible to use conditional
expressions to define opaque structures.

I hope that this design, or something close to it, will not only help to improve the
structure of large ML programs and streamline the development process, but will in fact
lead to new programming styles and metaphors. A great deal of work lies ahead of us
before this hope is justified.
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Appendix A: Syntax

The following syntax specifications follow the conventions of § 2.8 of [MIL85],
except that keywords are identified by this font while syntactic metavariables are in
italics. The metavariables sig_id, str_id, and fnc_id range over ordinary identifiers used as
names for signatures, structures, and functors, respectively.

The syntax of the core language must be extended to admit the following qualified
forms of names at any applied occurrence within an expression or type. However, defin-
ing occurrences are still restricted to the simple, unqualified form.

QUALIFIED NAMES

str_path ::=
str_id . __ .str_id, (n=1)

var’ .=
var
str_path.var

con’ ;= *
con
str_path.con

exn’ =
exn
str_path.exn

tycon” ::=

tycon
str_path.tycon

SIGNATURES sig

sig =
sig_id (signature name)
sig spec, __ spec, end (signature specification)
spec ::=
datatype db
type <<tvarseq;>> tycon| and __ and <<tvarseq,>> tycon,
val <<op>>id,: ty; and __ and <<op>> id,: ty,
exceptionid;: ty, and __ and id,: ty,
str_spec
str_spec .=

structure str_id,: sig; and __ and id,: sig,



SIGNATURE DECLARATIONS sigb
sigh .=
sig_id = sig
sigh, and __ and sigh,

dec ::=
signature sigh

STRUCTURES str

str =
str_path
struct dec end
mod_id ( str_seq )

STRUCTURE DECLARATIONS strb

strb =
str_id <<: sig>> = str
strby and __ and strb,

dec ::=
structure sirb

FUNCTOR DECLARATIONS

path ::=
tycon
str_path<< .tycon>>

path_eq ::= .
path, = __ = path,

share_spec ::=
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(signature binding)

(multiple, n = 2)

(signature declaration)

(basic structure expression)
(module application)

(multiple, n = 2)

sharing path_eq, and __ and path_eq,

param_spec =

striidy: sigi, - Str_idy:

fncb =

sigy, <<share_spec>>

fnc_id ( <<param_spec>> ) <<: sig>> = str

fncb | and __ and fncb,

dec ::=
functor facb
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OPEN

dec .=
open str_id, __ str_id, (n=1)

Restrictions

(1) Functor and signature declarations can appear only at top level. Structure declara-
tions may appear at top level or immediately within a basic structure expression.
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