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Letter from the Editors

After a regrettably long absence, Polymorphism is back!. The fact that it has been a long
time since the last issue is not a reflection of lack of activity in the ML/LCF/Hope world,
however. On the contrary, 1984 was a year of significant progress, particularly in the
development of Standard ML.

During the first half of 1984 reactions to the proposals published in Polymorphism 1.3
were gathered and evaluated, and last June a meeting was held in Edinburgh to consider
revising the proposals. The meeting lasted three days and was judged a great success, in
that on almost all major issues it proved easy to arrive at a consensus solution. We felt that
the design of Standard ML had been significantly improved and simplified. A report on the
deliberations of that meeting is included in this issue.

Robin Milner incorporated the proposed changes in a revised version of the the Stan-
dard ML core proposal, and David MacQueen completely rewrote the Module proposal in
response to suggestions made at the June meeting. We expect to present these documents to
you in the next issue of Polymorphism, due out this April.

ML is getting a good deal of exposure in the wider programming language community.
For instance, there was a session devoted to ML at the ACM Symposium on Lisp and Func-
tional Programming last August in Austin Texas. The papers presented were "A Proposal
for Standard ML" by Robin Milner, "Modules for Standard ML" by David MacQueen, "Com-
piling a Functional Language” by Luca Cardelli, and "A Compiler for Lazy ML" by Lennart
Augustsson. Judging by the number of papers mentioning ML at the last two ACM POPL
conferences, ML is already becoming something of a benchmark among languages.

This year we expect that the focus will begin to turn from language design to language
implementation. Work will continue and will intensify in Edinburgh with the start of an
SERC funded ML project. A workshop devoted to implementation of functional languages is
to be held this February in Gothenburg. At Cambridge, Dave Matthews has written a Stan-
dard ML compiler in his language Poly (see Polymorphism 1.2). We hope to be able to report
on these developments in future issues. In fact, we invite contributions for a special issue of
Polymorphism devoted to techniques and experiences relevant to the implementation of ML
and related languages.

Another possible special issue topic would be ML derivatives or spinoffs, such as
Gothenburg’s LML and Luca Cardelli's Amber. We would be happy to receive reports on
any such efforts.

Also, don’t forget to send us address updates. As you know, we are keeping the bur-
den of producing and distributing Polymorphism low by sending copies to one individual
representing each institution or research group. We depend on those individuals to pro-
pagate the newsletter to their local communities.

Luca Cardelli
David MacQueen

AT&T Bell Laboratories
Murray Hill, NJ 07974



Report on the Standard ML Meeting
Edinburgh, 6-8 June 1984

David MacQueen
AT&T Bell Laboratories

Robin Milner
University of Edinburgh

Introduction

A three day meeting on Standard ML was held in Edinburgh from 6 June to 8 June 1984. The
meeting was convened by Robin Milner with the goal of further refining the definition of the core
language and integrating the proposals for modules and stream IO with the core design. The
meeting was also intended to plan for the further development of the language, including its imple-
mentation, the prospective programming environment and tools, formal definition, documentation,
and distribution. We feel we made considerable progress toward agreement on the language we
intend to IMLPEMENT, FORMALLY DEFINE and PROMULGATE over the next few years.

Present at the meeting were:

Rod Burstall Edinburgh

Guy Cousineau INRIA/Paris VII
Jim Hook CornelVEdinburgh
Dave MacQueen Bell Labs

Robin Milner Edinburgh

Kevin Mitchell Edinburgh

Larry Paulson Cambridge

Don Sannella Edinburgh

John Scott Edinburgh

Comments were also received from Alan Mycroft and Kent Karlsson summarizing the views of
people at Chalmers Institute of Technology in Gothenburg. Regretfully, Luca Cardelli of Bell
Labs, Gerard Huet of INRIA, and Mike Gordon of Cambridge were not able to attend the meet-
ing, but they were represented by their colleagues who were present.

This report will be organized by topics, with some indications of the chronological order of discus-
sions. The often repeated phrases such as "it was agreed that ... " and "it was felt that ..." are
meant to indicate the consensus opinion of the participants. The term "Core language” refers to
the basic language described in "A Proposal for Standard ML", without modules cr IO.

Modules [Wednesday AM (June 6), Thursday PM]

1. Module tutorial

Dave MacQueen gave a tutorial on the module proposal, setting forth the basic principles behind
the design and explaining the need for some of its special features, particularly inheritance and
sharing specifications.



2. Instance terminology

It was agreed that the term "instance” used in the first draft of the Modules proposal was unsatis-
factory and should be replaced. The term is not descriptive (instance of what?) and conflicts with
the commonly used terminology, "instance of a polytype”. Rod noted (see item 3 below) that the
notion of an instance should be considered the primary one, with modules playing a secondary
role. This also argues against the word "instance”, with its connotations of being derivative.

The term "environment” would be aptly descriptive, but it is too long for convenience and is com-
monly used to refer to other, more general concepts. There was a consensus for provisionally
adopting the term "structure” as a replacement for “instance”, despite its use in Algol 68 and C to
denote records. One can think of the term as short for the qualified phrase "environment struc-
ture”. This choice proved satisfactory as the meeting went on, so we will adopt this new terminol-
ogy throughout the remainder of this record of the meeting.

3. Structure expressions

Rod Burstall advocated thinking of structures as the primary concept and keeping in mind the anal-
ogy
STRUCTURE - value

SIGNATURE -  type
MODULE - function

in deriving the module syntax. This analogy should induce harmony even though we have to
impose certain constraints (such as no higher order modules) that weaken it.

One should think of large EXPRESSIONS, composed of applications of modules and denoting
structures, as defining environments in which to evaluate small expressions denoting values.

4. Sharing

4.1 Sharing specifications restricted to signatures

It was agreed that sharing specifications can indeed be confined to signatures, as suggested by
Robin, rather than allowing them also to occur in module bodies. The idea is to regard the param-
eter specifications of a module as a special form of signature, namely an anonymous signature con-
sisting of structure specifications (the formal parameter specs) and sharing specifications that indi-
cate inter-parameter sharing. Sharing specifications that were previously part of the module body
become part of the parameter signature.

4.2 Checking of sharing specifications (propagation of sharing constraints)

Parameter sharing specifications may be checked dynamically when a module is applied to actual
structures by inspecting the parameter structures themselves. When defining a module, it must be
statically verified that the sharing specs of the result signature are implied by the sharing specs of
the parameter signature. This can be done by building a dummy structure hierarchy graph and
applying a congruence closure algorithm to it, but the algorithm has not yet been worked out in
detail. The question of how to handle sharing that involves globally referenced structures needs to
be considered; perhaps this problem can be dealt with by referring to a structure hierarchy graph
for the global structure environment. A similar problem arises from globally referenced modules
in structure expressions used, for instance, in substructure declarations. These points should be
addressed in the second draft of the module proposal.

8. Nongenerative declarations '
Nongenerative declarations are those that simply bind a name to a preexisting entity, as in

val x = 3+2

Most value bindings are nongenerative, since we think of typical data values as existing
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independently of their being denoted by an expression. A generative declaration, on the other
hand, causes a name to be bound to a new, freshly created object. A typical generative declaration
is .

val x = ref 3

Note that it is really the generative nature of the expression on the right hand side that makes this
declaration generative, so we can think of all declarations as being simple identity declarations (in
the Algol 68 terminology), and then consider whether the defining expression is generative or not.
Currently all type and exception declarations are generative (we can imagine that the current
exception declaration syntax is short for something like

exception e:ty = new_exception(ty)

where new_exception is a generator of exceptions). But to build structures on existing types, we
need nongenerative type declarations within structure and module definitions. The solution pro-
posed is that we make all type declarations be identity declarations of one of the following forms

type id = ty {nullary type constructor}

type tvars id s ty {1st-order type constructor}
where ty can be any type expression, including the tagged union type construct, which will be the
one generative form of type expression (and which can only occur as the top-level defining expres-
sion in type declarations). The syntax for the tagged union was initially to be the same as before,
ie.

con [of ty] {! con [of ty]ls
This had the unfortunate effect that the degenerate form

type foo = empty

was ambiguous, because empty might be either a single constant constructor in a tagged union
expression (in which case neither "of" nor "!" appears), or it might be a type constant. The pro-
posed resolution of this problem was to always assume the second interpretation, making it impos-
sible to define a new union type with a single nullary constructor.

There was still some unease about the syntax of unions, depending as it did on one or the other of
two infixed keywords. This seemed to be bad syntactic hygiene. After the meeting, Robin pro-
posed adding the initial keyword "data” to signal the union construct. Thus

type foo = data empty

type rec ‘a list = data nil
! cons of (‘a » ‘a list)

This proposal entails the restriction that in (mutually) recursive type declarations, all defining type
expressions must be unions. This could be seen as roughly analogous to the restriction that in
(mutually) recursive function declarations, all the defining expressions must by fun- (i.e. lambda-)
expressions.

This treatment of type declarations restores the former type abbreviation facility. We can define
types like

type ‘a pair = ‘a & ‘a
and then int pair and int * int will match. A pragmatic matter is how to propagate names such as

pair when printing types. One simple solution is to let the named forms remain intact unless and
until they must be expanded for the purpose of unification with another type during type checking.

Robin also felt that a nongenerative form of exception declaration such as

exception e = e’
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would be useful to overcome certain scoping problems. These arise (e.g.) from certain weaknesses
of the local ... in ... declaration construct, where one might want to declare an exception in the
local part so that it could be raised in functions defined there, and also export the exception so that
it could be trapped latter. This is not possible with the "local ... in ..." construct. A
similar problem concerns local declarations of several mutually recursive concrete (i.e. union)
types, some of which are to be exported.

6. Local structure and module declarations.

We could see no clear reason why one could not locally declare structures and modules and signa-
tures locally within expressions and declarations. [This would intermix structure and module bind-
ings with ordinary value and type bindings in the environment, but this is already the case at top
level.] These local bindings would presumably be subject to the usual scoping rules and would not
be persistent. As with top-level structure and module declarations, they would not be allowed to
contain free type and value identifiers.

However, such local declarations would probably be cumbersome and inefficient to use, and would

probably be rarely used (just as type declarations within functions are rare in the core language).
The matter requires further study.

7. Mutual recursion in signatures, structures and modules

Don gave an example illustrating that, without mutually recursive signatures and structures,
modules involving families of mutually recursive types and functions are likely to be rather large;
he showed how mutual recursion could permit the resolution of such modules into- several smaller
modules.

It was pointed out that it is not easy or natural to extend the constraints on the rhs’s of mutually
recursive function declarations (i.e. that they be explicit lambda-abstractions) to cover mutually
recursive structures -- particularly as it is not manifest in a module declaration that it will be used
to define mutually recursive structures. It was agreed to omit (mutual) recursion from the initial
modules proposal, but the question should be born in mind for the future (possible minor experi-
ment).

8. Matching structures to signatures
It was agreed that the matching of candidate to target signatures be relaxed in two ways:

(1) the target need only match a subset of the candidate,
(2) ordinary functions in the target can be matched by constructors in the candidate.

When matching the body signature of a module declaration (the candidate) against its explicit
result signature (the target), point (1) allows us to screen out local bindings, thus eliminating many
uses of "local” or "export”. When matching the signature of a parameter structure (the candidate)
against the formal parameter signature of a module (the target), point (1) amounts to a kind of
implicit (forgetful) coercion. The implementation of this coercion will probably involve the crea-
tion of a restricted version of the parameter structure.

Point (2) is seen as a natural rule that avoids the necessity for declarations like

type ‘a stack = {data} empty’ | push’ of ‘a
val empty = empty’
val push = push’

whose purpose is to allow constructors to be exported as ordinary functions.

9. Inheritance
Suppose a module

M(S: SIG1): SIG2 = ...
specifies that S should be inherited by the result structure. Don suggested that when M is applied
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to a structure Str, the resulting structure M(Str) should inherit all of Str, not just the restricted
substructure that matches the formal parameter signature SIG1.

There were a couple of objections to this proposal

(1) SIG2 would no longer accurately specify the effective signature of the result of applying M.
If declared signatures are not accurate, the process of accessing components of structures will
be much more complex, and correspondingly less efficient.

(2) The suggestion appears to violate principles of information hiding. - The environment of a
program fragment should be limited to that which is explicitly specified to be necessary and
sufficient. Implicit inheritance of extraneous bindings makes it difficult to determine what
the current environment consists of, because it will depend on the dynamic history of struc-
ture creation rather than the static information in the explicit signatures.

After some discussion of these points, the suggestion was not accepted.

10. Open

It was felt that the present meaning of "open” in structures and signatures was a bit too delicate.
It was proposed that, whatever is adopted, the meaning of open should be expressible - and
expressed - as a derived form, and should be as simple as possible. In particular, the “open"
declaration construct should obey the usual scoping rules. However, the general intention of open
was accepted as necessary.

[There should probably be two different keywords for the two uses of "open" as a declaration con-
struct ("open Str") and as a flattening modifier of instance specifications in signatures (“open
instance §”). These uses are related, but it is not clear that either can be derived from the other.]

11. Modified form of module and structure declarations

In note distributed before the meeting, Robin proposed a simplified syntax for structure (formerly
instance) and module declarations (RM 23/5/84). These suggestions were adopted with minor
changes. The new syntax is as follows

struct ::= gtruct dec end {immediate structure}
struct_path {qualified name}
mod_id(struct_seq) {module application}
stb ti= gtruct_id{: sig} = struct ({structure bindings}
gtb1 and ... and gthn {simultaneous}
dec ::= gtructure stb
mod t:= module mod_id({param_sig}){: sig} = gtruct

param_sig ::s param_spec_seq {, share_spec_seq}

(the parameter sharing specifications have been made part of the anonymous parameter signature,
which still provides for multiple structure parameters). In addition, immediate structure expres-
sions may contain free signature, structure, and module identifiers. Note that a structure binding
may involve a coercion if an explicit signature specification on the lhs is a restriction of the signa-
ture of the rhs struct expression.

As noted in the Module proposal (Section 3.5, Views), immediate structure expressions can be
used to succinctly express coercions of a given structure into a new signature. It was agreed that
special syntactic forms for expressing such coercions were probably unnecessary.



Stream I/O [Wednesday PM]

On Wednesday afternoon we turned our attention to Luca Cardelli’s proposal on character stream
Vo.

1. Bipolar vs unipolar streams

A major goal of Luca’s proposal is to deal uniformly with i/o to and from files and "filter"
proms)cs (i-e. processes that transform a single input character stream to a single output character
stream).

We felt that having all streams be bipolar might be excessively general. Unipolar (input only or
output only) streams seem more basic, or at least are more familiar, and it appears that a "matched
pair” of such streams could usually perform the same functions as a single bipolar stream. Furth-
ermore, unipolar streams could have two different types, say instream for input streams and
outstream for output streams, and then the type checker could catch certain errors, such as an
attempt to write to an input stream.

With unipolar streams, Luca’s primitives would become

stream : unit -> outstream
file : string -> instream
save string =-> outstream =-> unit

channel : string -> instream # outstream
terminal: instream # outstream

Note that these modified primitives are weaker than Luca’s, since they do not provide for
®  appending characters to an existing file (either output or input)
®  writing and reading an internal buffer file

We could either decide to introduce additional primitives to recover this functionality, or to forgo
these capabilities because they are not felt to be necessary. Another possibility is to have a third
type of bipolar streams, called bistream, with Luca’s original primitives (suggested by Gothen-
burg).

2. Stream attributes

Several people were concerned with how to support unusual I/O requirements associated with win-
dow management or screen editing on character oriented terminals.

These applications should be within the scope of the character stream I/O model (as has been
amply demonstrated by existing screen-oriented systems under Unix and VMS). The problem is to
control certain attributes of streams connected to terminal devices, such as buffering, editing, flow
control, and control character interpretation. These features of terminal /O are generally con-
trolled by the operating system, which provides commands or system calls to allow the user to
change them. We need a relatively transparent, operating system independent way of managing
these "external” characteristics of terminal streams from within ML.

One suggestion was that there should be a stream-status "record” that could be inspected to deter-
mine the properties of a stream and updated to change these properties (problem: how would the
operating system be informed of these updates in the status record). There is the question of what
type this status record would have, and whether it would be operating system dependent.

Another suggestion was that there should be a set of status reading and setting functions on
streams. These might fail if applied to streams not associated with a terminal-like device. The sig-
nature of this set of functions might, or might not be operating system dependent.

[This raises the general question of accessing operating system services from within ML. Certain
"core” services could possibly be packaged as a structure with a fixed, operating system indepen-
dent signature. More exotic services, and more exotic forms of IO, could be packaged as special-
ized structures.]



3. Buffering and lookahead

Does the lookahead primitive have to be as elaborate as that described in the proposal? It was sug-
gested that a simpler version with type

lockahead: stream => int -> string
(return a string of the next n characters to be read)

would suffice. There was some discussion of the advisability of using the input stream for buf-
fered character processing as opposed to using integer or character or byte arrays as buffers for
such processing.

A phone call to Luca gained his provisional approval for these points, and it was agreed that Robin
and Kevin would draft a revised VO proposal and circulate it (particularly to Luca) for comment.

The Core language [Thursday AM, Friday AM]

1. Use of period

It was agreed to replace the period in matches, freeing it for use in qualified names. Robin’s pro-
posal to require varstructs to be atomic in matches, and replace the ensuing period by nothing at
all, was not favored. ".." and "=>" were proposed as replacements for the period. [Later in the
meeting, after considering some example program texts, "=>" came to be preferred. It was con-
sidered to be particularly appropriate for case expressions, and not too annoying in fun expres-
sions. ]

2. Comment convention

The use of comment brackets, rather than "comment to end-of-line” was favored by the majority,
though some felt that having both forms would be convenient. It was tentatively agreed to replace
"{ }" by "(# #)" or some such pair of decorated brackets to free "{ }" for possible use else-
where in the language. Luca was reported still to favor single character brackets of some kind.

[Later in the meeting it was suggested that "{ }" might be used to delimit the tagged union con-
struct in type declarations, but this suggestion was not adopted. No other immediate use of "{ }"
was found, so it is still open to us to retain "{ }" for comments. ]

3. Escape sequences in strings

It was decided that string escape sequences were not in need of reinvention and that the best
course was to adopt the widely known conventions of the Unix system and the C language. There-
fore the following escape sequences were adopted:

\n a single character that the system will interpret as an end-of-line (linefeed in Unix)
\t tab
\c contral character ¢ (for any printing character ¢ for which
there is a corresponding control character)
\ooo  single character with ASCII octal code 000 (3 octal digits)
\c the character ¢ (in all other cases)

Later Luca commented that using octal codes for characters was obsolete and that perhaps ASCII
character codes should be given in decimal.
4. Infix directives
Larry proposed that infixes be introduced by a restricted form of declaration
infix precedence id’ = id

where id has already been declared as a function (of pairs) using noninfix syntax. This would
have the desirable effect of associating infix status with a binding, rather than with an identifier,
and would render nonfix superfluous.
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This was (reluctantly) not accepted, mainly because it would forbid the use of infix syntax for a
function within its (often recursive) declaration. It was also pointed out that the normal use of an
infix directive, which would just precede the declaration of the function to which is was intended to
refer, is quite natural.

But it was noted that some care will be needed in specifying infix status in signatures. In particu-
lar, it was agreed that if id is declared with infix status in (the signature of) a structure S, then
S.id will not possess infix status (because it is a compound identifier distinct from the identifier S).

8. Labelled products

It was agreed that Dave MacQueen would propose an extension to the core language incorporating
labelled products, in harmony with the current unlabelled products (an perhaps yielding them as a
derived form). The core language definition will not include the extension at first, but the exten-
sion will be circulated for comment and adopted with fairly high priority, since ML-in-ML can use
labelled products with advantage. The main design decision is between an unqualified, free-
standing labelled product construct, and a qualified construct which is somehow a derived form
reducing to unlabelled products in combination with constructors. It may be that two alternative
proposals will be circulated for comments.

Meanwhile, Robin’s derived form for selectors in the core language (Section 6.2) will be dropped,
together with the standard selectors hd and tl. This is to insure no conflict with the labelled pro-
duct extension.

6. Real numbers .
It was accepted that a primitive type "real” would be included in the language and that

(a) standard functions like "+" are overloaded, with two types: "int # int -> int" and
"real # real -> real”. [This exceptional admission of ad hoc overloading for the
arithmetic operators is an acknowledgement of the strength of conventional usage. It is not
expected to set a precedent. ]

(b) no coercion is allowed; one must write "sqrt(3.0) + 1.0", not "sqrt(3) + 1". But
explicit coercion functions such as

real: int => real
trunc: real =» int

will be provided.
(c) real constants will include floating point forms like "=35.78-1".
(d) the usual standard functions like sin, cos, arctan, log, exp, sqrt will be included.

Reals will be incorporated into the core language document, but details relegated to an Appendix
as far as possible. [Luca later asked whether the IEEE floating point standard might be used.]

7. Definition of div and mod

The core proposal states that "div and mod are defined as in PASCAL". It was pointed out by
Gothenburg that these operators are not well defined in Pascal. It was agreed that Robin would
find an appropriate definition to include in the core definition.

8. Layered patterns and "as”

We reaffirmed the importance of layered patterns and the appropriateness of the keyword "as" for
their formation, despite a skeptical query from Gothenburg.



9. Where

Guy urged that the deletion of the where construct be reconsidered (Bob Constable has expressed a
similar sentiment). The reasons for discarding "where" were reviewed; they are

(a) If infix directives are allowed in where declarations as they are in let declarations, then the
directive would textually follow the occurrences of the identifier to which it applied, causing
rather severe difficulties for the parser.

(b) Experience has shown that the "where" construct is very error prone because of the difficulty
of determining its scope at a glance, particularly when "where"s are nested or intermixed
with "let"s.

It was decided (reluctantly) that it was best to leave the "where” construct out.

Friday, AM resumed discussion of remaining core language issues.

10. abstype

It was recognized that the current abstype will become redundant - or at most a derived form --

when the modules proposal is enriched (or even in the present proposal). [See Appendix on struc-
tures and abstraction.]

In view of the fact that the Core language will be adopted as standard before the modules propo-
sal, and that the latter must be allowed to develop without prejudice, it was felt that abstype
should not be dropped from the Core (nor replaced there by an ad hoc form involving signatures
and structures), but that in the Core language document there should be a clear indication that it
will become redundant.

We were also optimistic that abstype constructs would be auromatically convertible to forms involv-
ing structures and signatures, when these forms are fully defined; this is because the compiler,
when reporting the bindings exported by and abstype effectively computes its signature.

11. Abstraction

Dave pointed out that abstraction will be obtainable in two ways, when modules are present: (a)
by hidden constructors (abstype), and (b) by signatures and structure abstraction. The realization
that the special generative nature of union types (with their constructors) is not needed to support
data abstractions raises the intriguing possibility of making do with a simple, nongenerative
labelled-union construct. This would simplify the type system by not unnecessarily conflating the
notions of type abstraction and labelled-union, and would mean that purely structural type match-
ing could be used. However, the question of whether special constructor functions would still be
necessary to mediate the unwinding of recursive types remains to be settled.

It was recognized that this is a research matter, and that it is better to proceed with the current use
of constructors because such an overhaul would involve a deep re-design of the language. [A pos-
sible Major Experiment.]

12. Nonlinear varstructs (patterns)
Guy pointed out that, with repeated variables in varstructs, such pleasant declarations as
val MP(x ==> y, x) = y

would be possible (where "w=>" is an infix constructor representing implication, and MP is a func-
tion encoding the rule Modus Ponens). It was recognized that such repeated variables would only
be admissible at types admitting equality, but this would be no barrier in principle.

This feature was felt to be a bit too complex for the present, particularly as its impact on optimized
implementations of pattern matching had not been explored. However, it was agreed that it would

be a valuable subject for an experiment, noting that Guy has implemented it (with a nonoptimal
matching algorithm).
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13. Muitiple patterns per rule

Another extension to the pattern matching facilities that was mentioned was a sort of alternative
construct that would allow one to preface the same rhs with several patterns. All these patterns
would have.to bind the same variables, presumably. The purpose of such a construct would be to
avoid having to make several copies of a large rhs expression in a match, as in

case exp of
red => large-expression?
green => large-expression2
blue => large-expression2
orange => large-expressioni
yellow => expression3

which would become

case exp of
red or orange m> large-expression?
green or blue => large-expression2
yellow => expression3

It was pointed out that this problem could be ameliorated by abstracting the repeated expression as
a function. There was not enough interest to pursue this issue, but it might be future minor exper-
iment. It doesn’t appear to present any problems for merged pattern matching.

14. "local” declarations

It was noted that Luca’s "export ... from ... end" declaration construct avoids some of the limita-
tions of "local ... in ... end" [generative bindings that must be both exported and visible to the
local declarations], but that it should not be added to the Core language at the moment. .Its pri-
mary use has been to support the prototype, substandard module facility, and it was liable to be
made redundant by signature matching rules in the revised module proposal.

15. Exception raising and handling
Larry complained about the three forms "handle”, "trap”, and "?" for catching exceptions, and he
was supported. Robin recalled various people suggesting the keyword "with" (or some such key-
word), as in

handle exid with match
Adopting this suggestion, it was agreed that we demolish escape and trap and allow the forms

raise exid with exp
handle exid with match

with derived forms for the unit case

raise exid
handle exid exp

standing for (respectively)

raigse exid with ()
handle exid with () => exp

Furthermore, Kevin remarked that the wild card handler ("?") sometimes produced unintended
effects, given that it traps all exceptions including the user generated exception "interrupt” pro-
duced by “C. It was felt that this relatively "undisciplined” exception handling construct should not
be favored with a particularly simple syntactic form, though some felt reluctant to abandon this
convenient notation. As an elegant and agreeable compromise it was suggested that we add the
special wild card handler form
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handle ? exp
See the Appendix: "Afterthoughts on exceptions” for further development of these ideas.

16. Varstruct terminology
We agreed to adopt the word "pattern” for "varstruct”.

17. Printing values .

As a rudimentary aid to debugging, and for other purposes, it would be helpful to be able print
more or less arbitrary ML values.

It was proposed that two "functions” be included:

print: ‘a =-> ‘a
makestring: ‘a -> string

The effect of "makestring(exp)” is to yield a string which corresponds exactly to what would be
printed if exp was evaluated at top level (without its type); however, the type assigned to this par-
ticular occurrence of exp will determine the string produced. This is because makestring, like =,
must interpret the type of its argument (either during compilation or dynamically) to decide what
the result will be. [We could call such functions "type-driven".]

The function print is also type-driven, and has the effect of printing the representation string (the
same as returned by makestring) on the standard output stream while returning its argument as its
result (to facilitate inserting print commands for debugging with minimal perturbation of the code).

When the VO primitives are defined, it will turn out that "print exp” will be nearly equivalent to
something like

output outstream (makestring exp) ‘
but “print" is still needed as a primitive, because the general polymorphic definition
val print v = (output outstream (makestring v); v)

will not work because the type context to drive makestring is not available.

Rod suggested that the "functions” print and makestring could be made into syntax rather than
function applications; at first this seemed nice (in view of their nonstandard type-driven seman-
tics), but on closer inspection this would be confusing due to the different syntactic binding pre-
cedence. It would also preclude their being passed as parameters (with appropriate type qualifica-
tion) as is possible with "=",

Unlike "=", makestring and print should not fail when applied to arguments with polymorphic or
abstract types. Rather, like top level printing, they should print a reasonable representation of
whatever structure is revealed by the type. It would also be very desirable that a prettyprinter be
used to lay out the printed representation. [In fact, since ultimate layout constraints (e.g. width of
line, current indentation) are probably not available when generating a string using makestring, it
might be better to generate a list of strings which could be used as input to a layout routine as in
an Oppen-style prettyprinter. ]

Another variant would be a (type-driven) function

typrint: ‘a -> ‘a

that would print out both the value and type of its argument.
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Plans [Friday PM]

L. Projects and Documents

1.  We would like to produce two journal articles - one on the Core, and one on Modules. It
would be appropriate to build them around a series of examples.

2. We would like to produce an abstract syntax -- or probably two: (1) the bare syntax, and )
the syntax with derived forms included. There might also be justification for having both a
clean reference abstract syntax, and a more elaborate, implementation-oriented abstract syn-
tax. The reference syntax would serve as a skeleton for the implementation syntaxes.

3. We need to investigate formal semantics, both operational and denotational. The former
should be related to an eval function. We could also challenge Peter Mosses to apply his
abstract semantic algebras to ML.

4. We want a tutorial text, or possibly more than one. Luca’s manual is already written and
can serve as a first approximation. The new book on Scheme sets a standard to aim at.

5. Acollection of these documents, including a tutorial text and reference manual might be col-

lected together and published as a book at the appropriate time.

1. Implementation

1.

3.

We need a strategy for building portable implementations. This probably means settling on a
particular FAM code and a form for its external presentation. The bootstrapping strategy for
bringing up new implementations needs to be carefully designed. [We might use the
Smalltalk 80 strategy as a pattern. This would involve a common representation of a "system
image" that could be brought up on various implementations of the abstract machine.]

As a different exercise, we need a fast implementation, to convince the world of ML’s viabil-
ity. It is particularly important that ML not gain a reputation as an impractical, toy
language. This goal probably cannot be compatible with full portability, at least initially.

We would like a profiling tool, or set of tools, as an aid in tuning the implementation.

III. The ML Programming Environment

1:

At least the following ingredients of an environment need to be considered
Editors
structure, or syntax directed, and text (screen-oriented)
Debugger :
selective tracing, break points, facilities for examining the
state of a "live" computation, metalevel access
Configuration or system management
library facilities (relating modules and structures to files)
version consistency, automatic recompilation
Graphics
Operating System interface
interprocess communication
low-level VO

Can we (should we) introduce concurrency in ML? How do we establish communication
between a newly created process and its creator? Is this to be done by shared structures
(structures as monitors)? For interprocess communication, how much do we rely on com-
munication mechanisms provided by an existing operating system. Note also that Kevin is
already experimenting with CCS style processes in ML.

What is the ML "top level"? Normally one will work within an ML "system”, which will
constitute a (persistent) environment of signatures, modules, and structures(?). New module
and structure declarations will extend or augment a system, but how will such extensions be
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made permanent and persistent? How does this relate to the lower level at which we evalu-
ate ML expressions; for example, at which level are structures declared? These questions
concern the interface between the module proposal and "configuration management”.

IV. Distribution

We agree that ML is "public domain". Rod proposed that we should impose a distribution fee of
around 100 pounds, and also suggest to clients that they make an ex gratia payment. This was
thought to be about the right level of financial involvement; the distribution fees and ex gratia
payments could provide a useful expense fund. We should distinguish this distribution mechanism
from agreements (with ICL for example) to help make ML run on particular machines.

An alternate, low overhead means of distribution would be to allow access to ML implementations
and tools via FTP over networks (SERCnet and ARPA). News distribution lists could be used to
disseminate announcements and bug fixes. Users could report bugs by network mail.

V. Agenda of Future Tasks

0. ML Meeting report. [Dave MacQueen - June 84]

1.  Abstract syntax (reference) definition. [Jim Hook - Summer 84]

2. Revised core definition. [Robin Milner - Summer 84]

3. Revised character stream VO proposal. [Robin Milner, Kevin Mitchell - Summer 84]
4.  Revised module proposal. [Dave MacQueen - Summer 84]

S.  Labelled product proposal. [Dave MacQueen, Robin Milner - Summer 84]

6.  Parser for Core language. [John Scott - Summer 84]

7. Collection of ML lecture notes and tutorial examples. [Larry Paulson - Ongoing]
VI. Future Experiments

1. Minor

®  nonlinear patterns
@  recursive structures
®  exceptions as (pseudo)constructors

2.  Major
®  persistent structures
®  concurrency
®  meta/object interface
®  theories as structures

Appendix: Structures and abstraction

It was noted that the abstype construct could eventually be superseded by the used of structures,
particularly with the liberal signature matching rules [Modules, item 8]. For instance, consider the
abstype declaration of sequences:

abstype rec ’‘a seq = data null ! prefix of ‘a » ‘a seq
with val empty = null
val rec concat null s = g

| concat (prefix(x,s1)) s2 = prefix(x, concat s1 s2)
end

This would be equivalent to defining a named structure Sequence and then opening it:

structure Sequence: sig type ‘a seq
val empty: ‘a seq
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val concat: ‘a seq -> ‘a seq -> ‘a seq
end
= gtruct

type rec ‘a seq = data null | prefix of ‘a = ‘a seq
val empty = null
val rec concat null s = g

| concat (prefix(x,s1)) 82 = prefix(x, concat

end

open Sequence {optional, to avoid qualified names}

One could also have introduced the signature of Sequence as a named signature before declaring
Sequence. One could introduce a derived form that would avoid the need to introduce a name for
the structure and open it; this might amount to little more than replacing “structure Sequence” by
some keyword like "abstraction”. However, this derived form may not be worth introducing, since
the above syntax is not too cumbersome and the name of the abstraction structure serves a useful
role as documentation.

In the Sequence example, abstraction depends on the generative nature of the union type declara-
tion along with the screening function of signature matching. Suppose we wanted to define an
abstract type whose representation was an existing type, as in

signature POINT =
sig type point
val x_coord: point => int
val y_coord: point =-> int
val eqpoints: point # point -> bool
val mkpoint: int # int -> poiat
end

structure Cartesian: POINT =
struct
type point = int # int
val x_coord(x,_) = x
and y_coord(_,y) = y
and eqpoint(p1,p2) = pi=p2
and mkpoint(x,y) = x,y
end

The problem with this example is that Cartesian is not "abstract”, because the default type propa-
gation rules mean that Cartesian.point will continue to match int*int. In order to use Cartesian as
an abstraction, we need to conceptually abstract “the rest of the program” with respect to the signa-
ture POINT (and type check it with respect to that signature), and then supply Cartesian as the
actual parameter. This requires a new syntactic form, such as

abstraction Cartesian: POINT =
struct

end

Appendix: Afterthoughts on Exceptions

After the meeting, Robin thought about the problem implied by Kevin’s remark: how do we pro-
gram something that will handle all exceprions except a given exception such as "interrupt"? We
cannot write

exp handle interrupt raise interrupt
handle ? exp”’

81 82)
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val concat: ‘a seq -> ‘a seq -> ‘a seq
end
s gtruct

type rec ‘a seq = data null | prefix of ‘a # ‘a seq
val empty = null
val rec concat null s = 8

| concat (prefix(x,s1)) 82 = prefix(x, concat

end

open Sequence {optional, to avoid qualified names}

One could also have introduced the signature of Sequence as a named signature before declaring
Sequence. One could introduce a derived form that would avoid the need to introduce a name for
the structure and open it; this might amount to little more than replacing "structure Sequence” by
some keyword like "abstraction”. However, this derived form may not be worth introducing, since
the above syntax is not too cumbersome and the name of the abstraction structure serves a useful
role as documentation.

In the Sequence example, abstraction depends on the generative nature of the union type declara-
tion along with the screening function of signature matching. Suppose we wanted to define an
abstract type whose representation was an existing type, as in

signature POINT =
sig type point
val x_coord: point =-> int
val y_coord: point -> int
val eqpoints: point # point -> bool
val mkpoint: int s int -» point
end

structure Cartesian: POINT =
struct
type point = int # int
val x_coord(x,_) = x
and y_coord(_,y) s y
and eqpoint(pi,p2) = pisp2
and mkpoint(x,y) = x,y
end

The problem with this example is that Cartesian is not "abstract”, because the default type propa-
gation rules mean that Cartesian.point will continue to match int*int. In order to use Cartesian as
an abstraction, we need to conceptually abstract "the rest of the program” with respect to the signa-
ture POINT (and type check it with respect to that signature), and then supply Cartesian as the
actual parameter. This requires a new syntactic form, such as

abstraction Cartesian: POINT =
struct

end

Appendix: Afterthoughts on Exceptions

After the meeting, Robin thought about the problem implied by Kevin’s remark: how do we pro-
gram something that will handle all exceptions except a given exception such as "interrupt"? We
cannot write

exp handle interrupt raise interrupt
handle ? exp’

81 82)
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because the attempt to transmit the interrupt exception is foiled by the second wild-card handle
clause. What seems to be needed is a non-nested, simultaneous form for combining exception
handlers. A possible syntax would be

ematch ::s eclause |} ... || eclause
eclause ::= exid with match
exlid exp {a derived form}
? exp {wild-card form}

and then handle expressions have the syntax "exp handle ematch”. The above interrupt example is
then

exp handle interrupt raise interrupt
Il ? exp’

Although this was not discussed at the meeting, Robin proposes to add it to the revised exception
facility since it also facilitates the writing of multiple handling and goes very little beyond what
was discussed.

In describing the above proposal to Dave, Robin noted a kind of pun that could be used to
motivate the use of "with" as the keyword in both the raise and handle constructs. One could
think of the with as an operator (or infix constructor?) that binds an exception and its value into a
single compound object. In the phrase

raise ( exid with exp )
the "with" is constructing this exception-value object, while in
handle ( exid with x ) => exp’

the "with” is being used for destructive pattern matching (the pattern would always have to contain
an explicit, constant exception as its first component, of course(?)). In the case of a multirule
match in a handler, one could preserve the analogy by replicating the "exid with " part of the pat-
tern for each rule. Then ‘ '

handle exid with nil => exp1
| x::1 => exp2

would become

handle exid with nil => exp1
! exid with x::1 => exp2

This pleasing parallel between exception raising/handling and construction/pattern-matching breaks
down in the special derived forms for the unit case where we have gotten rid of "with". We could
extend the analogy to the unit case, simplify the syntax somewhat, and harmonize with our general
principle of preferring constants over nullary functions by always omitting "with" and regarding the
exceptions themselves as playing the role of the constructor [this revives in a new form an earlier
suggestion of Rod’s that exceptions be replaced by constructors]. The above handler would then
become

handle exid(nil) => exp1
| exid(x::1) => exp2

The unit case syntax would be modeled on match rules with constant constructors as patterns, thus
handle interrupt s> exp

Having integrated the exception and the associated match, one is tempted to merge the simultane-
ous handlers construct into one big match, so that

handle ex1 with nil => exp1
| x::1 => exp2

i1 ex2 with u,true => exp3
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| u,false => expd
would become

handle ex1(nil) => exp1i
| ex1(x::1) => exp2
| ex2(u,true) => exp3
| ex2(u,false) => expd

We could even replace the wild-card handler "?" by a top-level wild-card pattern "_", as in

handle interrupt => exp1
| _ => exp2
The problem with this generalization is that it doesn’t necessarily agree with the implicit "two level
matching” semantics of the simultaneous handler construct, in which we first match the exception

and then match the value. The single level exception match would appear to simultaneously match
the exception constructor and its value argument, so that the handler

handle exc(nil) => exp1
| _ => exp2

would handle "raise exc([2;3])" by evaluating exp2 instead of generating a match failure after trap-
ping exc. (It is not entirely clear which of these behaviors is to be preferred in the abstract, but
for the sake of continuity with the past we should prefer the latter). Permutation of the clauses, as
in
handle ex1(nil) => exp1

| ex2(u,false) => expd

| ex1(x::1) => exp2

| ex2(u,true) => exp3

would not necessarily cause difficulties, given that merged pattern matching would automatically
regroup patterns with the same exception name together.

A compromise syntax that would acknowledge the special two level matching semantics of handlers
would be to require clauses with the same exception to be grouped together and separated by "|".
Then the previous example becomes

handle ex1(nil) => exp1
| ex1(x::1) => exp2
Il ex2(u,true) => exp3
| ex2(u,false) => expd

And we could also require "?" to be used instead of "_" as the exception wild-card, as in

handle interrupt => exp1i
Il ? => exp2

The corresponding syntax for raising exceptions would again use the exception as a constructor:
raise interrupt

raise ex2(3,true)

(Note that in both raise expressxons and handlers, the cxccption would have to be the top-level
operator of the "expression” or "pattern”.)

Whether it would be a good thing to push this analogy between exceptions and constructors is not
yet clear. We might regard this as the subject of a future experiment.
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1. Introduction

Polymorphic typechecking has its foundations in a type system devised by Hindley [Hindley
69], and later rediscovered and extended by Milner [Milner 78]. As implemented in ML [Gordon
79, Milner 84], this type system shares with Algol 68 properties of compile-time checking, strong
typing and higher-order functions, but it is more flexible in allowing polymorphism, i.e. the ability
to define functions which work uniformly on arguments of many types.

Milner’s polymorphic typechecking algorithm has proved very successful: it is sound, effi-
cient, and supports a very rich and flexible type system. It can also be used to infer the types of
untyped or partially typed programs.

However, the pragmatics of polymorphic typechecking has so far been restricted to a small
group of people. The only published description of the algorithm is the one in [Milner 78] which is
rather technical, and mostly oriented towards the theoretical background.

In the hope of making the algorithm accessible to a larger group of people, we present an
implementation, in the form of an ML program, which is very close to the one used in LCF, Hope
and ML [Gordon 79, Burstall 80, Milner 84]. Although clarity has sometimes been preferred to
efficiency, this implementation is reasonably efficient and quite usable in practice for typechecking
large programs.

Only the basic cases of typechecking are considered in the program presented below, and
many extensions to common programming language constructs are fairly obvious. The major non-
trivial extensions which are known so far (and not discussed here) concern overloading, abstract
data types, exception handling, updatable data, and labeled records and union types. Many other
extensions are being studied, and there is a diffuse feeling that important discoveries are yet to be
made, both in the theory and the practice of typechecking.

This paper presents two views of typing, as a system of type equations and as a type infer-
ence system, and attempts to relate them informally to the implementation.

2. A simple applicative language

The language considered here is a simple typed lambda calculus with constants, constituting
what can be considered the kernel of the ML language. The evaluation mechanism (call-by-name
or call-by-value) is immaterial for the purpose of typechecking.

The concrete syntax of expressions is given below; the corresponding abstract syntax is given
by the type "Term" in the program at the end of this paper (parsers and printers are not provided).

Term 1=
Identifier |
‘i Term ‘then’ Term ‘else’ Term |
‘fun’ Identifier ‘.’ Term |
Term Term |
‘let’ Declaration ‘in’ Term |
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Declaration =
Identifier ‘=" Term |
Declaration ‘and’ Declaration |
‘rec’ Declaration |
‘(" Declaration )’

Data types can be introduced into the language simply by having a predefined set of identif-
iers in the initial environment; this way there is no need to change the syntax or, more impor-
tantly, the typechecking program when extending the language.

For example, the following program defines the factorial function and applies it to zero:

let rec factorial n =

if zeron

then succ 0

else (times (pair n (factorial (pred n))))
in factorial 0

3. Types .

A type can be either a type variable «, B, etc., standing for an arbitrary type, or a type
operator. Operators like int (integer type) and bool (boolean type) are nullary type operators.
Parametric type operators like - (function type) or x (cartesian product type) take one or more
types as arguments. The most general forms of the above operators are « - B (the type of any
function) and a x B, (the type of any pair of values); « and B can be replaced by arbitrary types to
give more specialized function and pair types. Types containing type variables are called
polymorphic, while types not containing type variables are monomorphic. All the types found in
conventional programming languages, like Pascal, Algol 68 etc. are monomorphic.

Expressions containing several occurrences of the same type variable, like in a - @, express
contextual dependencies, in this case between the domain and the codomain of a function type.
The typechecking process consists in matching type operators and instantiating type variables.
Whenever an occurrence of a type variable is instantiated, all the other occurrences of the same
variable must be instantiated to the same value: legal instantiations of a - a are int - int, bool -
bool, (B x £ - (B X §, etc. This contextual instantiation process is performed by unificarion,
[Robinson 1] and is at the basis of polymorphic typechecking. Unification fails when trying to
match two different type operators (like int and bool) or when trying to instantiate a variable to a
term containing that variable (like « and a - B, where a circular structure would be built). The
latter situation arises in typechecking self-application (e.g. fun x. (x x)), which is therefore con-
sidered illegal.

Here is a trivial example of typechecking. The identity function I = fun x. x has type « - a
because it maps any type onto itself. In the expression (I 0) the type of 0 (i.e. int) is matched to the
domain of the type of 1, yielding int - int as the specialized type of I in that context. Hence the type
of (1 0) is the codomain of the type of I, which is int in this context.

In general, the type of an expression is determined by a set of type combination rules for the
language constructs, and by the types of the primitive operators. The initial type environment
could contain the following primitives for booleans, integers, pairs and lists (where - is the func-
tion type operator, list is the list operator, and x is cartesian product):

true, false : bool
0,1, s : int
suce, pred : int < int

zero : int - bool



pair ta=fB-(aXxp)
fst t@axB)-a

snd t(axXB)-B

nil : o list

cons ¢ (a X a list) - a lst
hd talist-a

tl : a lst - o list

null : a list - bool

4. The type of ’length’

Before describing the typechecking algorithm, let us discuss the type of a simple recursive
program which computes the length of a list:

let rec length =
fun L.
if nuil 1
then 0
else succ(length(tl 1)) -
in ...

(we write length = fun L ... instead of the equivalent but more elegant length 1 = ... for convenience
in the discussion below).

The type of length is a list - int; this is a polymorphic type as length can work on lists of any
kind. The way we deduce this type can be described in two ways. In principle, typechecking is
done by setting up a system of type constraints, and then solving it with respect to the type vari-
ables. In practice, typechecking is done by a bottom-up inspection of the program, matching and
synthesizing types while proceeding towards the root; the type of an expression is computed from
the type of its subexpressions and the type constraints imposed by the context, while the type of
the predefined identifiers is already known and contained in the initial environment. It is a deep
property of the type system and of the typechecking algorithm that the order in which we examine
programs and carry out the matching does not affect the final result and solves the system of type
constraints.

The system of type constraints for length is:

[1] nul : a list - bool
[2] 1 : B list - B list
31 © : int

[4] suce : int - int

[S5] nulll : bool

6] © Ty

[7]1  succ(length(tl 1)) ty

[8] if nulll then 0
else succ(length(tl 1)) sioy

[9] null
[10] 1
[11] null ]

es oo oo
m O O
]
)

[12] o
(13] 1
[14] 111

™ o o



[15] length 18-t
[16] t11 8
[17] length(tl ]) t
[18] succ HE RN
[19] length(tl]) Tk
[20] succ(length(tl 1)) HBN
[21] 1 LT

[22] if null ] then 0
else succ(length(tl 1)) t v
[23] fun L if null | then 0
else succ(length(tl)) :p-v

(24] length tw
[25] fun 1. if null ] then 0
else succ(length(tll)) : =

Lines [1-4] express the constraints for the predefined global identifiers, which are already
known. The conditional construct imposes [5-8], that the result of a test must be boolean, and the
two branches of the conditional must have the same type y, which is also the type of the whole
conditional expression. The four function applications in this program determine [9-20]; in each
case the function symbol must have a functional type (¢.g. & - e in [9]); its argument must have
the same type as the domain of the function (e.g. 5 in [10]), and the result must have the same
type as the codomain of the function (e.g. € in [11]). The lambda-expression [23] has a type p - v,
given that its parameter has type u [21] and its body has type v [22]. Finally the definition con-
struct imposes that the variable being defined (length [24]) has the same type as its definition [25].

Typechecking length consists in (i) verifying that the above system of constraints is consistent
(e.g. it does not imply int = bool), and (ii) solving the constraints with respect to =. The expected
type of length (= = B list - int) can be inferred as follows:

=P -V by [25, 23]
p=0d=00lst by [21, 13, 12, 2]
v=vy=int by (22, 8, 6, 3]

Considerably more work is needed to show that B is completely unconstrained, and that the
whole system is consistent. The typechecking algorithm described in the next section systematically
performs this work, functioning as a simple deterministic theorem prover for systems of type con-
straints.

Here is a bottom-up derivation of the type of length which is closer to what the typechecking
algorithm really does; the consistency of the constraints (i.e. the absence of type errors) is also
checked in the process:

[26] 1 5 [10]
[27] nulll : bool
e = bool; 8§ = a list; (11, 9, 1]
[28] O : int
Yy = int; [6, 3]
[29] t11 : B list
b =plist; £ =B list; B = a3 (26, 27, 12-14, 2]
{30] length(tl ) 2

6 = B lst; [15-17, 29]



[31] succ(length(tl 1)) ¢ int
L =k = int; [18-20, 4, 30]
[32] if nulll then 0
else succ(length(tl 1)) : int [5-8, 27, 28, 31]
[33] fun ) if null ] then 0
else succ(length(tl 1)) ¢ B list - int
r = B list; v = int; [21-23, 26, 27, 32]
[34] length ¢ B list - int ;
7 = f list - int; [24, 25, 33, 15, 30, 31]

Note that recursion is taken care of: the types of the two instances of length in the program
(the definition and the recursive function call) are compared in [34].

§. Typechecking
The basic algorithm can be described as follows.

1. When a new variable x is introduced by a lambda binder, it is assigned a new type variable
meaning that its type must be further determined by the context of its occurrences. The pair
<x,a> is stored in an environment (called TypeEnv in the program) which is searched every
time an occurrence of x, is found, yielding a (or any intervening instantiation of it) as the
type of that occurrence.

2. In a conditional, the if component is matched to bool, and the then and else branches are uni-
fied in order to determine a unique type for the whole expression.

3. In an abstraction fun x. e the type of e is inferred in a context where x is associated to a new
type variable.

4. In an application f a, the type of f is unified against a type A - B, where A is the type of a
and B is a new type variable. This implies that the type of f must be a function type whose
domain is unifiable to A; B (or any instantiation of it) is returned as the type of the whole
application.

In order to describe the typechecking of let expressions, and of variables introduced by let
binders, we need to introduce the notion of generic type variables. Consider the following expres-
sion:

fun f. pair (f 3) (f true) [Ex1]

In Milner’s type system this expression cannot be typed, and the algorithm described above
will produce a type error. In fact the first occurrence of f determines a type int - g for f, and the
second occurrence determines a type bool - 8 for f, which cannot be unified with the first one.

Type variables appearing in the type of a lambda-bound identifier like f are called non-
generic because, as in this example, they are shared among all the occurrences of f and their
instantiations may conflict.

One could try to find a typing for Ex1, for example by somehow assigning it (@ - B) - (B X
); this would compute correctly in situations like (Ex1 (fun a. 0)) whose result would be (pair 0 0).
However this typing is unsound in general: for example succ has a type that matches « - g and it
would be accepted as an argument to Ex1 and wrongly applied to true. There are sound extensions
of Milner’s type system which can type Exl, but they are beyond the scope of this discussion.

Hence there is a basic problem in typing heterogeneous occurrences of lambda-bound identf-
iers. This turns out to be tolerable in practice, because expressions like Ex1 are not extremely use-
ful or necessary, and because a different mechanism is provided. We are going to try and do better
in typing heterogeneous occurrences of let-bound identifiers. Consider:



Jet f = fun a. a [Ex2)
in pair (f 3) (f true);

It is essential to be able to type the previous expression, otherwise no polymorphic function
could be applied to distinct types in the same context, making polymorphism quite useless. Here
we are in a better position than Ex1, because we know exactly what £ is, and we can use this infor-
mation to deal separately with its occurrences.

In this case f has type a - a; type variables which, like a, occur in the type of let-bound iden-
tifiers (and that moreover do not occur in the type of enclosing lambda-bound identifiers) are
called generic, and they have the property of being able to assume different values for different
instantiations of the let-bound identifier. This is achieved operationally by making a copy of the
type of f for every distinct occurrence of f.

In making a copy of a type, however, we must be careful not to make a copy of non-generic
variables, which must be shared. The following expression for example is as illegal as Ex1, and g
has a non-generic type which propagates to f:

fung letf=g [Ex3]
in pair (f 3) (f true)

Again, it would be unsound to accept this expression with a type like (@ - B) - (B8 % B) (con-
sider applying succ so that it is bound to g).
The definition of generic variables is:
A type variable occurring in the type of an expression e
is generic iff it does not occur in the type of the binder
of any lambda-expression enclosing e.
Note that a type variable which is found to be non-generic while typechecking within a lambda

expression, may become generic outside it. This is the case in Ex2 where a is assigned a non-
generic a, and f is assigned a - a where a is now generic.

To determine when a variable is generic we maintain a list of the non-generic variables at
any point in the program: when a type variable is not in the list it is generic. The list is augmented
when entering a lambda; when leaving the lambda the old list automatically becomes the current
one, so that that type variable becomes generic. In copying a type, we must only copy the generic
variables, while the non-generic variables must be shared. In unifying a non-generic variable to a
term, all the type variables contained in that term become non-generic.

Finally we have to consider recursive declarations:

letrecf= ...1...
In..f..

which are treated as if the rec where expanded using a fixpoint operator Y (of type (a = a) = a):

letf=Yfunf. ... T...
in..f..

it is now evident that the instances of (the type variables in the type of) f in the recursive definition
must be non-generic, while the instances following in are generic.

S.  Hence, to typecheck a let we typecheck its declaration part, obtaining an environment of
identifiers and types which is used in the typechecking of the body of the let.

6. A declaration is treated by checking all its definitions (x:& = t,, each of which introduces a pair
<xpT;> in the environment, where T, is the type of ;. In case of (mutually) recursive
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declarations x, = t, we first create an environment containing pairs <xpa,> for all the
being defined, and where the a, are new non-generic type variables (they are inserted in the
list of non-generic variables %or the scope of the declaration). Then all the y's are
typechecked in that environment, and their types T, are again matched against the a, (or their
instantiations).

6. A digression on models, inference systems and algorithms

There are two basic approaches to the formal semantics of types. The most fundamental one
is concerned with devising mathematical models for types, normally by mapping every type expres-
sion into a set of values (the values having that type); the basic difficulty here is in finding a
mathematical meaning for the - operator [Scott 76] [Milner 78] [MacQueen 84].

The other, complementary, approach is to define a formal system of axioms and inference
rules, in which it is possible to prove that an expression has some type. The relationship between
models and formal systems is very strong. A semantic model is often a guide in defining a formal
system, and every formal system should be self-consistent, which is often shown by exhibiting a
model for it.

A good formal system is one in which we can prove nearly everything we "know" is true
(according to intuition, or because it is true in a model). Once a good formal system has been
found, we can "almost” forget the models, and work in the usually simpler, syntactic framework of
the system.

Typechecking is more strictly related to formal systems than to models, because of its syntac-
tic nature. A typechecking algorithm, in some sense, implements a formal system, by providing a
procedure for proving theorems in that system. The formal system is essentially simpler and more
fundamental than any algorithm, so that the simplest presentation of a typechecking algorithm is
the formal system it implements. Also, when looking for a typechecking algorithm, it is better to
first define a formal system for it.

- Not all formal type systems admit typechecking algorithms. If a formal system is too power-
ful (i.e. if we can prove many things in it), then it is likely to be undecidable, and no decision pro-
cedure can be found for it. Typechecking is usually restricted to decidable type systems, for which
typechecking algorithms can be found. However in some cases undecidable systems could be
treated by incomplete typechecking heurisrics (this has never been done in practice, so far), which
only attempt to prove theorems in that system, but may at some point give up. This could be
acceptable in practice because there are limits to the complexity of a program: its meaning could
get out of hand long before the limits of the typechecking heuristics are reached.

Even for decidable type systems, all the typechecking algorithms could be exponential, again
requiring heuristics to deal with them. This has been successfully attempted in Hope [Burstall 80]
for the treatment of overloading in the presence of polymorphism.

The following section presents an inference system for the kind of polymorphic typechecking
we have described. We have now two distinct views of typechecking: one is "solving a system of
type equations”, as we have seen in the previous sections, and the other is "proving theorems in a
formal system”, as we are going to see now. These views are interchangeable, but the latter one
seems to provide more insights because of its connection with type semantics on one side and algo-
rithms on the other.

7. An inference system

In the following inference system, the syntax of types is extended to type quantifiers Va. 7.
In Milner’s type system, all the type variables occurring in a type are intended to be implicitly
quantified at the top level. For example, a = B is really Va. VB. a = B. However, quantifiers
cannot be nested inside type expressions.

A type is called shallow if it has the form (Va;. - - Va,. 1) where n=0 and no quantifiers
occur in 7. Our inference system allows the construction of non-shallow types: unfortunately we do
not have typechecking algorithms able to cope with them. Hence, we are only interested in
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inferences which involve only shallow types. We have chosen to use type quantifiers in the infer-
ence system because this helps explain the behavior of generic/non-generic type variables, which
correspond exactly to free/quantified type variables. For a slightly different inference system which
avoids non-shallow types, see [Damas 82].

Here is the set of inference rules. [VAR] is an axiom scheme, while the other rules are
proper inferences. The horizontal bar reads "implies”. The notation A F e: T means that given a
set of assumptions A, we can deduce that the expression e has type 7. An assumption is a typing of
a variable which may be free in the expression e. The notation A.x: t stands for the union of the
set A with the assumption x:7; and 7[o/a] is the result of substituting o for all the free
occurrences of a in 7.

[VAR] Ax:thx:t

cam A g
[ABS] A :(-4;;.05:8;: @

[COMB] Ale :: :(: e’)::i- e:a
G e
e

(ER] Z%:ev:ﬁ (a not free in A )
PEC) e

As a first example, we can deduce the most general type of the identity function:
(fun x. x): Va. a = a.

xio Xt o [VAR]
F(funx. x): o = a [ABS]
F(fun x. x): Va.a = a [GEN]

A specialized type for the identity function can be deduced either from the general type:

F(fun x. x):Va.a = a
F (fun x. x): int = int [sPEC]

or more directly:

x:int Fx:int [VAR]
F (fun x. x): int = int [ABS ]
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We can extend the above inference to show (fun x.x)(3): ins;

x:int, 3:int b x: int [VAR]
3: int b (fun x. x): int = it [ABS]  3:imt}+ 3:int [VAR]
3:inmt + (fun x. x)(3): int [coMB]

Here is an example of a forbidden derivation using non-shallow types, which can be used to
give a type to (fun x. x x), which our algorithm is not able to type (here ¢ = Va. a - a):

x:dFxid [VAR]
x:b Fx:b+d [SPEC] x:bFx:b [VAR]
xbbxx:d [CoMB]
F (fun x. x x): o= [4BS]

Note how Va.a-a gets instantiated to (Va.a—a) = (Vo.a=a) by [SPEC], substituting Va.a—a
for a.

We want to show now that (ler f = fun x.x in pair(f 3)(f true)): intXbool. Take A =
{3: int, true: bool, pair: Va. VB. a=pB=aXBland ¢ = Va. a - a.

AfdFf:d
Af:bFf:int~int A.f:dF3in
Af:bFf3in

AfdFfb
A.f:b F f: bool=bool A.f:b Ftrue: bool
A.f:b F f rrue: bool

AfdFf3im
A.f b F ftrue: bool
A.f b Fpair: Vo.VB.a=B-aXB

A.f b F pair (f 3)(f true):int X bool

AFfun xx: &  A.f:d Fpair (f 3)(f true):int X bool
A F (let f= fun x.x in pair (f 3)(f true)): intX bool

Note that from the assumption f: Va.a-a, we can independently instantiate a to in: and
bool; i.e., f has a generic type. Instead, in (fun f. pair (f 3)(f srue))(fun x. x), which is the
function-application version of the above let expression, no shallow type can be deduced for
(fun f. pair (f 3)(f mrue)). :

A variable is generic if it does not appear in the type of the variables of any enclosing
lambda-binder. Those binders must occur in the set of assumptions, so that they can be later dis-
carded by [ABS] to create those enclosing lambdas. Hence a variable is generic if it does not
appear in the set of assumptions. Therefore, if a variable is generic, we can apply [GEN] and
introduce a quantifier. This determines a precise relation between generic variables and quantifiers.

There is a formal way of relating the above inference system to the typechecking algorithm
presented in the previous sections. It can be shown that if the algorithm succeeds in producing a
type for an expression, then that type can be deduced from the inference system (see [Milner 78]
for a result involving a closely related inference system). We are now going to take a different,
informal approach to intuitively justify the typechecking algorithm. We are going the show how an
algorithm can be extracted from an inference system. In this view a typechecking algorithm is a
proof heuristic; i.e. it is a strategy to determine the order in which the inference rules should be
applied. If the proof heuristic succeeds, we have determined that a type can be inferred. If it
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fails, however, it may still be possible to infer a type. In particular our heuristic will be unable to
cope with expressions which require some non-shallow type manipulation, like in the deduction of
(fun x. x x)(fun x. x): Ya. a=a.

There are two aspects to the heuristic. The first one is how to determine the sets of assump-
tions, and the second is the order in which to apply the inference rules. If a language requires type
declarations for all identifiers, it is trivial to obtain the sets of assumptions, otherwise we have to
do type inference.

In carrying out type inference, lambda-bound identifiers are initially associated to type vari-
ables, and information is gathered during the typechecking process to determine what the type of
the identfier should have been in the first place. Hence, we start with these initial broad assump-
tions, and we build the proof by applying the inference rules in some order. Some of the rules
require the types of two subexpressions to be equal. This will not usually be the case, so we make
them equal by unifying the respective types. This results in specializing some of the types of the
identifiers. At this point we can imagine repeating the same proof, but starting with the more
refined set of assumptions we have just determined: this time the types of the two subexpressions
mentioned above will come out equal, and we can proceed.

The inference rules should be applied in an order which allows us to build the expression we
are trying to type from left to right and from the bottom up. For example, earlier we wanted to
show that (fun x. x): Ya. a = a. Take x: a as our set of assumptions. To deduce the type of
(fun x. x) bottom-up we start with the type of x, which we can obtain by [VAR], and then we
build up (fun x. x) by [ABS].

If we proceed left to right and bottom-up then, with the exception of [GEN] and [SPEC], at
any point only one rule can be applied, depending on the syntactic construct we are trying to
obtain next. Hence the problem reduces to choosing when to use [GEN] and [SPEC]; this is done
in conjunction with the [LET] rule.

Before applying [LET], we derive A e ”: o (refer to the [LET] rule) and then we apply all
the possible [GEN] rules, obtaining A F e ": o, where o can be a quantified type. Now we can
start deriving A.x: o Fe: 7, and every time we need to use [VAR] for x and o is quantified, we
immediately use [SPEC] to strip all the quantifiers, replacing the quantifier variable by a fresh type
variable. These new variables are then subject to instantiation, as discussed above, which deter-
mines more refined ways of using [SPEC].

As an exercise, one could try to apply the above heuristic to infer the type of length, and
observe how this corresponds to what the typechecking algorithm does in that case. Note how the
list of non-generic variables corresponds to the set of assumptions and the application of [GEN]
and [SPEC] rules.

8. The program

The following ML program implements the polymorphic typechecking algorithm, and also
illustrates how polymorphism is used in ML. ML syntax and semantics are described in [Milner
84]. Here are some comments on the program and the ML language; they refer to the program
code.

Keywords are in boldface, identifiers in roman, and data constructors in italic. Data construc-
tors are used in expressions to create data, and in pattern matching to analyze and select data com-
ponents. Type variables are roman identifiers starting with a quote: ‘“a’ is a type variable and is
normally pronounced "alpha“.

® The program begins with standard list manipulation routines, defined by pattern matching;
note that no types are declared here.

® Pointers, in the sense of assignable references to values, are not predefined in ML. They
can be built by ‘ref’ (built-in updatable references) and ‘Option’. A pointer is an updatable refer-
ence to an optional value; if the value is missing (‘none’) we have a null pointer, otherwise we
have a non-null pointer (‘some’). ‘Void’ creates a new null pointer, ‘Access’ dereferences a
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pointer, and ‘Assign’ updates a pointer. The type ‘“a Pointer’ is parametric, but it will only be used
here as a ‘Type Pointer’.

@ Time stamps are used to uniquely identify variables. This is an abstract type (so that time
stamps cannot be faked) with an own variable ‘Counter’ which is incremented every time a new
time stamp is needed.

@ The types ‘Ide’, “Term’ and ‘Decl’ form the abstract syntax of our language. A type expres-
sions ‘“Type’ can be a type variable or a type operator. A type variable, identified by a unique time
stamp, i8 uninstantiated when its type pointer is null, or instanriated otherwise. An instantiated
type variable behaves like its instantiation. A type operator (like ‘bool’ or ‘~’) has a name and a
list of type arguments (none for ‘bool’, two for ‘=').

® The function ‘Prune’ is used whenever a type expression has to be inspected: it will always
return a type expression which is either an uninstantiated type variable or a type operator; i.e. it
will skip instantiated variables, and will actually prune them from expressions to remove long
chains of instantiated variables.

@ The function ‘OccursInType’ checks whether a type variable occurs in a type expression.

® The type ‘NGVars’ is the type of lists of non-generic variables. ‘FreshType’ makes a copy
of a type expression, duplicating the generic variables and sharing the non-generic ones.

@ Type unification is now easily defined. Remember that when unifying a non-generic vari-
able to a term, all the variables in that term become non-generic. This is handled automatically by
the lists of non-generic variables, and no special code is needed in the unification routine.

® Type environments are then defined. Note that ‘RetrieveTypeEnv’ always creates fresh
types; some of this copying is unnecessary and could be eliminated.

® Finally we have the typechecking routine, which maintains a type environment and a list of
non-generic variables. Recursive declarations are handled in two passes. The first pass
‘AnalyzeRecDeclBind’ simply creates a new set of non-generic type variables and associates them
with identifiers. The second pass ‘AnalyzeRecDecl’ analyzes the declarations and makes calls to
‘UnifyType’ to ensure the recursive type constraints.



«§2=

{ coween List Manipulation (standard library routines) ------ }

val rec
map f nil = nil |
map f (head :: tail) = (f head) . (map f tail);

val rec
foldf nilx = x |
fold f (head :: tail) x = f (head, fold { tail x);

val rec
exists p nil = false |
exists p (head :: tail) = if p head then rrue else exists p tail;

{ ~=e-- Options -}

type ‘a Option = data none | some of “a;

type “a Pointer = data pointer of “a Option ref;
val Void() = pointer(ref none);

val Access(pointer(ref(some V))) = V;

val Assign(pointer P, V) = P := some V;

{ =e-- Time Stamps ----- }

abstype Stamp = data stamp of int;
with local Counter = ref 0
in  val NewStamp() = (Counter := !Counter+1; stamp (!Counter));
val SameStamp(stamp S, stamp §) = (S = §")
end
end;
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{ ----- Identifiers ----- }

type Ide = data symbol of string;

type rec Term = data
ide of Ide |
cond of Term * Term * Term |
lamb of Ide * Term |
appl of Term * Term |
block of Decl * Term

and Decl = data
defDecl of 1de * Term |
andDec! of Decl * Decl |

recDecl of Dedl;

{ --=-- Types -}

type rec Type = data
var of Stamp * Type Pointer |
oper of Ide » Type list;

val NewTypeVar() = var(NewStamp(), Void());
val NewTypeOper(Name,Args) = oper(Name, Args);

val SameVar (var(Stamp,_),var(Stamp’,_)) =
SameStamp(Stamp,Stamp”);

val rec Prune (Type: Type): Type =
case Type of
var(_,Instance) =>
(case Instance of
pointer (ref none). Type |
poinzer (_).
let val Pruned = Prune(Access Instance)
in (Assign(Instance,Pruned); Pruned) end
) |
oper(_) => Type;

val rec OccursInType(TypeVar: Type, Type: Type): bool =
let val Type = Prune Type
in case Type of
var(_) => SameVar(TypeVar,Type) |
oper (Name,Args) =>
fold (fun Arg,Accum => OccursInType(TypeVar,Arg) orelse Accum) Args false
end;

val OccursInTypeList(TypeVar: Type, TypeList: Type list): boal =
exists (fun Type => OccursInType(TypeVar,Type)) TypeList;
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{ ----- Generic Variables ----- }
type NGVars = data nonGenericVars of Type list;
val EmptyNGVars = nonGenericVars (];

val ExtendNGVars(Type: Type, nonGenericVars NGVars): NGVars =
nonGenericVars(Type :: NGVars);

val Generic(TypeVar: Type, nonGenericVars NGVars): bool =
not(OccursInTypeList(TypeVar NGVars));

{ -+ Copy Type -}
type CopyEnv = (Type * Type) list;

val FreshType (Type: Type, NGVars: NGVars): Type =
let val rec Fresh (Type: Type, Env: CopyEnv ref): Type =
let val Type = Prune Type
in case Type of
var(_) =>
#f Generic(Type,NGVars) then FreshVar(Type,!Env,Env) else Type |
oper(Name,Args) =>
NewTypeOper(Name, map (fun Arg => Fresh(Arg,Env)) Args)
end
and FreshVar (Var: Type, Scan: CopyEnv, Env: CopyEnv ref): Type =
if null Scan
then let val NewVar = NewTypeVar()
in (Env := (Var,NewVar).::(!Env); NewVar) end
else let val (OldVar,NewVar)::Rest = Scan
in if SameVar(Var,OldVar) then NewVar else FreshVar(Var,Rest,Env) end
in Fresh(Type,ref ]) end;

{ o= Basic Type Operators ----- }

val BoolType =
NewTypeOper(symbol "bool",[]);

val FunType (From: Type, Into: Type): Type =
NewTypeOper(symbol "fun",[From;Into]);
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{ +=--- Type Unification ---- }

val rec UnifyType (Type: Type, Type”: Type): unit =
let val Type = Prune Type and Type” = Prune Type’
in case Type of
var(Stamp,Instance) =>
if OccursInType(Type, Type’)
then case Type” of var(_) => () | oper(_) => escape "Unify"
else Assign(Instance,Type”) |
oper(Name,Args) =>
case Type’ of
var(_) => UnifyType(Type’,Type) |
oper(Name’,Args”) =>
if Name=Name" then UnifyArgs(Args,Args’) else escape "Unify"
end

and UnifyArgs ([}, () = O |
UnifyArgs (Hd:.T1, Hd"::TI") = (UnifyType(Hd, Hd"); UnifyArgs(T1, T1")) |
UnifyArgs (_) = escape "Unify";

{ +=--- Environments ----- }
type TypeEnv = data typeEnv of (Ide * Type) list;
val EmptyTypeEnv = typeEnv [];

val ExtendTypeEnv (Bind: Ide, Type: Type, typeEnv TypeEnv): TypeEnv =
nypeEnv((Bind, Type):: TypeEnv);

val RetrieveTypeEnv (Ide: Ide, rypeEnv TypeEnv, NGVars: NGVars): Type =
let val rec
Retrieve ([]: (Ide * Type) list): Type = escape "Undefined identifier" |
Retrieve ((Bind, Type)::Rest: (Ide s Type) list): Type =
if Ide=Bind then FreshType(Type,NGVars) else Retrieve Rest
in Retrieve TypeEnv end;
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{ ----- Typechecking ---- }

val rec

and

and

and

AnalyzeTerm (ide 1de, TypeEnv, NGVars): Type =
RetrieveTypeEnv(lde, TypeEnv,NGVars) |
AnalyzeTerm (cond(If, Then,Else), TypeEnv, NGVars): Type =
let val () = UnifyType(AnalyzeTerm(If, TypeEnv,NGVars),Bool Type);
val TypeOfThen = AnalyzeTerm(Then,TypeEnv,NGVars);
val TypeOfElse = AnalyzeTerm(Else, TypeEnv,NGVars)
in (Unify Type(TypeOfThen, TypeOfElse); TypeOfThen) end |
AnalyzeTerm (lamb(Bind,Body), TypeEnv, NGVars): Type =
let val TypeOfBind = NewTypeVar();
val BodyTypeEnv = ExtendTypeEnv(Bind, TypeOfBind, TypeEnv);
val BodyNGVars = ExtendNGVars(TypeOfBind,NGVars);
val TypeOfBody = AnalyzeTerm(Body,BodyTypeEnv,BodyNGVars)
in FunType(TypeOfBind, TypeOfBody) end |
AnalyzeTerm (eppl!(Fun,Arg), TypeEnv, NGVars): Type =
let  val TypeOfFun = AnalyzeTerm(Fun,TypeEnv,NGVars);
val TypeOfArg = AnalyzeTerm(Arg, TypeEnv,NGVars);
val TypeOfRes = NewTypeVar()
in (UnifyType(TypeOfFun,FunType(TypeOfArg, TypeOfRes)); TypeOfRes) end |
AnalyzeTerm (block(Decl,Scope), TypeEnv, NGVars): Type =
let val DeclEnv = AnalyzeDecl(Decl, TypeEnv,NGVars)
in AnalyzeTerm(Scope,DeclEnv,NGVars) end

AnalyzeDecl (defDecl(Bind, Term), TypeEnv, NGVars): TypeEnv =
ExtendTypeEnv(Bind,AnalyzeTerm(Term, TypeEnv,NGVars), TypeEnv) |
AnalyzeDecl (andDecl(Left,Right), TypeEnv, NGVars): TypeEnv =
AnalyzeDecl(Right,AnalyzeDed (Left, TypeEnv,NGVars), NGVars) |
AnalyzeDecl (recDecl Rec, TypeEnv, NGVars): TypeEnv =
let val TypeEnv,NGVars = AnalyzeRecDecBind(Rec, TypeEnv,NGVars)
in AnalyzeRecDecl(Rec, TypeEnv,NGVars) end

AnalyzeRecDecIBind (defDecl(Bind, Term), TypeEnv, NGVars) : TypeEnv * NGVars =
let val Var = NewTypeVar()
in ExtendTypeEnv(Bind, Var, TypeEnv), ExtendNGVars(Var, NGVars) end |
AnalyzeRecDeclBind (andDecl(Left,Right), TypeEnv, NGVars) : TypeEnv * NGVars =
let val TypeEnv,NGVars = AnalyzeRecDecBind(Left, TypeEnv,NGVars)
in AnalyzeRecDeclBind(Right, TypeEnv,NGVars) end |
AnalyzeRecDecIBind (recDec! Rec, TypeEnv, NGVars) : TypeEnv * NGVars =
AnalyzeRecDeclBind(Rec, TypeEnv NG Vars)

AnalyzeRecDecl (defDecl(Bind, Term), TypeEnv, NGVars): TypeEnv =
(Unify Type(RetrieveTypeEnv(Bind, TypeEnv,NGVars),
AnalyzeTerm(Term, TypeEnv,NGVars));
TypeEnv) |
AnalyzeRecDecl (andDecl(Left,Right), TypeEnv, NGVars): TypeEnv =
AnalyzeRecDecl(Right,AnalyzeRecDecl(Left, TypeEnv,NGVars),NGVars) |
AnalyzeRecDecl (recDec! Rec, TypeEnv, NGVars): TypeEnv =
AnalyzeRecDecl(Rec, TypeEnv,NGVars);
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9. Conclusions and acknowledgements

This paper presented some of the pragmatic knowledge about polymorphic typechecking, try-
ing to relate it informally to the theoretical background. These ideas have been developed by a
number of people over a number of years, and have been transmitted to me by discussions with
Luis Damas, Mike Gordon, Dave MacQueen, Robin Milner and Ravi Sethi.
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G1-80, Dept. of Computer Science, University of Edinburgh.

R. Milner (1979), LCF: a way of doing proofs with a machine, Eighth Math. Foun-
daticns of Comp. Sci.

R. Milrer, L. Morris, M. Newey (1975), A logic for computable furnctions with
*eflexive and polymorphic types, IRIA Conference on Proving and Improving Pro-
grams, pages 371-394. :

R. Milner, R. Weyhrauch (1672), Proving compiler correctness in a mechznized
logic, in: B. Meltzer, D. Michie, editors, Meckine Intelligence 7, Wiley, pages
51-70. ‘

K. Mulmuley (1984a), The mechanization of existence proofs of recursive pred-
icates, tn: R. E. Shostak, editor, Seventh Confersnce on Automated Deduction,
Springer LNCS 170, pages 460-475.



Describes Edinburgh LCF theories and tactics for proving the existence of
inclusive predicates, which play = role in compiler verification. Theories
of the universal domain and of finitary projecticas sllow quantification
over domains within PPLAMBDA. The system reduces the existence of 2
predicate to severzl goals, and proves mest of them automatically. It can
handle several examgles from tke literature. -

K. Mulmuley (19845), Full Abstraction and Sementic Equivelence, PhD thesis (in
. preparation), Carnegie-Mellon University, 10847,

A fuller description of the system of Mulmuley (1984a), and its application
to his discovery of a fully zbstract model of the lambda-calculus.

L. Paulson (1683a), Recent developments in LCF: examples of structural induction,
Report 34, Computer Lab., University of Cambridge.

An introducticn to performing structural induction in LCF, including

proofs of two simple thecrems about substituticn.

L. Paunlsor (1983b), Rewriting in Cambridge LCF, Report 35, Computer Lzb.,
University of Cambridge.

A preliminary versicn of Paulsen (1583f).

L. Paulson (1983c), Tke revised logic PPLAMBDA: a reference manual, Report
36, Computer Lab., University of Cambridge.
Describes the axioms, standard and derived inference rules, axnd syntactic

functions for the Cambridge version of PPLAMBIA. This version includes
the logical connectives V, 3, and «.

L. Paulscn (i983d), Tactics and tacticals in Cambridge LCF, Report 39, Computer
Lab., University of Cambridge.
Describes the primitive and derived tactics and tacticals for brecking apart

goals and assumptions, and for applying rewriting cr resolution to goals.
Nlustrates them via a sample interactive sessicn.

L. Paulson (1983e), Structural induction in LCF, Report 44, Computer Lab., Uni-
versity of Cambridge.
States axioms for defining recursive data types, and derives the rule of
structural induction. Constructor functicns may be lazy or strict in any

argurents, and may satisfy equational constramts. The resulting types
are related to initial algebras.

L. Paulson (1283f), A higher-order implementation of rewriting, Science of Com-
puter Programming 3, pages 119-149,

Describes in detail the implementation of rewrii:ing in Cambridze LCF,
in successive layers of simple, modular functions. Rewriting functions are
built up from primitives by means of higher-crder functions.

L. Paulson (1984a), Verifying the unification algorithm in LCF, Report 50, Com-
puter Lab., University of Cambridge. (To appear in Science of Computer Pro-
grammsng.)



Describes how Manna and Waldinger’s proof of the unificstion 2lzorithkm
was formealized in LCF, erd gives a detailed proof of a theorem zbout
substitution.

L. Paulson (1984b), Deriving structural induction in LCT, ¢n: G. Kahn, D. B. Mac-
Queen, G. Plotkin, Internationcl Symposium on Sermantics of Data Types, Springer
LNCS 173, pagas 167-214.

A shortered and revised version of Paulson (1933e).

L. Paulson (1984c), Lessons learned from LCF, in: D. Djgrner, editor, Work-
shop on Formel Softwere Development Combining Sgecification Metheds. Springer.
(Also Report 54, Computer Lab., University of Cambridge.)

An introductory, survey paper on the concepts and history of LCF. In-

troduces the metalanzuage ML, logic PPLAMBDA, inference rules, and

tactics. Describes LCT proofs in denotational semantics, functional pro-

gramining, and digital circuits, and discusses the evolution of ideas from
this work.

K. Petersson (1082), A programminrg system fcr type thecry, Report LPM-21,
Dept. of Computer Sciezces, Chalmers University, Goteberg.

D. Sannella, R. Burstall (1283), Structured theories in LCF, Report CSR-120-83,
Dept. of Computer Science, University of Edinburgh.

A proposal to provide CLEAR-like primitives for building theories, pro-

vidizg information hiding, parametrization, acd renaming.

D. Schmidt (1983b), Natural deduction theorem proving in set theory, Repert
CSR-142-83, Dept. of Computer Science, University of Edinburgh.

D. Schmidt (1984), A programming notation for tactical reasoning, #n: . E. Shes-
tak, editor, Seventh Conference on Automeled Deducison, Springer LINCS 170,
pages 445—459.

S. Sokolowski (1983z2), A note on tactics in LCF, Report CSR-140-83, Dept. of
Computer Science, University of Edinburgh.

Describes tactics that allow certain variables in goals to be instantiated
by unification.

S. Sokolowski (1983b), An LCF proof of the soundness of Hoare’s logic, Report
CSR-146-83, Dept. of Computer Science, University of Edinburgh.. _
A detailed account of the verification of the Hoare rules for an if-while
language defined by a direct denotational semantics. Infinite programs

are allowed — the while statement is defined to be an infinite nest of if
statements.



ABSTRACTS

Univ. of Edinburgh, Computer Science Department

Stephan Sokolowski

A Note on Tactics in LCF
Internal Report CSR-140-83
August 1983

During my experiments in LCF I came across the situations where the LCF tactical
approach as described in the "Edinburgh LCF" by Gordon, Milner and Wadsworth
turns out to be unsatisfactory. The difficulties that I encountered seem hardly inherent
to my particular area of applications, therefore I put forward to reformulate some basic
concepts of LCF rather than to look for an ad hkoc solution. In what follows I give
some justification for the changes and I describe how to use new definitions of proof,
tactic and new standard tacticals from the package UTAC.COD.

Stephan Sokolowski

An LCF Proof of Soundness of Hoare’s Logic -- A Paper without a Happy Ending
Internal Report CSR-146-83

October 1983

This paper describes the proof of soundness of Hoare’s logic carried out by the Edin-
burgh LCF theorem prover. It illustrates the way one can construct a general proof
strategy for a particular problem area and then apply it to prove theorems in this area.
The paper shows how much can be done using Edinburgh LCF and also what cannot be
done. '

Univ. of Cambridge, Computer Laboratory

Lawrence Paulson

Verifying the Unification Algorithm in LCF
Tech. Rep. No. 50

March 1984

Manna and Waldinger’s verification of the unification algorithm, which includes a sub-
stantial theory of substitutions, has been performed in the interactive theorem-prover
LCF. The problems and results are surveyed, with references to papers that give
details.

The LCF formalization differs from Manna and Waldinger’s, particularly since LCF
proves theorems in Scott’s Logic of Continuous Functions. Tedious reasoning about
termination appears everywhere, and the final well-founded induction is reformulated
as two nested structural inductions. A simpler data structure for expressions shortens
the proofs.

The paper demonstrates interaction with LCF, defining expressions as a recursive type,
and introducing functions to search for an occurrence of one expression inside another,
and to apply a substitution to an expression. Substitutuion is proved to be monotonic
relative to the occurrence ordering. The formalization cf unification and its properties
is presented.

The exercise has produced a better understanding of how structural induction, substitu-
tions, and finite sets are used in mechanical theorem-proving. Numerous improvements
have been made to Edinburgh LCF, resulting in a new version, Cambridge LCF.



Jon Fairbairn

A New Type-Checker for a Functional Language

Tech. Rep. No. 53

August 1984
A polymorphic type checker for the functional programming language Ponder [Fair-
bairn 82] is described. The initial sections give an overview of the syntax of Ponder,
and some of the motivation behind the design of the type system. This is followed by a
definition of the relation of ‘generality’ between these types, and of the notion of type-
validity of Ponder programmes. An algorithm to determine whether a Ponder pro-
gramme is type-valid is then presented. The final sections give examples of useful
types which may be constructed within the type system, and describe some of the areas
in which it is thought to be inadequate.

Lawrence Paulson
Lessons Learned from LCF
Tech. Rep. No. 54
August 1984

The history and future prospects of LCF are discussed. The introduction sketches basic
concepts such as the language ML, the logic PPLAMBDA, and backwards proof. The
history discusses LCF proofs about denotational semantics, functional programs, and
digital circuits, and describes the evolution of ideas about structureal induction, tactics,
logics of computation, and the use of ML. ‘The bibliography contains thrity-five refer-
ences.

Lawrence Paulson

Constructing Recursion Operators in Intuitionistic Type Theory

Tech. Rep. No. 57

October 1984
Martin-L8f’s Intuitionistic Theory of Types is becoming popular for formal reasoning
about computer programs. To handle recursion schemes other than primitive recursion,
a theory of well-founded relations is presented. Using primitive recursion over higher
types, induction and recursion are formally derived for a large class of well-founded
relations. This includes < (on natural numbers) and relations formed by inverse
images, addition, multiplication, and exponentiation of other relations. The theory is
compared with work in the field of ordinal recursion over higher types.

University of Umea, Institute of Information Processing

Lennart Edblom
Implementation of ML on a Lisp Machine
Report UMINF-11483, ISSN 0348-0542

This report describes an implementation cf the functional language ML on a Lisp
Machine. An implementation in Franz Lisp was translated to the Lisp dialect of the
Lisp Machine, Zetalisp.

Following brief introductions to ML and the Lisp Machine, the main part of the report
describes the changes necessary to move the Franz Lisp programs to the Lisp Machine.
The main differences were found to be the functions for character handling,
input/ouput, and file handling, otherwise only minor changes were needed.

The Zetalisp functions implementing ML input and file handling, along with an exam-
ple of ML programming are shown in the appendices. An elementary introduction to
ML on the Lisp Machine, written in Swedish, is attached as appendix F.



Lambda Calculus Models of
Typed Programming Languages

John Clifford Mitchell

Submitted to the MIT Department of Electrical Engineering and Computer Science
on August 24, 1984 in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Abstract

The first part of this thesis studies the second-order lambda calculus, developed independently
by Girard and Reynolds. In this typed language, featuring polymorphic functions and abstract
data type declarations, types play an important role in defining the set of well-formed terms. We
discuss the features of second-order lambda calculus that correspond to common programming
language constructs, demonstrating some natural extensions to Ada, Alphard, CLU, ML and
related programming languages. In particular, we describe a simple approach to passing
representations of abstract data types as parameters and returning representations as results of
function calls.

The semantics of second-order lambda calculus is studied using a slightly more general
higher-order lambda calculus that makes it possible to treat type-building operations like the
product-space constructor or the tagged union constructor as optional constants of the language.
We define semantic models for the general language A and prove a completeness theorem,
extending previous work on the second-order lambda calculus. A formal axiomatization of
models of ¥A is then given using a higher-order type theory #J. This axiomatization is similar in
spirit to the first-order combinatory characterization of models of untyped lambda clculus.

The second part of the thesis is concerned with type inference, the problem of finding types
for untyped expressions. We study two type inference systems for untyped lambda calculus.
The first system combines a relatively simple language of types with some simple postulates
about relationships between types. The main results here are a complete axiomatization for all
valid typing statements and a decision procedure for a natural class of typing statements. In prac-
tical terms, the decision procedure is a typing algorithm that may be used to add simple coercions
to programming languages like ML.

The second type inference system includes the more complicated universally quantified type
expressions of second-order lambda calculus. A general definition of the semantics of typing
statements with universally quantified types is proposed, generalizing previous work by Mac-
Queen, Sethi and Plotkin. These inference models are models of untyped lambda calculus with
extra structure similar to models of second-order lambda calculus. We show that the GR
axiom system, an extension of the typing rules for second-order lambda calculus, is complete for
all typing statements valid over all inference models. A more specialized set of type inference
rules, the GRS__ rules, characterize the more spedalized simple semantics. We also study contain-
ments between types by reformulating the inference rules so that containments play a central role.

Thesis Supervisor: Albert R. Meyer, Professor of Computer Science

Author’s present address: AT&T Bell Labs, 600 Mountain Ave., Murray Hill, NJ 07974.
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